4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2007
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <asm/div64.h>
37 #include "cifsproto.h"
38 #include "cifs_unicode.h"
39 #include "cifs_debug.h"
40 #include "cifs_fs_sb.h"
42 static inline struct cifsFileInfo
*cifs_init_private(
43 struct cifsFileInfo
*private_data
, struct inode
*inode
,
44 struct file
*file
, __u16 netfid
)
46 memset(private_data
, 0, sizeof(struct cifsFileInfo
));
47 private_data
->netfid
= netfid
;
48 private_data
->pid
= current
->tgid
;
49 init_MUTEX(&private_data
->fh_sem
);
50 mutex_init(&private_data
->lock_mutex
);
51 INIT_LIST_HEAD(&private_data
->llist
);
52 private_data
->pfile
= file
; /* needed for writepage */
53 private_data
->pInode
= inode
;
54 private_data
->invalidHandle
= false;
55 private_data
->closePend
= false;
56 /* we have to track num writers to the inode, since writepages
57 does not tell us which handle the write is for so there can
58 be a close (overlapping with write) of the filehandle that
59 cifs_writepages chose to use */
60 atomic_set(&private_data
->wrtPending
, 0);
65 static inline int cifs_convert_flags(unsigned int flags
)
67 if ((flags
& O_ACCMODE
) == O_RDONLY
)
69 else if ((flags
& O_ACCMODE
) == O_WRONLY
)
71 else if ((flags
& O_ACCMODE
) == O_RDWR
) {
72 /* GENERIC_ALL is too much permission to request
73 can cause unnecessary access denied on create */
74 /* return GENERIC_ALL; */
75 return (GENERIC_READ
| GENERIC_WRITE
);
78 return (READ_CONTROL
| FILE_WRITE_ATTRIBUTES
| FILE_READ_ATTRIBUTES
|
79 FILE_WRITE_EA
| FILE_APPEND_DATA
| FILE_WRITE_DATA
|
85 static inline int cifs_get_disposition(unsigned int flags
)
87 if ((flags
& (O_CREAT
| O_EXCL
)) == (O_CREAT
| O_EXCL
))
89 else if ((flags
& (O_CREAT
| O_TRUNC
)) == (O_CREAT
| O_TRUNC
))
90 return FILE_OVERWRITE_IF
;
91 else if ((flags
& O_CREAT
) == O_CREAT
)
93 else if ((flags
& O_TRUNC
) == O_TRUNC
)
94 return FILE_OVERWRITE
;
99 /* all arguments to this function must be checked for validity in caller */
100 static inline int cifs_open_inode_helper(struct inode
*inode
, struct file
*file
,
101 struct cifsInodeInfo
*pCifsInode
, struct cifsFileInfo
*pCifsFile
,
102 struct cifsTconInfo
*pTcon
, int *oplock
, FILE_ALL_INFO
*buf
,
103 char *full_path
, int xid
)
105 struct timespec temp
;
108 /* want handles we can use to read with first
109 in the list so we do not have to walk the
110 list to search for one in write_begin */
111 if ((file
->f_flags
& O_ACCMODE
) == O_WRONLY
) {
112 list_add_tail(&pCifsFile
->flist
,
113 &pCifsInode
->openFileList
);
115 list_add(&pCifsFile
->flist
,
116 &pCifsInode
->openFileList
);
118 write_unlock(&GlobalSMBSeslock
);
119 if (pCifsInode
->clientCanCacheRead
) {
120 /* we have the inode open somewhere else
121 no need to discard cache data */
122 goto client_can_cache
;
125 /* BB need same check in cifs_create too? */
126 /* if not oplocked, invalidate inode pages if mtime or file
128 temp
= cifs_NTtimeToUnix(le64_to_cpu(buf
->LastWriteTime
));
129 if (timespec_equal(&file
->f_path
.dentry
->d_inode
->i_mtime
, &temp
) &&
130 (file
->f_path
.dentry
->d_inode
->i_size
==
131 (loff_t
)le64_to_cpu(buf
->EndOfFile
))) {
132 cFYI(1, ("inode unchanged on server"));
134 if (file
->f_path
.dentry
->d_inode
->i_mapping
) {
135 /* BB no need to lock inode until after invalidate
136 since namei code should already have it locked? */
137 rc
= filemap_write_and_wait(file
->f_path
.dentry
->d_inode
->i_mapping
);
139 CIFS_I(file
->f_path
.dentry
->d_inode
)->write_behind_rc
= rc
;
141 cFYI(1, ("invalidating remote inode since open detected it "
143 invalidate_remote_inode(file
->f_path
.dentry
->d_inode
);
148 rc
= cifs_get_inode_info_unix(&file
->f_path
.dentry
->d_inode
,
149 full_path
, inode
->i_sb
, xid
);
151 rc
= cifs_get_inode_info(&file
->f_path
.dentry
->d_inode
,
152 full_path
, buf
, inode
->i_sb
, xid
, NULL
);
154 if ((*oplock
& 0xF) == OPLOCK_EXCLUSIVE
) {
155 pCifsInode
->clientCanCacheAll
= true;
156 pCifsInode
->clientCanCacheRead
= true;
157 cFYI(1, ("Exclusive Oplock granted on inode %p",
158 file
->f_path
.dentry
->d_inode
));
159 } else if ((*oplock
& 0xF) == OPLOCK_READ
)
160 pCifsInode
->clientCanCacheRead
= true;
165 int cifs_open(struct inode
*inode
, struct file
*file
)
169 struct cifs_sb_info
*cifs_sb
;
170 struct cifsTconInfo
*pTcon
;
171 struct cifsFileInfo
*pCifsFile
;
172 struct cifsInodeInfo
*pCifsInode
;
173 struct list_head
*tmp
;
174 char *full_path
= NULL
;
178 FILE_ALL_INFO
*buf
= NULL
;
182 cifs_sb
= CIFS_SB(inode
->i_sb
);
183 pTcon
= cifs_sb
->tcon
;
185 if (file
->f_flags
& O_CREAT
) {
186 /* search inode for this file and fill in file->private_data */
187 pCifsInode
= CIFS_I(file
->f_path
.dentry
->d_inode
);
188 read_lock(&GlobalSMBSeslock
);
189 list_for_each(tmp
, &pCifsInode
->openFileList
) {
190 pCifsFile
= list_entry(tmp
, struct cifsFileInfo
,
192 if ((pCifsFile
->pfile
== NULL
) &&
193 (pCifsFile
->pid
== current
->tgid
)) {
194 /* mode set in cifs_create */
196 /* needed for writepage */
197 pCifsFile
->pfile
= file
;
199 file
->private_data
= pCifsFile
;
203 read_unlock(&GlobalSMBSeslock
);
204 if (file
->private_data
!= NULL
) {
209 if (file
->f_flags
& O_EXCL
)
210 cERROR(1, ("could not find file instance for "
211 "new file %p", file
));
215 full_path
= build_path_from_dentry(file
->f_path
