acpiphp: Execute ACPI _REG method for hotadded devices
[linux/fpc-iii.git] / drivers / mtd / nand / sh_flctl.c
blob02bef21f2e4b987099a8f1f8d856c7364cbf9a58
1 /*
2 * SuperH FLCTL nand controller
4 * Copyright © 2008 Renesas Solutions Corp.
5 * Copyright © 2008 Atom Create Engineering Co., Ltd.
7 * Based on fsl_elbc_nand.c, Copyright © 2006-2007 Freescale Semiconductor
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/platform_device.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/sh_flctl.h>
35 static struct nand_ecclayout flctl_4secc_oob_16 = {
36 .eccbytes = 10,
37 .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
38 .oobfree = {
39 {.offset = 12,
40 . length = 4} },
43 static struct nand_ecclayout flctl_4secc_oob_64 = {
44 .eccbytes = 10,
45 .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57},
46 .oobfree = {
47 {.offset = 60,
48 . length = 4} },
51 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
53 static struct nand_bbt_descr flctl_4secc_smallpage = {
54 .options = NAND_BBT_SCAN2NDPAGE,
55 .offs = 11,
56 .len = 1,
57 .pattern = scan_ff_pattern,
60 static struct nand_bbt_descr flctl_4secc_largepage = {
61 .options = NAND_BBT_SCAN2NDPAGE,
62 .offs = 58,
63 .len = 2,
64 .pattern = scan_ff_pattern,
67 static void empty_fifo(struct sh_flctl *flctl)
69 writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */
70 writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */
73 static void start_translation(struct sh_flctl *flctl)
75 writeb(TRSTRT, FLTRCR(flctl));
78 static void wait_completion(struct sh_flctl *flctl)
80 uint32_t timeout = LOOP_TIMEOUT_MAX;
82 while (timeout--) {
83 if (readb(FLTRCR(flctl)) & TREND) {
84 writeb(0x0, FLTRCR(flctl));
85 return;
87 udelay(1);
90 printk(KERN_ERR "wait_completion(): Timeout occured \n");
91 writeb(0x0, FLTRCR(flctl));
94 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
96 struct sh_flctl *flctl = mtd_to_flctl(mtd);
97 uint32_t addr = 0;
99 if (column == -1) {
100 addr = page_addr; /* ERASE1 */
101 } else if (page_addr != -1) {
102 /* SEQIN, READ0, etc.. */
103 if (flctl->page_size) {
104 addr = column & 0x0FFF;
105 addr |= (page_addr & 0xff) << 16;
106 addr |= ((page_addr >> 8) & 0xff) << 24;
107 /* big than 128MB */
108 if (flctl->rw_ADRCNT == ADRCNT2_E) {
109 uint32_t addr2;
110 addr2 = (page_addr >> 16) & 0xff;
111 writel(addr2, FLADR2(flctl));
113 } else {
114 addr = column;
115 addr |= (page_addr & 0xff) << 8;
116 addr |= ((page_addr >> 8) & 0xff) << 16;
117 addr |= ((page_addr >> 16) & 0xff) << 24;
120 writel(addr, FLADR(flctl));
123 static void wait_rfifo_ready(struct sh_flctl *flctl)
125 uint32_t timeout = LOOP_TIMEOUT_MAX;
127 while (timeout--) {
128 uint32_t val;
129 /* check FIFO */
130 val = readl(FLDTCNTR(flctl)) >> 16;
131 if (val & 0xFF)
132 return;
133 udelay(1);
135 printk(KERN_ERR "wait_rfifo_ready(): Timeout occured \n");
138 static void wait_wfifo_ready(struct sh_flctl *flctl)
140 uint32_t len, timeout = LOOP_TIMEOUT_MAX;
142 while (timeout--) {
143 /* check FIFO */
144 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
145 if (len >= 4)
146 return;
147 udelay(1);
149 printk(KERN_ERR "wait_wfifo_ready(): Timeout occured \n");
152 static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number)
154 uint32_t timeout = LOOP_TIMEOUT_MAX;
155 int checked[4];
156 void __iomem *ecc_reg[4];
157 int i;
158 uint32_t data, size;
160 memset(checked, 0, sizeof(checked));
162 while (timeout--) {
163 size = readl(FLDTCNTR(flctl)) >> 24;
