2 * e100net.c: A network driver for the ETRAX 100LX network controller.
4 * Copyright (c) 1998-2002 Axis Communications AB.
6 * The outline of this driver comes from skeleton.c.
11 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/spinlock.h>
24 #include <linux/errno.h>
25 #include <linux/init.h>
26 #include <linux/bitops.h>
29 #include <linux/mii.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
35 #include <arch/svinto.h>/* DMA and register descriptions */
36 #include <asm/io.h> /* CRIS_LED_* I/O functions */
39 #include <asm/system.h>
40 #include <asm/ethernet.h>
41 #include <asm/cache.h>
42 #include <arch/io_interface_mux.h>
48 * The name of the card. Is used for messages and in the requests for
49 * io regions, irqs and dma channels
52 static const char* cardname
= "ETRAX 100LX built-in ethernet controller";
54 /* A default ethernet address. Highlevel SW will set the real one later */
56 static struct sockaddr default_mac
= {
58 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
61 /* Information that need to be kept for each board. */
63 struct net_device_stats stats
;
64 struct mii_if_info mii_if
;
66 /* Tx control lock. This protects the transmit buffer ring
67 * state along with the "tx full" state of the driver. This
68 * means all netif_queue flow control actions are protected
69 * by this lock as well.
73 spinlock_t led_lock
; /* Protect LED state */
74 spinlock_t transceiver_lock
; /* Protect transceiver state. */
77 typedef struct etrax_eth_descr
79 etrax_dma_descr descr
;
83 /* Some transceivers requires special handling */
84 struct transceiver_ops
87 void (*check_speed
)(struct net_device
* dev
);
88 void (*check_duplex
)(struct net_device
* dev
);
99 /* Dma descriptors etc. */
101 #define MAX_MEDIA_DATA_SIZE 1522
103 #define MIN_PACKET_LEN 46
104 #define ETHER_HEAD_LEN 14
109 #define MDIO_START 0x1
110 #define MDIO_READ 0x2
111 #define MDIO_WRITE 0x1
112 #define MDIO_PREAMBLE 0xfffffffful
114 /* Broadcom specific */
115 #define MDIO_AUX_CTRL_STATUS_REG 0x18
116 #define MDIO_BC_FULL_DUPLEX_IND 0x1
117 #define MDIO_BC_SPEED 0x2
120 #define MDIO_TDK_DIAGNOSTIC_REG 18
121 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
122 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
124 /*Intel LXT972A specific*/
125 #define MDIO_INT_STATUS_REG_2 0x0011
126 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
127 #define MDIO_INT_SPEED (1 << 14)
129 /* Network flash constants */
130 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
131 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
132 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
133 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
135 #define NO_NETWORK_ACTIVITY 0
136 #define NETWORK_ACTIVITY 1
138 #define NBR_OF_RX_DESC 32
139 #define NBR_OF_TX_DESC 16
141 /* Large packets are sent directly to upper layers while small packets are */
142 /* copied (to reduce memory waste). The following constant decides the breakpoint */
143 #define RX_COPYBREAK 256
145 /* Due to a chip bug we need to flush the cache when descriptors are returned */
146 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
147 /* The following constant determines the number of descriptors to return. */
148 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
150 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
152 /* Define some macros to access ETRAX 100 registers */
153 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
154 IO_FIELD_(reg##_, field##_, val)
155 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
156 IO_STATE_(reg##_, field##_, _##val)
158 static etrax_eth_descr
*myNextRxDesc
; /* Points to the next descriptor to
160 static etrax_eth_descr
*myLastRxDesc
; /* The last processed descriptor */
162 static etrax_eth_descr RxDescList
[NBR_OF_RX_DESC
] __attribute__ ((aligned(32)));
164 static etrax_eth_descr
* myFirstTxDesc
; /* First packet not yet sent */
165 static etrax_eth_descr
* myLastTxDesc
; /* End of send queue */
166 static etrax_eth_descr
* myNextTxDesc
; /* Next descriptor to use */
167 static etrax_eth_descr TxDescList
[NBR_OF_TX_DESC
] __attribute__ ((aligned(32)));
169 static unsigned int network_rec_config_shadow
= 0;
171 static unsigned int network_tr_ctrl_shadow
= 0;
173 /* Network speed indication. */
174 static DEFINE_TIMER(speed_timer
, NULL
, 0, 0);
175 static DEFINE_TIMER(clear_led_timer
, NULL
, 0, 0);
176 static int current_speed
; /* Speed read from transceiver */
177 static int current_speed_selection
; /* Speed selected by user */
178 static unsigned long led_next_time
;
179 static int led_active
;
180 static int rx_queue_len
;
183 static DEFINE_TIMER(duplex_timer
, NULL
, 0, 0);
184 static int full_duplex
;
185 static enum duplex current_duplex
;
187 /* Index to functions, as function prototypes. */
189 static int etrax_ethernet_init(void);
191 static int e100_open(struct net_device
*dev
);
192 static int e100_set_mac_address(struct net_device
*dev
, void *addr
);
193 static int e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
);
194 static irqreturn_t
e100rxtx_interrupt(int irq
, void *dev_id
);
195 static irqreturn_t
e100nw_interrupt(int irq
, void *dev_id
);
196 static void e100_rx(struct net_device
*dev
);
197 static int e100_close(struct net_device
*dev
);
198 static int e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
);
199 static int e100_set_config(struct net_device
* dev
, struct ifmap
* map
);
200 static void e100_tx_timeout(struct net_device
*dev
);
201 static struct net_device_stats
*e100_get_stats(struct net_device
*dev
);
202 static void set_multicast_list(struct net_device
*dev
);
203 static void e100_hardware_send_packet(struct net_local
* np
, char *buf
, int length
);
204 static void update_rx_stats(struct net_device_stats
*);
205 static void update_tx_stats(struct net_device_stats
*);
206 static int e100_probe_transceiver(struct net_device
* dev
);
208 static void e100_check_speed(unsigned long priv
);
209 static void e100_set_speed(struct net_device
* dev
, unsigned long speed
);
210 static void e100_check_duplex(unsigned long priv
);
211 static void e100_set_duplex(struct net_device
* dev
, enum duplex
);
212 static void e100_negotiate(struct net_device
* dev
);
214 static int e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
);
215 static void e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
);
217 static void e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
);
