2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
7 * Kyungmin Park <kyungmin.park@samsung.com>
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
15 * Amul Kumar Saha <amul.saha at samsung.com>
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/onenand.h>
33 #include <linux/mtd/partitions.h>
38 * Multiblock erase if number of blocks to erase is 2 or more.
39 * Maximum number of blocks for simultaneous erase is 64.
41 #define MB_ERASE_MIN_BLK_COUNT 2
42 #define MB_ERASE_MAX_BLK_COUNT 64
44 /* Default Flex-OneNAND boundary and lock respectively */
45 static int flex_bdry
[MAX_DIES
* 2] = { -1, 0, -1, 0 };
47 module_param_array(flex_bdry
, int, NULL
, 0400);
48 MODULE_PARM_DESC(flex_bdry
, "SLC Boundary information for Flex-OneNAND"
49 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
50 "DIE_BDRY: SLC boundary of the die"
51 "LOCK: Locking information for SLC boundary"
52 " : 0->Set boundary in unlocked status"
53 " : 1->Set boundary in locked status");
55 /* Default OneNAND/Flex-OneNAND OTP options*/
58 module_param(otp
, int, 0400);
59 MODULE_PARM_DESC(otp
, "Corresponding behaviour of OneNAND in OTP"
60 "Syntax : otp=LOCK_TYPE"
61 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
62 " : 0 -> Default (No Blocks Locked)"
63 " : 1 -> OTP Block lock"
64 " : 2 -> 1st Block lock"
65 " : 3 -> BOTH OTP Block and 1st Block lock");
68 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page
69 * For now, we expose only 64 out of 80 ecc bytes
71 static struct nand_ecclayout onenand_oob_128
= {
74 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
75 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
76 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
77 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
78 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
79 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
83 {2, 4}, {18, 4}, {34, 4}, {50, 4},
84 {66, 4}, {82, 4}, {98, 4}, {114, 4}
89 * onenand_oob_64 - oob info for large (2KB) page
91 static struct nand_ecclayout onenand_oob_64
= {
100 {2, 3}, {14, 2}, {18, 3}, {30, 2},
101 {34, 3}, {46, 2}, {50, 3}, {62, 2}
106 * onenand_oob_32 - oob info for middle (1KB) page
108 static struct nand_ecclayout onenand_oob_32
= {
114 .oobfree
= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
117 static const unsigned char ffchars
[] = {
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
126 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
128 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
130 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
131 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
132 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
133 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
137 * onenand_readw - [OneNAND Interface] Read OneNAND register
138 * @param addr address to read
140 * Read OneNAND register
142 static unsigned short onenand_readw(void __iomem
*addr
)
148 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
149 * @param value value to write
150 * @param addr address to write
152 * Write OneNAND register with value
154 static void onenand_writew(unsigned short value
, void __iomem
*addr
)
160 * onenand_block_address - [DEFAULT] Get block address
161 * @param this onenand chip data structure
162 * @param block the block
163 * @return translated block address if DDP, otherwise same
165 * Setup Start Address 1 Register (F100h)
167 static int onenand_block_address(struct onenand_chip
*this, int block
)
169 /* Device Flash Core select, NAND Flash Block Address */
170 if (block
& this->density_mask
)
171 return ONENAND_DDP_CHIP1
| (block
^ this->density_mask
);
177 * onenand_bufferram_address - [DEFAULT] Get bufferram address
178 * @param this onenand chip data structure
179 * @param block the block
180 * @return set DBS value if DDP, otherwise 0
182 * Setup Start Address 2 Register (F101h) for DDP
184 static int onenand_bufferram_address(struct onenand_chip
*this, int block
)
186 /* Device BufferRAM Select */
187 if (block
& this->density_mask
)
188 return ONENAND_DDP_CHIP1
;
190 return ONENAND_DDP_CHIP0
;
194 * onenand_page_address - [DEFAULT] Get page address
195 * @param page the page address
196 * @param sector the sector address
197 * @return combined page and sector address
199 * Setup Start Address 8 Register (F107h)
201 static int onenand_page_address(int page
, int sector
)
203 /* Flash Page Address, Flash Sector Address */
206 fpa
= page
& ONENAND_FPA_MASK
;
207 fsa
= sector
& ONENAND_FSA_MASK
;
209 return ((fpa
<< ONENAND_FPA_SHIFT
) | fsa
);
213 * onenand_buffer_address - [DEFAULT] Get buffer address
214 * @param dataram1 DataRAM index
215 * @param sectors the sector address
216 * @param count the number of sectors
217 * @return the start buffer value
219 * Setup Start Buffer Register (F200h)
221 static int onenand_buffer_address(int dataram1
, int sectors
, int count
)
225 /* BufferRAM Sector Address */
226 bsa
= sectors
& ONENAND_BSA_MASK
;
229 bsa
|= ONENAND_BSA_DATARAM1
; /* DataRAM1 */
231 bsa
|= ONENAND_BSA_DATARAM0
; /* DataRAM0 */
233 /* BufferRAM Sector Count */
234 bsc
= count
& ONENAND_BSC_MASK
;
236 return ((bsa
<< ONENAND_BSA_SHIFT
) | bsc
);
240 * flexonenand_block- For given address return block number
241 * @param this - OneNAND device structure
242 * @param addr - Address for which block number is needed
244 static unsigned flexonenand_block(struct onenand_chip
*this, loff_t addr
)
246 unsigned boundary
, blk
, die
= 0;
248 if (ONENAND_IS_DDP(this) && addr
>= this->diesize
[0]) {
250 addr
-= this->diesize
[0];
253 boundary
= this->boundary
[die
];
255 blk
= addr
>> (this->erase_shift
- 1);
257 blk
= (blk
+ boundary
+ 1) >> 1;
259 blk
+= die
? this->density_mask
: 0;
263 inline unsigned onenand_block(struct onenand_chip
*this, loff_t addr
)
265 if (!FLEXONENAND(this))
266 return addr
>> this->erase_shift
;
267 return flexonenand_block(this, addr
);
271 * flexonenand_addr - Return address of the block
272 * @this: OneNAND device structure
273 * @block: Block number on Flex-OneNAND
275 * Return address of the block
277 static loff_t
flexonenand_addr(struct onenand_chip
*this, int block
)
280 int die
= 0, boundary
;
282 if (ONENAND_IS_DDP(this) && block
>= this->density_mask
) {
283 block
-= this->density_mask
;
285 ofs
= this->diesize
[0];
288 boundary
= this->boundary
[die
];
289 ofs
+= (loff_t
)block
<< (this->erase_shift
- 1);
290 if (block
> (boundary
+ 1))
291 ofs
+= (loff_t
)(block
- boundary
- 1) << (this->erase_shift
- 1);
295 loff_t
onenand_addr(struct onenand_chip
*this, int block
)
297 if (!FLEXONENAND(this))
298 return (loff_t
)block
<< this->erase_shift
;
299 return flexonenand_addr(this, block
);
301 EXPORT_SYMBOL(onenand_addr
);
304 * onenand_get_density - [DEFAULT] Get OneNAND density
305 * @param dev_id OneNAND device ID
307 * Get OneNAND density from device ID
309 static inline int onenand_get_density(int dev_id
)
311 int density
= dev_id
>> ONENAND_DEVICE_DENSITY_SHIFT
;
312 return (density
& ONENAND_DEVICE_DENSITY_MASK
);
316 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
317 * @param mtd MTD device structure
318 * @param addr address whose erase region needs to be identified
320 int flexonenand_region(struct mtd_info
*mtd
, loff_t addr
)
324 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
325 if (addr
< mtd
->eraseregions
[i
].offset
)
329 EXPORT_SYMBOL(flexonenand_region
);
332 * onenand_command - [DEFAULT] Send command to OneNAND device
333 * @param mtd MTD device structure
334 * @param cmd the command to be sent
335 * @param addr offset to read from or write to
336 * @param len number of bytes to read or write
338 * Send command to OneNAND device. This function is used for middle/large page
339 * devices (1KB/2KB Bytes per page)
341 static int onenand_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
, size_t len
)
343 struct onenand_chip
*this = mtd
->priv
;
344 int value
, block
, page
;
346 /* Address translation */
348 case ONENAND_CMD_UNLOCK
:
349 case ONENAND_CMD_LOCK
:
350 case ONENAND_CMD_LOCK_TIGHT
:
351 case ONENAND_CMD_UNLOCK_ALL
:
356 case FLEXONENAND_CMD_PI_ACCESS
:
357 /* addr contains die index */
358 block
= addr
* this->density_mask
;
362 case ONENAND_CMD_ERASE
:
363 case ONENAND_CMD_MULTIBLOCK_ERASE
:
364 case ONENAND_CMD_ERASE_VERIFY
:
365 case ONENAND_CMD_BUFFERRAM
:
366 case ONENAND_CMD_OTP_ACCESS
:
367 block
= onenand_block(this, addr
);
371 case FLEXONENAND_CMD_READ_PI
:
372 cmd
= ONENAND_CMD_READ
;
373 block
= addr
* this->density_mask
;
378 block
= onenand_block(this, addr
);
379 page
= (int) (addr
- onenand_addr(this, block
)) >> this->page_shift
;
381 if (ONENAND_IS_2PLANE(this)) {
382 /* Make the even block number */
384 /* Is it the odd plane? */
385 if (addr
& this->writesize
)
389 page
&= this->page_mask
;
393 /* NOTE: The setting order of the registers is very important! */
394 if (cmd
== ONENAND_CMD_BUFFERRAM
) {
395 /* Select DataRAM for DDP */
396 value
= onenand_bufferram_address(this, block
);
397 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
399 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this))
400 /* It is always BufferRAM0 */
401 ONENAND_SET_BUFFERRAM0(this);
403 /* Switch to the next data buffer */
404 ONENAND_SET_NEXT_BUFFERRAM(this);
410 /* Write 'DFS, FBA' of Flash */
411 value
= onenand_block_address(this, block
);
412 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
414 /* Select DataRAM for DDP */
415 value
= onenand_bufferram_address(this, block
);
416 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
420 /* Now we use page size operation */
421 int sectors
= 0, count
= 0;
425 case FLEXONENAND_CMD_RECOVER_LSB
:
426 case ONENAND_CMD_READ
:
427 case ONENAND_CMD_READOOB
:
428 if (ONENAND_IS_MLC(this))
429 /* It is always BufferRAM0 */
430 dataram
= ONENAND_SET_BUFFERRAM0(this);
432 dataram
= ONENAND_SET_NEXT_BUFFERRAM(this);
436 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
437 cmd
= ONENAND_CMD_2X_PROG
;
438 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
442 /* Write 'FPA, FSA' of Flash */
443 value
= onenand_page_address(page
, sectors
);
444 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS8
);
446 /* Write 'BSA, BSC' of DataRAM */
447 value
= onenand_buffer_address(dataram
, sectors
, count
);
448 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
451 /* Interrupt clear */
452 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
455 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
461 * onenand_read_ecc - return ecc status
462 * @param this onenand chip structure
464 static inline int onenand_read_ecc(struct onenand_chip
*this)
466 int ecc
, i
, result
= 0;
468 if (!FLEXONENAND(this))
469 return this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
);
471 for (i
= 0; i
< 4; i
++) {
472 ecc
= this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
+ i
);
475 if (ecc
& FLEXONENAND_UNCORRECTABLE_ERROR
)
476 return ONENAND_ECC_2BIT_ALL
;
478 result
= ONENAND_ECC_1BIT_ALL
;
485 * onenand_wait - [DEFAULT] wait until the command is done
486 * @param mtd MTD device structure
487 * @param state state to select the max. timeout value
489 * Wait for command done. This applies to all OneNAND command
490 * Read can take up to 30us, erase up to 2ms and program up to 350us
491 * according to general OneNAND specs
493 static int onenand_wait(struct mtd_info
*mtd
, int state
)
495 struct onenand_chip
* this = mtd
->priv
;
496 unsigned long timeout
;
497 unsigned int flags
= ONENAND_INT_MASTER
;
498 unsigned int interrupt
= 0;
501 /* The 20 msec is enough */
502 timeout
= jiffies
+ msecs_to_jiffies(20);
503 while (time_before(jiffies
, timeout
)) {
504 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
506 if (interrupt
& flags
)
509 if (state
!= FL_READING
&& state
!= FL_PREPARING_ERASE
)
512 /* To get correct interrupt status in timeout case */
513 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
515 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
518 * In the Spec. it checks the controller status first
519 * However if you get the correct information in case of
520 * power off recovery (POR) test, it should read ECC status first
522 if (interrupt
& ONENAND_INT_READ
) {
523 int ecc
= onenand_read_ecc(this);
525 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
526 printk(KERN_ERR
"%s: ECC error = 0x%04x\n",
528 mtd
->ecc_stats
.failed
++;
530 } else if (ecc
& ONENAND_ECC_1BIT_ALL
) {
531 printk(KERN_DEBUG
"%s: correctable ECC error = 0x%04x\n",
533 mtd
->ecc_stats
.corrected
++;
536 } else if (state
== FL_READING
) {
537 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
538 __func__
, ctrl
, interrupt
);
542 if (state
== FL_PREPARING_ERASE
&& !(interrupt
& ONENAND_INT_ERASE
)) {
543 printk(KERN_ERR
"%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
544 __func__
, ctrl
, interrupt
);
548 if (!(interrupt
& ONENAND_INT_MASTER
)) {
549 printk(KERN_ERR
"%s: timeout! ctrl=0x%04x intr=0x%04x\n",
550 __func__
, ctrl
, interrupt
);
554 /* If there's controller error, it's a real error */
555 if (ctrl
& ONENAND_CTRL_ERROR
) {
556 printk(KERN_ERR
"%s: controller error = 0x%04x\n",
558 if (ctrl
& ONENAND_CTRL_LOCK
)
559 printk(KERN_ERR
"%s: it's locked error.\n", __func__
);
567 * onenand_interrupt - [DEFAULT] onenand interrupt handler
568 * @param irq onenand interrupt number
569 * @param dev_id interrupt data
573 static irqreturn_t
onenand_interrupt(int irq
, void *data
)
575 struct onenand_chip
*this = data
;
577 /* To handle shared interrupt */
578 if (!this->complete
.done
)
579 complete(&this->complete
);
585 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
586 * @param mtd MTD device structure
587 * @param state state to select the max. timeout value
589 * Wait for command done.