164 if (size & 0xFF)
165 return 0; /* success */
167 if (readl(FL4ECCCR(flctl)) & _4ECCFA)
168 return 1; /* can't correct */
170 udelay(1);
171 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND))
172 continue;
174 /* start error correction */
175 ecc_reg[0] = FL4ECCRESULT0(flctl);
176 ecc_reg[1] = FL4ECCRESULT1(flctl);
177 ecc_reg[2] = FL4ECCRESULT2(flctl);
178 ecc_reg[3] = FL4ECCRESULT3(flctl);
180 for (i = 0; i < 3; i++) {
181 data = readl(ecc_reg[i]);
182 if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) {
183 uint8_t org;
184 int index;
186 if (flctl->page_size)
187 index = (512 * sector_number) +
188 (data >> 16);
189 else
190 index = data >> 16;
192 org = flctl->done_buff[index];
193 flctl->done_buff[index] = org ^ (data & 0xFF);
194 checked[i] = 1;
198 writel(0, FL4ECCCR(flctl));
201 printk(KERN_ERR "wait_recfifo_ready(): Timeout occured \n");
202 return 1; /* timeout */
205 static void wait_wecfifo_ready(struct sh_flctl *flctl)
207 uint32_t timeout = LOOP_TIMEOUT_MAX;
208 uint32_t len;
210 while (timeout--) {
211 /* check FLECFIFO */
212 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
213 if (len >= 4)
214 return;
215 udelay(1);
217 printk(KERN_ERR "wait_wecfifo_ready(): Timeout occured \n");
220 static void read_datareg(struct sh_flctl *flctl, int offset)
222 unsigned long data;
223 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
225 wait_completion(flctl);
227 data = readl(FLDATAR(flctl));
228 *buf = le32_to_cpu(data);
231 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
233 int i, len_4align;
234 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
235 void *fifo_addr = (void *)FLDTFIFO(flctl);
237 len_4align = (rlen + 3) / 4;
239 for (i = 0; i < len_4align; i++) {
240 wait_rfifo_ready(flctl);
241 buf[i] = readl(fifo_addr);
242 buf[i] = be32_to_cpu(buf[i]);
246 static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff, int sector)
248 int i;
249 unsigned long *ecc_buf = (unsigned long *)buff;
250 void *fifo_addr = (void *)FLECFIFO(flctl);
252 for (i = 0; i < 4; i++) {
253 if (wait_recfifo_ready(flctl , sector))
254 return 1;
255 ecc_buf[i] = readl(fifo_addr);
256 ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
259 return 0;
262 static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
264 int i, len_4align;
265 unsigned long *data = (unsigned long *)&flctl->done_buff[offset];
266 void *fifo_addr = (void *)FLDTFIFO(flctl);
268 len_4align = (rlen + 3) / 4;
269 for (i = 0; i < len_4align; i++) {
270 wait_wfifo_ready(flctl);
271 writel(cpu_to_be32(data[i]), fifo_addr);
275 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
277 struct sh_flctl *flctl = mtd_to_flctl(mtd);
278 uint32_t flcmncr_val = readl(FLCMNCR(flctl));
279 uint32_t flcmdcr_val, addr_len_bytes = 0;
281 /* Set SNAND bit if page size is 2048byte */
282 if (flctl->page_size)
283 flcmncr_val |= SNAND_E;
284 else
285 flcmncr_val &= ~SNAND_E;
287 /* default FLCMDCR val */
288 flcmdcr_val = DOCMD1_E | DOADR_E;
290 /* Set for FLCMDCR */
291 switch (cmd) {
292 case NAND_CMD_ERASE1:
293 addr_len_bytes = flctl->erase_ADRCNT;
294 flcmdcr_val |= DOCMD2_E;
295 break;
296 case NAND_CMD_READ0:
297 case NAND_CMD_READOOB:
298 addr_len_bytes = flctl->rw_ADRCNT;
299 flcmdcr_val |= CDSRC_E;
300 break;
301 case NAND_CMD_SEQIN:
302 /* This case is that cmd is READ0 or READ1 or READ00 */
303 flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
304 break;
305 case NAND_CMD_PAGEPROG:
306 addr_len_bytes = flctl->rw_ADRCNT;