.dentry
);
216 if (full_path
== NULL
) {
221 cFYI(1, ("inode = 0x%p file flags are 0x%x for %s",
222 inode
, file
->f_flags
, full_path
));
223 desiredAccess
= cifs_convert_flags(file
->f_flags
);
225 /*********************************************************************
226 * open flag mapping table:
228 * POSIX Flag CIFS Disposition
229 * ---------- ----------------
230 * O_CREAT FILE_OPEN_IF
231 * O_CREAT | O_EXCL FILE_CREATE
232 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
233 * O_TRUNC FILE_OVERWRITE
234 * none of the above FILE_OPEN
236 * Note that there is not a direct match between disposition
237 * FILE_SUPERSEDE (ie create whether or not file exists although
238 * O_CREAT | O_TRUNC is similar but truncates the existing
239 * file rather than creating a new file as FILE_SUPERSEDE does
240 * (which uses the attributes / metadata passed in on open call)
242 *? O_SYNC is a reasonable match to CIFS writethrough flag
243 *? and the read write flags match reasonably. O_LARGEFILE
244 *? is irrelevant because largefile support is always used
245 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
246 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
247 *********************************************************************/
249 disposition
= cifs_get_disposition(file
->f_flags
);
256 /* BB pass O_SYNC flag through on file attributes .. BB */
258 /* Also refresh inode by passing in file_info buf returned by SMBOpen
259 and calling get_inode_info with returned buf (at least helps
260 non-Unix server case) */
262 /* BB we can not do this if this is the second open of a file
263 and the first handle has writebehind data, we might be
264 able to simply do a filemap_fdatawrite/filemap_fdatawait first */
265 buf
= kmalloc(sizeof(FILE_ALL_INFO
), GFP_KERNEL
);
271 if (cifs_sb
->tcon
->ses
->capabilities
& CAP_NT_SMBS
)
272 rc
= CIFSSMBOpen(xid
, pTcon
, full_path
, disposition
,
273 desiredAccess
, CREATE_NOT_DIR
, &netfid
, &oplock
, buf
,
274 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
275 & CIFS_MOUNT_MAP_SPECIAL_CHR
);
277 rc
= -EIO
; /* no NT SMB support fall into legacy open below */
280 /* Old server, try legacy style OpenX */
281 rc
= SMBLegacyOpen(xid
, pTcon
, full_path
, disposition
,
282 desiredAccess
, CREATE_NOT_DIR
, &netfid
, &oplock
, buf
,
283 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
284 & CIFS_MOUNT_MAP_SPECIAL_CHR
);
287 cFYI(1, ("cifs_open returned 0x%x", rc
));
291 kmalloc(sizeof(struct cifsFileInfo
), GFP_KERNEL
);
292 if (file
->private_data
== NULL
) {
296 pCifsFile
= cifs_init_private(file
->private_data
, inode
, file
, netfid
);
297 write_lock(&GlobalSMBSeslock
);
298 list_add(&pCifsFile
->tlist
, &pTcon
->openFileList
);
300 pCifsInode
= CIFS_I(file
->f_path
.dentry
->d_inode
);
302 rc
= cifs_open_inode_helper(inode
, file
, pCifsInode
,
304 &oplock
, buf
, full_path
, xid
);
306 write_unlock(&GlobalSMBSeslock
);
309 if (oplock
& CIFS_CREATE_ACTION
) {
310 /* time to set mode which we can not set earlier due to
311 problems creating new read-only files */
312 if (pTcon
->unix_ext
) {
313 struct cifs_unix_set_info_args args
= {
314 .mode
= inode
->i_mode
,
317 .ctime
= NO_CHANGE_64
,
318 .atime
= NO_CHANGE_64
,
319 .mtime
= NO_CHANGE_64
,
322 CIFSSMBUnixSetInfo(xid
, pTcon
, full_path
, &args
,
324 cifs_sb
->mnt_cifs_flags
&
325 CIFS_MOUNT_MAP_SPECIAL_CHR
);
336 /* Try to reacquire byte range locks that were released when session */
337 /* to server was lost */
338 static int cifs_relock_file(struct cifsFileInfo
*cifsFile
)
342 /* BB list all locks open on this file and relock */
347 static int cifs_reopen_file(struct file
*file
, bool can_flush
)
351 struct cifs_sb_info
*cifs_sb
;
352 struct cifsTconInfo
*pTcon
;
353 struct cifsFileInfo
*pCifsFile
;
354 struct cifsInodeInfo
*pCifsInode
;
356 char *full_path
= NULL
;
358 int disposition
= FILE_OPEN
;
361 if (file
->private_data
)
362 pCifsFile
= (struct cifsFileInfo
*)file
->private_data
;
367 down(&pCifsFile
->fh_sem
);
368 if (!pCifsFile
->invalidHandle
) {
369 up(&pCifsFile
->fh_sem
);
374 if (file
->f_path
.dentry
== NULL
) {
375 cERROR(1, ("no valid name if dentry freed"));
378 goto reopen_error_exit
;
381 inode
= file
->f_path
.dentry
->d_inode
;
383 cERROR(1, ("inode not valid"));
386 goto reopen_error_exit
;
389 cifs_sb
= CIFS_SB(inode
->i_sb
);
390 pTcon
= cifs_sb
->tcon
;
392 /* can not grab rename sem here because various ops, including
393 those that already have the rename sem can end up causing writepage
394 to get called and if the server was down that means we end up here,
395 and we can never tell if the caller already has the rename_sem */
396 full_path
= build_path_from_dentry(file
->f_path
.dentry
);
397 if (full_path
== NULL
) {
400 up(&pCifsFile
->fh_sem
);
405 cFYI(1, ("inode = 0x%p file flags 0x%x for %s",
406 inode
, file
->f_flags
, full_path
));
407 desiredAccess
= cifs_convert_flags(file
->f_flags
);
414 /* Can not refresh inode by passing in file_info buf to be returned
415 by SMBOpen and then calling get_inode_info with returned buf
416 since file might have write behind data that needs to be flushed
417 and server version of file size can be stale. If we knew for sure
418 that inode was not dirty locally we could do this */
420 rc
= CIFSSMBOpen(xid
, pTcon
, full_path
, disposition
, desiredAccess
,
421 CREATE_NOT_DIR
