2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
26 #include <asm/highmem.h>
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
33 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
39 struct page
*empty_zero_page
;
40 EXPORT_SYMBOL(empty_zero_page
);
43 * The pmd table for the upper-most set of pages.
47 #define CPOLICY_UNCACHED 0
48 #define CPOLICY_BUFFERED 1
49 #define CPOLICY_WRITETHROUGH 2
50 #define CPOLICY_WRITEBACK 3
51 #define CPOLICY_WRITEALLOC 4
53 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
54 static unsigned int ecc_mask __initdata
= 0;
56 pgprot_t pgprot_kernel
;
58 EXPORT_SYMBOL(pgprot_user
);
59 EXPORT_SYMBOL(pgprot_kernel
);
62 const char policy
[16];
68 static struct cachepolicy cache_policies
[] __initdata
= {
72 .pmd
= PMD_SECT_UNCACHED
,
73 .pte
= L_PTE_MT_UNCACHED
,
77 .pmd
= PMD_SECT_BUFFERED
,
78 .pte
= L_PTE_MT_BUFFERABLE
,
80 .policy
= "writethrough",
83 .pte
= L_PTE_MT_WRITETHROUGH
,
85 .policy
= "writeback",
88 .pte
= L_PTE_MT_WRITEBACK
,
90 .policy
= "writealloc",
93 .pte
= L_PTE_MT_WRITEALLOC
,
98 * These are useful for identifying cache coherency
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
103 static void __init
early_cachepolicy(char **p
)
107 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
108 int len
= strlen(cache_policies
[i
].policy
);
110 if (memcmp(*p
, cache_policies
[i
].policy
, len
) == 0) {
112 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
113 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
118 if (i
== ARRAY_SIZE(cache_policies
))
119 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
121 * This restriction is partly to do with the way we boot; it is
122 * unpredictable to have memory mapped using two different sets of
123 * memory attributes (shared, type, and cache attribs). We can not
124 * change these attributes once the initial assembly has setup the
127 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
128 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
129 cachepolicy
= CPOLICY_WRITEBACK
;
132 set_cr(cr_alignment
);
134 __early_param("cachepolicy=", early_cachepolicy
);
136 static void __init
early_nocache(char **__unused
)
138 char *p
= "buffered";
139 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
140 early_cachepolicy(&p
);
142 __early_param("nocache", early_nocache
);
144 static void __init
early_nowrite(char **__unused
)
146 char *p
= "uncached";
147 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
148 early_cachepolicy(&p
);
150 __early_param("nowb", early_nowrite
);
152 static void __init
early_ecc(char **p
)
154 if (memcmp(*p
, "on", 2) == 0) {
155 ecc_mask
= PMD_PROTECTION
;
157 } else if (memcmp(*p
, "off", 3) == 0) {
162 __early_param("ecc=", early_ecc
);
164 static int __init
noalign_setup(char *__unused
)
166 cr_alignment
&= ~CR_A
;
167 cr_no_alignment
&= ~CR_A
;
168 set_cr(cr_alignment
);
171 __setup("noalign", noalign_setup
);
174 void adjust_cr(unsigned long mask
, unsigned long set
)
182 local_irq_save(flags
);
184 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
185 cr_alignment
= (cr_alignment
& ~mask
) | set
;
187 set_cr((get_cr() & ~mask
) | set
);
189 local_irq_restore(flags
);
193 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196 static struct mem_type mem_types
[] = {
197 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
198 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
200 .prot_l1
= PMD_TYPE_TABLE
,
201 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
204 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
205 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
206 .prot_l1
= PMD_TYPE_TABLE
,
207 .prot_sect
= PROT_SECT_DEVICE
,
210 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
211 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
212 .prot_l1
= PMD_TYPE_TABLE
,
213 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
216 [MT_DEVICE_WC
] = { /* ioremap_wc */
217 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
218 .prot_l1
= PMD_TYPE_TABLE
,
219 .prot_sect
= PROT_SECT_DEVICE
,
223 .prot_pte
= PROT_PTE_DEVICE
,
224 .prot_l1
= PMD_TYPE_TABLE
,
225 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
229 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
230 .domain
= DOMAIN_KERNEL
,
233 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
234 .domain
= DOMAIN_KERNEL
,
237 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
239 .prot_l1
= PMD_TYPE_TABLE
,
240 .domain
= DOMAIN_USER
,
242 [MT_HIGH_VECTORS
] = {
243 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
244 L_PTE_USER
| L_PTE_EXEC
,
245 .prot_l1
= PMD_TYPE_TABLE
,
246 .domain
= DOMAIN_USER
,
249 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
250 .domain
= DOMAIN_KERNEL
,
253 .prot_sect
= PMD_TYPE_SECT
,
254 .domain
= DOMAIN_KERNEL
,
256 [MT_MEMORY_NONCACHED
] = {
257 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
258 .domain
= DOMAIN_KERNEL
,
262 const struct mem_type
*get_mem_type(unsigned int type
)
264 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
266 EXPORT_SYMBOL(get_mem_type
);
269 * Adjust the PMD section entries according to the CPU in use.