591 static int onenand_interrupt_wait(struct mtd_info
*mtd
, int state
)
593 struct onenand_chip
*this = mtd
->priv
;
595 wait_for_completion(&this->complete
);
597 return onenand_wait(mtd
, state
);
601 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
602 * @param mtd MTD device structure
603 * @param state state to select the max. timeout value
605 * Try interrupt based wait (It is used one-time)
607 static int onenand_try_interrupt_wait(struct mtd_info
*mtd
, int state
)
609 struct onenand_chip
*this = mtd
->priv
;
610 unsigned long remain
, timeout
;
612 /* We use interrupt wait first */
613 this->wait
= onenand_interrupt_wait
;
615 timeout
= msecs_to_jiffies(100);
616 remain
= wait_for_completion_timeout(&this->complete
, timeout
);
618 printk(KERN_INFO
"OneNAND: There's no interrupt. "
619 "We use the normal wait\n");
621 /* Release the irq */
622 free_irq(this->irq
, this);
624 this->wait
= onenand_wait
;
627 return onenand_wait(mtd
, state
);
631 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
632 * @param mtd MTD device structure
634 * There's two method to wait onenand work
635 * 1. polling - read interrupt status register
636 * 2. interrupt - use the kernel interrupt method
638 static void onenand_setup_wait(struct mtd_info
*mtd
)
640 struct onenand_chip
*this = mtd
->priv
;
643 init_completion(&this->complete
);
645 if (this->irq
<= 0) {
646 this->wait
= onenand_wait
;
650 if (request_irq(this->irq
, &onenand_interrupt
,
651 IRQF_SHARED
, "onenand", this)) {
652 /* If we can't get irq, use the normal wait */
653 this->wait
= onenand_wait
;
657 /* Enable interrupt */
658 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
659 syscfg
|= ONENAND_SYS_CFG1_IOBE
;
660 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
662 this->wait
= onenand_try_interrupt_wait
;
666 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
667 * @param mtd MTD data structure
668 * @param area BufferRAM area
669 * @return offset given area
671 * Return BufferRAM offset given area
673 static inline int onenand_bufferram_offset(struct mtd_info
*mtd
, int area
)
675 struct onenand_chip
*this = mtd
->priv
;
677 if (ONENAND_CURRENT_BUFFERRAM(this)) {
678 /* Note: the 'this->writesize' is a real page size */
679 if (area
== ONENAND_DATARAM
)
680 return this->writesize
;
681 if (area
== ONENAND_SPARERAM
)
689 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
690 * @param mtd MTD data structure
691 * @param area BufferRAM area
692 * @param buffer the databuffer to put/get data
693 * @param offset offset to read from or write to
694 * @param count number of bytes to read/write
696 * Read the BufferRAM area
698 static int onenand_read_bufferram(struct mtd_info
*mtd
, int area
,
699 unsigned char *buffer
, int offset
, size_t count
)
701 struct onenand_chip
*this = mtd
->priv
;
702 void __iomem
*bufferram
;
704 bufferram
= this->base
+ area
;
706 bufferram
+= onenand_bufferram_offset(mtd
, area
);
708 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
711 /* Align with word(16-bit) size */
714 /* Read word and save byte */
715 word
= this->read_word(bufferram
+ offset
+ count
);
716 buffer
[count
] = (word
& 0xff);
719 memcpy(buffer
, bufferram
+ offset
, count
);
725 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
726 * @param mtd MTD data structure
727 * @param area BufferRAM area
728 * @param buffer the databuffer to put/get data
729 * @param offset offset to read from or write to
730 * @param count number of bytes to read/write
732 * Read the BufferRAM area with Sync. Burst Mode
734 static int onenand_sync_read_bufferram(struct mtd_info
*mtd
, int area
,
735 unsigned char *buffer
, int offset
, size_t count
)
737 struct onenand_chip
*this = mtd
->priv
;
738 void __iomem
*bufferram
;
740 bufferram
= this->base
+ area
;
742 bufferram
+= onenand_bufferram_offset(mtd
, area
);
744 this->mmcontrol(mtd
, ONENAND_SYS_CFG1_SYNC_READ
);
746 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
749 /* Align with word(16-bit) size */
752 /* Read word and save byte */
753 word
= this->read_word(bufferram
+ offset
+ count
);
754 buffer
[count
] = (word
& 0xff);
757 memcpy(buffer
, bufferram
+ offset
, count
);
759 this->mmcontrol(mtd
, 0);
765 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
766 * @param mtd MTD data structure
767 * @param area BufferRAM area
768 * @param buffer the databuffer to put/get data
769 * @param offset offset to read from or write to
770 * @param count number of bytes to read/write
772 * Write the BufferRAM area
774 static int onenand_write_bufferram(struct mtd_info
*mtd
, int area
,
775 const unsigned char *buffer
, int offset
, size_t count
)
777 struct onenand_chip
*this = mtd
->priv
;
778 void __iomem
*bufferram
;
780 bufferram
= this->base
+ area
;
782 bufferram
+= onenand_bufferram_offset(mtd
, area
);
784 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
788 /* Align with word(16-bit) size */
791 /* Calculate byte access offset */
792 byte_offset
= offset
+ count
;
794 /* Read word and save byte */
795 word
= this->read_word(bufferram
+ byte_offset
);
796 word
= (word
& ~0xff) | buffer
[count
];
797 this->write_word(word
, bufferram
+ byte_offset
);
800 memcpy(bufferram
+ offset
, buffer
, count
);
806 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
807 * @param mtd MTD data structure
808 * @param addr address to check
809 * @return blockpage address
811 * Get blockpage address at 2x program mode
813 static int onenand_get_2x_blockpage(struct mtd_info
*mtd
, loff_t addr
)
815 struct onenand_chip
*this = mtd
->priv
;
816 int blockpage
, block
, page
;
818 /* Calculate the even block number */
819 block
= (int) (addr
>> this->erase_shift
) & ~1;
820 /* Is it the odd plane? */
821 if (addr
& this->writesize
)
823 page
= (int) (addr
>> (this->page_shift
+ 1)) & this->page_mask
;
824 blockpage
= (block
<< 7) | page
;
830 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
831 * @param mtd MTD data structure
832 * @param addr address to check
833 * @return 1 if there are valid data, otherwise 0
835 * Check bufferram if there is data we required
837 static int onenand_check_bufferram(struct mtd_info
*mtd
, loff_t addr
)
839 struct onenand_chip
*this = mtd
->priv
;
840 int blockpage
, found
= 0;
843 if (ONENAND_IS_2PLANE(this))
844 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
846 blockpage
= (int) (addr
>> this->page_shift
);
848 /* Is there valid data? */
849 i
= ONENAND_CURRENT_BUFFERRAM(this);
850 if (this->bufferram
[i
].blockpage
== blockpage
)
853 /* Check another BufferRAM */
854 i
= ONENAND_NEXT_BUFFERRAM(this);
855 if (this->bufferram
[i
].blockpage
== blockpage
) {
856 ONENAND_SET_NEXT_BUFFERRAM(this);
861 if (found
&& ONENAND_IS_DDP(this)) {
862 /* Select DataRAM for DDP */
863 int block
= onenand_block(this, addr
);
864 int value
= onenand_bufferram_address(this, block
);
865 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
872 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
873 * @param mtd MTD data structure
874 * @param addr address to update
875 * @param valid valid flag
877 * Update BufferRAM information
879 static void onenand_update_bufferram(struct mtd_info
*mtd
, loff_t addr
,
882 struct onenand_chip
*this = mtd
->priv
;
886 if (ONENAND_IS_2PLANE(this))
887 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
889 blockpage
= (int) (addr
>> this->page_shift
);
891 /* Invalidate another BufferRAM */
892 i
= ONENAND_NEXT_BUFFERRAM(this);
893 if (this->bufferram
[i
].blockpage
== blockpage
)
894 this->bufferram
[i
].blockpage
= -1;
896 /* Update BufferRAM */
897 i
= ONENAND_CURRENT_BUFFERRAM(this);
899 this->bufferram
[i
].blockpage
= blockpage
;
901 this->bufferram
[i
].blockpage
= -1;
905 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
906 * @param mtd MTD data structure
907 * @param addr start address to invalidate
908 * @param len length to invalidate
910 * Invalidate BufferRAM information
912 static void onenand_invalidate_bufferram(struct mtd_info
*mtd
, loff_t addr
,
915 struct onenand_chip
*this = mtd
->priv
;
917 loff_t end_addr
= addr
+ len
;
919 /* Invalidate BufferRAM */
920 for (i
= 0; i
< MAX_BUFFERRAM
; i
++) {
921 loff_t buf_addr
= this->bufferram
[i
].blockpage
<< this->page_shift
;
922 if (buf_addr
>= addr
&& buf_addr
< end_addr
)
923 this->bufferram
[i
].blockpage
= -1;
928 * onenand_get_device - [GENERIC] Get chip for selected access
929 * @param mtd MTD device structure
930 * @param new_state the state which is requested
932 * Get the device and lock it for exclusive access
934 static int onenand_get_device(struct mtd_info
*mtd
, int new_state
)
936 struct onenand_chip
*this = mtd
->priv
;
937 DECLARE_WAITQUEUE(wait
, current
);
940 * Grab the lock and see if the device is available
943 spin_lock(&this->chip_lock
);
944 if (this->state
== FL_READY
) {
945 this->state
= new_state
;
946 spin_unlock(&this->chip_lock
);
949 if (new_state
== FL_PM_SUSPENDED
) {
950 spin_unlock(&this->chip_lock
);
951 return (this->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
953 set_current_state(TASK_UNINTERRUPTIBLE
);
954 add_wait_queue(&this->wq
, &wait
);
955 spin_unlock(&this->chip_lock
);
957 remove_wait_queue(&this->wq
, &wait
);
964 * onenand_release_device - [GENERIC] release chip
965 * @param mtd MTD device structure
967 * Deselect, release chip lock and wake up anyone waiting on the device
969 static void onenand_release_device(struct mtd_info
*mtd
)
971 struct onenand_chip
*this = mtd
->priv
;
973 /* Release the chip */
974 spin_lock(&this->chip_lock
);
975 this->state
= FL_READY
;
977 spin_unlock(&this->chip_lock
);
981 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
982 * @param mtd MTD device structure
983 * @param buf destination address
984 * @param column oob offset to read from
985 * @param thislen oob length to read
987 static int onenand_transfer_auto_oob(struct mtd_info
*mtd
, uint8_t *buf
, int column
,
990 struct onenand_chip
*this = mtd
->priv
;
991 struct nand_oobfree
*free
;
992 int readcol
= column
;
993 int readend
= column
+ thislen
;
996 uint8_t *oob_buf
= this->oob_buf
;
998 free
= this->ecclayout
->oobfree
;
999 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&& free
->length
; i
++, free
++) {
1000 if (readcol
>= lastgap
)
1001 readcol
+= free
->offset
- lastgap
;
1002 if (readend
>= lastgap
)
1003 readend
+= free
->offset
- lastgap
;
1004 lastgap
= free
->offset
+ free
->length
;
1006 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1007 free
= this->ecclayout
->oobfree
;
1008 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&& free
->length
; i
++, free
++) {
1009 int free_end
= free
->offset
+ free
->length
;
1010 if (free
->offset
< readend
&& free_end
> readcol
) {
1011 int st
= max_t(int,free
->offset
,readcol
);
1012 int ed
= min_t(int,free_end
,readend
);
1014 memcpy(buf
, oob_buf
+ st
, n
);
1016 } else if (column
== 0)
1023 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1024 * @param mtd MTD device structure
1025 * @param addr address to recover
1026 * @param status return value from onenand_wait / onenand_bbt_wait
1028 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1029 * lower page address and MSB page has higher page address in paired pages.
1030 * If power off occurs during MSB page program, the paired LSB page data can
1031 * become corrupt. LSB page recovery read is a way to read LSB page though page
1032 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1033 * read after power up, issue LSB page recovery read.
1035 static int onenand_recover_lsb(struct mtd_info
*mtd
, loff_t addr
, int status
)
1037 struct onenand_chip
*this = mtd
->priv
;
1040 /* Recovery is only for Flex-OneNAND */
1041 if (!FLEXONENAND(this))
1044 /* check if we failed due to uncorrectable error */
1045 if (status
!= -EBADMSG
&& status
!= ONENAND_BBT_READ_ECC_ERROR
)
1048 /* check if address lies in MLC region */
1049 i
= flexonenand_region(mtd
, addr
);
1050 if (mtd
->eraseregions
[i
].erasesize
< (1 << this->erase_shift
))
1053 /* We are attempting to reread, so decrement stats.failed
1054 * which was incremented by onenand_wait due to read failure
1056 printk(KERN_INFO
"%s: Attempting to recover from uncorrectable read\n",
1058 mtd
->ecc_stats
.failed
--;
1060 /* Issue the LSB page recovery command */
1061 this->command(mtd
, FLEXONENAND_CMD_RECOVER_LSB
, addr
, this->writesize
);
1062 return this->wait(mtd
, FL_READING
);
1066 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1067 * @param mtd MTD device structure
1068 * @param from offset to read from
1069 * @param ops: oob operation description structure
1071 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1072 * So, read-while-load is not present.
