5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
13 #include <asm/delay.h>
14 #include <asm/i8253.h>
18 DEFINE_SPINLOCK(i8253_lock
);
19 EXPORT_SYMBOL(i8253_lock
);
22 static void pit_disable_clocksource(void);
24 static inline void pit_disable_clocksource(void) { }
28 * HPET replaces the PIT, when enabled. So we need to know, which of
29 * the two timers is used
31 struct clock_event_device
*global_clock_event
;
34 * Initialize the PIT timer.
36 * This is also called after resume to bring the PIT into operation again.
38 static void init_pit_timer(enum clock_event_mode mode
,
39 struct clock_event_device
*evt
)
41 spin_lock(&i8253_lock
);
44 case CLOCK_EVT_MODE_PERIODIC
:
45 /* binary, mode 2, LSB/MSB, ch 0 */
46 outb_pit(0x34, PIT_MODE
);
47 outb_pit(LATCH
& 0xff , PIT_CH0
); /* LSB */
48 outb_pit(LATCH
>> 8 , PIT_CH0
); /* MSB */
51 case CLOCK_EVT_MODE_SHUTDOWN
:
52 case CLOCK_EVT_MODE_UNUSED
:
53 if (evt
->mode
== CLOCK_EVT_MODE_PERIODIC
||
54 evt
->mode
== CLOCK_EVT_MODE_ONESHOT
) {
55 outb_pit(0x30, PIT_MODE
);
59 pit_disable_clocksource();
62 case CLOCK_EVT_MODE_ONESHOT
:
64 pit_disable_clocksource();
65 outb_pit(0x38, PIT_MODE
);
68 case CLOCK_EVT_MODE_RESUME
:
69 /* Nothing to do here */
72 spin_unlock(&i8253_lock
);
76 * Program the next event in oneshot mode
78 * Delta is given in PIT ticks
80 static int pit_next_event(unsigned long delta
, struct clock_event_device
*evt
)
82 spin_lock(&i8253_lock
);
83 outb_pit(delta
& 0xff , PIT_CH0
); /* LSB */
84 outb_pit(delta
>> 8 , PIT_CH0
); /* MSB */
85 spin_unlock(&i8253_lock
);
91 * On UP the PIT can serve all of the possible timer functions. On SMP systems
92 * it can be solely used for the global tick.
94 * The profiling and update capabilities are switched off once the local apic is
95 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
96 * !using_apic_timer decisions in do_timer_interrupt_hook()
98 static struct clock_event_device pit_clockevent
= {
100 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
101 .set_mode
= init_pit_timer
,
102 .set_next_event
= pit_next_event
,
108 * Initialize the conversion factor and the min/max deltas of the clock event
109 * structure and register the clock event source with the framework.
111 void __init
setup_pit_timer(void)
114 * Start pit with the boot cpu mask and make it global after the
115 * IO_APIC has been initialized.
117 pit_clockevent
.cpumask
= cpumask_of_cpu(smp_processor_id());
118 pit_clockevent
.mult
= div_sc(CLOCK_TICK_RATE
, NSEC_PER_SEC
,
119 pit_clockevent
.shift
);
120 pit_clockevent
.max_delta_ns
=
121 clockevent_delta2ns(0x7FFF, &pit_clockevent
);
122 pit_clockevent
.min_delta_ns
=
123 clockevent_delta2ns(0xF, &pit_clockevent
);
124 clockevents_register_device(&pit_clockevent
);
125 global_clock_event
= &pit_clockevent
;
128 #ifndef CONFIG_X86_64
130 * Since the PIT overflows every tick, its not very useful
131 * to just read by itself. So use jiffies to emulate a free
134 static cycle_t
pit_read(void)
139 static int old_count
;
142 spin_lock_irqsave(&i8253_lock
, flags
);
144 * Although our caller may have the read side of xtime_lock,
145 * this is now a seqlock, and we are cheating in this routine
146 * by having side effects on state that we cannot undo if
147 * there is a collision on the seqlock and our caller has to
148 * retry. (Namely, old_jifs and old_count.) So we must treat
149 * jiffies as volatile despite the lock. We read jiffies
150 * before latching the timer count to guarantee that although
151 * the jiffies value might be older than the count (that is,
152 * the counter may underflow between the last point where
153 * jiffies was incremented and the point where we latch the
154 * count), it cannot be newer.
157 outb_pit(0x00, PIT_MODE
); /* latch the count ASAP */
158 count
= inb_pit(PIT_CH0
); /* read the latched count */
159 count
|= inb_pit(PIT_CH0
) << 8;
161 /* VIA686a test code... reset the latch if count > max + 1 */
163 outb_pit(0x34, PIT_MODE
);
164 outb_pit(LATCH
& 0xff, PIT_CH0
);
165 outb_pit(LATCH
>> 8, PIT_CH0
);
170 * It's possible for count to appear to go the wrong way for a
173 * 1. The timer counter underflows, but we haven't handled the
174 * resulting interrupt and incremented jiffies yet.
175 * 2. Hardware problem with the timer, not giving us continuous time,
176 * the counter does small "jumps" upwards on some Pentium systems,
177 * (see c't 95/10 page 335 for Neptun bug.)
179 * Previous attempts to handle these cases intelligently were
180 * buggy, so we just do the simple thing now.
182 if (count
> old_count
&& jifs
== old_jifs
) {
188 spin_unlock_irqrestore(&i8253_lock
, flags
);
190 count
= (LATCH
- 1) - count
;
192 return (cycle_t
)(jifs
* LATCH
) + count
;
195 static struct clocksource clocksource_pit
= {
199 .mask
= CLOCKSOURCE_MASK(32),
204 static void pit_disable_clocksource(void)
207 * Use mult to check whether it is registered or not
209 if (clocksource_pit
.mult
) {
210 clocksource_unregister(&clocksource_pit
);
211 clocksource_pit
.mult
= 0;
215 static int __init
init_pit_clocksource(void)
218 * Several reasons not to register PIT as a clocksource:
220 * - On SMP PIT does not scale due to i8253_lock
221 * - when HPET is enabled
222 * - when local APIC timer is active (PIT is switched off)
224 if (num_possible_cpus() > 1 || is_hpet_enabled() ||
225 pit_clockevent
.mode
!= CLOCK_EVT_MODE_PERIODIC
)
228 clocksource_pit
.mult
= clocksource_hz2mult(CLOCK_TICK_RATE
,
229 clocksource_pit
.shift
);
230 return clocksource_register(&clocksource_pit
);
232 arch_initcall(init_pit_clocksource
);