271 static void __init
build_mem_type_table(void)
273 struct cachepolicy
*cp
;
274 unsigned int cr
= get_cr();
275 unsigned int user_pgprot
, kern_pgprot
, vecs_pgprot
;
276 int cpu_arch
= cpu_architecture();
279 if (cpu_arch
< CPU_ARCH_ARMv6
) {
280 #if defined(CONFIG_CPU_DCACHE_DISABLE)
281 if (cachepolicy
> CPOLICY_BUFFERED
)
282 cachepolicy
= CPOLICY_BUFFERED
;
283 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
284 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
285 cachepolicy
= CPOLICY_WRITETHROUGH
;
288 if (cpu_arch
< CPU_ARCH_ARMv5
) {
289 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
290 cachepolicy
= CPOLICY_WRITEBACK
;
294 cachepolicy
= CPOLICY_WRITEALLOC
;
298 * Strip out features not present on earlier architectures.
299 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
300 * without extended page tables don't have the 'Shared' bit.
302 if (cpu_arch
< CPU_ARCH_ARMv5
)
303 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
304 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
305 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
306 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
307 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
310 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311 * "update-able on write" bit on ARM610). However, Xscale and
312 * Xscale3 require this bit to be cleared.
314 if (cpu_is_xscale() || cpu_is_xsc3()) {
315 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
316 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
317 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
319 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
320 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
321 if (mem_types
[i
].prot_l1
)
322 mem_types
[i
].prot_l1
|= PMD_BIT4
;
323 if (mem_types
[i
].prot_sect
)
324 mem_types
[i
].prot_sect
|= PMD_BIT4
;
329 * Mark the device areas according to the CPU/architecture.
331 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
332 if (!cpu_is_xsc3()) {
334 * Mark device regions on ARMv6+ as execute-never
335 * to prevent speculative instruction fetches.
337 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
338 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
339 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
340 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
342 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
344 * For ARMv7 with TEX remapping,
345 * - shared device is SXCB=1100
346 * - nonshared device is SXCB=0100
347 * - write combine device mem is SXCB=0001
348 * (Uncached Normal memory)
350 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
351 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
352 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
353 } else if (cpu_is_xsc3()) {
356 * - shared device is TEXCB=00101
357 * - nonshared device is TEXCB=01000
358 * - write combine device mem is TEXCB=00100
359 * (Inner/Outer Uncacheable in xsc3 parlance)
361 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
362 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
363 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
366 * For ARMv6 and ARMv7 without TEX remapping,
367 * - shared device is TEXCB=00001
368 * - nonshared device is TEXCB=01000
369 * - write combine device mem is TEXCB=00100
370 * (Uncached Normal in ARMv6 parlance).
372 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
373 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
374 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
378 * On others, write combining is "Uncached/Buffered"
380 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
384 * Now deal with the memory-type mappings
386 cp
= &cache_policies
[cachepolicy
];
387 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
391 * Only use write-through for non-SMP systems
393 if (cpu_arch
>= CPU_ARCH_ARMv5
&& cachepolicy
> CPOLICY_WRITETHROUGH
)
394 vecs_pgprot
= cache_policies
[CPOLICY_WRITETHROUGH
].pte
;
398 * Enable CPU-specific coherency if supported.
399 * (Only available on XSC3 at the moment.)
401 if (arch_is_coherent() && cpu_is_xsc3())
402 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
405 * ARMv6 and above have extended page tables.