1074 static int onenand_mlc_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1075 struct mtd_oob_ops
*ops
)
1077 struct onenand_chip
*this = mtd
->priv
;
1078 struct mtd_ecc_stats stats
;
1079 size_t len
= ops
->len
;
1080 size_t ooblen
= ops
->ooblen
;
1081 u_char
*buf
= ops
->datbuf
;
1082 u_char
*oobbuf
= ops
->oobbuf
;
1083 int read
= 0, column
, thislen
;
1084 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1086 int writesize
= this->writesize
;
1088 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08x, len = %i\n",
1089 __func__
, (unsigned int) from
, (int) len
);
1091 if (ops
->mode
== MTD_OOB_AUTO
)
1092 oobsize
= this->ecclayout
->oobavail
;
1094 oobsize
= mtd
->oobsize
;
1096 oobcolumn
= from
& (mtd
->oobsize
- 1);
1098 /* Do not allow reads past end of device */
1099 if (from
+ len
> mtd
->size
) {
1100 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1107 stats
= mtd
->ecc_stats
;
1109 while (read
< len
) {
1112 thislen
= min_t(int, writesize
, len
- read
);
1114 column
= from
& (writesize
- 1);
1115 if (column
+ thislen
> writesize
)
1116 thislen
= writesize
- column
;
1118 if (!onenand_check_bufferram(mtd
, from
)) {
1119 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1121 ret
= this->wait(mtd
, FL_READING
);
1123 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1124 onenand_update_bufferram(mtd
, from
, !ret
);
1125 if (ret
== -EBADMSG
)
1129 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1131 thisooblen
= oobsize
- oobcolumn
;
1132 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1134 if (ops
->mode
== MTD_OOB_AUTO
)
1135 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1137 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1138 oobread
+= thisooblen
;
1139 oobbuf
+= thisooblen
;
1152 * Return success, if no ECC failures, else -EBADMSG
1153 * fs driver will take care of that, because
1154 * retlen == desired len and result == -EBADMSG
1157 ops
->oobretlen
= oobread
;
1162 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1165 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1169 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1170 * @param mtd MTD device structure
1171 * @param from offset to read from
1172 * @param ops: oob operation description structure
1174 * OneNAND read main and/or out-of-band data
1176 static int onenand_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1177 struct mtd_oob_ops
*ops
)
1179 struct onenand_chip
*this = mtd
->priv
;
1180 struct mtd_ecc_stats stats
;
1181 size_t len
= ops
->len
;
1182 size_t ooblen
= ops
->ooblen
;
1183 u_char
*buf
= ops
->datbuf
;
1184 u_char
*oobbuf
= ops
->oobbuf
;
1185 int read
= 0, column
, thislen
;
1186 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1187 int ret
= 0, boundary
= 0;
1188 int writesize
= this->writesize
;
1190 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08x, len = %i\n",
1191 __func__
, (unsigned int) from
, (int) len
);
1193 if (ops
->mode
== MTD_OOB_AUTO
)
1194 oobsize
= this->ecclayout
->oobavail
;
1196 oobsize
= mtd
->oobsize
;
1198 oobcolumn
= from
& (mtd
->oobsize
- 1);
1200 /* Do not allow reads past end of device */
1201 if ((from
+ len
) > mtd
->size
) {
1202 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1209 stats
= mtd
->ecc_stats
;
1211 /* Read-while-load method */
1213 /* Do first load to bufferRAM */
1215 if (!onenand_check_bufferram(mtd
, from
)) {
1216 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1217 ret
= this->wait(mtd
, FL_READING
);
1218 onenand_update_bufferram(mtd
, from
, !ret
);
1219 if (ret
== -EBADMSG
)
1224 thislen
= min_t(int, writesize
, len
- read
);
1225 column
= from
& (writesize
- 1);
1226 if (column
+ thislen
> writesize
)
1227 thislen
= writesize
- column
;
1230 /* If there is more to load then start next load */
1232 if (read
+ thislen
< len
) {
1233 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1235 * Chip boundary handling in DDP
1236 * Now we issued chip 1 read and pointed chip 1
1237 * bufferram so we have to point chip 0 bufferram.
1239 if (ONENAND_IS_DDP(this) &&
1240 unlikely(from
== (this->chipsize
>> 1))) {
1241 this->write_word(ONENAND_DDP_CHIP0
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1245 ONENAND_SET_PREV_BUFFERRAM(this);
1247 /* While load is going, read from last bufferRAM */
1248 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1250 /* Read oob area if needed */
1252 thisooblen
= oobsize
- oobcolumn
;
1253 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1255 if (ops
->mode
== MTD_OOB_AUTO
)
1256 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1258 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1259 oobread
+= thisooblen
;
1260 oobbuf
+= thisooblen
;
1264 /* See if we are done */
1268 /* Set up for next read from bufferRAM */
1269 if (unlikely(boundary
))
1270 this->write_word(ONENAND_DDP_CHIP1
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1271 ONENAND_SET_NEXT_BUFFERRAM(this);
1273 thislen
= min_t(int, writesize
, len
- read
);
1276 /* Now wait for load */
1277 ret
= this->wait(mtd
, FL_READING
);
1278 onenand_update_bufferram(mtd
, from
, !ret
);
1279 if (ret
== -EBADMSG
)
1284 * Return success, if no ECC failures, else -EBADMSG
1285 * fs driver will take care of that, because
1286 * retlen == desired len and result == -EBADMSG
1289 ops
->oobretlen
= oobread
;
1294 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1297 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1301 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1302 * @param mtd MTD device structure
1303 * @param from offset to read from
1304 * @param ops: oob operation description structure
1306 * OneNAND read out-of-band data from the spare area
1308 static int onenand_read_oob_nolock(struct mtd_info
*mtd
, loff_t from
,
1309 struct mtd_oob_ops
*ops
)
1311 struct onenand_chip
*this = mtd
->priv
;
1312 struct mtd_ecc_stats stats
;
1313 int read
= 0, thislen
, column
, oobsize
;
1314 size_t len
= ops
->ooblen
;
1315 mtd_oob_mode_t mode
= ops
->mode
;
1316 u_char
*buf
= ops
->oobbuf
;
1317 int ret
= 0, readcmd
;
1319 from
+= ops
->ooboffs
;
1321 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08x, len = %i\n",
1322 __func__
, (unsigned int) from
, (int) len
);
1324 /* Initialize return length value */
1327 if (mode
== MTD_OOB_AUTO
)
1328 oobsize
= this->ecclayout
->oobavail
;
1330 oobsize
= mtd
->oobsize
;
1332 column
= from
& (mtd
->oobsize
- 1);
1334 if (unlikely(column
>= oobsize
)) {
1335 printk(KERN_ERR
"%s: Attempted to start read outside oob\n",
1340 /* Do not allow reads past end of device */
1341 if (unlikely(from
>= mtd
->size
||
1342 column
+ len
> ((mtd
->size
>> this->page_shift
) -
1343 (from
>> this->page_shift
)) * oobsize
)) {
1344 printk(KERN_ERR
"%s: Attempted to read beyond end of device\n",
1349 stats
= mtd
->ecc_stats
;
1351 readcmd
= ONENAND_IS_MLC(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1353 while (read
< len
) {
1356 thislen
= oobsize
- column
;
1357 thislen
= min_t(int, thislen
, len
);
1359 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1361 onenand_update_bufferram(mtd
, from
, 0);
1363 ret
= this->wait(mtd
, FL_READING
);
1365 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1367 if (ret
&& ret
!= -EBADMSG
) {
1368 printk(KERN_ERR
"%s: read failed = 0x%x\n",
1373 if (mode
== MTD_OOB_AUTO
)
1374 onenand_transfer_auto_oob(mtd
, buf
, column
, thislen
);
1376 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1388 from
+= mtd
->writesize
;
1393 ops
->oobretlen
= read
;
1398 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1405 * onenand_read - [MTD Interface] Read data from flash
1406 * @param mtd MTD device structure
1407 * @param from offset to read from
1408 * @param len number of bytes to read
1409 * @param retlen pointer to variable to store the number of read bytes
1410 * @param buf the databuffer to put data
1414 static int onenand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1415 size_t *retlen
, u_char
*buf
)
1417 struct onenand_chip
*this = mtd
->priv
;
1418 struct mtd_oob_ops ops
= {
1426 onenand_get_device(mtd
, FL_READING
);
1427 ret
= ONENAND_IS_MLC(this) ?
1428 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
1429 onenand_read_ops_nolock(mtd
, from
, &ops
);
1430 onenand_release_device(mtd
);
1432 *retlen
= ops
.retlen
;
1437 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1438 * @param mtd: MTD device structure
1439 * @param from: offset to read from
1440 * @param ops: oob operation description structure
1442 * Read main and/or out-of-band
1444 static int onenand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1445 struct mtd_oob_ops
*ops
)
1447 struct onenand_chip
*this = mtd
->priv
;
1450 switch (ops
->mode
) {
1455 /* Not implemented yet */
1460 onenand_get_device(mtd
, FL_READING
);
1462 ret
= ONENAND_IS_MLC(this) ?
1463 onenand_mlc_read_ops_nolock(mtd
, from
, ops
) :
1464 onenand_read_ops_nolock(mtd
, from
, ops
);
1466 ret
= onenand_read_oob_nolock(mtd
, from
, ops
);
1467 onenand_release_device(mtd
);
1473 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1474 * @param mtd MTD device structure
1475 * @param state state to select the max. timeout value
1477 * Wait for command done.