, &netfid
, &oplock
, NULL
,
422 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
&
423 CIFS_MOUNT_MAP_SPECIAL_CHR
);
425 up(&pCifsFile
->fh_sem
);
426 cFYI(1, ("cifs_open returned 0x%x", rc
));
427 cFYI(1, ("oplock: %d", oplock
));
429 pCifsFile
->netfid
= netfid
;
430 pCifsFile
->invalidHandle
= false;
431 up(&pCifsFile
->fh_sem
);
432 pCifsInode
= CIFS_I(inode
);
435 rc
= filemap_write_and_wait(inode
->i_mapping
);
437 CIFS_I(inode
)->write_behind_rc
= rc
;
438 /* temporarily disable caching while we
439 go to server to get inode info */
440 pCifsInode
->clientCanCacheAll
= false;
441 pCifsInode
->clientCanCacheRead
= false;
443 rc
= cifs_get_inode_info_unix(&inode
,
444 full_path
, inode
->i_sb
, xid
);
446 rc
= cifs_get_inode_info(&inode
,
447 full_path
, NULL
, inode
->i_sb
,
449 } /* else we are writing out data to server already
450 and could deadlock if we tried to flush data, and
451 since we do not know if we have data that would
452 invalidate the current end of file on the server
453 we can not go to the server to get the new inod
455 if ((oplock
& 0xF) == OPLOCK_EXCLUSIVE
) {
456 pCifsInode
->clientCanCacheAll
= true;
457 pCifsInode
->clientCanCacheRead
= true;
458 cFYI(1, ("Exclusive Oplock granted on inode %p",
459 file
->f_path
.dentry
->d_inode
));
460 } else if ((oplock
& 0xF) == OPLOCK_READ
) {
461 pCifsInode
->clientCanCacheRead
= true;
462 pCifsInode
->clientCanCacheAll
= false;
464 pCifsInode
->clientCanCacheRead
= false;
465 pCifsInode
->clientCanCacheAll
= false;
467 cifs_relock_file(pCifsFile
);
476 int cifs_close(struct inode
*inode
, struct file
*file
)
480 struct cifs_sb_info
*cifs_sb
;
481 struct cifsTconInfo
*pTcon
;
482 struct cifsFileInfo
*pSMBFile
=
483 (struct cifsFileInfo
*)file
->private_data
;
487 cifs_sb
= CIFS_SB(inode
->i_sb
);
488 pTcon
= cifs_sb
->tcon
;
490 struct cifsLockInfo
*li
, *tmp
;
491 write_lock(&GlobalSMBSeslock
);
492 pSMBFile
->closePend
= true;
494 /* no sense reconnecting to close a file that is
496 if (!pTcon
->need_reconnect
) {
497 write_unlock(&GlobalSMBSeslock
);
499 while ((atomic_read(&pSMBFile
->wrtPending
) != 0)
500 && (timeout
<= 2048)) {
501 /* Give write a better chance to get to
502 server ahead of the close. We do not
503 want to add a wait_q here as it would
504 increase the memory utilization as
505 the struct would be in each open file,
506 but this should give enough time to
509 ("close delay, write pending"));
513 if (atomic_read(&pSMBFile
->wrtPending
))
514 cERROR(1, ("close with pending write"));
515 if (!pTcon
->need_reconnect
&&
516 !pSMBFile
->invalidHandle
)
517 rc
= CIFSSMBClose(xid
, pTcon
,
520 write_unlock(&GlobalSMBSeslock
);
522 write_unlock(&GlobalSMBSeslock
);
524 /* Delete any outstanding lock records.
525 We'll lose them when the file is closed anyway. */
526 mutex_lock(&pSMBFile
->lock_mutex
);
527 list_for_each_entry_safe(li
, tmp
, &pSMBFile
->llist
, llist
) {
528 list_del(&li
->llist
);
531 mutex_unlock(&pSMBFile
->lock_mutex
);
533 write_lock(&GlobalSMBSeslock
);
534 list_del(&pSMBFile
->flist
);
535 list_del(&pSMBFile
->tlist
);
536 write_unlock(&GlobalSMBSeslock
);
538 /* We waited above to give the SMBWrite a chance to issue
539 on the wire (so we do not get SMBWrite returning EBADF
540 if writepages is racing with close. Note that writepages
541 does not specify a file handle, so it is possible for a file
542 to be opened twice, and the application close the "wrong"
543 file handle - in these cases we delay long enough to allow
544 the SMBWrite to get on the wire before the SMB Close.
545 We allow total wait here over 45 seconds, more than
546 oplock break time, and more than enough to allow any write
547 to complete on the server, or to time out on the client */
548 while ((atomic_read(&pSMBFile
->wrtPending
) != 0)
549 && (timeout
<= 50000)) {
550 cERROR(1, ("writes pending, delay free of handle"));
554 kfree(file
->private_data
);
555 file
->private_data
= NULL
;
559 read_lock(&GlobalSMBSeslock
);
560 if (list_empty(&(CIFS_I(inode
)->openFileList
))) {
561 cFYI(1, ("closing last open instance for inode %p", inode
));
562 /* if the file is not open we do not know if we can cache info
563 on this inode, much less write behind and read ahead */
564 CIFS_I(inode
)->clientCanCacheRead
= false;
565 CIFS_I(inode
)->clientCanCacheAll
= false;
567 read_unlock(&GlobalSMBSeslock
);
568 if ((rc
== 0) && CIFS_I(inode
)->write_behind_rc
)
569 rc
= CIFS_I(inode
)->write_behind_rc
;
574 int cifs_closedir(struct inode
*inode
, struct file
*file
)
578 struct cifsFileInfo
*pCFileStruct
=
579 (struct cifsFileInfo
*)file
->private_data
;
582 cFYI(1, ("Closedir inode = 0x%p", inode
));
587 struct cifsTconInfo
*pTcon
;
588 struct cifs_sb_info
*cifs_sb
=
589 CIFS_SB(file
->f_path
.dentry
->d_sb
);
591 pTcon
= cifs_sb
->tcon
;
593 cFYI(1, ("Freeing private data in close dir"));
594 write_lock(&GlobalSMBSeslock
);
595 if (!pCFileStruct
->srch_inf
.endOfSearch
&&
596 !pCFileStruct
->invalidHandle
) {
597 pCFileStruct
->invalidHandle
= true;
598 write_unlock(&GlobalSMBSeslock
);
599 rc
= CIFSFindClose(xid
, pTcon
, pCFileStruct
->netfid
);
600 cFYI(1, ("Closing uncompleted readdir with rc %d",
602 /* not much we can do if it fails anyway, ignore rc */
605 write_unlock(&GlobalSMBSeslock
);
606 ptmp
= pCFileStruct
->srch_inf
.ntwrk_buf_start
;