307 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
308 break;
309 case NAND_CMD_READID:
310 flcmncr_val &= ~SNAND_E;
311 addr_len_bytes = ADRCNT_1;
312 break;
313 case NAND_CMD_STATUS:
314 case NAND_CMD_RESET:
315 flcmncr_val &= ~SNAND_E;
316 flcmdcr_val &= ~(DOADR_E | DOSR_E);
317 break;
318 default:
319 break;
322 /* Set address bytes parameter */
323 flcmdcr_val |= addr_len_bytes;
325 /* Now actually write */
326 writel(flcmncr_val, FLCMNCR(flctl));
327 writel(flcmdcr_val, FLCMDCR(flctl));
328 writel(flcmcdr_val, FLCMCDR(flctl));
331 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
332 uint8_t *buf, int page)
334 int i, eccsize = chip->ecc.size;
335 int eccbytes = chip->ecc.bytes;
336 int eccsteps = chip->ecc.steps;
337 uint8_t *p = buf;
338 struct sh_flctl *flctl = mtd_to_flctl(mtd);
340 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
341 chip->read_buf(mtd, p, eccsize);
343 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
344 if (flctl->hwecc_cant_correct[i])
345 mtd->ecc_stats.failed++;
346 else
347 mtd->ecc_stats.corrected += 0;
350 return 0;
353 static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
354 const uint8_t *buf)
356 int i, eccsize = chip->ecc.size;
357 int eccbytes = chip->ecc.bytes;
358 int eccsteps = chip->ecc.steps;
359 const uint8_t *p = buf;
361 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
362 chip->write_buf(mtd, p, eccsize);
365 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
367 struct sh_flctl *flctl = mtd_to_flctl(mtd);
368 int sector, page_sectors;
370 if (flctl->page_size)
371 page_sectors = 4;
372 else
373 page_sectors = 1;
375 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
376 FLCMNCR(flctl));
378 set_cmd_regs(mtd, NAND_CMD_READ0,
379 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
381 for (sector = 0; sector < page_sectors; sector++) {
382 int ret;
384 empty_fifo(flctl);
385 writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
386 writel(page_addr << 2 | sector, FLADR(flctl));
388 start_translation(flctl);
389 read_fiforeg(flctl, 512, 512 * sector);
391 ret = read_ecfiforeg(flctl,
392 &flctl->done_buff[mtd->writesize + 16 * sector],
393 sector);
395 if (ret)
396 flctl->hwecc_cant_correct[sector] = 1;
398 writel(0x0, FL4ECCCR(flctl));
399 wait_completion(flctl);
401 writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
402 FLCMNCR(flctl));
405 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
407 struct sh_flctl *flctl = mtd_to_flctl(mtd);
409 set_cmd_regs(mtd, NAND_CMD_READ0,
410 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
412 empty_fifo(flctl);
413 if (flctl->page_size) {
414 int i;
415 /* In case that the page size is 2k */
416 for (i = 0; i < 16 * 3; i++)
417 flctl->done_buff[i] = 0xFF;
419 set_addr(mtd, 3 * 528 + 512, page_addr);
420 writel(16, FLDTCNTR(flctl));
422 start_translation(flctl);
423 read_fiforeg(flctl, 16, 16 * 3);
424 wait_completion(flctl);
425 } else {
426 /* In case that the page size is 512b */
427 set_addr(mtd, 512, page_addr);
428 writel(16, FLDTCNTR(flctl));
430 start_translation(flctl);
431 read_fiforeg(flctl, 16, 0);
432 wait_completion(flctl);
436 static void execmd_write_page_sector(struct mtd_info *mtd)
438 struct sh_flctl *flctl = mtd_to_flctl(mtd);
439 int i, page_addr = flctl->seqin_page_addr;
440 int sector, page_sectors;
442 if (flctl->page_size)
443 page_sectors = 4;
444 else
445 page_sectors = 1;
447 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
449 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