1479 static int onenand_bbt_wait(struct mtd_info
*mtd
, int state
)
1481 struct onenand_chip
*this = mtd
->priv
;
1482 unsigned long timeout
;
1483 unsigned int interrupt
;
1486 /* The 20 msec is enough */
1487 timeout
= jiffies
+ msecs_to_jiffies(20);
1488 while (time_before(jiffies
, timeout
)) {
1489 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1490 if (interrupt
& ONENAND_INT_MASTER
)
1493 /* To get correct interrupt status in timeout case */
1494 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1495 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
1497 if (interrupt
& ONENAND_INT_READ
) {
1498 int ecc
= onenand_read_ecc(this);
1499 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
1500 printk(KERN_WARNING
"%s: ecc error = 0x%04x, "
1501 "controller error 0x%04x\n",
1502 __func__
, ecc
, ctrl
);
1503 return ONENAND_BBT_READ_ECC_ERROR
;
1506 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
1507 __func__
, ctrl
, interrupt
);
1508 return ONENAND_BBT_READ_FATAL_ERROR
;
1511 /* Initial bad block case: 0x2400 or 0x0400 */
1512 if (ctrl
& ONENAND_CTRL_ERROR
) {
1513 printk(KERN_DEBUG
"%s: controller error = 0x%04x\n",
1515 return ONENAND_BBT_READ_ERROR
;
1522 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1523 * @param mtd MTD device structure
1524 * @param from offset to read from
1525 * @param ops oob operation description structure
1527 * OneNAND read out-of-band data from the spare area for bbt scan
1529 int onenand_bbt_read_oob(struct mtd_info
*mtd
, loff_t from
,
1530 struct mtd_oob_ops
*ops
)
1532 struct onenand_chip
*this = mtd
->priv
;
1533 int read
= 0, thislen
, column
;
1534 int ret
= 0, readcmd
;
1535 size_t len
= ops
->ooblen
;
1536 u_char
*buf
= ops
->oobbuf
;
1538 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08x, len = %zi\n",
1539 __func__
, (unsigned int) from
, len
);
1541 /* Initialize return value */
1544 /* Do not allow reads past end of device */
1545 if (unlikely((from
+ len
) > mtd
->size
)) {
1546 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1548 return ONENAND_BBT_READ_FATAL_ERROR
;
1551 /* Grab the lock and see if the device is available */
1552 onenand_get_device(mtd
, FL_READING
);
1554 column
= from
& (mtd
->oobsize
- 1);
1556 readcmd
= ONENAND_IS_MLC(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1558 while (read
< len
) {
1561 thislen
= mtd
->oobsize
- column
;
1562 thislen
= min_t(int, thislen
, len
);
1564 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1566 onenand_update_bufferram(mtd
, from
, 0);
1568 ret
= this->bbt_wait(mtd
, FL_READING
);
1570 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1575 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1584 /* Update Page size */
1585 from
+= this->writesize
;
1590 /* Deselect and wake up anyone waiting on the device */
1591 onenand_release_device(mtd
);
1593 ops
->oobretlen
= read
;
1597 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1599 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1600 * @param mtd MTD device structure
1601 * @param buf the databuffer to verify
1602 * @param to offset to read from
1604 static int onenand_verify_oob(struct mtd_info
*mtd
, const u_char
*buf
, loff_t to
)
1606 struct onenand_chip
*this = mtd
->priv
;
1607 u_char
*oob_buf
= this->oob_buf
;
1608 int status
, i
, readcmd
;
1610 readcmd
= ONENAND_IS_MLC(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1612 this->command(mtd
, readcmd
, to
, mtd
->oobsize
);
1613 onenand_update_bufferram(mtd
, to
, 0);
1614 status
= this->wait(mtd
, FL_READING
);
1618 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1619 for (i
= 0; i
< mtd
->oobsize
; i
++)
1620 if (buf
[i
] != 0xFF && buf
[i
] != oob_buf
[i
])
1627 * onenand_verify - [GENERIC] verify the chip contents after a write
1628 * @param mtd MTD device structure
1629 * @param buf the databuffer to verify
1630 * @param addr offset to read from
1631 * @param len number of bytes to read and compare
1633 static int onenand_verify(struct mtd_info
*mtd
, const u_char
*buf
, loff_t addr
, size_t len
)
1635 struct onenand_chip
*this = mtd
->priv
;
1636 void __iomem
*dataram
;
1638 int thislen
, column
;
1641 thislen
= min_t(int, this->writesize
, len
);
1642 column
= addr
& (this->writesize
- 1);
1643 if (column
+ thislen
> this->writesize
)
1644 thislen
= this->writesize
- column
;
1646 this->command(mtd
, ONENAND_CMD_READ
, addr
, this->writesize
);
1648 onenand_update_bufferram(mtd
, addr
, 0);
1650 ret
= this->wait(mtd
, FL_READING
);
1654 onenand_update_bufferram(mtd
, addr
, 1);
1656 dataram
= this->base
+ ONENAND_DATARAM
;
1657 dataram
+= onenand_bufferram_offset(mtd
, ONENAND_DATARAM
);
1659 if (memcmp(buf
, dataram
+ column
, thislen
))
1670 #define onenand_verify(...) (0)
1671 #define onenand_verify_oob(...) (0)
1674 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1676 static void onenand_panic_wait(struct mtd_info
*mtd
)
1678 struct onenand_chip
*this = mtd
->priv
;
1679 unsigned int interrupt
;
1682 for (i
= 0; i
< 2000; i
++) {
1683 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1684 if (interrupt
& ONENAND_INT_MASTER
)
1691 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1692 * @param mtd MTD device structure
1693 * @param to offset to write to
1694 * @param len number of bytes to write
1695 * @param retlen pointer to variable to store the number of written bytes
1696 * @param buf the data to write
1700 static int onenand_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1701 size_t *retlen
, const u_char
*buf
)
1703 struct onenand_chip
*this = mtd
->priv
;
1704 int column
, subpage
;
1708 if (this->state
== FL_PM_SUSPENDED
)
1711 /* Wait for any existing operation to clear */
1712 onenand_panic_wait(mtd
);
1714 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
1715 __func__
, (unsigned int) to
, (int) len
);
1717 /* Initialize retlen, in case of early exit */
1720 /* Do not allow writes past end of device */
1721 if (unlikely((to
+ len
) > mtd
->size
)) {
1722 printk(KERN_ERR
"%s: Attempt write to past end of device\n",
1727 /* Reject writes, which are not page aligned */
1728 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1729 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1734 column
= to
& (mtd
->writesize
- 1);
1736 /* Loop until all data write */
1737 while (written
< len
) {
1738 int thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1739 u_char
*wbuf
= (u_char
*) buf
;
1741 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1743 /* Partial page write */
1744 subpage
= thislen
< mtd
->writesize
;
1746 memset(this->page_buf
, 0xff, mtd
->writesize
);
1747 memcpy(this->page_buf
+ column
, buf
, thislen
);
1748 wbuf
= this->page_buf
;
1751 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1752 this->write_bufferram(mtd
, ONENAND_SPARERAM
, ffchars
, 0, mtd
->oobsize
);
1754 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1756 onenand_panic_wait(mtd
);
1758 /* In partial page write we don't update bufferram */
1759 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1760 if (ONENAND_IS_2PLANE(this)) {
1761 ONENAND_SET_BUFFERRAM1(this);
1762 onenand_update_bufferram(mtd
, to
+ this->writesize
, !ret
&& !subpage
);
1766 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
1785 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1786 * @param mtd MTD device structure
1787 * @param oob_buf oob buffer
1788 * @param buf source address
1789 * @param column oob offset to write to
1790 * @param thislen oob length to write
1792 static int onenand_fill_auto_oob(struct mtd_info
*mtd
, u_char
*oob_buf
,
1793 const u_char
*buf
, int column
, int thislen
)
1795 struct onenand_chip
*this = mtd
->priv
;
1796 struct nand_oobfree
*free
;
1797 int writecol
= column
;
1798 int writeend
= column
+ thislen
;
1802 free
= this->ecclayout
->oobfree
;
1803 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&& free
->length
; i
++, free
++) {
1804 if (writecol
>= lastgap
)
1805 writecol
+= free
->offset
- lastgap
;
1806 if (writeend
>= lastgap
)
1807 writeend
+= free
->offset
- lastgap
;
1808 lastgap
= free
->offset
+ free
->length
;
1810 free
= this->ecclayout
->oobfree
;
1811 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&& free
->length
; i
++, free
++) {
1812 int free_end
= free
->offset
+ free
->length
;
1813 if (free
->offset
< writeend
&& free_end
> writecol
) {
1814 int st
= max_t(int,free
->offset
,writecol
);
1815 int ed
= min_t(int,free_end
,writeend
);
1817 memcpy(oob_buf
+ st
, buf
, n
);
1819 } else if (column
== 0)
1826 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1827 * @param mtd MTD device structure
1828 * @param to offset to write to
1829 * @param ops oob operation description structure
1831 * Write main and/or oob with ECC
1833 static int onenand_write_ops_nolock(struct mtd_info
*mtd
, loff_t to
,
1834 struct mtd_oob_ops
*ops
)
1836 struct onenand_chip
*this = mtd
->priv
;
1837 int written
= 0, column
, thislen
= 0, subpage
= 0;
1838 int prev
= 0, prevlen
= 0, prev_subpage
= 0, first
= 1;
1839 int oobwritten
= 0, oobcolumn
, thisooblen
, oobsize
;
1840 size_t len
= ops
->len
;
1841 size_t ooblen
= ops
->ooblen
;
1842 const u_char
*buf
= ops
->datbuf
;
1843 const u_char
*oob
= ops
->oobbuf
;
1847 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
1848 __func__
, (unsigned int) to
, (int) len
);
1850 /* Initialize retlen, in case of early exit */
1854 /* Do not allow writes past end of device */
1855 if (unlikely((to
+ len
) > mtd
->size
)) {
1856 printk(KERN_ERR
"%s: Attempt write to past end of device\n",
1861 /* Reject writes, which are not page aligned */
1862 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1863 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1868 /* Check zero length */
1872 if (ops
->mode
== MTD_OOB_AUTO
)
1873 oobsize
= this->ecclayout
->oobavail
;
1875 oobsize
= mtd
->oobsize
;
1877 oobcolumn
= to
& (mtd
->oobsize
- 1);
1879 column
= to
& (mtd
->writesize
- 1);
1881 /* Loop until all data write */
1883 if (written
< len
) {
1884 u_char
*wbuf
= (u_char
*) buf
;
1886 thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1887 thisooblen
= min_t(int, oobsize
- oobcolumn
, ooblen
- oobwritten
);
1891 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1893 /* Partial page write */
1894 subpage
= thislen
< mtd
->writesize
;
1896 memset(this->page_buf
, 0xff, mtd
->writesize
);
1897 memcpy(this->page_buf
+ column
, buf
, thislen
);
1898 wbuf
= this->page_buf
;
1901 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1904 oobbuf
= this->oob_buf
;
1906 /* We send data to spare ram with oobsize
1907 * to prevent byte access */
1908 memset(oobbuf
, 0xff, mtd
->oobsize
);
1909 if (ops
->mode
== MTD_OOB_AUTO
)
1910 onenand_fill_auto_oob(mtd
, oobbuf
, oob
, oobcolumn
, thisooblen
);
1912 memcpy(oobbuf
+ oobcolumn
, oob
, thisooblen
);
1914 oobwritten
+= thisooblen
;
1918 oobbuf
= (u_char
*) ffchars
;
1920 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
1922 ONENAND_SET_NEXT_BUFFERRAM(this);
1925 * 2 PLANE, MLC, and Flex-OneNAND do not support
1926 * write-while-program feature.
1928 if (!ONENAND_IS_2PLANE(this) && !first
) {
1929 ONENAND_SET_PREV_BUFFERRAM(this);
1931 ret
= this->wait(mtd
, FL_WRITING
);
1933 /* In partial page write we don't update bufferram */
1934 onenand_update_bufferram(mtd
, prev
, !ret
&& !prev_subpage
);
1937 printk(KERN_ERR
"%s: write failed %d\n",
1942 if (written
== len
) {
1943 /* Only check verify write turn on */
1944 ret
= onenand_verify(mtd
, buf
- len
, to
- len
, len
);
1946 printk(KERN_ERR
"%s: verify failed %d\n",
1951 ONENAND_SET_NEXT_BUFFERRAM(this);
1954 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1957 * 2 PLANE, MLC, and Flex-OneNAND wait here
1959 if (ONENAND_IS_2PLANE(this)) {
1960 ret
= this->wait(mtd
, FL_WRITING
);
1962 /* In partial page write we don't update bufferram */
1963 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1965 printk(KERN_ERR
"%s: write failed %d\n",
1970 /* Only check verify write turn on */
1971 ret
= onenand_verify(mtd
, buf
, to
, thislen
);
1973 printk(KERN_ERR
"%s: verify failed %d\n",
1987 prev_subpage
= subpage
;
1995 /* In error case, clear all bufferrams */
1997 onenand_invalidate_bufferram(mtd
, 0, -1);
1999 ops
->retlen
= written
;
2000 ops
->oobretlen
= oobwritten
;
2007 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2008 * @param mtd MTD device structure
2009 * @param to offset to write to
2010 * @param len number of bytes to write
2011 * @param retlen pointer to variable to store the number of written bytes
2012 * @param buf the data to write
2013 * @param mode operation mode
2015 * OneNAND write out-of-band
2017 static int onenand_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2018 struct mtd_oob_ops
*ops
)
2020 struct onenand_chip
*this = mtd
->priv
;
2021 int column
, ret
= 0, oobsize
;
2022 int written
= 0, oobcmd
;
2024 size_t len
= ops
->ooblen
;
2025 const u_char
*buf
= ops
->oobbuf
;
2026 mtd_oob_mode_t mode
= ops
->mode
;
2030 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
2031 __func__
, (unsigned int) to
, (int) len
);
2033 /* Initialize retlen, in case of early exit */
2036 if (mode
== MTD_OOB_AUTO
)
2037 oobsize
= this->ecclayout
->oobavail
;
2039 oobsize
= mtd
->oobsize
;
2041 column
= to
& (mtd
->oobsize
- 1);
2043 if (unlikely(column
>= oobsize
)) {
2044 printk(KERN_ERR
"%s: Attempted to start write outside oob\n",
2049 /* For compatibility with NAND: Do not allow write past end of page */
2050 if (unlikely(column
+ len
> oobsize
)) {
2051 printk(KERN_ERR
"%s: Attempt to write past end of page\n",
2056 /* Do not allow reads past end of device */
2057 if (unlikely(to
>= mtd
->size
||
2058 column
+ len
> ((mtd
->size
>> this->page_shift
) -
2059 (to
>> this->page_shift
)) * oobsize
)) {
2060 printk(KERN_ERR
"%s: Attempted to write past end of device\n",
2065 oobbuf
= this->oob_buf
;
2067 oobcmd
= ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG
: ONENAND_CMD_PROGOOB
;
2069 /* Loop until all data write */
2070 while (written
< len
) {
2071 int thislen
= min_t(int, oobsize
, len
- written
);
2075 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, mtd
->oobsize
);
2077 /* We send data to spare ram with oobsize
2078 * to prevent byte access */
2079 memset(oobbuf
, 0xff, mtd
->oobsize
);
2080 if (mode
== MTD_OOB_AUTO
)
2081 onenand_fill_auto_oob(mtd
, oobbuf
, buf
, column
, thislen
);
2083 memcpy(oobbuf
+ column
, buf
, thislen
);
2084 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
2086 if (ONENAND_IS_MLC(this)) {
2087 /* Set main area of DataRAM to 0xff*/
2088 memset(this->page_buf
, 0xff, mtd
->writesize
);
2089 this->write_bufferram(mtd
, ONENAND_DATARAM
,
2090 this->page_buf
, 0, mtd
->writesize
);
2093 this->command(mtd
, oobcmd
, to
, mtd
->oobsize
);
2095 onenand_update_bufferram(mtd
, to
, 0);
2096 if (ONENAND_IS_2PLANE(this)) {
2097 ONENAND_SET_BUFFERRAM1(this);
2098 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2101 ret
= this->wait(mtd
, FL_WRITING
);
2103 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2107 ret
= onenand_verify_oob(mtd
, oobbuf
, to
);
2109 printk(KERN_ERR
"%s: verify failed %d\n",
2118 to
+= mtd
->writesize
;
2123 ops
->oobretlen
= written
;
2129 * onenand_write - [MTD Interface] write buffer to FLASH
2130 * @param mtd MTD device structure
2131 * @param to offset to write to
2132 * @param len number of bytes to write
2133 * @param retlen pointer to variable to store the number of written bytes
2134 * @param buf the data to write
2138 static int onenand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2139 size_t *retlen
, const u_char
*buf
)
2141 struct mtd_oob_ops ops
= {
2144 .datbuf
= (u_char
*) buf
,
2149 onenand_get_device(mtd
, FL_WRITING
);
2150 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
2151 onenand_release_device(mtd
);
2153 *retlen
= ops
.retlen
;
2158 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2159 * @param mtd: MTD device structure
2160 * @param to: offset to write
2161 * @param ops: oob operation description structure
2163 static int onenand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2164 struct mtd_oob_ops
*ops
)
2168 switch (ops
->mode
) {
2173 /* Not implemented yet */
2178 onenand_get_device(mtd
, FL_WRITING
);
2180 ret
= onenand_write_ops_nolock(mtd
, to
, ops
);
2182 ret
= onenand_write_oob_nolock(mtd
, to
, ops
);
2183 onenand_release_device(mtd
);
2189 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2190 * @param mtd MTD device structure
2191 * @param ofs offset from device start
2192 * @param allowbbt 1, if its allowed to access the bbt area
2194 * Check, if the block is bad. Either by reading the bad block table or
2195 * calling of the scan function.
