2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
21 #include <asm/memory.h>
22 #include <asm/highmem.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sizes.h>
27 /* Sanity check size */
28 #if (CONSISTENT_DMA_SIZE % SZ_2M)
29 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
32 #define CONSISTENT_END (0xffe00000)
33 #define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
35 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
36 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
39 static u64
get_coherent_dma_mask(struct device
*dev
)
41 u64 mask
= ISA_DMA_THRESHOLD
;
44 mask
= dev
->coherent_dma_mask
;
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
51 dev_warn(dev
, "coherent DMA mask is unset\n");
55 if ((~mask
) & ISA_DMA_THRESHOLD
) {
56 dev_warn(dev
, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask
, (unsigned long long)ISA_DMA_THRESHOLD
);
67 * Allocate a DMA buffer for 'dev' of size 'size' using the
68 * specified gfp mask. Note that 'size' must be page aligned.
70 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
, gfp_t gfp
)
72 unsigned long order
= get_order(size
);
73 struct page
*page
, *p
, *e
;
75 u64 mask
= get_coherent_dma_mask(dev
);
77 #ifdef CONFIG_DMA_API_DEBUG
78 u64 limit
= (mask
+ 1) & ~mask
;
79 if (limit
&& size
>= limit
) {
80 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
89 if (mask
< 0xffffffffULL
)
92 page
= alloc_pages(gfp
, order
);
97 * Now split the huge page and free the excess pages
99 split_page(page
, order
);
100 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
104 * Ensure that the allocated pages are zeroed, and that any data
105 * lurking in the kernel direct-mapped region is invalidated.
107 ptr
= page_address(page
);
108 memset(ptr
, 0, size
);
109 dmac_flush_range(ptr
, ptr
+ size
);
110 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
116 * Free a DMA buffer. 'size' must be page aligned.
118 static void __dma_free_buffer(struct page
*page
, size_t size
)
120 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
132 static pte_t
*consistent_pte
[NUM_CONSISTENT_PTES
];
134 #include "vmregion.h"
136 static struct arm_vmregion_head consistent_head
= {
137 .vm_lock
= __SPIN_LOCK_UNLOCKED(&consistent_head
.vm_lock
),
138 .vm_list
= LIST_HEAD_INIT(consistent_head
.vm_list
),
139 .vm_start
= CONSISTENT_BASE
,
140 .vm_end
= CONSISTENT_END
,
143 #ifdef CONFIG_HUGETLB_PAGE
144 #error ARM Coherent DMA allocator does not (yet) support huge TLB
148 * Initialise the consistent memory allocation.
150 static int __init
consistent_init(void)
157 u32 base
= CONSISTENT_BASE
;
160 pgd
= pgd_offset(&init_mm
, base
);
161 pmd
= pmd_alloc(&init_mm
, pgd
, base
);
163 printk(KERN_ERR
"%s: no pmd tables\n", __func__
);
167 WARN_ON(!pmd_none(*pmd
));
169 pte
= pte_alloc_kernel(pmd
, base
);
171 printk(KERN_ERR
"%s: no pte tables\n", __func__
);
176 consistent_pte
[i
++] = pte
;
177 base
+= (1 << PGDIR_SHIFT
);
178 } while (base
< CONSISTENT_END
);
183 core_initcall(consistent_init
);
186 __dma_alloc_remap(struct page
*page
, size_t size
, gfp_t gfp
, pgprot_t prot
)
188 struct arm_vmregion
*c
;
190 if (!consistent_pte
[0]) {
191 printk(KERN_ERR
"%s: not initialised\n", __func__
);
197 * Allocate a virtual address in the consistent mapping region.