218 static void e100_send_mdio_bit(unsigned char bit
);
219 static unsigned char e100_receive_mdio_bit(void);
220 static void e100_reset_transceiver(struct net_device
* net
);
222 static void e100_clear_network_leds(unsigned long dummy
);
223 static void e100_set_network_leds(int active
);
225 static const struct ethtool_ops e100_ethtool_ops
;
226 #if defined(CONFIG_ETRAX_NO_PHY)
227 static void dummy_check_speed(struct net_device
* dev
);
228 static void dummy_check_duplex(struct net_device
* dev
);
230 static void broadcom_check_speed(struct net_device
* dev
);
231 static void broadcom_check_duplex(struct net_device
* dev
);
232 static void tdk_check_speed(struct net_device
* dev
);
233 static void tdk_check_duplex(struct net_device
* dev
);
234 static void intel_check_speed(struct net_device
* dev
);
235 static void intel_check_duplex(struct net_device
* dev
);
236 static void generic_check_speed(struct net_device
* dev
);
237 static void generic_check_duplex(struct net_device
* dev
);
239 #ifdef CONFIG_NET_POLL_CONTROLLER
240 static void e100_netpoll(struct net_device
* dev
);
243 static int autoneg_normal
= 1;
245 struct transceiver_ops transceivers
[] =
247 #if defined(CONFIG_ETRAX_NO_PHY)
248 {0x0000, dummy_check_speed
, dummy_check_duplex
} /* Dummy */
250 {0x1018, broadcom_check_speed
, broadcom_check_duplex
}, /* Broadcom */
251 {0xC039, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120 */
252 {0x039C, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120C */
253 {0x04de, intel_check_speed
, intel_check_duplex
}, /* Intel LXT972A*/
254 {0x0000, generic_check_speed
, generic_check_duplex
} /* Generic, must be last */
258 struct transceiver_ops
* transceiver
= &transceivers
[0];
260 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
263 * Check for a network adaptor of this type, and return '0' if one exists.
264 * If dev->base_addr == 0, probe all likely locations.
265 * If dev->base_addr == 1, always return failure.
266 * If dev->base_addr == 2, allocate space for the device and return success
267 * (detachable devices only).
271 etrax_ethernet_init(void)
273 struct net_device
*dev
;
274 struct net_local
* np
;
278 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
280 if (cris_request_io_interface(if_eth
, cardname
)) {
281 printk(KERN_CRIT
"etrax_ethernet_init failed to get IO interface\n");
285 dev
= alloc_etherdev(sizeof(struct net_local
));
289 np
= netdev_priv(dev
);
291 /* we do our own locking */
292 dev
->features
|= NETIF_F_LLTX
;
294 dev
->base_addr
= (unsigned int)R_NETWORK_SA_0
; /* just to have something to show */
296 /* now setup our etrax specific stuff */
298 dev
->irq
= NETWORK_DMA_RX_IRQ_NBR
; /* we really use DMATX as well... */
299 dev
->dma
= NETWORK_RX_DMA_NBR
;
301 /* fill in our handlers so the network layer can talk to us in the future */
303 dev
->open
= e100_open
;
304 dev
->hard_start_xmit
= e100_send_packet
;
305 dev
->stop
= e100_close
;
306 dev
->get_stats
= e100_get_stats
;
307 dev
->set_multicast_list
= set_multicast_list
;
308 dev
->set_mac_address
= e100_set_mac_address
;
309 dev
->ethtool_ops
= &e100_ethtool_ops
;
310 dev
->do_ioctl
= e100_ioctl
;
311 dev
->set_config
= e100_set_config
;
312 dev
->tx_timeout
= e100_tx_timeout
;
313 #ifdef CONFIG_NET_POLL_CONTROLLER
314 dev
->poll_controller
= e100_netpoll
;
317 spin_lock_init(&np
->lock
);
318 spin_lock_init(&np
->led_lock
);
319 spin_lock_init(&np
->transceiver_lock
);
321 /* Initialise the list of Etrax DMA-descriptors */
323 /* Initialise receive descriptors */
325 for (i
= 0; i
< NBR_OF_RX_DESC
; i
++) {
326 /* Allocate two extra cachelines to make sure that buffer used
327 * by DMA does not share cacheline with any other data (to
330 RxDescList
[i
].skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
331 if (!RxDescList
[i
].skb
)
333 RxDescList
[i
].descr
.ctrl
= 0;
334 RxDescList
[i
].descr
.sw_len
= MAX_MEDIA_DATA_SIZE
;
335 RxDescList
[i
].descr
.next
= virt_to_phys(&RxDescList
[i
+ 1]);
336 RxDescList
[i
].descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(RxDescList
[i
].skb
->data
));
337 RxDescList
[i
].descr
.status
= 0;
338 RxDescList
[i
].descr
.hw_len
= 0;
339 prepare_rx_descriptor(&RxDescList
[i
].descr
);
342 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.ctrl
= d_eol
;
343 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.next
= virt_to_phys(&RxDescList
[0]);
346 /* Initialize transmit descriptors */
347 for (i
= 0; i
< NBR_OF_TX_DESC
; i
++) {
348 TxDescList
[i
].descr
.ctrl
= 0;
349 TxDescList
[i
].descr
.sw_len
= 0;
350 TxDescList
[i
].descr
.next
= virt_to_phys(&TxDescList
[i
+ 1].descr
);
351 TxDescList
[i
].descr
.buf
= 0;
352 TxDescList
[i
].descr
.status
= 0;
353 TxDescList
[i
].descr
.hw_len
= 0;
354 TxDescList
[i
].skb
= 0;
357 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.ctrl
= d_eol
;
358 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.next
= virt_to_phys(&TxDescList
[0].descr
);
360 /* Initialise initial pointers */
362 myNextRxDesc
= &RxDescList
[0];
363 myLastRxDesc
= &RxDescList
[NBR_OF_RX_DESC
- 1];
364 myFirstTxDesc
= &TxDescList
[0];
365 myNextTxDesc
= &TxDescList
[0];
366 myLastTxDesc
= &TxDescList
[NBR_OF_TX_DESC
- 1];
368 /* Register device */
369 err
= register_netdev(dev
);
375 /* set the default MAC address */
377 e100_set_mac_address(dev
, &default_mac
);
379 /* Initialize speed indicator stuff. */
382 current_speed_selection
= 0; /* Auto */
383 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
384 speed_timer
.data
= (unsigned long)dev
;
385 speed_timer
.function
= e100_check_speed
;
387 clear_led_timer
.function
= e100_clear_network_leds
;
388 clear_led_timer
.data
= (unsigned long)dev
;
391 current_duplex
= autoneg
;
392 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
393 duplex_timer
.data
= (unsigned long)dev
;
394 duplex_timer
.function
= e100_check_duplex
;
396 /* Initialize mii interface */
397 np
->mii_if
.phy_id_mask
= 0x1f;
398 np
->mii_if
.reg_num_mask
= 0x1f;
399 np
->mii_if
.dev
= dev
;
400 np
->mii_if
.mdio_read
= e100_get_mdio_reg
;
401 np
->mii_if
.mdio_write
= e100_set_mdio_reg
;
403 /* Initialize group address registers to make sure that no */
404 /* unwanted addresses are matched */
405 *R_NETWORK_GA_0
= 0x00000000;
406 *R_NETWORK_GA_1
= 0x00000000;
408 /* Initialize next time the led can flash */
409 led_next_time
= jiffies
;
413 /* set MAC address of the interface. called from the core after a
414 * SIOCSIFADDR ioctl, and from the bootup above.