407 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
409 * Mark cache clean areas and XIP ROM read only
410 * from SVC mode and no access from userspace.
412 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
413 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
414 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
418 * Mark memory with the "shared" attribute for SMP systems
420 user_pgprot
|= L_PTE_SHARED
;
421 kern_pgprot
|= L_PTE_SHARED
;
422 vecs_pgprot
|= L_PTE_SHARED
;
423 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
424 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
429 * Non-cacheable Normal - intended for memory areas that must
430 * not cause dirty cache line writebacks when used
432 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
433 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
434 /* Non-cacheable Normal is XCB = 001 */
435 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
438 /* For both ARMv6 and non-TEX-remapping ARMv7 */
439 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
443 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
446 for (i
= 0; i
< 16; i
++) {
447 unsigned long v
= pgprot_val(protection_map
[i
]);
448 protection_map
[i
] = __pgprot(v
| user_pgprot
);
451 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
452 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
454 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
455 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
456 L_PTE_DIRTY
| L_PTE_WRITE
| kern_pgprot
);
458 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
459 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
460 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
461 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
465 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
469 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
472 printk("Memory policy: ECC %sabled, Data cache %s\n",
473 ecc_mask
? "en" : "dis", cp
->policy
);
475 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
476 struct mem_type
*t
= &mem_types
[i
];
478 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
480 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
484 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
486 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
487 unsigned long end
, unsigned long pfn
,
488 const struct mem_type
*type
)
492 if (pmd_none(*pmd
)) {
493 pte
= alloc_bootmem_low_pages(2 * PTRS_PER_PTE
* sizeof(pte_t
));
494 __pmd_populate(pmd
, __pa(pte
) | type
->prot_l1
);
497 pte
= pte_offset_kernel(pmd
, addr
);
499 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
501 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
504 static void __init
alloc_init_section(pgd_t
*pgd
, unsigned long addr
,
505 unsigned long end
, unsigned long phys
,
506 const struct mem_type
*type
)
508 pmd_t
*pmd
= pmd_offset(pgd
, addr
);
511 * Try a section mapping - end, addr and phys must all be aligned
512 * to a section boundary. Note that PMDs refer to the individual
513 * L1 entries, whereas PGDs refer to a group of L1 entries making
514 * up one logical pointer to an L2 table.
516 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
519 if (addr
& SECTION_SIZE
)
523 *pmd
= __pmd(phys
| type
->prot_sect
);
524 phys
+= SECTION_SIZE
;
525 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
530 * No need to loop; pte's aren't interested in the
531 * individual L1 entries.
533 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
537 static void __init
create_36bit_mapping(struct map_desc
*md
,
538 const struct mem_type
*type
)
540 unsigned long phys
, addr
, length
, end
;
544 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
545 length
= PAGE_ALIGN(md
->length
);
547 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
548 printk(KERN_ERR
"MM: CPU does not support supersection "
549 "mapping for 0x%08llx at 0x%08lx\n",
550 __pfn_to_phys((u64
)md
->pfn
), addr
);
554 /* N.B. ARMv6 supersections are only defined to work with domain 0.
555 * Since domain assignments can in fact be arbitrary, the
556 * 'domain == 0' check below is required to insure that ARMv6
557 * supersections are only allocated for domain 0 regardless
558 * of the actual domain assignments in use.