608 cFYI(1, ("closedir free smb buf in srch struct"));
609 pCFileStruct
->srch_inf
.ntwrk_buf_start
= NULL
;
610 if (pCFileStruct
->srch_inf
.smallBuf
)
611 cifs_small_buf_release(ptmp
);
613 cifs_buf_release(ptmp
);
615 kfree(file
->private_data
);
616 file
->private_data
= NULL
;
618 /* BB can we lock the filestruct while this is going on? */
623 static int store_file_lock(struct cifsFileInfo
*fid
, __u64 len
,
624 __u64 offset
, __u8 lockType
)
626 struct cifsLockInfo
*li
=
627 kmalloc(sizeof(struct cifsLockInfo
), GFP_KERNEL
);
633 mutex_lock(&fid
->lock_mutex
);
634 list_add(&li
->llist
, &fid
->llist
);
635 mutex_unlock(&fid
->lock_mutex
);
639 int cifs_lock(struct file
*file
, int cmd
, struct file_lock
*pfLock
)
645 bool wait_flag
= false;
646 struct cifs_sb_info
*cifs_sb
;
647 struct cifsTconInfo
*pTcon
;
649 __u8 lockType
= LOCKING_ANDX_LARGE_FILES
;
652 length
= 1 + pfLock
->fl_end
- pfLock
->fl_start
;
656 cFYI(1, ("Lock parm: 0x%x flockflags: "
657 "0x%x flocktype: 0x%x start: %lld end: %lld",
658 cmd
, pfLock
->fl_flags
, pfLock
->fl_type
, pfLock
->fl_start
,
661 if (pfLock
->fl_flags
& FL_POSIX
)
663 if (pfLock
->fl_flags
& FL_FLOCK
)
665 if (pfLock
->fl_flags
& FL_SLEEP
) {
666 cFYI(1, ("Blocking lock"));
669 if (pfLock
->fl_flags
& FL_ACCESS
)
670 cFYI(1, ("Process suspended by mandatory locking - "
671 "not implemented yet"));
672 if (pfLock
->fl_flags
& FL_LEASE
)
673 cFYI(1, ("Lease on file - not implemented yet"));
674 if (pfLock
->fl_flags
&
675 (~(FL_POSIX
| FL_FLOCK
| FL_SLEEP
| FL_ACCESS
| FL_LEASE
)))
676 cFYI(1, ("Unknown lock flags 0x%x", pfLock
->fl_flags
));
678 if (pfLock
->fl_type
== F_WRLCK
) {
679 cFYI(1, ("F_WRLCK "));
681 } else if (pfLock
->fl_type
== F_UNLCK
) {
682 cFYI(1, ("F_UNLCK"));
684 /* Check if unlock includes more than
686 } else if (pfLock
->fl_type
== F_RDLCK
) {
687 cFYI(1, ("F_RDLCK"));
688 lockType
|= LOCKING_ANDX_SHARED_LOCK
;
690 } else if (pfLock
->fl_type
== F_EXLCK
) {
691 cFYI(1, ("F_EXLCK"));
693 } else if (pfLock
->fl_type
== F_SHLCK
) {
694 cFYI(1, ("F_SHLCK"));
695 lockType
|= LOCKING_ANDX_SHARED_LOCK
;
698 cFYI(1, ("Unknown type of lock"));
700 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
701 pTcon
= cifs_sb
->tcon
;
703 if (file
->private_data
== NULL
) {
707 netfid
= ((struct cifsFileInfo
*)file
->private_data
)->netfid
;
709 posix_locking
= (cifs_sb
->tcon
->ses
->capabilities
& CAP_UNIX
) &&
710 (CIFS_UNIX_FCNTL_CAP
& le64_to_cpu(cifs_sb
->tcon
->fsUnixInfo
.Capability
));
712 /* BB add code here to normalize offset and length to
713 account for negative length which we can not accept over the
718 if (lockType
& LOCKING_ANDX_SHARED_LOCK
)
719 posix_lock_type
= CIFS_RDLCK
;
721 posix_lock_type
= CIFS_WRLCK
;
722 rc
= CIFSSMBPosixLock(xid
, pTcon
, netfid
, 1 /* get */,
724 posix_lock_type
, wait_flag
);
729 /* BB we could chain these into one lock request BB */
730 rc
= CIFSSMBLock(xid
, pTcon
, netfid
, length
, pfLock
->fl_start
,
731 0, 1, lockType
, 0 /* wait flag */ );
733 rc
= CIFSSMBLock(xid
, pTcon
, netfid
, length
,
734 pfLock
->fl_start
, 1 /* numUnlock */ ,
735 0 /* numLock */ , lockType
,
737 pfLock
->fl_type
= F_UNLCK
;
739 cERROR(1, ("Error unlocking previously locked "
740 "range %d during test of lock", rc
));
744 /* if rc == ERR_SHARING_VIOLATION ? */
745 rc
= 0; /* do not change lock type to unlock
746 since range in use */
753 if (!numLock
&& !numUnlock
) {
754 /* if no lock or unlock then nothing
755 to do since we do not know what it is */
762 if (lockType
& LOCKING_ANDX_SHARED_LOCK
)
763 posix_lock_type
= CIFS_RDLCK
;
765 posix_lock_type
= CIFS_WRLCK
;
768 posix_lock_type
= CIFS_UNLCK
;
770 rc
= CIFSSMBPosixLock(xid
, pTcon
, netfid
, 0 /* set */,
772 posix_lock_type
, wait_flag
);
774 struct cifsFileInfo
*fid
=
775 (struct cifsFileInfo
*)file
->private_data
;
778 rc
= CIFSSMBLock(xid
, pTcon
, netfid
, length
,
780 0, numLock
, lockType
, wait_flag
);
783 /* For Windows locks we must store them. */
784 rc
= store_file_lock(fid
, length
,
785 pfLock
->fl_start
, lockType
);
787 } else if (numUnlock
) {
788 /* For each stored lock that this unlock overlaps
789 completely, unlock it. */
791 struct cifsLockInfo
*li
, *tmp
;
794 mutex_lock(&fid
->lock_mutex
);
795 list_for_each_entry_safe(li
, tmp
, &fid
->llist
, llist
) {
796 if (pfLock
->fl_start
<= li
->offset
&&
797 (pfLock
->fl_start
+ length
) >=
798 (li
->offset
+ li
->length
)) {
799 stored_rc
= CIFSSMBLock(xid
, pTcon
,
801 li
->length
, li
->offset
,
802 1, 0, li
->type
, false);
806 list_del(&li
->llist
);
810 mutex_unlock(&fid
->lock_mutex
);
814 if (pfLock
->fl_flags
& FL_POSIX
)
815 posix_lock_file_wait(file
, pfLock
);
820 ssize_t
cifs_user_write(struct file
*file
, const char __user
*write_data
,
821 size_t write_size
, loff_t
*poffset
)
824 unsigned int bytes_written
= 0;
825 unsigned int total_written
;
826 struct cifs_sb_info
*cifs_sb
;
827 struct cifsTconInfo
*pTcon
;
829 struct cifsFileInfo
*open_file
;
831 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
833 pTcon
= cifs_sb
->tcon
;
836 (" write %d bytes to offset %lld of %s", write_size,
837 *poffset, file->f_path.dentry->d_name.name)); */
839 if (file
->private_data
== NULL
)
841 open_file
= (struct cifsFileInfo
*) file
->private_data
;
843 rc
= generic_write_checks(file
, poffset
, &write_size
, 0);
849 if (*poffset
> file
->f_path
.dentry