418 e100_set_mac_address(struct net_device
*dev
, void *p
)
420 struct net_local
*np
= netdev_priv(dev
);
421 struct sockaddr
*addr
= p
;
423 spin_lock(&np
->lock
); /* preemption protection */
427 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
429 /* Write it to the hardware.
430 * Note the way the address is wrapped:
431 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
432 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
435 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
436 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
437 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
440 /* show it in the log as well */
442 printk(KERN_INFO
"%s: changed MAC to %pM\n", dev
->name
, dev
->dev_addr
);
444 spin_unlock(&np
->lock
);
450 * Open/initialize the board. This is called (in the current kernel)
451 * sometime after booting when the 'ifconfig' program is run.
453 * This routine should set everything up anew at each open, even
454 * registers that "should" only need to be set once at boot, so that
455 * there is non-reboot way to recover if something goes wrong.
459 e100_open(struct net_device
*dev
)
463 /* enable the MDIO output pin */
465 *R_NETWORK_MGM_CTRL
= IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
);
468 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
469 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
470 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
472 /* clear dma0 and 1 eop and descr irq masks */
474 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
475 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
476 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
477 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
479 /* Reset and wait for the DMA channels */
481 RESET_DMA(NETWORK_TX_DMA_NBR
);
482 RESET_DMA(NETWORK_RX_DMA_NBR
);
483 WAIT_DMA(NETWORK_TX_DMA_NBR
);
484 WAIT_DMA(NETWORK_RX_DMA_NBR
);
486 /* Initialise the etrax network controller */
488 /* allocate the irq corresponding to the receiving DMA */
490 if (request_irq(NETWORK_DMA_RX_IRQ_NBR
, e100rxtx_interrupt
,
491 IRQF_SAMPLE_RANDOM
, cardname
, (void *)dev
)) {
495 /* allocate the irq corresponding to the transmitting DMA */
497 if (request_irq(NETWORK_DMA_TX_IRQ_NBR
, e100rxtx_interrupt
, 0,
498 cardname
, (void *)dev
)) {
502 /* allocate the irq corresponding to the network errors etc */
504 if (request_irq(NETWORK_STATUS_IRQ_NBR
, e100nw_interrupt
, 0,
505 cardname
, (void *)dev
)) {
510 * Always allocate the DMA channels after the IRQ,
511 * and clean up on failure.
514 if (cris_request_dma(NETWORK_TX_DMA_NBR
,
516 DMA_VERBOSE_ON_ERROR
,
521 if (cris_request_dma(NETWORK_RX_DMA_NBR
,
523 DMA_VERBOSE_ON_ERROR
,
528 /* give the HW an idea of what MAC address we want */
530 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
531 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
532 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
536 /* use promiscuous mode for testing */
537 *R_NETWORK_GA_0
= 0xffffffff;
538 *R_NETWORK_GA_1
= 0xffffffff;
540 *R_NETWORK_REC_CONFIG
= 0xd; /* broadcast rec, individ. rec, ma0 enabled */
542 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, max_size
, size1522
);
543 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, broadcast
, receive
);
544 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, ma0
, enable
);
545 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
546 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
549 *R_NETWORK_GEN_CONFIG
=
550 IO_STATE(R_NETWORK_GEN_CONFIG
, phy
, mii_clk
) |
551 IO_STATE(R_NETWORK_GEN_CONFIG
, enable
, on
);
553 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
554 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, delay
, none
);
555 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cancel
, dont
);
556 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cd
, enable
);
557 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, retry
, enable
);
558 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, pad
, enable
);
559 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, crc
, enable
);
560 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
562 local_irq_save(flags
);
564 /* enable the irq's for ethernet DMA */
567 IO_STATE(R_IRQ_MASK2_SET
, dma0_eop
, set
) |
568 IO_STATE(R_IRQ_MASK2_SET
, dma1_eop
, set
);
571 IO_STATE(R_IRQ_MASK0_SET
, overrun
, set
) |
572 IO_STATE(R_IRQ_MASK0_SET
, underrun
, set
) |
573 IO_STATE(R_IRQ_MASK0_SET
, excessive_col
, set
);
575 /* make sure the irqs are cleared */
577 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
578 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
580 /* make sure the rec and transmit error counters are cleared */
582 (void)*R_REC_COUNTERS
; /* dummy read */
583 (void)*R_TR_COUNTERS
; /* dummy read */
585 /* start the receiving DMA channel so we can receive packets from now on */
587 *R_DMA_CH1_FIRST
= virt_to_phys(myNextRxDesc
);
588 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, start
);
590 /* Set up transmit DMA channel so it can be restarted later */
592 *R_DMA_CH0_FIRST
= 0;
593 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
594 netif_start_queue(dev
);
596 local_irq_restore(flags
);
598 /* Probe for transceiver */
599 if (e100_probe_transceiver(dev
))
602 /* Start duplex/speed timers */
603 add_timer(&speed_timer
);
604 add_timer(&duplex_timer
);
606 /* We are now ready to accept transmit requeusts from
607 * the queueing layer of the networking.