450 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
452 for (sector = 0; sector < page_sectors; sector++) {
453 empty_fifo(flctl);
454 writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
455 writel(page_addr << 2 | sector, FLADR(flctl));
457 start_translation(flctl);
458 write_fiforeg(flctl, 512, 512 * sector);
460 for (i = 0; i < 4; i++) {
461 wait_wecfifo_ready(flctl); /* wait for write ready */
462 writel(0xFFFFFFFF, FLECFIFO(flctl));
464 wait_completion(flctl);
467 writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
470 static void execmd_write_oob(struct mtd_info *mtd)
472 struct sh_flctl *flctl = mtd_to_flctl(mtd);
473 int page_addr = flctl->seqin_page_addr;
474 int sector, page_sectors;
476 if (flctl->page_size) {
477 sector = 3;
478 page_sectors = 4;
479 } else {
480 sector = 0;
481 page_sectors = 1;
484 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
485 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
487 for (; sector < page_sectors; sector++) {
488 empty_fifo(flctl);
489 set_addr(mtd, sector * 528 + 512, page_addr);
490 writel(16, FLDTCNTR(flctl)); /* set read size */
492 start_translation(flctl);
493 write_fiforeg(flctl, 16, 16 * sector);
494 wait_completion(flctl);
498 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
499 int column, int page_addr)
501 struct sh_flctl *flctl = mtd_to_flctl(mtd);
502 uint32_t read_cmd = 0;
504 flctl->read_bytes = 0;
505 if (command != NAND_CMD_PAGEPROG)
506 flctl->index = 0;
508 switch (command) {
509 case NAND_CMD_READ1:
510 case NAND_CMD_READ0:
511 if (flctl->hwecc) {
512 /* read page with hwecc */
513 execmd_read_page_sector(mtd, page_addr);
514 break;
516 empty_fifo(flctl);
517 if (flctl->page_size)
518 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
519 | command);
520 else
521 set_cmd_regs(mtd, command, command);
523 set_addr(mtd, 0, page_addr);
525 flctl->read_bytes = mtd->writesize + mtd->oobsize;
526 flctl->index += column;
527 goto read_normal_exit;
529 case NAND_CMD_READOOB:
530 if (flctl->hwecc) {
531 /* read page with hwecc */
532 execmd_read_oob(mtd, page_addr);
533 break;
536 empty_fifo(flctl);
537 if (flctl->page_size) {
538 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
539 | NAND_CMD_READ0);
540 set_addr(mtd, mtd->writesize, page_addr);
541 } else {
542 set_cmd_regs(mtd, command, command);
543 set_addr(mtd, 0, page_addr);
545 flctl->read_bytes = mtd->oobsize;
546 goto read_normal_exit;
548 case NAND_CMD_READID:
549 empty_fifo(flctl);
550 set_cmd_regs(mtd, command, command);
551 set_addr(mtd, 0, 0);
553 flctl->read_bytes = 4;
554 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
555 start_translation(flctl);
556 read_datareg(flctl, 0); /* read and end */
557 break;
559 case NAND_CMD_ERASE1:
560 flctl->erase1_page_addr = page_addr;
561 break;
563 case NAND_CMD_ERASE2:
564 set_cmd_regs(mtd, NAND_CMD_ERASE1,
565 (command << 8) | NAND_CMD_ERASE1);
566 set_addr(mtd, -1, flctl->erase1_page_addr);
567 start_translation(flctl);
568 wait_completion(flctl);
569 break;
571 case NAND_CMD_SEQIN:
572 if (!flctl->page_size) {
573 /* output read command */
574 if (column >= mtd->writesize) {
575 column -= mtd->writesize;
576 read_cmd = NAND_CMD_READOOB;
577 } else if (column < 256) {
578 read_cmd = NAND_CMD_READ0;
579 } else {
580 column -= 256;
581 read_cmd = NAND_CMD_READ1;
584 flctl->seqin_column = column;
585 flctl->seqin_page_addr = page_addr;
586 flctl->seqin_read_cmd = read_cmd;
587 break;