->d_inode
->i_size
)
850 long_op
= CIFS_VLONG_OP
; /* writes past EOF take long time */
852 long_op
= CIFS_LONG_OP
;
854 for (total_written
= 0; write_size
> total_written
;
855 total_written
+= bytes_written
) {
857 while (rc
== -EAGAIN
) {
858 if (file
->private_data
== NULL
) {
859 /* file has been closed on us */
861 /* if we have gotten here we have written some data
862 and blocked, and the file has been freed on us while
863 we blocked so return what we managed to write */
864 return total_written
;
866 if (open_file
->closePend
) {
869 return total_written
;
873 if (open_file
->invalidHandle
) {
874 /* we could deadlock if we called
875 filemap_fdatawait from here so tell
876 reopen_file not to flush data to server
878 rc
= cifs_reopen_file(file
, false);
883 rc
= CIFSSMBWrite(xid
, pTcon
,
885 min_t(const int, cifs_sb
->wsize
,
886 write_size
- total_written
),
887 *poffset
, &bytes_written
,
888 NULL
, write_data
+ total_written
, long_op
);
890 if (rc
|| (bytes_written
== 0)) {
898 *poffset
+= bytes_written
;
899 long_op
= CIFS_STD_OP
; /* subsequent writes fast -
900 15 seconds is plenty */
903 cifs_stats_bytes_written(pTcon
, total_written
);
905 /* since the write may have blocked check these pointers again */
906 if ((file
->f_path
.dentry
) && (file
->f_path
.dentry
->d_inode
)) {
907 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
908 /* Do not update local mtime - server will set its actual value on write
909 * inode->i_ctime = inode->i_mtime =
910 * current_fs_time(inode->i_sb);*/
911 if (total_written
> 0) {
912 spin_lock(&inode
->i_lock
);
913 if (*poffset
> file
->f_path
.dentry
->d_inode
->i_size
)
914 i_size_write(file
->f_path
.dentry
->d_inode
,
916 spin_unlock(&inode
->i_lock
);
918 mark_inode_dirty_sync(file
->f_path
.dentry
->d_inode
);
921 return total_written
;
924 static ssize_t
cifs_write(struct file
*file
, const char *write_data
,
925 size_t write_size
, loff_t
*poffset
)
928 unsigned int bytes_written
= 0;
929 unsigned int total_written
;
930 struct cifs_sb_info
*cifs_sb
;
931 struct cifsTconInfo
*pTcon
;
933 struct cifsFileInfo
*open_file
;
935 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
937 pTcon
= cifs_sb
->tcon
;
939 cFYI(1, ("write %zd bytes to offset %lld of %s", write_size
,
940 *poffset
, file
->f_path
.dentry
->d_name
.name
));
942 if (file
->private_data
== NULL
)
944 open_file
= (struct cifsFileInfo
*)file
->private_data
;
948 if (*poffset
> file
->f_path
.dentry
->d_inode
->i_size
)
949 long_op
= CIFS_VLONG_OP
; /* writes past EOF can be slow */
951 long_op
= CIFS_LONG_OP
;
953 for (total_written
= 0; write_size
> total_written
;
954 total_written
+= bytes_written
) {
956 while (rc
== -EAGAIN
) {
957 if (file
->private_data
== NULL
) {
958 /* file has been closed on us */
960 /* if we have gotten here we have written some data
961 and blocked, and the file has been freed on us
962 while we blocked so return what we managed to
964 return total_written
;
966 if (open_file
->closePend
) {
969 return total_written
;
973 if (open_file
->invalidHandle
) {
974 /* we could deadlock if we called
975 filemap_fdatawait from here so tell
976 reopen_file not to flush data to
978 rc
= cifs_reopen_file(file
, false);
982 if (experimEnabled
|| (pTcon
->ses
->server
&&
983 ((pTcon
->ses
->server
->secMode
&
984 (SECMODE_SIGN_REQUIRED
| SECMODE_SIGN_ENABLED
))
989 len
= min((size_t)cifs_sb
->wsize
,
990 write_size
- total_written
);
991 /* iov[0] is reserved for smb header */
992 iov
[1].iov_base
= (char *)write_data
+
994 iov
[1].iov_len
= len
;
995 rc
= CIFSSMBWrite2(xid
, pTcon
,
996 open_file
->netfid
, len
,
997 *poffset
, &bytes_written
,
1000 rc
= CIFSSMBWrite(xid
, pTcon
,
1002 min_t(const int, cifs_sb
->wsize
,
1003 write_size
- total_written
),
1004 *poffset
, &bytes_written
,
1005 write_data
+ total_written
,
1008 if (rc
|| (bytes_written
== 0)) {
1016 *poffset
+= bytes_written
;
1017 long_op
= CIFS_STD_OP
; /* subsequent writes fast -
1018 15 seconds is plenty */
1021 cifs_stats_bytes_written(pTcon
, total_written
);
1023 /* since the write may have blocked check these pointers again */
1024 if ((file
->f_path
.dentry
) && (file
->f_path
.dentry
->d_inode
)) {
1025 /*BB We could make this contingent on superblock ATIME flag too */
1026 /* file->f_path.dentry->d_inode->i_ctime =
1027 file->f_path.dentry->d_inode->i_mtime = CURRENT_TIME;*/
1028 if (total_written
> 0) {
1029 spin_lock(&file
->f_path
.dentry
->d_inode
->i_lock
);
1030 if (*poffset
> file
->f_path
.dentry
->d_inode
->i_size
)
1031 i_size_write(file
->f_path
.dentry
->d_inode
,
1033 spin_unlock(&file
->f_path
.dentry
->d_inode
->i_lock
);
1035 mark_inode_dirty_sync(file
->f_path
.dentry
->d_inode
);
1038 return total_written
;
1041 #ifdef CONFIG_CIFS_EXPERIMENTAL
1042 struct cifsFileInfo
*find_readable_file(struct cifsInodeInfo
*cifs_inode
)
1044 struct cifsFileInfo
*open_file
= NULL
;
1046 read_lock(&GlobalSMBSeslock
);
1047 /* we could simply get the first_list_entry since write-only entries
1048 are always at the end of the list but since the first entry might
1049 have a close pending, we go through the whole list */
1050 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
1051 if (open_file
->closePend
)
1053 if (open_file
->pfile
&& ((open_file
->pfile
->f_flags
& O_RDWR
) ||
1054 (open_file
->pfile
->f_flags
& O_RDONLY