609 netif_carrier_on(dev
);
614 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
616 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
618 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
620 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
622 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
627 #if defined(CONFIG_ETRAX_NO_PHY)
629 dummy_check_speed(struct net_device
* dev
)
635 generic_check_speed(struct net_device
* dev
)
638 struct net_local
*np
= netdev_priv(dev
);
640 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
641 if ((data
& ADVERTISE_100FULL
) ||
642 (data
& ADVERTISE_100HALF
))
649 tdk_check_speed(struct net_device
* dev
)
652 struct net_local
*np
= netdev_priv(dev
);
654 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
655 MDIO_TDK_DIAGNOSTIC_REG
);
656 current_speed
= (data
& MDIO_TDK_DIAGNOSTIC_RATE
? 100 : 10);
660 broadcom_check_speed(struct net_device
* dev
)
663 struct net_local
*np
= netdev_priv(dev
);
665 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
666 MDIO_AUX_CTRL_STATUS_REG
);
667 current_speed
= (data
& MDIO_BC_SPEED
? 100 : 10);
671 intel_check_speed(struct net_device
* dev
)
674 struct net_local
*np
= netdev_priv(dev
);
676 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
677 MDIO_INT_STATUS_REG_2
);
678 current_speed
= (data
& MDIO_INT_SPEED
? 100 : 10);
682 e100_check_speed(unsigned long priv
)
684 struct net_device
* dev
= (struct net_device
*)priv
;
685 struct net_local
*np
= netdev_priv(dev
);
686 static int led_initiated
= 0;
688 int old_speed
= current_speed
;
690 spin_lock(&np
->transceiver_lock
);
692 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMSR
);
693 if (!(data
& BMSR_LSTATUS
)) {
696 transceiver
->check_speed(dev
);
699 spin_lock(&np
->led_lock
);
700 if ((old_speed
!= current_speed
) || !led_initiated
) {
702 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
704 netif_carrier_on(dev
);
706 netif_carrier_off(dev
);
708 spin_unlock(&np
->led_lock
);
710 /* Reinitialize the timer. */
711 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
712 add_timer(&speed_timer
);
714 spin_unlock(&np
->transceiver_lock
);
718 e100_negotiate(struct net_device
* dev
)
720 struct net_local
*np
= netdev_priv(dev
);
721 unsigned short data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
724 /* Discard old speed and duplex settings */
725 data
&= ~(ADVERTISE_100HALF
| ADVERTISE_100FULL
|
726 ADVERTISE_10HALF
| ADVERTISE_10FULL
);
728 switch (current_speed_selection
) {
730 if (current_duplex
== full
)
731 data
|= ADVERTISE_10FULL
;
732 else if (current_duplex
== half
)
733 data
|= ADVERTISE_10HALF
;
735 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
;
739 if (current_duplex
== full
)
740 data
|= ADVERTISE_100FULL
;
741 else if (current_duplex
== half
)
742 data
|= ADVERTISE_100HALF
;
744 data
|= ADVERTISE_100HALF
| ADVERTISE_100FULL
;
748 if (current_duplex
== full
)
749 data
|= ADVERTISE_100FULL
| ADVERTISE_10FULL
;
750 else if (current_duplex
== half
)
751 data
|= ADVERTISE_100HALF
| ADVERTISE_10HALF
;
753 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
754 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
757 default: /* assume autoneg speed and duplex */
758 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
759 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
763 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
, data
);
765 /* Renegotiate with link partner */
766 if (autoneg_normal
) {
767 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
768 data
|= BMCR_ANENABLE
| BMCR_ANRESTART
;
770 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
, data
);
774 e100_set_speed(struct net_device
* dev
, unsigned long speed
)
776 struct net_local
*np
= netdev_priv(dev
);
778 spin_lock(&np
->transceiver_lock
);
779 if (speed
!= current_speed_selection
) {
780 current_speed_selection
= speed
;
783 spin_unlock(&np
->transceiver_lock
);
787 e100_check_duplex(unsigned long priv
)
789 struct net_device
*dev
= (struct net_device
*)priv
;
790 struct net_local
*np
= netdev_priv(dev
);
793 spin_lock(&np
->transceiver_lock
);
794 old_duplex
= full_duplex
;
795 transceiver
->check_duplex(dev
);
796 if (old_duplex
!= full_duplex
) {
798 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
799 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
802 /* Reinitialize the timer. */
803 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
804 add_timer(&duplex_timer
);
805 np
->mii_if
.full_duplex
= full_duplex
;
806 spin_unlock(&np
->transceiver_lock
);
808 #if defined(CONFIG_ETRAX_NO_PHY)
810 dummy_check_duplex(struct net_device
* dev
)
816 generic_check_duplex(struct net_device
* dev
)
819 struct net_local
*np
= netdev_priv(dev
);
821 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
822 if ((data
& ADVERTISE_10FULL
) ||
823 (data
& ADVERTISE_100FULL
))
830 tdk_check_duplex(struct net_device
* dev
)
833 struct net_local
*np
= netdev_priv(dev
);
835 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
836 MDIO_TDK_DIAGNOSTIC_REG
);
837 full_duplex
= (data
& MDIO_TDK_DIAGNOSTIC_DPLX
) ? 1 : 0;
841 broadcom_check_duplex(struct net_device
* dev
)
844 struct net_local
*np
= netdev_priv(dev
);
846 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
847 MDIO_AUX_CTRL_STATUS_REG
);
848 full_duplex
= (data
& MDIO_BC_FULL_DUPLEX_IND
) ? 1 : 0;
852 intel_check_duplex(struct net_device
* dev
)
855 struct net_local
*np
= netdev_priv(dev
);
857 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
858 MDIO_INT_STATUS_REG_2
);
859 full_duplex
= (data
& MDIO_INT_FULL_DUPLEX_IND
) ? 1 : 0;
863 e100_set_duplex(struct net_device
* dev
, enum duplex new_duplex
)
865 struct net_local
*np
= netdev_priv(dev