561 printk(KERN_ERR
"MM: invalid domain in supersection "
562 "mapping for 0x%08llx at 0x%08lx\n",
563 __pfn_to_phys((u64
)md
->pfn
), addr
);
567 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
568 printk(KERN_ERR
"MM: cannot create mapping for "
569 "0x%08llx at 0x%08lx invalid alignment\n",
570 __pfn_to_phys((u64
)md
->pfn
), addr
);
575 * Shift bits [35:32] of address into bits [23:20] of PMD
578 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
580 pgd
= pgd_offset_k(addr
);
583 pmd_t
*pmd
= pmd_offset(pgd
, addr
);
586 for (i
= 0; i
< 16; i
++)
587 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
589 addr
+= SUPERSECTION_SIZE
;
590 phys
+= SUPERSECTION_SIZE
;
591 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
592 } while (addr
!= end
);
596 * Create the page directory entries and any necessary
597 * page tables for the mapping specified by `md'. We
598 * are able to cope here with varying sizes and address
599 * offsets, and we take full advantage of sections and
602 void __init
create_mapping(struct map_desc
*md
)
604 unsigned long phys
, addr
, length
, end
;
605 const struct mem_type
*type
;
608 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
609 printk(KERN_WARNING
"BUG: not creating mapping for "
610 "0x%08llx at 0x%08lx in user region\n",
611 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
615 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
616 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
617 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
618 "overlaps vmalloc space\n",
619 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
622 type
= &mem_types
[md
->type
];
625 * Catch 36-bit addresses
627 if (md
->pfn
>= 0x100000) {
628 create_36bit_mapping(md
, type
);
632 addr
= md
->virtual & PAGE_MASK
;
633 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
634 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
636 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
637 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
638 "be mapped using pages, ignoring.\n",
639 __pfn_to_phys(md
->pfn
), addr
);
643 pgd
= pgd_offset_k(addr
);
646 unsigned long next
= pgd_addr_end(addr
, end
);
648 alloc_init_section(pgd
, addr
, next
, phys
, type
);
652 } while (pgd
++, addr
!= end
);
656 * Create the architecture specific mappings
658 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
662 for (i
= 0; i
< nr
; i
++)
663 create_mapping(io_desc
+ i
);
666 static unsigned long __initdata vmalloc_reserve
= SZ_128M
;
669 * vmalloc=size forces the vmalloc area to be exactly 'size'
670 * bytes. This can be used to increase (or decrease) the vmalloc
671 * area - the default is 128m.
673 static void __init
early_vmalloc(char **arg
)
675 vmalloc_reserve
= memparse(*arg
, arg
);
677 if (vmalloc_reserve
< SZ_16M
) {
678 vmalloc_reserve
= SZ_16M
;
680 "vmalloc area too small, limiting to %luMB\n",
681 vmalloc_reserve
>> 20);
684 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
685 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
687 "vmalloc area is too big, limiting to %luMB\n",
688 vmalloc_reserve
>> 20);
691 __early_param("vmalloc=", early_vmalloc
);
693 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
695 static void __init
sanity_check_meminfo(void)
697 int i
, j
, highmem
= 0;
699 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
700 struct membank
*bank
= &meminfo
.bank
[j
];
701 *bank
= meminfo
.bank
[i
];
703 #ifdef CONFIG_HIGHMEM
704 if (__va(bank
->start
) > VMALLOC_MIN
||
705 __va(bank
->start
) < (void *)PAGE_OFFSET
)
708 bank
->highmem
= highmem
;
711 * Split those memory banks which are partially overlapping
712 * the vmalloc area greatly simplifying things later.
714 if (__va(bank
->start
) < VMALLOC_MIN
&&
715 bank
->size
> VMALLOC_MIN
- __va(bank
->start
)) {
716 if (meminfo
.nr_banks
>= NR_BANKS
) {
717 printk(KERN_CRIT
"NR_BANKS too low, "
718 "ignoring high memory\n");
720 memmove(bank
+ 1, bank
,
721 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
724 bank
[1].size
-= VMALLOC_MIN
- __va(bank
->start
);
725 bank
[1].start
= __pa(VMALLOC_MIN
- 1) + 1;
726 bank
[1].highmem
= highmem
= 1;
729 bank
->size
= VMALLOC_MIN
- __va(bank
->start
);
732 bank
->highmem
= highmem
;
735 * Check whether this memory bank would entirely overlap
738 if (__va(bank
->start
) >= VMALLOC_MIN
||
739 __va(bank
->start
) < (void *)PAGE_OFFSET
) {
740 printk(KERN_NOTICE
"Ignoring RAM at %.8lx-%.8lx "
741 "(vmalloc region overlap).\n",
742 bank
->start
, bank
->start
+ bank
->size
- 1);
747 * Check whether this memory bank would partially overlap
750 if (__va(bank
->start
+ bank
->size
) > VMALLOC_MIN
||
751 __va(bank
->start
+ bank
->size
) < __va(bank
->start
)) {
752 unsigned long newsize
= VMALLOC_MIN
- __va(bank
->start
);
753 printk(KERN_NOTICE
"Truncating RAM at %.8lx-%.8lx "
754 "to -%.8lx (vmalloc region overlap).\n",
755 bank
->start
, bank
->start
+ bank
->size
- 1,
756 bank
->start
+ newsize
- 1);
757 bank
->size
= newsize
;
762 #ifdef CONFIG_HIGHMEM
764 const char *reason
= NULL
;
766 if (cache_is_vipt_aliasing()) {
768 * Interactions between kmap and other mappings
769 * make highmem support with aliasing VIPT caches
772 reason
= "with VIPT aliasing cache";
774 } else if (tlb_ops_need_broadcast()) {
776 * kmap_high needs to occasionally flush TLB entries,
777 * however, if the TLB entries need to be broadcast
779 * kmap_high(irqs off)->flush_all_zero_pkmaps->
780 * flush_tlb_kernel_range->smp_call_function_many
781 * (must not be called with irqs off)
783 reason
= "without hardware TLB ops broadcasting";
787 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
789 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
794 meminfo
.nr_banks
= j
;
797 static inline void prepare_page_table(void)
802 * Clear out all the mappings below the kernel image.