2197 static int onenand_block_isbad_nolock(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
2199 struct onenand_chip
*this = mtd
->priv
;
2200 struct bbm_info
*bbm
= this->bbm
;
2202 /* Return info from the table */
2203 return bbm
->isbad_bbt(mtd
, ofs
, allowbbt
);
2207 static int onenand_multiblock_erase_verify(struct mtd_info
*mtd
,
2208 struct erase_info
*instr
)
2210 struct onenand_chip
*this = mtd
->priv
;
2211 loff_t addr
= instr
->addr
;
2212 int len
= instr
->len
;
2213 unsigned int block_size
= (1 << this->erase_shift
);
2217 this->command(mtd
, ONENAND_CMD_ERASE_VERIFY
, addr
, block_size
);
2218 ret
= this->wait(mtd
, FL_VERIFYING_ERASE
);
2220 printk(KERN_ERR
"%s: Failed verify, block %d\n",
2221 __func__
, onenand_block(this, addr
));
2222 instr
->state
= MTD_ERASE_FAILED
;
2223 instr
->fail_addr
= addr
;
2233 * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2234 * @param mtd MTD device structure
2235 * @param instr erase instruction
2236 * @param region erase region
2238 * Erase one or more blocks up to 64 block at a time
2240 static int onenand_multiblock_erase(struct mtd_info
*mtd
,
2241 struct erase_info
*instr
,
2242 unsigned int block_size
)
2244 struct onenand_chip
*this = mtd
->priv
;
2245 loff_t addr
= instr
->addr
;
2246 int len
= instr
->len
;
2251 instr
->state
= MTD_ERASING
;
2253 if (ONENAND_IS_DDP(this)) {
2254 loff_t bdry_addr
= this->chipsize
>> 1;
2255 if (addr
< bdry_addr
&& (addr
+ len
) > bdry_addr
)
2256 bdry_block
= bdry_addr
>> this->erase_shift
;
2261 /* Check if we have a bad block, we do not erase bad blocks */
2262 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2263 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2264 "at addr 0x%012llx\n",
2265 __func__
, (unsigned long long) addr
);
2266 instr
->state
= MTD_ERASE_FAILED
;
2276 /* loop over 64 eb batches */
2278 struct erase_info verify_instr
= *instr
;
2279 int max_eb_count
= MB_ERASE_MAX_BLK_COUNT
;
2281 verify_instr
.addr
= addr
;
2282 verify_instr
.len
= 0;
2284 /* do not cross chip boundary */
2286 int this_block
= (addr
>> this->erase_shift
);
2288 if (this_block
< bdry_block
) {
2289 max_eb_count
= min(max_eb_count
,
2290 (bdry_block
- this_block
));
2296 while (len
> block_size
&& eb_count
< (max_eb_count
- 1)) {
2297 this->command(mtd
, ONENAND_CMD_MULTIBLOCK_ERASE
,
2299 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2301 ret
= this->wait(mtd
, FL_PREPARING_ERASE
);
2303 printk(KERN_ERR
"%s: Failed multiblock erase, "
2304 "block %d\n", __func__
,
2305 onenand_block(this, addr
));
2306 instr
->state
= MTD_ERASE_FAILED
;
2307 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2316 /* last block of 64-eb series */
2318 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2319 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2321 ret
= this->wait(mtd
, FL_ERASING
);
2322 /* Check if it is write protected */
2324 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2325 __func__
, onenand_block(this, addr
));
2326 instr
->state
= MTD_ERASE_FAILED
;
2327 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2336 verify_instr
.len
= eb_count
* block_size
;
2337 if (onenand_multiblock_erase_verify(mtd
, &verify_instr
)) {
2338 instr
->state
= verify_instr
.state
;
2339 instr
->fail_addr
= verify_instr
.fail_addr
;
2349 * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2350 * @param mtd MTD device structure
2351 * @param instr erase instruction
2352 * @param region erase region
2353 * @param block_size erase block size
2355 * Erase one or more blocks one block at a time
2357 static int onenand_block_by_block_erase(struct mtd_info
*mtd
,
2358 struct erase_info
*instr
,
2359 struct mtd_erase_region_info
*region
,
2360 unsigned int block_size
)
2362 struct onenand_chip
*this = mtd
->priv
;
2363 loff_t addr
= instr
->addr
;
2364 int len
= instr
->len
;
2365 loff_t region_end
= 0;
2369 /* region is set for Flex-OneNAND */
2370 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2373 instr
->state
= MTD_ERASING
;
2375 /* Loop through the blocks */
2379 /* Check if we have a bad block, we do not erase bad blocks */
2380 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2381 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2382 "at addr 0x%012llx\n",
2383 __func__
, (unsigned long long) addr
);
2384 instr
->state
= MTD_ERASE_FAILED
;
2388 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2390 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2392 ret
= this->wait(mtd
, FL_ERASING
);
2393 /* Check, if it is write protected */
2395 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2396 __func__
, onenand_block(this, addr
));
2397 instr
->state
= MTD_ERASE_FAILED
;
2398 instr
->fail_addr
= addr
;
2405 if (addr
== region_end
) {
2410 block_size
= region
->erasesize
;
2411 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2413 if (len
& (block_size
- 1)) {
2414 /* FIXME: This should be handled at MTD partitioning level. */
2415 printk(KERN_ERR
"%s: Unaligned address\n",
2425 * onenand_erase - [MTD Interface] erase block(s)
2426 * @param mtd MTD device structure
2427 * @param instr erase instruction
2429 * Erase one or more blocks
2431 static int onenand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2433 struct onenand_chip
*this = mtd
->priv
;
2434 unsigned int block_size
;
2435 loff_t addr
= instr
->addr
;
2436 loff_t len
= instr
->len
;
2438 struct mtd_erase_region_info
*region
= NULL
;
2439 loff_t region_offset
= 0;
2441 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start=0x%012llx, len=%llu\n", __func__
,
2442 (unsigned long long) instr
->addr
, (unsigned long long) instr
->len
);
2444 /* Do not allow erase past end of device */
2445 if (unlikely((len
+ addr
) > mtd
->size
)) {
2446 printk(KERN_ERR
"%s: Erase past end of device\n", __func__
);
2450 if (FLEXONENAND(this)) {
2451 /* Find the eraseregion of this address */
2452 int i
= flexonenand_region(mtd
, addr
);
2454 region
= &mtd
->eraseregions
[i
];
2455 block_size
= region
->erasesize
;
2457 /* Start address within region must align on block boundary.
2458 * Erase region's start offset is always block start address.
2460 region_offset
= region
->offset
;
2462 block_size
= 1 << this->erase_shift
;
2464 /* Start address must align on block boundary */
2465 if (unlikely((addr
- region_offset
) & (block_size
- 1))) {
2466 printk(KERN_ERR
"%s: Unaligned address\n", __func__
);
2470 /* Length must align on block boundary */
2471 if (unlikely(len
& (block_size
- 1))) {
2472 printk(KERN_ERR
"%s: Length not block aligned\n", __func__
);
2476 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2478 /* Grab the lock and see if the device is available */
2479 onenand_get_device(mtd
, FL_ERASING
);
2481 if (region
|| instr
->len
< MB_ERASE_MIN_BLK_COUNT
* block_size
) {
2482 /* region is set for Flex-OneNAND (no mb erase) */
2483 ret
= onenand_block_by_block_erase(mtd
, instr
,
2484 region
, block_size
);
2486 ret
= onenand_multiblock_erase(mtd
, instr
, block_size
);
2489 /* Deselect and wake up anyone waiting on the device */
2490 onenand_release_device(mtd
);
2492 /* Do call back function */
2494 instr
->state
= MTD_ERASE_DONE
;
2495 mtd_erase_callback(instr
);
2502 * onenand_sync - [MTD Interface] sync
2503 * @param mtd MTD device structure
2505 * Sync is actually a wait for chip ready function
2507 static void onenand_sync(struct mtd_info
*mtd
)
2509 DEBUG(MTD_DEBUG_LEVEL3
, "%s: called\n", __func__
);
2511 /* Grab the lock and see if the device is available */
2512 onenand_get_device(mtd
, FL_SYNCING
);
2514 /* Release it and go back */
2515 onenand_release_device(mtd
);
2519 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2520 * @param mtd MTD device structure
2521 * @param ofs offset relative to mtd start
2523 * Check whether the block is bad
2525 static int onenand_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2529 /* Check for invalid offset */
2530 if (ofs
> mtd
->size
)
2533 onenand_get_device(mtd
, FL_READING
);
2534 ret
= onenand_block_isbad_nolock(mtd
, ofs
, 0);
2535 onenand_release_device(mtd
);
2540 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2541 * @param mtd MTD device structure
2542 * @param ofs offset from device start
2544 * This is the default implementation, which can be overridden by
2545 * a hardware specific driver.
2547 static int onenand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2549 struct onenand_chip
*this = mtd
->priv
;
2550 struct bbm_info
*bbm
= this->bbm
;
2551 u_char buf
[2] = {0, 0};
2552 struct mtd_oob_ops ops
= {
2553 .mode
= MTD_OOB_PLACE
,
2560 /* Get block number */
2561 block
= onenand_block(this, ofs
);
2563 bbm
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
2565 /* We write two bytes, so we don't have to mess with 16-bit access */
2566 ofs
+= mtd
->oobsize
+ (bbm
->badblockpos
& ~0x01);
2567 /* FIXME : What to do when marking SLC block in partition
2568 * with MLC erasesize? For now, it is not advisable to
2569 * create partitions containing both SLC and MLC regions.