);
867 spin_lock(&np
->transceiver_lock
);
868 if (new_duplex
!= current_duplex
) {
869 current_duplex
= new_duplex
;
872 spin_unlock(&np
->transceiver_lock
);
876 e100_probe_transceiver(struct net_device
* dev
)
880 #if !defined(CONFIG_ETRAX_NO_PHY)
881 unsigned int phyid_high
;
882 unsigned int phyid_low
;
884 struct transceiver_ops
* ops
= NULL
;
885 struct net_local
*np
= netdev_priv(dev
);
887 spin_lock(&np
->transceiver_lock
);
889 /* Probe MDIO physical address */
890 for (np
->mii_if
.phy_id
= 0; np
->mii_if
.phy_id
<= 31;
891 np
->mii_if
.phy_id
++) {
892 if (e100_get_mdio_reg(dev
,
893 np
->mii_if
.phy_id
, MII_BMSR
) != 0xffff)
896 if (np
->mii_if
.phy_id
== 32) {
901 /* Get manufacturer */
902 phyid_high
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID1
);
903 phyid_low
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID2
);
904 oui
= (phyid_high
<< 6) | (phyid_low
>> 10);
906 for (ops
= &transceivers
[0]; ops
->oui
; ops
++) {
912 spin_unlock(&np
->transceiver_lock
);
918 e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
)
920 unsigned short cmd
; /* Data to be sent on MDIO port */
921 int data
; /* Data read from MDIO */
924 /* Start of frame, OP Code, Physical Address, Register Address */
925 cmd
= (MDIO_START
<< 14) | (MDIO_READ
<< 12) | (phy_id
<< 7) |
928 e100_send_mdio_cmd(cmd
, 0);
933 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
934 data
|= (e100_receive_mdio_bit() << bitCounter
);
941 e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
)
946 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (phy_id
<< 7) |
949 e100_send_mdio_cmd(cmd
, 1);
952 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
953 e100_send_mdio_bit(GET_BIT(bitCounter
, value
));
959 e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
)
962 unsigned char data
= 0x2;
965 for (bitCounter
= 31; bitCounter
>= 0; bitCounter
--)
966 e100_send_mdio_bit(GET_BIT(bitCounter
, MDIO_PREAMBLE
));
968 for (bitCounter
= 15; bitCounter
>= 2; bitCounter
--)
969 e100_send_mdio_bit(GET_BIT(bitCounter
, cmd
));
972 for (bitCounter
= 1; bitCounter
>= 0 ; bitCounter
--)
974 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
976 e100_receive_mdio_bit();
980 e100_send_mdio_bit(unsigned char bit
)
982 *R_NETWORK_MGM_CTRL
=
983 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
984 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
986 *R_NETWORK_MGM_CTRL
=
987 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
988 IO_MASK(R_NETWORK_MGM_CTRL
, mdck
) |
989 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
994 e100_receive_mdio_bit()
997 *R_NETWORK_MGM_CTRL
= 0;
998 bit
= IO_EXTRACT(R_NETWORK_STAT
, mdio
, *R_NETWORK_STAT
);
1000 *R_NETWORK_MGM_CTRL
= IO_MASK(R_NETWORK_MGM_CTRL
, mdck
);
1006 e100_reset_transceiver(struct net_device
* dev
)
1008 struct net_local
*np
= netdev_priv(dev
);
1010 unsigned short data
;
1013 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
1015 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (np
->mii_if
.phy_id
<< 7) | (MII_BMCR
<< 2);
1017 e100_send_mdio_cmd(cmd
, 1);
1021 for (bitCounter
= 15; bitCounter
>= 0 ; bitCounter
--) {
1022 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
1026 /* Called by upper layers if they decide it took too long to complete
1027 * sending a packet - we need to reset and stuff.
1031 e100_tx_timeout(struct net_device
*dev
)
1033 struct net_local
*np
= netdev_priv(dev
);
1034 unsigned long flags
;
1036 spin_lock_irqsave(&np
->lock
, flags
);
1038 printk(KERN_WARNING
"%s: transmit timed out, %s?\n", dev
->name
,
1039 tx_done(dev
) ? "IRQ problem" : "network cable problem");
1041 /* remember we got an error */
1043 np
->stats
.tx_errors
++;
1045 /* reset the TX DMA in case it has hung on something */
1047 RESET_DMA(NETWORK_TX_DMA_NBR
);
1048 WAIT_DMA(NETWORK_TX_DMA_NBR
);
1050 /* Reset the transceiver. */
1052 e100_reset_transceiver(dev
);
1054 /* and get rid of the packets that never got an interrupt */
1055 while (myFirstTxDesc
!= myNextTxDesc
) {
1056 dev_kfree_skb(myFirstTxDesc
->skb
);
1057 myFirstTxDesc
->skb
= 0;
1058 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1061 /* Set up transmit DMA channel so it can be restarted later */
1062 *R_DMA_CH0_FIRST
= 0;
1063 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
1065 /* tell the upper layers we're ok again */
1067 netif_wake_queue(dev
);
1068 spin_unlock_irqrestore(&np
->lock
, flags
);
1072 /* This will only be invoked if the driver is _not_ in XOFF state.
1073 * What this means is that we need not check it, and that this
1074 * invariant will hold if we make sure that the netif_*_queue()
1075 * calls are done at the proper times.
1079 e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
)
1081 struct net_local
*np
= netdev_priv(dev
);
1082 unsigned char *buf
= skb
->data
;
1083 unsigned long flags
;
1086 printk("send packet len %d\n", length
);
1088 spin_lock_irqsave(&np
->lock
, flags
); /* protect from tx_interrupt and ourself */
1090 myNextTxDesc
->skb
= skb
;
1092 dev
->trans_start
= jiffies
;
1094 e100_hardware_send_packet(np
, buf
, skb
->len
);
1096 myNextTxDesc
= phys_to_virt(myNextTxDesc
->descr
.next
);
1098 /* Stop queue if full */
1099 if (myNextTxDesc
== myFirstTxDesc
) {
1100 netif_stop_queue(dev
);
1103 spin_unlock_irqrestore(&np
->lock
, flags
);
1109 * The typical workload of the driver:
1110 * Handle the network interface interrupts.
1114 e100rxtx_interrupt(int irq
, void *dev_id
)
1116 struct net_device
*dev
= (struct net_device
*)dev_id
;
1117 struct net_local
*np
= netdev_priv(dev
);
1118 unsigned long irqbits
;
1121 * Note that both rx and tx interrupts are blocked at this point,
1122 * regardless of which got us here.