))) {
1055 if (!open_file
->invalidHandle
) {
1056 /* found a good file */
1057 /* lock it so it will not be closed on us */
1058 atomic_inc(&open_file
->wrtPending
);
1059 read_unlock(&GlobalSMBSeslock
);
1061 } /* else might as well continue, and look for
1062 another, or simply have the caller reopen it
1063 again rather than trying to fix this handle */
1064 } else /* write only file */
1065 break; /* write only files are last so must be done */
1067 read_unlock(&GlobalSMBSeslock
);
1072 struct cifsFileInfo
*find_writable_file(struct cifsInodeInfo
*cifs_inode
)
1074 struct cifsFileInfo
*open_file
;
1075 bool any_available
= false;
1078 /* Having a null inode here (because mapping->host was set to zero by
1079 the VFS or MM) should not happen but we had reports of on oops (due to
1080 it being zero) during stress testcases so we need to check for it */
1082 if (cifs_inode
== NULL
) {
1083 cERROR(1, ("Null inode passed to cifs_writeable_file"));
1088 read_lock(&GlobalSMBSeslock
);
1090 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
1091 if (open_file
->closePend
||
1092 (!any_available
&& open_file
->pid
!= current
->tgid
))
1095 if (open_file
->pfile
&&
1096 ((open_file
->pfile
->f_flags
& O_RDWR
) ||
1097 (open_file
->pfile
->f_flags
& O_WRONLY
))) {
1098 atomic_inc(&open_file
->wrtPending
);
1100 if (!open_file
->invalidHandle
) {
1101 /* found a good writable file */
1102 read_unlock(&GlobalSMBSeslock
);
1106 read_unlock(&GlobalSMBSeslock
);
1107 /* Had to unlock since following call can block */
1108 rc
= cifs_reopen_file(open_file
->pfile
, false);
1110 if (!open_file
->closePend
)
1112 else { /* start over in case this was deleted */
1113 /* since the list could be modified */
1114 read_lock(&GlobalSMBSeslock
);
1115 atomic_dec(&open_file
->wrtPending
);
1116 goto refind_writable
;
1120 /* if it fails, try another handle if possible -
1121 (we can not do this if closePending since
1122 loop could be modified - in which case we
1123 have to start at the beginning of the list
1124 again. Note that it would be bad
1125 to hold up writepages here (rather than
1126 in caller) with continuous retries */
1127 cFYI(1, ("wp failed on reopen file"));
1128 read_lock(&GlobalSMBSeslock
);
1129 /* can not use this handle, no write
1130 pending on this one after all */
1131 atomic_dec(&open_file
->wrtPending
);
1133 if (open_file
->closePend
) /* list could have changed */
1134 goto refind_writable
;
1135 /* else we simply continue to the next entry. Thus
1136 we do not loop on reopen errors. If we
1137 can not reopen the file, for example if we
1138 reconnected to a server with another client
1139 racing to delete or lock the file we would not
1140 make progress if we restarted before the beginning
1141 of the loop here. */
1144 /* couldn't find useable FH with same pid, try any available */
1145 if (!any_available
) {
1146 any_available
= true;
1147 goto refind_writable
;
1149 read_unlock(&GlobalSMBSeslock
);
1153 static int cifs_partialpagewrite(struct page
*page
, unsigned from
, unsigned to
)
1155 struct address_space
*mapping
= page
->mapping
;
1156 loff_t offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1159 int bytes_written
= 0;
1160 struct cifs_sb_info
*cifs_sb
;
1161 struct cifsTconInfo
*pTcon
;
1162 struct inode
*inode
;
1163 struct cifsFileInfo
*open_file
;
1165 if (!mapping
|| !mapping
->host
)
1168 inode
= page
->mapping
->host
;
1169 cifs_sb
= CIFS_SB(inode
->i_sb
);
1170 pTcon
= cifs_sb
->tcon
;
1172 offset
+= (loff_t
)from
;
1173 write_data
= kmap(page
);
1176 if ((to
> PAGE_CACHE_SIZE
) || (from
> to
)) {
1181 /* racing with truncate? */
1182 if (offset
> mapping
->host
->i_size
) {
1184 return 0; /* don't care */
1187 /* check to make sure that we are not extending the file */
1188 if (mapping
->host
->i_size
- offset
< (loff_t
)to
)
1189 to
= (unsigned)(mapping
->host
->i_size
- offset
);
1191 open_file
= find_writable_file(CIFS_I(mapping
->host
));
1193 bytes_written
= cifs_write(open_file
->pfile
, write_data
,
1195 atomic_dec(&open_file
->wrtPending
);
1196 /* Does mm or vfs already set times? */
1197 inode
->i_atime
= inode
->i_mtime
= current_fs_time(inode
->i_sb
);
1198 if ((bytes_written
> 0) && (offset
))
1200 else if (bytes_written
< 0)
1203 cFYI(1, ("No writeable filehandles for inode"));
1211 static int cifs_writepages(struct address_space
*mapping
,
1212 struct writeback_control
*wbc
)
1214 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1215 unsigned int bytes_to_write
;
1216 unsigned int bytes_written
;
1217 struct cifs_sb_info
*cifs_sb
;
1221 int range_whole
= 0;
1228 struct cifsFileInfo
*open_file
;
1230 struct pagevec pvec
;
1235 cifs_sb
= CIFS_SB(mapping
->host
->i_sb
);
1238 * If wsize is smaller that the page cache size, default to writing
1239 * one page at a time via cifs_writepage
1241 if (cifs_sb
->wsize
< PAGE_CACHE_SIZE
)
1242 return generic_writepages(mapping
, wbc
);
1244 if ((cifs_sb
->tcon
->ses
) && (cifs_sb
->tcon
->ses
->server
))
1245 if (cifs_sb
->tcon
->ses
->server
->secMode
&
1246 (SECMODE_SIGN_REQUIRED
| SECMODE_SIGN_ENABLED
))
1247 if (!experimEnabled
)
1248 return generic_writepages(mapping
, wbc
);
1250 iov
= kmalloc(32 * sizeof(struct kvec
), GFP_KERNEL
);
1252 return generic_writepages(mapping
, wbc
);
1256 * BB: Is this meaningful for a non-block-device file system?