589 case NAND_CMD_PAGEPROG:
590 empty_fifo(flctl);
591 if (!flctl->page_size) {
592 set_cmd_regs(mtd, NAND_CMD_SEQIN,
593 flctl->seqin_read_cmd);
594 set_addr(mtd, -1, -1);
595 writel(0, FLDTCNTR(flctl)); /* set 0 size */
596 start_translation(flctl);
597 wait_completion(flctl);
599 if (flctl->hwecc) {
600 /* write page with hwecc */
601 if (flctl->seqin_column == mtd->writesize)
602 execmd_write_oob(mtd);
603 else if (!flctl->seqin_column)
604 execmd_write_page_sector(mtd);
605 else
606 printk(KERN_ERR "Invalid address !?\n");
607 break;
609 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
610 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
611 writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
612 start_translation(flctl);
613 write_fiforeg(flctl, flctl->index, 0);
614 wait_completion(flctl);
615 break;
617 case NAND_CMD_STATUS:
618 set_cmd_regs(mtd, command, command);
619 set_addr(mtd, -1, -1);
621 flctl->read_bytes = 1;
622 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
623 start_translation(flctl);
624 read_datareg(flctl, 0); /* read and end */
625 break;
627 case NAND_CMD_RESET:
628 set_cmd_regs(mtd, command, command);
629 set_addr(mtd, -1, -1);
631 writel(0, FLDTCNTR(flctl)); /* set 0 size */
632 start_translation(flctl);
633 wait_completion(flctl);
634 break;
636 default:
637 break;
639 return;
641 read_normal_exit:
642 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
643 start_translation(flctl);
644 read_fiforeg(flctl, flctl->read_bytes, 0);
645 wait_completion(flctl);
646 return;
649 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
651 struct sh_flctl *flctl = mtd_to_flctl(mtd);
652 uint32_t flcmncr_val = readl(FLCMNCR(flctl));
654 switch (chipnr) {
655 case -1:
656 flcmncr_val &= ~CE0_ENABLE;
657 writel(flcmncr_val, FLCMNCR(flctl));
658 break;
659 case 0:
660 flcmncr_val |= CE0_ENABLE;
661 writel(flcmncr_val, FLCMNCR(flctl));
662 break;
663 default:
664 BUG();
668 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
670 struct sh_flctl *flctl = mtd_to_flctl(mtd);
671 int i, index = flctl->index;
673 for (i = 0; i < len; i++)
674 flctl->done_buff[index + i] = buf[i];
675 flctl->index += len;
678 static uint8_t flctl_read_byte(struct mtd_info *mtd)
680 struct sh_flctl *flctl = mtd_to_flctl(mtd);
681 int index = flctl->index;
682 uint8_t data;
684 data = flctl->done_buff[index];
685 flctl->index++;
686 return data;
689 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
691 int i;
693 for (i = 0; i < len; i++)
694 buf[i] = flctl_read_byte(mtd);
697 static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
699 int i;
701 for (i = 0; i < len; i++)
702 if (buf[i] != flctl_read_byte(mtd))
703 return -EFAULT;
704 return 0;
707 static void flctl_register_init(struct sh_flctl *flctl, unsigned long val)
709 writel(val, FLCMNCR(flctl));
712 static int flctl_chip_init_tail(struct mtd_info *mtd)
714 struct sh_flctl *flctl = mtd_to_flctl(mtd);
715 struct nand_chip *chip = &flctl->chip;
717 if (mtd->writesize == 512) {
718 flctl->page_size = 0;
719 if (chip->chipsize > (32 << 20)) {
720 /* big than 32MB */
721 flctl->rw_ADRCNT = ADRCNT_4;
722 flctl->erase_ADRCNT = ADRCNT_3;
723 } else if (chip->chipsize > (2 << 16)) {
724 /* big than 128KB */
725 flctl->rw_ADRCNT = ADRCNT_3;
726 flctl->erase_ADRCNT = ADRCNT_2;
727 } else {
728 flctl->rw_ADRCNT = ADRCNT_2;
729 flctl->erase_ADRCNT = ADRCNT_1;
731 } else {
732 flctl->page_size = 1;
733 if (chip->chipsize > (128 << 20)) {
734 /* big than 128MB */