1125 irqbits
= *R_IRQ_MASK2_RD
;
1127 /* Handle received packets */
1128 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma1_eop
, active
)) {
1129 /* acknowledge the eop interrupt */
1131 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
1133 /* check if one or more complete packets were indeed received */
1135 while ((*R_DMA_CH1_FIRST
!= virt_to_phys(myNextRxDesc
)) &&
1136 (myNextRxDesc
!= myLastRxDesc
)) {
1137 /* Take out the buffer and give it to the OS, then
1138 * allocate a new buffer to put a packet in.
1141 np
->stats
.rx_packets
++;
1142 /* restart/continue on the channel, for safety */
1143 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, restart
);
1144 /* clear dma channel 1 eop/descr irq bits */
1145 *R_DMA_CH1_CLR_INTR
=
1146 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do) |
1147 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_descr
, do);
1149 /* now, we might have gotten another packet
1150 so we have to loop back and check if so */
1154 /* Report any packets that have been sent */
1155 while (virt_to_phys(myFirstTxDesc
) != *R_DMA_CH0_FIRST
&&
1156 (netif_queue_stopped(dev
) || myFirstTxDesc
!= myNextTxDesc
)) {
1157 np
->stats
.tx_bytes
+= myFirstTxDesc
->skb
->len
;
1158 np
->stats
.tx_packets
++;
1160 /* dma is ready with the transmission of the data in tx_skb, so now
1161 we can release the skb memory */
1162 dev_kfree_skb_irq(myFirstTxDesc
->skb
);
1163 myFirstTxDesc
->skb
= 0;
1164 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1165 /* Wake up queue. */
1166 netif_wake_queue(dev
);
1169 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma0_eop
, active
)) {
1170 /* acknowledge the eop interrupt. */
1171 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
1178 e100nw_interrupt(int irq
, void *dev_id
)
1180 struct net_device
*dev
= (struct net_device
*)dev_id
;
1181 struct net_local
*np
= netdev_priv(dev
);
1182 unsigned long irqbits
= *R_IRQ_MASK0_RD
;
1184 /* check for underrun irq */
1185 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, underrun
, active
)) {
1186 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1187 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1188 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1189 np
->stats
.tx_errors
++;
1190 D(printk("ethernet receiver underrun!\n"));
1193 /* check for overrun irq */
1194 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, overrun
, active
)) {
1195 update_rx_stats(&np
->stats
); /* this will ack the irq */
1196 D(printk("ethernet receiver overrun!\n"));
1198 /* check for excessive collision irq */
1199 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, excessive_col
, active
)) {
1200 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1201 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1202 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1203 np
->stats
.tx_errors
++;
1204 D(printk("ethernet excessive collisions!\n"));
1209 /* We have a good packet(s), get it/them out of the buffers. */
1211 e100_rx(struct net_device
*dev
)
1213 struct sk_buff
*skb
;
1215 struct net_local
*np
= netdev_priv(dev
);
1216 unsigned char *skb_data_ptr
;
1220 etrax_eth_descr
*prevRxDesc
; /* The descriptor right before myNextRxDesc */
1221 spin_lock(&np
->led_lock
);
1222 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1223 /* light the network leds depending on the current speed. */
1224 e100_set_network_leds(NETWORK_ACTIVITY
);
1226 /* Set the earliest time we may clear the LED */
1227 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1229 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1231 spin_unlock(&np
->led_lock
);
1233 length
= myNextRxDesc
->descr
.hw_len
- 4;
1234 np
->stats
.rx_bytes
+= length
;
1237 printk("Got a packet of length %d:\n", length
);
1238 /* dump the first bytes in the packet */
1239 skb_data_ptr
= (unsigned char *)phys_to_virt(myNextRxDesc
->descr
.buf
);
1240 for (i
= 0; i
< 8; i
++) {
1241 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i
* 8,
1242 skb_data_ptr
[0],skb_data_ptr
[1],skb_data_ptr
[2],skb_data_ptr
[3],
1243 skb_data_ptr
[4],skb_data_ptr
[5],skb_data_ptr
[6],skb_data_ptr
[7]);
1248 if (length
< RX_COPYBREAK
) {
1249 /* Small packet, copy data */
1250 skb
= dev_alloc_skb(length
- ETHER_HEAD_LEN
);
1252 np
->stats
.rx_errors
++;
1253 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1254 goto update_nextrxdesc
;
1257 skb_put(skb
, length
- ETHER_HEAD_LEN
); /* allocate room for the packet body */
1258 skb_data_ptr
= skb_push(skb
, ETHER_HEAD_LEN
); /* allocate room for the header */
1261 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1262 skb
->head
, skb
->data
, skb_tail_pointer(skb
),
1263 skb_end_pointer(skb
));
1264 printk("copying packet to 0x%x.\n", skb_data_ptr
);
1267 memcpy(skb_data_ptr
, phys_to_virt(myNextRxDesc
->descr
.buf
), length
);
1270 /* Large packet, send directly to upper layers and allocate new
1271 * memory (aligned to cache line boundary to avoid bug).
1272 * Before sending the skb to upper layers we must make sure
1273 * that skb->data points to the aligned start of the packet.