1257 * If it is, we should test it again after we do I/O
1259 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
1260 wbc
->encountered_congestion
= 1;
1267 pagevec_init(&pvec
, 0);
1268 if (wbc
->range_cyclic
) {
1269 index
= mapping
->writeback_index
; /* Start from prev offset */
1272 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1273 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1274 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1279 while (!done
&& (index
<= end
) &&
1280 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1281 PAGECACHE_TAG_DIRTY
,
1282 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1))) {
1291 for (i
= 0; i
< nr_pages
; i
++) {
1292 page
= pvec
.pages
[i
];
1294 * At this point we hold neither mapping->tree_lock nor
1295 * lock on the page itself: the page may be truncated or
1296 * invalidated (changing page->mapping to NULL), or even
1297 * swizzled back from swapper_space to tmpfs file
1303 else if (!trylock_page(page
))
1306 if (unlikely(page
->mapping
!= mapping
)) {
1311 if (!wbc
->range_cyclic
&& page
->index
> end
) {
1317 if (next
&& (page
->index
!= next
)) {
1318 /* Not next consecutive page */
1323 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1324 wait_on_page_writeback(page
);
1326 if (PageWriteback(page
) ||
1327 !clear_page_dirty_for_io(page
)) {
1333 * This actually clears the dirty bit in the radix tree.
1334 * See cifs_writepage() for more commentary.
1336 set_page_writeback(page
);
1338 if (page_offset(page
) >= mapping
->host
->i_size
) {
1341 end_page_writeback(page
);
1346 * BB can we get rid of this? pages are held by pvec
1348 page_cache_get(page
);
1350 len
= min(mapping
->host
->i_size
- page_offset(page
),
1351 (loff_t
)PAGE_CACHE_SIZE
);
1353 /* reserve iov[0] for the smb header */
1355 iov
[n_iov
].iov_base
= kmap(page
);
1356 iov
[n_iov
].iov_len
= len
;
1357 bytes_to_write
+= len
;
1361 offset
= page_offset(page
);
1363 next
= page
->index
+ 1;
1364 if (bytes_to_write
+ PAGE_CACHE_SIZE
> cifs_sb
->wsize
)
1368 /* Search for a writable handle every time we call
1369 * CIFSSMBWrite2. We can't rely on the last handle
1370 * we used to still be valid
1372 open_file
= find_writable_file(CIFS_I(mapping
->host
));
1374 cERROR(1, ("No writable handles for inode"));
1377 rc
= CIFSSMBWrite2(xid
, cifs_sb
->tcon
,
1379 bytes_to_write
, offset
,
1380 &bytes_written
, iov
, n_iov
,
1382 atomic_dec(&open_file
->wrtPending
);
1383 if (rc
|| bytes_written
< bytes_to_write
) {
1384 cERROR(1, ("Write2 ret %d, wrote %d",
1385 rc
, bytes_written
));
1386 /* BB what if continued retry is
1387 requested via mount flags? */
1389 set_bit(AS_ENOSPC
, &mapping
->flags
);
1391 set_bit(AS_EIO
, &mapping
->flags
);
1393 cifs_stats_bytes_written(cifs_sb
->tcon
,
1397 for (i
= 0; i
< n_iov
; i
++) {
1398 page
= pvec
.pages
[first
+ i
];
1399 /* Should we also set page error on
1400 success rc but too little data written? */
1401 /* BB investigate retry logic on temporary
1402 server crash cases and how recovery works
1403 when page marked as error */
1408 end_page_writeback(page
);
1409 page_cache_release(page
);
1411 if ((wbc
->nr_to_write
-= n_iov
) <= 0)
1415 /* Need to re-find the pages we skipped */
1416 index
= pvec
.pages
[0]->index
+ 1;
1418 pagevec_release(&pvec
);
1420 if (!scanned
&& !done
) {
1422 * We hit the last page and there is more work to be done: wrap
1423 * back to the start of the file
1429 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1430 mapping
->writeback_index
= index
;
1437 static int cifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1443 /* BB add check for wbc flags */
1444 page_cache_get(page
);
1445 if (!PageUptodate(page
))
1446 cFYI(1, ("ppw - page not up to date"));
1449 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1451 * A writepage() implementation always needs to do either this,
1452 * or re-dirty the page with "redirty_page_for_writepage()" in
1453 * the case of a failure.
1455 * Just unlocking the page will cause the radix tree tag-bits
1456 * to fail to update with the state of the page correctly.
1458 set_page_writeback(page
);
1459 rc
= cifs_partialpagewrite(page
, 0, PAGE_CACHE_SIZE
);
1460 SetPageUptodate(page
); /* BB add check for error and Clearuptodate? */
1462 end_page_writeback(page
);
1463 page_cache_release(page
);
1468 static int cifs_write_end(struct file
*file
, struct address_space
*mapping
,
1469 loff_t pos
, unsigned len
, unsigned copied
,
1470 struct page
*page
, void *fsdata
)
1473 struct inode
*inode
= mapping
->host
;
1475 cFYI(1, ("write_end for page %p from pos %lld with %d bytes",
1476 page
, pos
, copied
));
1478 if (PageChecked(page
)) {
1480 SetPageUptodate(page
);
1481 ClearPageChecked(page
);
1482 } else if (!PageUptodate(page
) && copied
== PAGE_CACHE_SIZE
)
1483 SetPageUptodate(page
);
1485 if (!PageUptodate(page
)) {
1487 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1491 /* this is probably better than directly calling
1492 partialpage_write since in this function the file handle is
1493 known which we might as well leverage */
1494 /* BB check if anything else missing out of ppw
1495 such as updating last write time */
1496 page_data
= kmap(page
);
1497 rc
= cifs_write(file
, page_data
+ offset
, copied
, &pos
);
1498 /* if (rc < 0) should we set writebehind rc? */
1505 set_page_dirty(page
);
1509 spin_lock(&inode
->i_lock
);
1510 if (pos
> inode
->i_size
)
1511 i_size_write(inode
, pos
);
1512 spin_unlock(&inode
->i_lock
);
1516 page_cache_release(page
);
1521 int cifs_fsync(struct file
*file
, struct dentry
*dentry
, int datasync
)
1525 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1529 cFYI(1, ("Sync file - name: %s datasync: 0x%x",
1530 dentry
->d_name
.name
, datasync
));
1532 rc
= filemap_write_and_wait(inode
->i_mapping
);
1534 rc
= CIFS_I(inode
)->write_behind_rc
;
1535 CIFS_I(inode
)->write_behind_rc
= 0;
1541 /* static void cifs_sync_page(struct page *page)
1543 struct address_space *mapping;
1544 struct inode *inode;
1545 unsigned long index = page->index;
1546 unsigned int rpages = 0;
1549 cFYI(1, ("sync page %p",page));
1550 mapping = page->mapping;
1553 inode = mapping->host;
1557 /* fill in rpages then
1558 result = cifs_pagein_inode(inode, index, rpages); */ /* BB finish */
1560 /* cFYI(1, ("rpages is %d for sync page of Index %ld", rpages, index));
1570 * As file closes, flush all cached write data for this inode checking
1571 * for write behind errors.