804 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PGDIR_SIZE
)
805 pmd_clear(pmd_off_k(addr
));
807 #ifdef CONFIG_XIP_KERNEL
808 /* The XIP kernel is mapped in the module area -- skip over it */
809 addr
= ((unsigned long)_etext
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
811 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
812 pmd_clear(pmd_off_k(addr
));
815 * Clear out all the kernel space mappings, except for the first
816 * memory bank, up to the end of the vmalloc region.
818 for (addr
= __phys_to_virt(bank_phys_end(&meminfo
.bank
[0]));
819 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
820 pmd_clear(pmd_off_k(addr
));
824 * Reserve the various regions of node 0
826 void __init
reserve_node_zero(pg_data_t
*pgdat
)
828 unsigned long res_size
= 0;
831 * Register the kernel text and data with bootmem.
832 * Note that this can only be in node 0.
834 #ifdef CONFIG_XIP_KERNEL
835 reserve_bootmem_node(pgdat
, __pa(_data
), _end
- _data
,
838 reserve_bootmem_node(pgdat
, __pa(_stext
), _end
- _stext
,
843 * Reserve the page tables. These are already in use,
844 * and can only be in node 0.
846 reserve_bootmem_node(pgdat
, __pa(swapper_pg_dir
),
847 PTRS_PER_PGD
* sizeof(pgd_t
), BOOTMEM_DEFAULT
);
850 * Hmm... This should go elsewhere, but we really really need to
851 * stop things allocating the low memory; ideally we need a better
852 * implementation of GFP_DMA which does not assume that DMA-able
853 * memory starts at zero.
855 if (machine_is_integrator() || machine_is_cintegrator())
856 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
859 * These should likewise go elsewhere. They pre-reserve the
860 * screen memory region at the start of main system memory.
862 if (machine_is_edb7211())
863 res_size
= 0x00020000;
864 if (machine_is_p720t())
865 res_size
= 0x00014000;
867 /* H1940 and RX3715 need to reserve this for suspend */
869 if (machine_is_h1940() || machine_is_rx3715()) {
870 reserve_bootmem_node(pgdat
, 0x30003000, 0x1000,
872 reserve_bootmem_node(pgdat
, 0x30081000, 0x1000,
876 if (machine_is_palmld() || machine_is_palmtx()) {
877 reserve_bootmem_node(pgdat
, 0xa0000000, 0x1000,
879 reserve_bootmem_node(pgdat
, 0xa0200000, 0x1000,
883 if (machine_is_treo680() || machine_is_centro()) {
884 reserve_bootmem_node(pgdat
, 0xa0000000, 0x1000,
886 reserve_bootmem_node(pgdat
, 0xa2000000, 0x1000,
890 if (machine_is_palmt5())
891 reserve_bootmem_node(pgdat
, 0xa0200000, 0x1000,
895 * U300 - This platform family can share physical memory
896 * between two ARM cpus, one running Linux and the other
897 * running another OS.
899 if (machine_is_u300()) {
900 #ifdef CONFIG_MACH_U300_SINGLE_RAM
901 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
902 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
903 res_size
= 0x00100000;
910 * Because of the SA1111 DMA bug, we want to preserve our
911 * precious DMA-able memory...