1276 struct sk_buff
*new_skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
1278 np
->stats
.rx_errors
++;
1279 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1280 goto update_nextrxdesc
;
1282 skb
= myNextRxDesc
->skb
;
1283 align
= (int)phys_to_virt(myNextRxDesc
->descr
.buf
) - (int)skb
->data
;
1284 skb_put(skb
, length
+ align
);
1285 skb_pull(skb
, align
); /* Remove alignment bytes */
1286 myNextRxDesc
->skb
= new_skb
;
1287 myNextRxDesc
->descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc
->skb
->data
));
1290 skb
->protocol
= eth_type_trans(skb
, dev
);
1292 /* Send the packet to the upper layers */
1296 /* Prepare for next packet */
1297 myNextRxDesc
->descr
.status
= 0;
1298 prevRxDesc
= myNextRxDesc
;
1299 myNextRxDesc
= phys_to_virt(myNextRxDesc
->descr
.next
);
1303 /* Check if descriptors should be returned */
1304 if (rx_queue_len
== RX_QUEUE_THRESHOLD
) {
1305 flush_etrax_cache();
1306 prevRxDesc
->descr
.ctrl
|= d_eol
;
1307 myLastRxDesc
->descr
.ctrl
&= ~d_eol
;
1308 myLastRxDesc
= prevRxDesc
;
1313 /* The inverse routine to net_open(). */
1315 e100_close(struct net_device
*dev
)
1317 struct net_local
*np
= netdev_priv(dev
);
1319 printk(KERN_INFO
"Closing %s.\n", dev
->name
);
1321 netif_stop_queue(dev
);
1324 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
1325 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
1326 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
1329 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
1330 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
1331 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
1332 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
1334 /* Stop the receiver and the transmitter */
1336 RESET_DMA(NETWORK_TX_DMA_NBR
);
1337 RESET_DMA(NETWORK_RX_DMA_NBR
);
1339 /* Flush the Tx and disable Rx here. */
1341 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
1342 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
1343 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
1345 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
1346 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
1348 /* Update the statistics here. */
1350 update_rx_stats(&np
->stats
);
1351 update_tx_stats(&np
->stats
);
1353 /* Stop speed/duplex timers */
1354 del_timer(&speed_timer
);
1355 del_timer(&duplex_timer
);
1361 e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1363 struct mii_ioctl_data
*data
= if_mii(ifr
);
1364 struct net_local
*np
= netdev_priv(dev
);
1368 spin_lock(&np
->lock
); /* Preempt protection */
1370 /* The ioctls below should be considered obsolete but are */
1371 /* still present for compatability with old scripts/apps */
1372 case SET_ETH_SPEED_10
: /* 10 Mbps */
1373 e100_set_speed(dev
, 10);
1375 case SET_ETH_SPEED_100
: /* 100 Mbps */
1376 e100_set_speed(dev
, 100);
1378 case SET_ETH_SPEED_AUTO
: /* Auto-negotiate speed */
1379 e100_set_speed(dev
, 0);
1381 case SET_ETH_DUPLEX_HALF
: /* Half duplex */
1382 e100_set_duplex(dev
, half
);
1384 case SET_ETH_DUPLEX_FULL
: /* Full duplex */
1385 e100_set_duplex(dev
, full
);
1387 case SET_ETH_DUPLEX_AUTO
: /* Auto-negotiate duplex */
1388 e100_set_duplex(dev
, autoneg
);
1390 case SET_ETH_AUTONEG
:
1391 old_autoneg
= autoneg_normal
;
1392 autoneg_normal
= *(int*)data
;
1393 if (autoneg_normal
!= old_autoneg
)
1394 e100_negotiate(dev
);
1397 rc
= generic_mii_ioctl(&np
->mii_if
, if_mii(ifr
),
1401 spin_unlock(&np
->lock
);
1405 static int e100_get_settings(struct net_device
*dev
,
1406 struct ethtool_cmd
*cmd
)
1408 struct net_local
*np
= netdev_priv(dev
);
1411 spin_lock_irq(&np
->lock
);
1412 err
= mii_ethtool_gset(&np
->mii_if
, cmd
);
1413 spin_unlock_irq(&np
->lock
);
1415 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1416 cmd
->supported
&= ~(SUPPORTED_1000baseT_Half
1417 | SUPPORTED_1000baseT_Full
);
1421 static int e100_set_settings(struct net_device
*dev
,
1422 struct ethtool_cmd
*ecmd
)
1424 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
1425 e100_set_duplex(dev
, autoneg
);
1426 e100_set_speed(dev
, 0);
1428 e100_set_duplex(dev
, ecmd
->duplex
== DUPLEX_HALF
? half
: full
);
1429 e100_set_speed(dev
, ecmd
->speed
== SPEED_10
? 10: 100);
1435 static void e100_get_drvinfo(struct net_device
*dev
,
1436 struct ethtool_drvinfo
*info
)
1438 strncpy(info
->driver
, "ETRAX 100LX", sizeof(info
->driver
) - 1);
1439 strncpy(info
->version
, "$Revision: 1.31 $", sizeof(info
->version
) - 1);
1440 strncpy(info
->fw_version
, "N/A", sizeof(info
->fw_version
) - 1);
1441 strncpy(info
->bus_info
, "N/A", sizeof(info
->bus_info
) - 1);
1444 static int e100_nway_reset(struct net_device
*dev
)
1446 if (current_duplex
== autoneg
&& current_speed_selection
== 0)
1447 e100_negotiate(dev
);
1451 static const struct ethtool_ops e100_ethtool_ops
= {
1452 .get_settings
= e100_get_settings
,
1453 .set_settings
= e100_set_settings
,
1454 .get_drvinfo
= e100_get_drvinfo
,
1455 .nway_reset
= e100_nway_reset
,
1456 .get_link
= ethtool_op_get_link
,
1460 e100_set_config(struct net_device
*dev
, struct ifmap
*map
)
1462 struct net_local
*np
= netdev_priv(dev
);
1464 spin_lock(&np
->lock
); /* Preempt protection */
1467 case IF_PORT_UNKNOWN
:
1469 e100_set_speed(dev
, 0);
1470 e100_set_duplex(dev
, autoneg
);
1472 case IF_PORT_10BASET
:
1473 e100_set_speed(dev
, 10);
1474 e100_set_duplex(dev
, autoneg
);
1476 case IF_PORT_100BASET
:
1477 case IF_PORT_100BASETX
:
1478 e100_set_speed(dev
, 100);
1479 e100_set_duplex(dev
, autoneg
);
1481 case IF_PORT_100BASEFX
:
1482 case IF_PORT_10BASE2
:
1484 spin_unlock(&np
->lock
);
1488 printk(KERN_ERR
"%s: Invalid media selected", dev
->name
);
1489 spin_unlock(&np
->lock
);
1492 spin_unlock(&np
->lock
);
1497 update_rx_stats(struct net_device_stats
*es
)
1499 unsigned long r
= *R_REC_COUNTERS
;
1500 /* update stats relevant to reception errors */
1501 es
->rx_fifo_errors
+= IO_EXTRACT(R_REC_COUNTERS
, congestion
, r
);
1502 es
->rx_crc_errors
+= IO_EXTRACT(R_REC_COUNTERS
, crc_error
, r
);
1503 es
->rx_frame_errors
+= IO_EXTRACT(R_REC_COUNTERS
, alignment_error
, r
);
1504 es
->rx_length_errors
+= IO_EXTRACT(R_REC_COUNTERS
, oversize
, r
);
1508 update_tx_stats(struct net_device_stats
*es
)
1510 unsigned long r
= *R_TR_COUNTERS
;
1511 /* update stats relevant to transmission errors */
1513 IO_EXTRACT(R_TR_COUNTERS
, single_col
, r
) +
1514 IO_EXTRACT(R_TR_COUNTERS
, multiple_col
, r
);
1518 * Get the current statistics.
