2 * linux/arch/arm/mm/fault-armv.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cachetype.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
28 static unsigned long shared_pte_mask
= L_PTE_MT_BUFFERABLE
;
31 * We take the easy way out of this problem - we make the
32 * PTE uncacheable. However, we leave the write buffer on.
34 * Note that the pte lock held when calling update_mmu_cache must also
35 * guard the pte (somewhere else in the same mm) that we modify here.
36 * Therefore those configurations which might call adjust_pte (those
37 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
39 static int adjust_pte(struct vm_area_struct
*vma
, unsigned long address
)
46 pgd
= pgd_offset(vma
->vm_mm
, address
);
52 pmd
= pmd_offset(pgd
, address
);
58 pte
= pte_offset_map(pmd
, address
);
62 * If this page is present, it's actually being shared.
64 ret
= pte_present(entry
);
67 * If this page isn't present, or is already setup to
68 * fault (ie, is old), we can safely ignore any issues.
70 if (ret
&& (pte_val(entry
) & L_PTE_MT_MASK
) != shared_pte_mask
) {
71 unsigned long pfn
= pte_pfn(entry
);
72 flush_cache_page(vma
, address
, pfn
);
73 outer_flush_range((pfn
<< PAGE_SHIFT
),
74 (pfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
75 pte_val(entry
) &= ~L_PTE_MT_MASK
;
76 pte_val(entry
) |= shared_pte_mask
;
77 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
78 flush_tlb_page(vma
, address
);
97 make_coherent(struct address_space
*mapping
, struct vm_area_struct
*vma
, unsigned long addr
, unsigned long pfn
)
99 struct mm_struct
*mm
= vma
->vm_mm
;
100 struct vm_area_struct
*mpnt
;
101 struct prio_tree_iter iter
;
102 unsigned long offset
;
106 pgoff
= vma
->vm_pgoff
+ ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
109 * If we have any shared mappings that are in the same mm
110 * space, then we need to handle them specially to maintain
113 flush_dcache_mmap_lock(mapping
);
114 vma_prio_tree_foreach(mpnt
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
116 * If this VMA is not in our MM, we can ignore it.
117 * Note that we intentionally mask out the VMA
118 * that we are fixing up.
120 if (mpnt
->vm_mm
!= mm
|| mpnt
== vma
)
122 if (!(mpnt
->vm_flags
& VM_MAYSHARE
))
124 offset
= (pgoff
- mpnt
->vm_pgoff
) << PAGE_SHIFT
;
125 aliases
+= adjust_pte(mpnt
, mpnt
->vm_start
+ offset
);
127 flush_dcache_mmap_unlock(mapping
);
129 adjust_pte(vma
, addr
);
131 flush_cache_page(vma
, addr
, pfn
);
135 * Take care of architecture specific things when placing a new PTE into
136 * a page table, or changing an existing PTE. Basically, there are two
137 * things that we need to take care of:
139 * 1. If PG_dcache_dirty is set for the page, we need to ensure
140 * that any cache entries for the kernels virtual memory
141 * range are written back to the page.
142 * 2. If we have multiple shared mappings of the same space in
143 * an object, we need to deal with the cache aliasing issues.
145 * Note that the pte lock will be held.
147 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
149 unsigned long pfn
= pte_pfn(pte
);
150 struct address_space
*mapping
;
157 * The zero page is never written to, so never has any dirty
158 * cache lines, and therefore never needs to be flushed.
160 page
= pfn_to_page(pfn
);
161 if (page
== ZERO_PAGE(0))
164 mapping
= page_mapping(page
);
166 if (test_and_clear_bit(PG_dcache_dirty
, &page
->flags
))
167 __flush_dcache_page(mapping
, page
);
171 make_coherent(mapping
, vma
, addr
, pfn
);
172 else if (vma
->vm_flags
& VM_EXEC
)
173 __flush_icache_all();
178 * Check whether the write buffer has physical address aliasing
179 * issues. If it has, we need to avoid them for the case where
180 * we have several shared mappings of the same object in user
183 static int __init
check_writebuffer(unsigned long *p1
, unsigned long *p2
)
185 register unsigned long zero
= 0, one
= 1, val
;
199 void __init
check_writebuffer_bugs(void)
205 printk(KERN_INFO
"CPU: Testing write buffer coherency: ");
207 page
= alloc_page(GFP_KERNEL
);
209 unsigned long *p1
, *p2
;
210 pgprot_t prot
= __pgprot_modify(PAGE_KERNEL
,
211 L_PTE_MT_MASK
, L_PTE_MT_BUFFERABLE
);
213 p1
= vmap(&page
, 1, VM_IOREMAP
, prot
);
214 p2
= vmap(&page
, 1, VM_IOREMAP
, prot
);
217 v
= check_writebuffer(p1
, p2
);
218 reason
= "enabling work-around";
220 reason
= "unable to map memory\n";
227 reason
= "unable to grab page\n";
231 printk("failed, %s\n", reason
);
232 shared_pte_mask
= L_PTE_MT_UNCACHED
;