913 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
916 reserve_bootmem_node(pgdat
, PHYS_OFFSET
, res_size
,
921 * Set up device the mappings. Since we clear out the page tables for all
922 * mappings above VMALLOC_END, we will remove any debug device mappings.
923 * This means you have to be careful how you debug this function, or any
924 * called function. This means you can't use any function or debugging
925 * method which may touch any device, otherwise the kernel _will_ crash.
927 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
934 * Allocate the vector page early.
936 vectors
= alloc_bootmem_low_pages(PAGE_SIZE
);
938 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
939 pmd_clear(pmd_off_k(addr
));
942 * Map the kernel if it is XIP.
943 * It is always first in the modulearea.
945 #ifdef CONFIG_XIP_KERNEL
946 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
947 map
.virtual = MODULES_VADDR
;
948 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
950 create_mapping(&map
);
954 * Map the cache flushing regions.
957 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
958 map
.virtual = FLUSH_BASE
;
960 map
.type
= MT_CACHECLEAN
;
961 create_mapping(&map
);
963 #ifdef FLUSH_BASE_MINICACHE
964 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
965 map
.virtual = FLUSH_BASE_MINICACHE
;
967 map
.type
= MT_MINICLEAN
;
968 create_mapping(&map
);
972 * Create a mapping for the machine vectors at the high-vectors
973 * location (0xffff0000). If we aren't using high-vectors, also
974 * create a mapping at the low-vectors virtual address.
976 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
977 map
.virtual = 0xffff0000;
978 map
.length
= PAGE_SIZE
;
979 map
.type
= MT_HIGH_VECTORS
;
980 create_mapping(&map
);
982 if (!vectors_high()) {
984 map
.type
= MT_LOW_VECTORS
;
985 create_mapping(&map
);
989 * Ask the machine support to map in the statically mapped devices.
995 * Finally flush the caches and tlb to ensure that we're in a
996 * consistent state wrt the writebuffer. This also ensures that
997 * any write-allocated cache lines in the vector page are written
998 * back. After this point, we can start to touch devices again.
1000 local_flush_tlb_all();
1004 static void __init
kmap_init(void)
1006 #ifdef CONFIG_HIGHMEM
1007 pmd_t
*pmd
= pmd_off_k(PKMAP_BASE
);
1008 pte_t
*pte
= alloc_bootmem_low_pages(2 * PTRS_PER_PTE
* sizeof(pte_t
));
1009 BUG_ON(!pmd_none(*pmd
) || !pte
);
1010 __pmd_populate(pmd
, __pa(pte
) | _PAGE_KERNEL_TABLE
);
1011 pkmap_page_table
= pte
+ PTRS_PER_PTE
;
1016 * paging_init() sets up the page tables, initialises the zone memory
1017 * maps, and sets up the zero page, bad page and bad page tables.
1019 void __init
paging_init(struct machine_desc
*mdesc
)
1023 build_mem_type_table();
1024 sanity_check_meminfo();
1025 prepare_page_table();
1027 devicemaps_init(mdesc
);
1030 top_pmd
= pmd_off_k(0xffff0000);
1033 * allocate the zero page. Note that this always succeeds and
1034 * returns a zeroed result.
1036 zero_page
= alloc_bootmem_low_pages(PAGE_SIZE
);
1037 empty_zero_page
= virt_to_page(zero_page
);
1038 __flush_dcache_page(NULL
, empty_zero_page
);
1042 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1043 * the user-mode pages. This will then ensure that we have predictable
1044 * results when turning the mmu off
1046 void setup_mm_for_reboot(char mode
)
1048 unsigned long base_pmdval
;
1052 if (current
->mm
&& current
->mm
->pgd
)
1053 pgd
= current
->mm
->pgd
;
1057 base_pmdval
= PMD_SECT_AP_WRITE
| PMD_SECT_AP_READ
| PMD_TYPE_SECT
;
1058 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ
&& !cpu_is_xscale())
1059 base_pmdval
|= PMD_BIT4
;
1061 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
1062 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
1065 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
1066 pmd
[0] = __pmd(pmdval
);
1067 pmd
[1] = __pmd(pmdval
+ (1 << (PGDIR_SHIFT
- 1)));
1068 flush_pmd_entry(pmd
);
1071 local_flush_tlb_all();