1519 * This may be called with the card open or closed.
1521 static struct net_device_stats
*
1522 e100_get_stats(struct net_device
*dev
)
1524 struct net_local
*lp
= netdev_priv(dev
);
1525 unsigned long flags
;
1527 spin_lock_irqsave(&lp
->lock
, flags
);
1529 update_rx_stats(&lp
->stats
);
1530 update_tx_stats(&lp
->stats
);
1532 spin_unlock_irqrestore(&lp
->lock
, flags
);
1537 * Set or clear the multicast filter for this adaptor.
1538 * num_addrs == -1 Promiscuous mode, receive all packets
1539 * num_addrs == 0 Normal mode, clear multicast list
1540 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1541 * and do best-effort filtering.
1544 set_multicast_list(struct net_device
*dev
)
1546 struct net_local
*lp
= netdev_priv(dev
);
1547 int num_addr
= dev
->mc_count
;
1548 unsigned long int lo_bits
;
1549 unsigned long int hi_bits
;
1551 spin_lock(&lp
->lock
);
1552 if (dev
->flags
& IFF_PROMISC
) {
1553 /* promiscuous mode */
1554 lo_bits
= 0xfffffffful
;
1555 hi_bits
= 0xfffffffful
;
1557 /* Enable individual receive */
1558 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, receive
);
1559 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1560 } else if (dev
->flags
& IFF_ALLMULTI
) {
1561 /* enable all multicasts */
1562 lo_bits
= 0xfffffffful
;
1563 hi_bits
= 0xfffffffful
;
1565 /* Disable individual receive */
1566 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1567 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1568 } else if (num_addr
== 0) {
1569 /* Normal, clear the mc list */
1570 lo_bits
= 0x00000000ul
;
1571 hi_bits
= 0x00000000ul
;
1573 /* Disable individual receive */
1574 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1575 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1577 /* MC mode, receive normal and MC packets */
1579 struct dev_mc_list
*dmi
= dev
->mc_list
;
1583 lo_bits
= 0x00000000ul
;
1584 hi_bits
= 0x00000000ul
;
1585 for (i
= 0; i
< num_addr
; i
++) {
1586 /* Calculate the hash index for the GA registers */
1589 baddr
= dmi
->dmi_addr
;
1590 hash_ix
^= (*baddr
) & 0x3f;
1591 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1593 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1594 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1596 hash_ix
^= ((*baddr
) << 4) & 0x30;
1597 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1599 hash_ix
^= (*baddr
) & 0x3f;
1600 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1602 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1603 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1605 hash_ix
^= ((*baddr
) << 4) & 0x30;
1606 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1610 if (hash_ix
>= 32) {
1611 hi_bits
|= (1 << (hash_ix
-32));
1613 lo_bits
|= (1 << hash_ix
);
1617 /* Disable individual receive */
1618 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1619 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1621 *R_NETWORK_GA_0
= lo_bits
;
1622 *R_NETWORK_GA_1
= hi_bits
;
1623 spin_unlock(&lp
->lock
);
1627 e100_hardware_send_packet(struct net_local
*np
, char *buf
, int length
)
1629 D(printk("e100 send pack, buf 0x%x len %d\n", buf
, length
));
1631 spin_lock(&np
->led_lock
);
1632 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1633 /* light the network leds depending on the current speed. */
1634 e100_set_network_leds(NETWORK_ACTIVITY
);
1636 /* Set the earliest time we may clear the LED */
1637 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1639 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1641 spin_unlock(&np
->led_lock
);
1643 /* configure the tx dma descriptor */
1644 myNextTxDesc
->descr
.sw_len
= length
;
1645 myNextTxDesc
->descr
.ctrl
= d_eop
| d_eol
| d_wait
;
1646 myNextTxDesc
->descr
.buf
= virt_to_phys(buf
);
1648 /* Move end of list */
1649 myLastTxDesc
->descr
.ctrl
&= ~d_eol
;
1650 myLastTxDesc
= myNextTxDesc
;
1652 /* Restart DMA channel */
1653 *R_DMA_CH0_CMD
= IO_STATE(R_DMA_CH0_CMD
, cmd
, restart
);
1657 e100_clear_network_leds(unsigned long dummy
)
1659 struct net_device
*dev
= (struct net_device
*)dummy
;
1660 struct net_local
*np
= netdev_priv(dev
);
1662 spin_lock(&np
->led_lock
);
1664 if (led_active
&& time_after(jiffies
, led_next_time
)) {
1665 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
1667 /* Set the earliest time we may set the LED */
1668 led_next_time
= jiffies
+ NET_FLASH_PAUSE
;
1672 spin_unlock(&np
->led_lock
);
1676 e100_set_network_leds(int active
)
1678 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1679 int light_leds
= (active
== NO_NETWORK_ACTIVITY
);
1680 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1681 int light_leds
= (active
== NETWORK_ACTIVITY
);
1683 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1686 if (!current_speed
) {
1687 /* Make LED red, link is down */
1688 #if defined(CONFIG_ETRAX_NETWORK_RED_ON_NO_CONNECTION)
1689 CRIS_LED_NETWORK_SET(CRIS_LED_RED
);
1691 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1693 } else if (light_leds
) {
1694 if (current_speed
== 10) {
1695 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE
);
1697 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN
);
1700 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1704 #ifdef CONFIG_NET_POLL_CONTROLLER
1706 e100_netpoll(struct net_device
* netdev
)
1708 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR
, netdev
, NULL
);
1713 etrax_init_module(void)
1715 return etrax_ethernet_init();
1719 e100_boot_setup(char* str
)
1721 struct sockaddr sa
= {0};
1724 /* Parse the colon separated Ethernet station address */
1725 for (i
= 0; i
< ETH_ALEN
; i
++) {
1727 if (sscanf(str
+ 3*i
, "%2x", &tmp
) != 1) {
1728 printk(KERN_WARNING
"Malformed station address");
1731 sa
.sa_data
[i
] = (char)tmp
;
1738 __setup("etrax100_eth=", e100_boot_setup
);
1740 module_init(etrax_init_module
);