735 flctl->rw_ADRCNT = ADRCNT2_E;
736 flctl->erase_ADRCNT = ADRCNT_3;
737 } else if (chip->chipsize > (8 << 16)) {
738 /* big than 512KB */
739 flctl->rw_ADRCNT = ADRCNT_4;
740 flctl->erase_ADRCNT = ADRCNT_2;
741 } else {
742 flctl->rw_ADRCNT = ADRCNT_3;
743 flctl->erase_ADRCNT = ADRCNT_1;
747 if (flctl->hwecc) {
748 if (mtd->writesize == 512) {
749 chip->ecc.layout = &flctl_4secc_oob_16;
750 chip->badblock_pattern = &flctl_4secc_smallpage;
751 } else {
752 chip->ecc.layout = &flctl_4secc_oob_64;
753 chip->badblock_pattern = &flctl_4secc_largepage;
756 chip->ecc.size = 512;
757 chip->ecc.bytes = 10;
758 chip->ecc.read_page = flctl_read_page_hwecc;
759 chip->ecc.write_page = flctl_write_page_hwecc;
760 chip->ecc.mode = NAND_ECC_HW;
762 /* 4 symbols ECC enabled */
763 writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02,
764 FLCMNCR(flctl));
765 } else {
766 chip->ecc.mode = NAND_ECC_SOFT;
769 return 0;
772 static int __init flctl_probe(struct platform_device *pdev)
774 struct resource *res;
775 struct sh_flctl *flctl;
776 struct mtd_info *flctl_mtd;
777 struct nand_chip *nand;
778 struct sh_flctl_platform_data *pdata;
779 int ret;
781 pdata = pdev->dev.platform_data;
782 if (pdata == NULL) {
783 printk(KERN_ERR "sh_flctl platform_data not found.\n");
784 return -ENODEV;
787 flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
788 if (!flctl) {
789 printk(KERN_ERR "Unable to allocate NAND MTD dev structure.\n");
790 return -ENOMEM;
793 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
794 if (!res) {
795 printk(KERN_ERR "%s: resource not found.\n", __func__);
796 ret = -ENODEV;
797 goto err;
800 flctl->reg = ioremap(res->start, res->end - res->start + 1);
801 if (flctl->reg == NULL) {
802 printk(KERN_ERR "%s: ioremap error.\n", __func__);
803 ret = -ENOMEM;
804 goto err;
807 platform_set_drvdata(pdev, flctl);
808 flctl_mtd = &flctl->mtd;
809 nand = &flctl->chip;
810 flctl_mtd->priv = nand;
811 flctl->hwecc = pdata->has_hwecc;
813 flctl_register_init(flctl, pdata->flcmncr_val);
815 nand->options = NAND_NO_AUTOINCR;
817 /* Set address of hardware control function */
818 /* 20 us command delay time */
819 nand->chip_delay = 20;
821 nand->read_byte = flctl_read_byte;
822 nand->write_buf = flctl_write_buf;
823 nand->read_buf = flctl_read_buf;
824 nand->verify_buf = flctl_verify_buf;
825 nand->select_chip = flctl_select_chip;
826 nand->cmdfunc = flctl_cmdfunc;
828 ret = nand_scan_ident(flctl_mtd, 1);
829 if (ret)
830 goto err;
832 ret = flctl_chip_init_tail(flctl_mtd);
833 if (ret)
834 goto err;
836 ret = nand_scan_tail(flctl_mtd);
837 if (ret)
838 goto err;
840 add_mtd_partitions(flctl_mtd, pdata->parts, pdata->nr_parts);
842 return 0;
844 err:
845 kfree(flctl);
846 return ret;
849 static int __exit flctl_remove(struct platform_device *pdev)
851 struct sh_flctl *flctl = platform_get_drvdata(pdev);
853 nand_release(&flctl->mtd);
854 kfree(flctl);
856 return 0;
859 static struct platform_driver flctl_driver = {
860 .remove = flctl_remove,
861 .driver = {
862 .name = "sh_flctl",
863 .owner = THIS_MODULE,
867 static int __init flctl_nand_init(void)
869 return platform_driver_probe(&flctl_driver, flctl_probe);
872 static void __exit flctl_nand_cleanup(void)
874 platform_driver_unregister(&flctl_driver);
877 module_init(flctl_nand_init);
878 module_exit(flctl_nand_cleanup);
880 MODULE_LICENSE("GPL");
881 MODULE_AUTHOR("Yoshihiro Shimoda");
882 MODULE_DESCRIPTION("SuperH FLCTL driver");
883 MODULE_ALIAS("platform:sh_flctl");