199 c
= arm_vmregion_alloc(&consistent_head
, size
,
200 gfp
& ~(__GFP_DMA
| __GFP_HIGHMEM
));
203 int idx
= CONSISTENT_PTE_INDEX(c
->vm_start
);
204 u32 off
= CONSISTENT_OFFSET(c
->vm_start
) & (PTRS_PER_PTE
-1);
206 pte
= consistent_pte
[idx
] + off
;
210 BUG_ON(!pte_none(*pte
));
212 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
216 if (off
>= PTRS_PER_PTE
) {
218 pte
= consistent_pte
[++idx
];
220 } while (size
-= PAGE_SIZE
);
222 return (void *)c
->vm_start
;
227 static void __dma_free_remap(void *cpu_addr
, size_t size
)
229 struct arm_vmregion
*c
;
235 c
= arm_vmregion_find_remove(&consistent_head
, (unsigned long)cpu_addr
);
237 printk(KERN_ERR
"%s: trying to free invalid coherent area: %p\n",
243 if ((c
->vm_end
- c
->vm_start
) != size
) {
244 printk(KERN_ERR
"%s: freeing wrong coherent size (%ld != %d)\n",
245 __func__
, c
->vm_end
- c
->vm_start
, size
);
247 size
= c
->vm_end
- c
->vm_start
;
250 idx
= CONSISTENT_PTE_INDEX(c
->vm_start
);
251 off
= CONSISTENT_OFFSET(c
->vm_start
) & (PTRS_PER_PTE
-1);
252 ptep
= consistent_pte
[idx
] + off
;
255 pte_t pte
= ptep_get_and_clear(&init_mm
, addr
, ptep
);
260 if (off
>= PTRS_PER_PTE
) {
262 ptep
= consistent_pte
[++idx
];
265 if (pte_none(pte
) || !pte_present(pte
))
266 printk(KERN_CRIT
"%s: bad page in kernel page table\n",
268 } while (size
-= PAGE_SIZE
);
270 flush_tlb_kernel_range(c
->vm_start
, c
->vm_end
);
272 arm_vmregion_free(&consistent_head
, c
);
275 #else /* !CONFIG_MMU */
277 #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
278 #define __dma_free_remap(addr, size) do { } while (0)
280 #endif /* CONFIG_MMU */
283 __dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
, gfp_t gfp
,
290 size
= PAGE_ALIGN(size
);
292 page
= __dma_alloc_buffer(dev
, size
, gfp
);
296 if (!arch_is_coherent())
297 addr
= __dma_alloc_remap(page
, size
, gfp
, prot
);
299 addr
= page_address(page
);
302 *handle
= page_to_dma(dev
, page
);
308 * Allocate DMA-coherent memory space and return both the kernel remapped
309 * virtual and bus address for that space.
312 dma_alloc_coherent(struct device
*dev
, size_t size
, dma_addr_t
*handle
, gfp_t gfp
)
316 if (dma_alloc_from_coherent(dev
, size
, handle
, &memory
))
319 return __dma_alloc(dev
, size
, handle
, gfp
,
320 pgprot_dmacoherent(pgprot_kernel
));
322 EXPORT_SYMBOL(dma_alloc_coherent
);
325 * Allocate a writecombining region, in much the same way as
326 * dma_alloc_coherent above.
329 dma_alloc_writecombine(struct device
*dev
, size_t size
, dma_addr_t
*handle
, gfp_t gfp
)
331 return __dma_alloc(dev
, size
, handle
, gfp
,
332 pgprot_writecombine(pgprot_kernel
));
334 EXPORT_SYMBOL(dma_alloc_writecombine
);
336 static int dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
337 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
)
341 unsigned long user_size
, kern_size
;
342 struct arm_vmregion
*c
;
344 user_size
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
346 c
= arm_vmregion_find(&consistent_head
, (unsigned long)cpu_addr
);
348 unsigned long off
= vma
->vm_pgoff
;
350 kern_size
= (c
->vm_end
- c
->vm_start
) >> PAGE_SHIFT
;
352 if (off
< kern_size
&&
353 user_size
<= (kern_size
- off
)) {
354 ret
= remap_pfn_range(vma
, vma
->vm_start
,
355 page_to_pfn(c
->vm_pages
) + off
,
356 user_size
<< PAGE_SHIFT
,
360 #endif /* CONFIG_MMU */
365 int dma_mmap_coherent(struct device
*dev
, struct vm_area_struct
*vma
,
366 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
)
368 vma
->vm_page_prot
= pgprot_dmacoherent(vma
->vm_page_prot
);
369 return dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
);
371 EXPORT_SYMBOL(dma_mmap_coherent
);
373 int dma_mmap_writecombine(struct device
*dev
, struct vm_area_struct
*vma
,
374 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
)
376 vma
->vm_page_prot
= pgprot_writecombine(vma
->vm_page_prot
);
377 return dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
);
379 EXPORT_SYMBOL(dma_mmap_writecombine
);
382 * free a page as defined by the above mapping.
383 * Must not be called with IRQs disabled.
385 void dma_free_coherent(struct device
*dev
, size_t size
, void *cpu_addr
, dma_addr_t handle
)
387 WARN_ON(irqs_disabled());
389 if (dma_release_from_coherent(dev
, get_order(size
), cpu_addr
))
392 size
= PAGE_ALIGN(size
);
394 if (!arch_is_coherent())
395 __dma_free_remap(cpu_addr
, size
);
397 __dma_free_buffer(dma_to_page(dev
, handle
), size
);
399 EXPORT_SYMBOL(dma_free_coherent
);
402 * Make an area consistent for devices.
403 * Note: Drivers should NOT use this function directly, as it will break
404 * platforms with CONFIG_DMABOUNCE.