2571 return onenand_write_oob_nolock(mtd
, ofs
, &ops
);
2575 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2576 * @param mtd MTD device structure
2577 * @param ofs offset relative to mtd start
2579 * Mark the block as bad
2581 static int onenand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2583 struct onenand_chip
*this = mtd
->priv
;
2586 ret
= onenand_block_isbad(mtd
, ofs
);
2588 /* If it was bad already, return success and do nothing */
2594 onenand_get_device(mtd
, FL_WRITING
);
2595 ret
= this->block_markbad(mtd
, ofs
);
2596 onenand_release_device(mtd
);
2601 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2602 * @param mtd MTD device structure
2603 * @param ofs offset relative to mtd start
2604 * @param len number of bytes to lock or unlock
2605 * @param cmd lock or unlock command
2607 * Lock or unlock one or more blocks
2609 static int onenand_do_lock_cmd(struct mtd_info
*mtd
, loff_t ofs
, size_t len
, int cmd
)
2611 struct onenand_chip
*this = mtd
->priv
;
2612 int start
, end
, block
, value
, status
;
2615 start
= onenand_block(this, ofs
);
2616 end
= onenand_block(this, ofs
+ len
) - 1;
2618 if (cmd
== ONENAND_CMD_LOCK
)
2619 wp_status_mask
= ONENAND_WP_LS
;
2621 wp_status_mask
= ONENAND_WP_US
;
2623 /* Continuous lock scheme */
2624 if (this->options
& ONENAND_HAS_CONT_LOCK
) {
2625 /* Set start block address */
2626 this->write_word(start
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2627 /* Set end block address */
2628 this->write_word(end
, this->base
+ ONENAND_REG_END_BLOCK_ADDRESS
);
2629 /* Write lock command */
2630 this->command(mtd
, cmd
, 0, 0);
2632 /* There's no return value */
2633 this->wait(mtd
, FL_LOCKING
);
2636 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2637 & ONENAND_CTRL_ONGO
)
2640 /* Check lock status */
2641 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2642 if (!(status
& wp_status_mask
))
2643 printk(KERN_ERR
"%s: wp status = 0x%x\n",
2649 /* Block lock scheme */
2650 for (block
= start
; block
< end
+ 1; block
++) {
2651 /* Set block address */
2652 value
= onenand_block_address(this, block
);
2653 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2654 /* Select DataRAM for DDP */
2655 value
= onenand_bufferram_address(this, block
);
2656 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2657 /* Set start block address */
2658 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2659 /* Write lock command */
2660 this->command(mtd
, cmd
, 0, 0);
2662 /* There's no return value */
2663 this->wait(mtd
, FL_LOCKING
);
2666 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2667 & ONENAND_CTRL_ONGO
)
2670 /* Check lock status */
2671 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2672 if (!(status
& wp_status_mask
))
2673 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2674 __func__
, block
, status
);
2681 * onenand_lock - [MTD Interface] Lock block(s)
2682 * @param mtd MTD device structure
2683 * @param ofs offset relative to mtd start
2684 * @param len number of bytes to unlock
2686 * Lock one or more blocks
2688 static int onenand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2692 onenand_get_device(mtd
, FL_LOCKING
);
2693 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_LOCK
);
2694 onenand_release_device(mtd
);
2699 * onenand_unlock - [MTD Interface] Unlock block(s)
2700 * @param mtd MTD device structure
2701 * @param ofs offset relative to mtd start
2702 * @param len number of bytes to unlock
2704 * Unlock one or more blocks
2706 static int onenand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2710 onenand_get_device(mtd
, FL_LOCKING
);
2711 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2712 onenand_release_device(mtd
);
2717 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2718 * @param this onenand chip data structure
2722 static int onenand_check_lock_status(struct onenand_chip
*this)
2724 unsigned int value
, block
, status
;
2727 end
= this->chipsize
>> this->erase_shift
;
2728 for (block
= 0; block
< end
; block
++) {
2729 /* Set block address */
2730 value
= onenand_block_address(this, block
);
2731 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2732 /* Select DataRAM for DDP */
2733 value
= onenand_bufferram_address(this, block
);
2734 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2735 /* Set start block address */
2736 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2738 /* Check lock status */
2739 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2740 if (!(status
& ONENAND_WP_US
)) {
2741 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2742 __func__
, block
, status
);
2751 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2752 * @param mtd MTD device structure
2756 static void onenand_unlock_all(struct mtd_info
*mtd
)
2758 struct onenand_chip
*this = mtd
->priv
;
2760 loff_t len
= mtd
->size
;
2762 if (this->options
& ONENAND_HAS_UNLOCK_ALL
) {
2763 /* Set start block address */
2764 this->write_word(0, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2765 /* Write unlock command */
2766 this->command(mtd
, ONENAND_CMD_UNLOCK_ALL
, 0, 0);
2768 /* There's no return value */
2769 this->wait(mtd
, FL_LOCKING
);
2772 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2773 & ONENAND_CTRL_ONGO
)
2776 /* Don't check lock status */
2777 if (this->options
& ONENAND_SKIP_UNLOCK_CHECK
)
2780 /* Check lock status */
2781 if (onenand_check_lock_status(this))
2784 /* Workaround for all block unlock in DDP */
2785 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2786 /* All blocks on another chip */
2787 ofs
= this->chipsize
>> 1;
2788 len
= this->chipsize
>> 1;
2792 onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2795 #ifdef CONFIG_MTD_ONENAND_OTP
2798 * onenand_otp_command - Send OTP specific command to OneNAND device
2799 * @param mtd MTD device structure
2800 * @param cmd the command to be sent
2801 * @param addr offset to read from or write to
2802 * @param len number of bytes to read or write
2804 static int onenand_otp_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
,
2807 struct onenand_chip
*this = mtd
->priv
;
2808 int value
, block
, page
;
2810 /* Address translation */
2812 case ONENAND_CMD_OTP_ACCESS
:
2813 block
= (int) (addr
>> this->erase_shift
);
2818 block
= (int) (addr
>> this->erase_shift
);
2819 page
= (int) (addr
>> this->page_shift
);
2821 if (ONENAND_IS_2PLANE(this)) {
2822 /* Make the even block number */
2824 /* Is it the odd plane? */
2825 if (addr
& this->writesize
)
2829 page
&= this->page_mask
;
2834 /* Write 'DFS, FBA' of Flash */
2835 value
= onenand_block_address(this, block
);
2836 this->write_word(value
, this->base
+
2837 ONENAND_REG_START_ADDRESS1
);
2841 /* Now we use page size operation */
2842 int sectors
= 4, count
= 4;
2847 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
2848 cmd
= ONENAND_CMD_2X_PROG
;
2849 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
2853 /* Write 'FPA, FSA' of Flash */
2854 value
= onenand_page_address(page
, sectors
);
2855 this->write_word(value
, this->base
+
2856 ONENAND_REG_START_ADDRESS8
);
2858 /* Write 'BSA, BSC' of DataRAM */
2859 value
= onenand_buffer_address(dataram
, sectors
, count
);
2860 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
2863 /* Interrupt clear */
2864 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
2867 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
2873 * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2874 * @param mtd MTD device structure
2875 * @param to offset to write to
2876 * @param len number of bytes to write
2877 * @param retlen pointer to variable to store the number of written bytes
2878 * @param buf the data to write
2880 * OneNAND write out-of-band only for OTP
2882 static int onenand_otp_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2883 struct mtd_oob_ops
*ops
)
2885 struct onenand_chip
*this = mtd
->priv
;
2886 int column
, ret
= 0, oobsize
;
2889 size_t len
= ops
->ooblen
;
2890 const u_char
*buf
= ops
->oobbuf
;
2891 int block
, value
, status
;
2895 /* Initialize retlen, in case of early exit */
2898 oobsize
= mtd
->oobsize
;
2900 column
= to
& (mtd
->oobsize
- 1);
2902 oobbuf
= this->oob_buf
;
2904 /* Loop until all data write */
2905 while (written
< len
) {
2906 int thislen
= min_t(int, oobsize
, len
- written
);
2910 block
= (int) (to
>> this->erase_shift
);
2912 * Write 'DFS, FBA' of Flash
2913 * Add: F100h DQ=DFS, FBA
2916 value
= onenand_block_address(this, block
);
2917 this->write_word(value
, this->base
+
2918 ONENAND_REG_START_ADDRESS1
);
2921 * Select DataRAM for DDP
2925 value
= onenand_bufferram_address(this, block
);
2926 this->write_word(value
, this->base
+
2927 ONENAND_REG_START_ADDRESS2
);
2928 ONENAND_SET_NEXT_BUFFERRAM(this);
2931 * Enter OTP access mode
2933 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2934 this->wait(mtd
, FL_OTPING
);
2936 /* We send data to spare ram with oobsize
2937 * to prevent byte access */
2938 memcpy(oobbuf
+ column
, buf
, thislen
);
2941 * Write Data into DataRAM
2943 * in sector0/spare/page0
2946 this->write_bufferram(mtd
, ONENAND_SPARERAM
,
2947 oobbuf
, 0, mtd
->oobsize
);
2949 onenand_otp_command(mtd
, ONENAND_CMD_PROGOOB
, to
, mtd
->oobsize
);
2950 onenand_update_bufferram(mtd
, to
, 0);
2951 if (ONENAND_IS_2PLANE(this)) {
2952 ONENAND_SET_BUFFERRAM1(this);
2953 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2956 ret
= this->wait(mtd
, FL_WRITING
);
2958 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2962 /* Exit OTP access mode */
2963 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2964 this->wait(mtd
, FL_RESETING
);
2966 status
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
2969 if (status
== 0x60) {
2970 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2971 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2972 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2973 } else if (status
== 0x20) {
2974 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2975 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2976 printk(KERN_DEBUG
"OTP Block\tUN-LOCKED\n");
2977 } else if (status
== 0x40) {
2978 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2979 printk(KERN_DEBUG
"1st Block\tUN-LOCKED\n");
2980 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2982 printk(KERN_DEBUG
"Reboot to check\n");
2989 to
+= mtd
->writesize
;
2994 ops
->oobretlen
= written
;
2999 /* Internal OTP operation */
3000 typedef int (*otp_op_t
)(struct mtd_info
*mtd
, loff_t form
, size_t len
,
3001 size_t *retlen
, u_char
*buf
);
3004 * do_otp_read - [DEFAULT] Read OTP block area
3005 * @param mtd MTD device structure
3006 * @param from The offset to read
3007 * @param len number of bytes to read
3008 * @param retlen pointer to variable to store the number of readbytes
3009 * @param buf the databuffer to put/get data
3011 * Read OTP block area.
3013 static int do_otp_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3014 size_t *retlen
, u_char
*buf
)
3016 struct onenand_chip
*this = mtd
->priv
;
3017 struct mtd_oob_ops ops
= {
3025 /* Enter OTP access mode */
3026 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3027 this->wait(mtd
, FL_OTPING
);
3029 ret
= ONENAND_IS_MLC(this) ?
3030 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
3031 onenand_read_ops_nolock(mtd
, from
, &ops
);
3033 /* Exit OTP access mode */
3034 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3035 this->wait(mtd
, FL_RESETING
);
3041 * do_otp_write - [DEFAULT] Write OTP block area
3042 * @param mtd MTD device structure
3043 * @param to The offset to write
3044 * @param len number of bytes to write
3045 * @param retlen pointer to variable to store the number of write bytes
3046 * @param buf the databuffer to put/get data
3048 * Write OTP block area.
3050 static int do_otp_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
3051 size_t *retlen
, u_char
*buf
)
3053 struct onenand_chip
*this = mtd
->priv
;
3054 unsigned char *pbuf
= buf
;
3056 struct mtd_oob_ops ops
;
3058 /* Force buffer page aligned */
3059 if (len
< mtd
->writesize
) {
3060 memcpy(this->page_buf
, buf
, len
);
3061 memset(this->page_buf
+ len
, 0xff, mtd
->writesize
- len
);
3062 pbuf
= this->page_buf
;
3063 len
= mtd
->writesize
;
3066 /* Enter OTP access mode */
3067 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3068 this->wait(mtd
, FL_OTPING
);
3074 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
3075 *retlen
= ops
.retlen
;
3077 /* Exit OTP access mode */
3078 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3079 this->wait(mtd
, FL_RESETING
);
3085 * do_otp_lock - [DEFAULT] Lock OTP block area
3086 * @param mtd MTD device structure
3087 * @param from The offset to lock
3088 * @param len number of bytes to lock
3089 * @param retlen pointer to variable to store the number of lock bytes
3090 * @param buf the databuffer to put/get data
3092 * Lock OTP block area.
3094 static int do_otp_lock(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3095 size_t *retlen
, u_char
*buf
)
3097 struct onenand_chip
*this = mtd
->priv
;
3098 struct mtd_oob_ops ops
;
3101 if (FLEXONENAND(this)) {
3103 /* Enter OTP access mode */
3104 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3105 this->wait(mtd
, FL_OTPING
);
3107 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3108 * main area of page 49.
3110 ops
.len
= mtd
->writesize
;
3114 ret
= onenand_write_ops_nolock(mtd
, mtd
->writesize
* 49, &ops
);
3115 *retlen
= ops
.retlen
;
3117 /* Exit OTP access mode */
3118 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3119 this->wait(mtd
, FL_RESETING
);
3121 ops
.mode
= MTD_OOB_PLACE
;
3125 ret
= onenand_otp_write_oob_nolock(mtd
, from
, &ops
);
3126 *retlen
= ops
.oobretlen
;
3133 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3134 * @param mtd MTD device structure
3135 * @param from The offset to read/write
3136 * @param len number of bytes to read/write
3137 * @param retlen pointer to variable to store the number of read bytes
3138 * @param buf the databuffer to put/get data
3139 * @param action do given action
3140 * @param mode specify user and factory
3142 * Handle OTP operation.
3144 static int onenand_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3145 size_t *retlen
, u_char
*buf
,
3146 otp_op_t action
, int mode
)
3148 struct onenand_chip
*this = mtd
->priv
;
3155 density
= onenand_get_density(this->device_id
);
3156 if (density
< ONENAND_DEVICE_DENSITY_512Mb
)
3161 if (mode
== MTD_OTP_FACTORY
) {
3162 from
+= mtd
->writesize
* otp_pages
;
3163 otp_pages
= ONENAND_PAGES_PER_BLOCK
- otp_pages
;
3166 /* Check User/Factory boundary */
3167 if (mode
== MTD_OTP_USER
) {
3168 if (mtd
->writesize
* otp_pages
< from
+ len
)
3171 if (mtd
->writesize
* otp_pages
< len
)
3175 onenand_get_device(mtd
, FL_OTPING
);
3176 while (len
> 0 && otp_pages
> 0) {
3177 if (!action
) { /* OTP Info functions */
3178 struct otp_info
*otpinfo
;
3180 len
-= sizeof(struct otp_info
);
3186 otpinfo
= (struct otp_info
*) buf
;
3187 otpinfo
->start
= from
;
3188 otpinfo
->length
= mtd
->writesize
;
3189 otpinfo
->locked
= 0;
3191 from
+= mtd
->writesize
;
3192 buf
+= sizeof(struct otp_info
);
3193 *retlen
+= sizeof(struct otp_info
);
3197 ret
= action(mtd
, from
, len
, &tmp_retlen
, buf
);
3201 *retlen
+= tmp_retlen
;
3208 onenand_release_device(mtd
);
3214 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3215 * @param mtd MTD device structure
3216 * @param buf the databuffer to put/get data
3217 * @param len number of bytes to read
3219 * Read factory OTP info.
3221 static int onenand_get_fact_prot_info(struct mtd_info
*mtd
,
3222 struct otp_info
*buf
, size_t len
)
3227 ret
= onenand_otp_walk(mtd
, 0, len
, &retlen
, (u_char
*) buf
, NULL
, MTD_OTP_FACTORY
);
3229 return ret
? : retlen
;
3233 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3234 * @param mtd MTD device structure
3235 * @param from The offset to read
3236 * @param len number of bytes to read
3237 * @param retlen pointer to variable to store the number of read bytes
3238 * @param buf the databuffer to put/get data
3240 * Read factory OTP area.
3242 static int onenand_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3243 size_t len
, size_t *retlen
, u_char
*buf
)
3245 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_FACTORY
);
3249 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3250 * @param mtd MTD device structure
3251 * @param buf the databuffer to put/get data
3252 * @param len number of bytes to read
3254 * Read user OTP info.