405 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
407 void dma_cache_maint(const void *start
, size_t size
, int direction
)
409 void (*inner_op
)(const void *, const void *);
410 void (*outer_op
)(unsigned long, unsigned long);
412 BUG_ON(!virt_addr_valid(start
) || !virt_addr_valid(start
+ size
- 1));
415 case DMA_FROM_DEVICE
: /* invalidate only */
416 inner_op
= dmac_inv_range
;
417 outer_op
= outer_inv_range
;
419 case DMA_TO_DEVICE
: /* writeback only */
420 inner_op
= dmac_clean_range
;
421 outer_op
= outer_clean_range
;
423 case DMA_BIDIRECTIONAL
: /* writeback and invalidate */
424 inner_op
= dmac_flush_range
;
425 outer_op
= outer_flush_range
;
431 inner_op(start
, start
+ size
);
432 outer_op(__pa(start
), __pa(start
) + size
);
434 EXPORT_SYMBOL(dma_cache_maint
);
436 static void dma_cache_maint_contiguous(struct page
*page
, unsigned long offset
,
437 size_t size
, int direction
)
441 void (*inner_op
)(const void *, const void *);
442 void (*outer_op
)(unsigned long, unsigned long);
445 case DMA_FROM_DEVICE
: /* invalidate only */
446 inner_op
= dmac_inv_range
;
447 outer_op
= outer_inv_range
;
449 case DMA_TO_DEVICE
: /* writeback only */
450 inner_op
= dmac_clean_range
;
451 outer_op
= outer_clean_range
;
453 case DMA_BIDIRECTIONAL
: /* writeback and invalidate */
454 inner_op
= dmac_flush_range
;
455 outer_op
= outer_flush_range
;
461 if (!PageHighMem(page
)) {
462 vaddr
= page_address(page
) + offset
;
463 inner_op(vaddr
, vaddr
+ size
);
465 vaddr
= kmap_high_get(page
);
468 inner_op(vaddr
, vaddr
+ size
);
473 paddr
= page_to_phys(page
) + offset
;
474 outer_op(paddr
, paddr
+ size
);
477 void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
478 size_t size
, int dir
)
481 * A single sg entry may refer to multiple physically contiguous
482 * pages. But we still need to process highmem pages individually.
483 * If highmem is not configured then the bulk of this loop gets
489 if (PageHighMem(page
) && len
+ offset
> PAGE_SIZE
) {
490 if (offset
>= PAGE_SIZE
) {
491 page
+= offset
/ PAGE_SIZE
;
494 len
= PAGE_SIZE
- offset
;
496 dma_cache_maint_contiguous(page
, offset
, len
, dir
);
502 EXPORT_SYMBOL(dma_cache_maint_page
);
505 * dma_map_sg - map a set of SG buffers for streaming mode DMA
506 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
507 * @sg: list of buffers
508 * @nents: number of buffers to map
509 * @dir: DMA transfer direction
511 * Map a set of buffers described by scatterlist in streaming mode for DMA.
512 * This is the scatter-gather version of the dma_map_single interface.
513 * Here the scatter gather list elements are each tagged with the
514 * appropriate dma address and length. They are obtained via
515 * sg_dma_{address,length}.
517 * Device ownership issues as mentioned for dma_map_single are the same
520 int dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
521 enum dma_data_direction dir
)
523 struct scatterlist
*s
;
526 for_each_sg(sg
, s
, nents
, i
) {
527 s
->dma_address
= dma_map_page(dev
, sg_page(s
), s
->offset
,
529 if (dma_mapping_error(dev
, s
->dma_address
))
535 for_each_sg(sg
, s
, i
, j
)
536 dma_unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
);
539 EXPORT_SYMBOL(dma_map_sg
);
542 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
543 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
544 * @sg: list of buffers
545 * @nents: number of buffers to unmap (returned from dma_map_sg)
546 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
548 * Unmap a set of streaming mode DMA translations. Again, CPU access
549 * rules concerning calls here are the same as for dma_unmap_single().
551 void dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
552 enum dma_data_direction dir
)
554 struct scatterlist
*s
;
557 for_each_sg(sg
, s
, nents
, i
)
558 dma_unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
);
560 EXPORT_SYMBOL(dma_unmap_sg
);
563 * dma_sync_sg_for_cpu
564 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
565 * @sg: list of buffers
566 * @nents: number of buffers to map (returned from dma_map_sg)
567 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
569 void dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
570 int nents
, enum dma_data_direction dir
)
572 struct scatterlist
*s
;
575 for_each_sg(sg
, s
, nents
, i
) {
576 dmabounce_sync_for_cpu(dev
, sg_dma_address(s
), 0,
580 EXPORT_SYMBOL(dma_sync_sg_for_cpu
);
583 * dma_sync_sg_for_device
584 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
585 * @sg: list of buffers
586 * @nents: number of buffers to map (returned from dma_map_sg)
587 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
589 void dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
590 int nents
, enum dma_data_direction dir
)
592 struct scatterlist
*s
;
595 for_each_sg(sg
, s
, nents
, i
) {
596 if (!dmabounce_sync_for_device(dev
, sg_dma_address(s
), 0,
600 if (!arch_is_coherent())
601 dma_cache_maint_page(sg_page(s
), s
->offset
,
605 EXPORT_SYMBOL(dma_sync_sg_for_device
);