3256 static int onenand_get_user_prot_info(struct mtd_info
*mtd
,
3257 struct otp_info
*buf
, size_t len
)
3262 ret
= onenand_otp_walk(mtd
, 0, len
, &retlen
, (u_char
*) buf
, NULL
, MTD_OTP_USER
);
3264 return ret
? : retlen
;
3268 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3269 * @param mtd MTD device structure
3270 * @param from The offset to read
3271 * @param len number of bytes to read
3272 * @param retlen pointer to variable to store the number of read bytes
3273 * @param buf the databuffer to put/get data
3275 * Read user OTP area.
3277 static int onenand_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3278 size_t len
, size_t *retlen
, u_char
*buf
)
3280 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_USER
);
3284 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3285 * @param mtd MTD device structure
3286 * @param from The offset to write
3287 * @param len number of bytes to write
3288 * @param retlen pointer to variable to store the number of write bytes
3289 * @param buf the databuffer to put/get data
3291 * Write user OTP area.
3293 static int onenand_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3294 size_t len
, size_t *retlen
, u_char
*buf
)
3296 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_write
, MTD_OTP_USER
);
3300 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3301 * @param mtd MTD device structure
3302 * @param from The offset to lock
3303 * @param len number of bytes to unlock
3305 * Write lock mark on spare area in page 0 in OTP block
3307 static int onenand_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3310 struct onenand_chip
*this = mtd
->priv
;
3311 u_char
*buf
= FLEXONENAND(this) ? this->page_buf
: this->oob_buf
;
3314 unsigned int otp_lock_offset
= ONENAND_OTP_LOCK_OFFSET
;
3316 memset(buf
, 0xff, FLEXONENAND(this) ? this->writesize
3319 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3320 * We write 16 bytes spare area instead of 2 bytes.
3321 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3322 * main area of page 49.
3326 len
= FLEXONENAND(this) ? mtd
->writesize
: 16;
3329 * Note: OTP lock operation
3330 * OTP block : 0xXXFC XX 1111 1100
3331 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3332 * Both : 0xXXF0 (If chip support) XX 1111 0000
3334 if (FLEXONENAND(this))
3335 otp_lock_offset
= FLEXONENAND_OTP_LOCK_OFFSET
;
3337 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3339 buf
[otp_lock_offset
] = 0xFC;
3341 buf
[otp_lock_offset
] = 0xF3;
3343 buf
[otp_lock_offset
] = 0xF0;
3345 printk(KERN_DEBUG
"[OneNAND] Invalid option selected for OTP\n");
3347 ret
= onenand_otp_walk(mtd
, from
, len
, &retlen
, buf
, do_otp_lock
, MTD_OTP_USER
);
3349 return ret
? : retlen
;
3352 #endif /* CONFIG_MTD_ONENAND_OTP */
3355 * onenand_check_features - Check and set OneNAND features
3356 * @param mtd MTD data structure
3358 * Check and set OneNAND features
3362 static void onenand_check_features(struct mtd_info
*mtd
)
3364 struct onenand_chip
*this = mtd
->priv
;
3365 unsigned int density
, process
;
3367 /* Lock scheme depends on density and process */
3368 density
= onenand_get_density(this->device_id
);
3369 process
= this->version_id
>> ONENAND_VERSION_PROCESS_SHIFT
;
3373 case ONENAND_DEVICE_DENSITY_4Gb
:
3374 this->options
|= ONENAND_HAS_2PLANE
;
3376 case ONENAND_DEVICE_DENSITY_2Gb
:
3377 /* 2Gb DDP does not have 2 plane */
3378 if (!ONENAND_IS_DDP(this))
3379 this->options
|= ONENAND_HAS_2PLANE
;
3380 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3382 case ONENAND_DEVICE_DENSITY_1Gb
:
3383 /* A-Die has all block unlock */
3385 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3389 /* Some OneNAND has continuous lock scheme */
3391 this->options
|= ONENAND_HAS_CONT_LOCK
;
3395 if (ONENAND_IS_MLC(this))
3396 this->options
&= ~ONENAND_HAS_2PLANE
;
3398 if (FLEXONENAND(this)) {
3399 this->options
&= ~ONENAND_HAS_CONT_LOCK
;
3400 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3403 if (this->options
& ONENAND_HAS_CONT_LOCK
)
3404 printk(KERN_DEBUG
"Lock scheme is Continuous Lock\n");
3405 if (this->options
& ONENAND_HAS_UNLOCK_ALL
)
3406 printk(KERN_DEBUG
"Chip support all block unlock\n");
3407 if (this->options
& ONENAND_HAS_2PLANE
)
3408 printk(KERN_DEBUG
"Chip has 2 plane\n");
3412 * onenand_print_device_info - Print device & version ID
3413 * @param device device ID
3414 * @param version version ID
3416 * Print device & version ID
3418 static void onenand_print_device_info(int device
, int version
)
3420 int vcc
, demuxed
, ddp
, density
, flexonenand
;
3422 vcc
= device
& ONENAND_DEVICE_VCC_MASK
;
3423 demuxed
= device
& ONENAND_DEVICE_IS_DEMUX
;
3424 ddp
= device
& ONENAND_DEVICE_IS_DDP
;
3425 density
= onenand_get_density(device
);
3426 flexonenand
= device
& DEVICE_IS_FLEXONENAND
;
3427 printk(KERN_INFO
"%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3428 demuxed
? "" : "Muxed ",
3429 flexonenand
? "Flex-" : "",
3432 vcc
? "2.65/3.3" : "1.8",
3434 printk(KERN_INFO
"OneNAND version = 0x%04x\n", version
);
3437 static const struct onenand_manufacturers onenand_manuf_ids
[] = {
3438 {ONENAND_MFR_SAMSUNG
, "Samsung"},
3439 {ONENAND_MFR_NUMONYX
, "Numonyx"},
3443 * onenand_check_maf - Check manufacturer ID
3444 * @param manuf manufacturer ID
3446 * Check manufacturer ID
3448 static int onenand_check_maf(int manuf
)
3450 int size
= ARRAY_SIZE(onenand_manuf_ids
);
3454 for (i
= 0; i
< size
; i
++)
3455 if (manuf
== onenand_manuf_ids
[i
].id
)
3459 name
= onenand_manuf_ids
[i
].name
;
3463 printk(KERN_DEBUG
"OneNAND Manufacturer: %s (0x%0x)\n", name
, manuf
);
3469 * flexonenand_get_boundary - Reads the SLC boundary
3470 * @param onenand_info - onenand info structure
3472 static int flexonenand_get_boundary(struct mtd_info
*mtd
)
3474 struct onenand_chip
*this = mtd
->priv
;
3476 int ret
, syscfg
, locked
;
3479 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3480 this->write_word((syscfg
| 0x0100), this->base
+ ONENAND_REG_SYS_CFG1
);
3482 for (die
= 0; die
< this->dies
; die
++) {
3483 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3484 this->wait(mtd
, FL_SYNCING
);
3486 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3487 ret
= this->wait(mtd
, FL_READING
);
3489 bdry
= this->read_word(this->base
+ ONENAND_DATARAM
);
3490 if ((bdry
>> FLEXONENAND_PI_UNLOCK_SHIFT
) == 3)
3494 this->boundary
[die
] = bdry
& FLEXONENAND_PI_MASK
;
3496 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3497 ret
= this->wait(mtd
, FL_RESETING
);
3499 printk(KERN_INFO
"Die %d boundary: %d%s\n", die
,
3500 this->boundary
[die
], locked
? "(Locked)" : "(Unlocked)");
3504 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3509 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3510 * boundary[], diesize[], mtd->size, mtd->erasesize
3511 * @param mtd - MTD device structure
3513 static void flexonenand_get_size(struct mtd_info
*mtd
)
3515 struct onenand_chip
*this = mtd
->priv
;
3516 int die
, i
, eraseshift
, density
;
3517 int blksperdie
, maxbdry
;
3520 density
= onenand_get_density(this->device_id
);
3521 blksperdie
= ((loff_t
)(16 << density
) << 20) >> (this->erase_shift
);
3522 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3523 maxbdry
= blksperdie
- 1;
3524 eraseshift
= this->erase_shift
- 1;
3526 mtd
->numeraseregions
= this->dies
<< 1;
3528 /* This fills up the device boundary */
3529 flexonenand_get_boundary(mtd
);
3532 for (; die
< this->dies
; die
++) {
3533 if (!die
|| this->boundary
[die
-1] != maxbdry
) {
3535 mtd
->eraseregions
[i
].offset
= ofs
;
3536 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3537 mtd
->eraseregions
[i
].numblocks
=
3538 this->boundary
[die
] + 1;
3539 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3542 mtd
->numeraseregions
-= 1;
3543 mtd
->eraseregions
[i
].numblocks
+=
3544 this->boundary
[die
] + 1;
3545 ofs
+= (this->boundary
[die
] + 1) << (eraseshift
- 1);
3547 if (this->boundary
[die
] != maxbdry
) {
3549 mtd
->eraseregions
[i
].offset
= ofs
;
3550 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3551 mtd
->eraseregions
[i
].numblocks
= maxbdry
^
3552 this->boundary
[die
];
3553 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3556 mtd
->numeraseregions
-= 1;
3559 /* Expose MLC erase size except when all blocks are SLC */
3560 mtd
->erasesize
= 1 << this->erase_shift
;
3561 if (mtd
->numeraseregions
== 1)
3562 mtd
->erasesize
>>= 1;
3564 printk(KERN_INFO
"Device has %d eraseregions\n", mtd
->numeraseregions
);
3565 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
3566 printk(KERN_INFO
"[offset: 0x%08x, erasesize: 0x%05x,"
3567 " numblocks: %04u]\n",
3568 (unsigned int) mtd
->eraseregions
[i
].offset
,
3569 mtd
->eraseregions
[i
].erasesize
,
3570 mtd
->eraseregions
[i
].numblocks
);
3572 for (die
= 0, mtd
->size
= 0; die
< this->dies
; die
++) {
3573 this->diesize
[die
] = (loff_t
)blksperdie
<< this->erase_shift
;
3574 this->diesize
[die
] -= (loff_t
)(this->boundary
[die
] + 1)
3575 << (this->erase_shift
- 1);
3576 mtd
->size
+= this->diesize
[die
];
3581 * flexonenand_check_blocks_erased - Check if blocks are erased
3582 * @param mtd_info - mtd info structure
3583 * @param start - first erase block to check
3584 * @param end - last erase block to check
3586 * Converting an unerased block from MLC to SLC
3587 * causes byte values to change. Since both data and its ECC
3588 * have changed, reads on the block give uncorrectable error.
3589 * This might lead to the block being detected as bad.
3591 * Avoid this by ensuring that the block to be converted is
3594 static int flexonenand_check_blocks_erased(struct mtd_info
*mtd
, int start
, int end
)
3596 struct onenand_chip
*this = mtd
->priv
;
3599 struct mtd_oob_ops ops
= {
3600 .mode
= MTD_OOB_PLACE
,
3602 .ooblen
= mtd
->oobsize
,
3604 .oobbuf
= this->oob_buf
,
3608 printk(KERN_DEBUG
"Check blocks from %d to %d\n", start
, end
);
3610 for (block
= start
; block
<= end
; block
++) {
3611 addr
= flexonenand_addr(this, block
);
3612 if (onenand_block_isbad_nolock(mtd
, addr
, 0))
3616 * Since main area write results in ECC write to spare,
3617 * it is sufficient to check only ECC bytes for change.
3619 ret
= onenand_read_oob_nolock(mtd
, addr
, &ops
);
3623 for (i
= 0; i
< mtd
->oobsize
; i
++)
3624 if (this->oob_buf
[i
] != 0xff)
3627 if (i
!= mtd
->oobsize
) {
3628 printk(KERN_WARNING
"%s: Block %d not erased.\n",
3638 * flexonenand_set_boundary - Writes the SLC boundary
3639 * @param mtd - mtd info structure
3641 int flexonenand_set_boundary(struct mtd_info
*mtd
, int die
,
3642 int boundary
, int lock
)
3644 struct onenand_chip
*this = mtd
->priv
;
3645 int ret
, density
, blksperdie
, old
, new, thisboundary
;
3648 /* Change only once for SDP Flex-OneNAND */
3649 if (die
&& (!ONENAND_IS_DDP(this)))
3652 /* boundary value of -1 indicates no required change */
3653 if (boundary
< 0 || boundary
== this->boundary
[die
])
3656 density
= onenand_get_density(this->device_id
);
3657 blksperdie
= ((16 << density
) << 20) >> this->erase_shift
;
3658 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3660 if (boundary
>= blksperdie
) {
3661 printk(KERN_ERR
"%s: Invalid boundary value. "
3662 "Boundary not changed.\n", __func__
);
3666 /* Check if converting blocks are erased */
3667 old
= this->boundary
[die
] + (die
* this->density_mask
);
3668 new = boundary
+ (die
* this->density_mask
);
3669 ret
= flexonenand_check_blocks_erased(mtd
, min(old
, new) + 1, max(old
, new));
3671 printk(KERN_ERR
"%s: Please erase blocks "
3672 "before boundary change\n", __func__
);
3676 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3677 this->wait(mtd
, FL_SYNCING
);
3679 /* Check is boundary is locked */
3680 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3681 ret
= this->wait(mtd
, FL_READING
);
3683 thisboundary
= this->read_word(this->base
+ ONENAND_DATARAM
);
3684 if ((thisboundary
>> FLEXONENAND_PI_UNLOCK_SHIFT
) != 3) {
3685 printk(KERN_ERR
"%s: boundary locked\n", __func__
);
3690 printk(KERN_INFO
"Changing die %d boundary: %d%s\n",
3691 die
, boundary
, lock
? "(Locked)" : "(Unlocked)");
3693 addr
= die
? this->diesize
[0] : 0;
3695 boundary
&= FLEXONENAND_PI_MASK
;
3696 boundary
|= lock
? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT
);
3698 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, 0);
3699 ret
= this->wait(mtd
, FL_ERASING
);
3701 printk(KERN_ERR
"%s: Failed PI erase for Die %d\n",
3706 this->write_word(boundary
, this->base
+ ONENAND_DATARAM
);
3707 this->command(mtd
, ONENAND_CMD_PROG
, addr
, 0);
3708 ret
= this->wait(mtd
, FL_WRITING
);
3710 printk(KERN_ERR
"%s: Failed PI write for Die %d\n",
3715 this->command(mtd
, FLEXONENAND_CMD_PI_UPDATE
, die
, 0);
3716 ret
= this->wait(mtd
, FL_WRITING
);
3718 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_REG_COMMAND
);
3719 this->wait(mtd
, FL_RESETING
);
3721 /* Recalculate device size on boundary change*/
3722 flexonenand_get_size(mtd
);
3728 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3729 * @param mtd MTD device structure
3731 * OneNAND detection method:
3732 * Compare the values from command with ones from register
3734 static int onenand_probe(struct mtd_info
*mtd
)
3736 struct onenand_chip
*this = mtd
->priv
;
3737 int bram_maf_id
, bram_dev_id
, maf_id
, dev_id
, ver_id
;
3741 /* Save system configuration 1 */
3742 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3743 /* Clear Sync. Burst Read mode to read BootRAM */
3744 this->write_word((syscfg
& ~ONENAND_SYS_CFG1_SYNC_READ
& ~ONENAND_SYS_CFG1_SYNC_WRITE
), this->base
+ ONENAND_REG_SYS_CFG1
);
3746 /* Send the command for reading device ID from BootRAM */
3747 this->write_word(ONENAND_CMD_READID
, this->base
+ ONENAND_BOOTRAM
);
3749 /* Read manufacturer and device IDs from BootRAM */
3750 bram_maf_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x0);
3751 bram_dev_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x2);
3753 /* Reset OneNAND to read default register values */
3754 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_BOOTRAM
);
3756 this->wait(mtd
, FL_RESETING
);
3758 /* Restore system configuration 1 */
3759 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3761 /* Check manufacturer ID */
3762 if (onenand_check_maf(bram_maf_id
))
3765 /* Read manufacturer and device IDs from Register */
3766 maf_id
= this->read_word(this->base
+ ONENAND_REG_MANUFACTURER_ID
);
3767 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3768 ver_id
= this->read_word(this->base
+ ONENAND_REG_VERSION_ID
);
3769 this->technology
= this->read_word(this->base
+ ONENAND_REG_TECHNOLOGY
);
3771 /* Check OneNAND device */
3772 if (maf_id
!= bram_maf_id
|| dev_id
!= bram_dev_id
)
3775 /* Flash device information */
3776 onenand_print_device_info(dev_id
, ver_id
);
3777 this->device_id
= dev_id
;
3778 this->version_id
= ver_id
;
3780 density
= onenand_get_density(dev_id
);
3781 if (FLEXONENAND(this)) {
3782 this->dies
= ONENAND_IS_DDP(this) ? 2 : 1;
3783 /* Maximum possible erase regions */
3784 mtd
->numeraseregions
= this->dies
<< 1;
3785 mtd
->eraseregions
= kzalloc(sizeof(struct mtd_erase_region_info
)
3786 * (this->dies
<< 1), GFP_KERNEL
);
3787 if (!mtd
->eraseregions
)
3792 * For Flex-OneNAND, chipsize represents maximum possible device size.
3793 * mtd->size represents the actual device size.
3795 this->chipsize
= (16 << density
) << 20;
3797 /* OneNAND page size & block size */
3798 /* The data buffer size is equal to page size */
3799 mtd
->writesize
= this->read_word(this->base
+ ONENAND_REG_DATA_BUFFER_SIZE
);
3800 /* We use the full BufferRAM */
3801 if (ONENAND_IS_MLC(this))
3802 mtd
->writesize
<<= 1;
3804 mtd
->oobsize
= mtd
->writesize
>> 5;
3805 /* Pages per a block are always 64 in OneNAND */
3806 mtd
->erasesize
= mtd
->writesize
<< 6;
3808 * Flex-OneNAND SLC area has 64 pages per block.
3809 * Flex-OneNAND MLC area has 128 pages per block.
3810 * Expose MLC erase size to find erase_shift and page_mask.
3812 if (FLEXONENAND(this))
3813 mtd
->erasesize
<<= 1;
3815 this->erase_shift
= ffs(mtd
->erasesize
) - 1;
3816 this->page_shift
= ffs(mtd
->writesize
) - 1;
3817 this->page_mask
= (1 << (this->erase_shift
- this->page_shift
)) - 1;
3818 /* Set density mask. it is used for DDP */
3819 if (ONENAND_IS_DDP(this))
3820 this->density_mask
= this->chipsize
>> (this->erase_shift
+ 1);
3821 /* It's real page size */
3822 this->writesize
= mtd
->writesize
;
3824 /* REVISIT: Multichip handling */
3826 if (FLEXONENAND(this))
3827 flexonenand_get_size(mtd
);
3829 mtd
->size
= this->chipsize
;
3831 /* Check OneNAND features */
3832 onenand_check_features(mtd
);
3835 * We emulate the 4KiB page and 256KiB erase block size
3836 * But oobsize is still 64 bytes.
3837 * It is only valid if you turn on 2X program support,
3838 * Otherwise it will be ignored by compiler.
3840 if (ONENAND_IS_2PLANE(this)) {
3841 mtd
->writesize
<<= 1;
3842 mtd
->erasesize
<<= 1;
3849 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3850 * @param mtd MTD device structure
3852 static int onenand_suspend(struct mtd_info
*mtd
)
3854 return onenand_get_device(mtd
, FL_PM_SUSPENDED
);
3858 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3859 * @param mtd MTD device structure
3861 static void onenand_resume(struct mtd_info
*mtd
)
3863 struct onenand_chip
*this = mtd
->priv
;
3865 if (this->state
== FL_PM_SUSPENDED
)
3866 onenand_release_device(mtd
);
3868 printk(KERN_ERR
"%s: resume() called for the chip which is not "
3869 "in suspended state\n", __func__
);
3873 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3874 * @param mtd MTD device structure
3875 * @param maxchips Number of chips to scan for
3877 * This fills out all the not initialized function pointers
3878 * with the defaults.
3879 * The flash ID is read and the mtd/chip structures are
3880 * filled with the appropriate values.
3882 int onenand_scan(struct mtd_info
*mtd
, int maxchips
)
3885 struct onenand_chip
*this = mtd
->priv
;
3887 if (!this->read_word
)
3888 this->read_word
= onenand_readw
;
3889 if (!this->write_word
)
3890 this->write_word
= onenand_writew
;
3893 this->command
= onenand_command
;
3895 onenand_setup_wait(mtd
);
3896 if (!this->bbt_wait
)
3897 this->bbt_wait
= onenand_bbt_wait
;
3898 if (!this->unlock_all
)
3899 this->unlock_all
= onenand_unlock_all
;
3901 if (!this->read_bufferram
)
3902 this->read_bufferram
= onenand_read_bufferram
;
3903 if (!this->write_bufferram
)
3904 this->write_bufferram
= onenand_write_bufferram
;
3906 if (!this->block_markbad
)
3907 this->block_markbad
= onenand_default_block_markbad
;
3908 if (!this->scan_bbt
)
3909 this->scan_bbt
= onenand_default_bbt
;
3911 if (onenand_probe(mtd
))
3914 /* Set Sync. Burst Read after probing */
3915 if (this->mmcontrol
) {
3916 printk(KERN_INFO
"OneNAND Sync. Burst Read support\n");
3917 this->read_bufferram
= onenand_sync_read_bufferram
;
3920 /* Allocate buffers, if necessary */
3921 if (!this->page_buf
) {
3922 this->page_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3923 if (!this->page_buf
) {
3924 printk(KERN_ERR
"%s: Can't allocate page_buf\n",
3928 this->options
|= ONENAND_PAGEBUF_ALLOC
;
3930 if (!this->oob_buf
) {
3931 this->oob_buf
= kzalloc(mtd
->oobsize
, GFP_KERNEL
);
3932 if (!this->oob_buf
) {
3933 printk(KERN_ERR
"%s: Can't allocate oob_buf\n",
3935 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
3936 this->options
&= ~ONENAND_PAGEBUF_ALLOC
;
3937 kfree(this->page_buf
);
3941 this->options
|= ONENAND_OOBBUF_ALLOC
;
3944 this->state
= FL_READY
;
3945 init_waitqueue_head(&this->wq
);
3946 spin_lock_init(&this->chip_lock
);
3949 * Allow subpage writes up to oobsize.
3951 switch (mtd
->oobsize
) {
3953 this->ecclayout
= &onenand_oob_128
;
3954 mtd
->subpage_sft
= 0;
3957 this->ecclayout
= &onenand_oob_64
;
3958 mtd
->subpage_sft
= 2;
3962 this->ecclayout
= &onenand_oob_32
;
3963 mtd
->subpage_sft
= 1;
3967 printk(KERN_WARNING
"%s: No OOB scheme defined for oobsize %d\n",
3968 __func__
, mtd
->oobsize
);
3969 mtd
->subpage_sft
= 0;
3970 /* To prevent kernel oops */
3971 this->ecclayout
= &onenand_oob_32
;
3975 this->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3978 * The number of bytes available for a client to place data into
3979 * the out of band area
3981 this->ecclayout
->oobavail
= 0;
3982 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&&
3983 this->ecclayout
->oobfree
[i
].length
; i
++)
3984 this->ecclayout
->oobavail
+=
3985 this->ecclayout
->oobfree
[i
].length
;
3986 mtd
->oobavail
= this->ecclayout
->oobavail
;
3988 mtd
->ecclayout
= this->ecclayout
;
3990 /* Fill in remaining MTD driver data */
3991 mtd
->type
= MTD_NANDFLASH
;
3992 mtd
->flags
= MTD_CAP_NANDFLASH
;
3993 mtd
->erase
= onenand_erase
;
3995 mtd
->unpoint
= NULL
;
3996 mtd
->read
= onenand_read
;
3997 mtd
->write
= onenand_write
;
3998 mtd
->read_oob
= onenand_read_oob
;
3999 mtd
->write_oob
= onenand_write_oob
;
4000 mtd
->panic_write
= onenand_panic_write
;
4001 #ifdef CONFIG_MTD_ONENAND_OTP
4002 mtd
->get_fact_prot_info
= onenand_get_fact_prot_info
;
4003 mtd
->read_fact_prot_reg
= onenand_read_fact_prot_reg
;
4004 mtd
->get_user_prot_info
= onenand_get_user_prot_info
;
4005 mtd
->read_user_prot_reg
= onenand_read_user_prot_reg
;
4006 mtd
->write_user_prot_reg
= onenand_write_user_prot_reg
;
4007 mtd
->lock_user_prot_reg
= onenand_lock_user_prot_reg
;
4009 mtd
->sync
= onenand_sync
;
4010 mtd
->lock
= onenand_lock
;
4011 mtd
->unlock
= onenand_unlock
;
4012 mtd
->suspend
= onenand_suspend
;
4013 mtd
->resume
= onenand_resume
;
4014 mtd
->block_isbad
= onenand_block_isbad
;
4015 mtd
->block_markbad
= onenand_block_markbad
;
4016 mtd
->owner
= THIS_MODULE
;
4018 /* Unlock whole block */
4019 this->unlock_all(mtd
);
4021 ret
= this->scan_bbt(mtd
);
4022 if ((!FLEXONENAND(this)) || ret
)
4025 /* Change Flex-OneNAND boundaries if required */
4026 for (i
= 0; i
< MAX_DIES
; i
++)
4027 flexonenand_set_boundary(mtd
, i
, flex_bdry
[2 * i
],
4028 flex_bdry
[(2 * i
) + 1]);
4034 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4035 * @param mtd MTD device structure
4037 void onenand_release(struct mtd_info
*mtd
)
4039 struct onenand_chip
*this = mtd
->priv
;
4041 #ifdef CONFIG_MTD_PARTITIONS
4042 /* Deregister partitions */
4043 del_mtd_partitions (mtd
);
4045 /* Deregister the device */
4046 del_mtd_device (mtd
);
4048 /* Free bad block table memory, if allocated */
4050 struct bbm_info
*bbm
= this->bbm
;
4054 /* Buffers allocated by onenand_scan */
4055 if (this->options
& ONENAND_PAGEBUF_ALLOC
)
4056 kfree(this->page_buf
);
4057 if (this->options
& ONENAND_OOBBUF_ALLOC
)
4058 kfree(this->oob_buf
);
4059 kfree(mtd
->eraseregions
);
4062 EXPORT_SYMBOL_GPL(onenand_scan
);
4063 EXPORT_SYMBOL_GPL(onenand_release
);
4065 MODULE_LICENSE("GPL");
4066 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4067 MODULE_DESCRIPTION("Generic OneNAND flash driver code");