1573 int cifs_flush(struct file
*file
, fl_owner_t id
)
1575 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1578 /* Rather than do the steps manually:
1579 lock the inode for writing
1580 loop through pages looking for write behind data (dirty pages)
1581 coalesce into contiguous 16K (or smaller) chunks to write to server
1582 send to server (prefer in parallel)
1583 deal with writebehind errors
1584 unlock inode for writing
1585 filemapfdatawrite appears easier for the time being */
1587 rc
= filemap_fdatawrite(inode
->i_mapping
);
1588 /* reset wb rc if we were able to write out dirty pages */
1590 rc
= CIFS_I(inode
)->write_behind_rc
;
1591 CIFS_I(inode
)->write_behind_rc
= 0;
1594 cFYI(1, ("Flush inode %p file %p rc %d", inode
, file
, rc
));
1599 ssize_t
cifs_user_read(struct file
*file
, char __user
*read_data
,
1600 size_t read_size
, loff_t
*poffset
)
1603 unsigned int bytes_read
= 0;
1604 unsigned int total_read
= 0;
1605 unsigned int current_read_size
;
1606 struct cifs_sb_info
*cifs_sb
;
1607 struct cifsTconInfo
*pTcon
;
1609 struct cifsFileInfo
*open_file
;
1610 char *smb_read_data
;
1611 char __user
*current_offset
;
1612 struct smb_com_read_rsp
*pSMBr
;
1615 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1616 pTcon
= cifs_sb
->tcon
;
1618 if (file
->private_data
== NULL
) {
1622 open_file
= (struct cifsFileInfo
*)file
->private_data
;
1624 if ((file
->f_flags
& O_ACCMODE
) == O_WRONLY
)
1625 cFYI(1, ("attempting read on write only file instance"));
1627 for (total_read
= 0, current_offset
= read_data
;
1628 read_size
> total_read
;
1629 total_read
+= bytes_read
, current_offset
+= bytes_read
) {
1630 current_read_size
= min_t(const int, read_size
- total_read
,
1633 smb_read_data
= NULL
;
1634 while (rc
== -EAGAIN
) {
1635 int buf_type
= CIFS_NO_BUFFER
;
1636 if ((open_file
->invalidHandle
) &&
1637 (!open_file
->closePend
)) {
1638 rc
= cifs_reopen_file(file
, true);
1642 rc
= CIFSSMBRead(xid
, pTcon
,
1644 current_read_size
, *poffset
,
1645 &bytes_read
, &smb_read_data
,
1647 pSMBr
= (struct smb_com_read_rsp
*)smb_read_data
;
1648 if (smb_read_data
) {
1649 if (copy_to_user(current_offset
,
1651 4 /* RFC1001 length field */ +
1652 le16_to_cpu(pSMBr
->DataOffset
),
1656 if (buf_type
== CIFS_SMALL_BUFFER
)
1657 cifs_small_buf_release(smb_read_data
);
1658 else if (buf_type
== CIFS_LARGE_BUFFER
)
1659 cifs_buf_release(smb_read_data
);
1660 smb_read_data
= NULL
;
1663 if (rc
|| (bytes_read
== 0)) {
1671 cifs_stats_bytes_read(pTcon
, bytes_read
);
1672 *poffset
+= bytes_read
;
1680 static ssize_t
cifs_read(struct file
*file
, char *read_data
, size_t read_size
,
1684 unsigned int bytes_read
= 0;
1685 unsigned int total_read
;
1686 unsigned int current_read_size
;
1687 struct cifs_sb_info
*cifs_sb
;
1688 struct cifsTconInfo
*pTcon
;
1690 char *current_offset
;
1691 struct cifsFileInfo
*open_file
;
1692 int buf_type
= CIFS_NO_BUFFER
;
1695 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1696 pTcon
= cifs_sb
->tcon
;
1698 if (file
->private_data
== NULL
) {
1702 open_file
= (struct cifsFileInfo
*)file
->private_data
;
1704 if ((file
->f_flags
& O_ACCMODE
) == O_WRONLY
)
1705 cFYI(1, ("attempting read on write only file instance"));
1707 for (total_read
= 0, current_offset
= read_data
;
1708 read_size
> total_read
;
1709 total_read
+= bytes_read
, current_offset
+= bytes_read
) {
1710 current_read_size
= min_t(const int, read_size
- total_read
,
1712 /* For windows me and 9x we do not want to request more
1713 than it negotiated since it will refuse the read then */
1715 !(pTcon
->ses
->capabilities
& CAP_LARGE_FILES
)) {
1716 current_read_size
= min_t(const int, current_read_size
,
1717 pTcon
->ses
->server
->maxBuf
- 128);
1720 while (rc
== -EAGAIN
) {
1721 if ((open_file
->invalidHandle
) &&
1722 (!open_file
->closePend
)) {
1723 rc
= cifs_reopen_file(file
, true);
1727 rc
= CIFSSMBRead(xid
, pTcon
,
1729 current_read_size
, *poffset
,
1730 &bytes_read
, ¤t_offset
,
1733 if (rc
|| (bytes_read
== 0)) {
1741 cifs_stats_bytes_read(pTcon
, total_read
);
1742 *poffset
+= bytes_read
;
1749 int cifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1751 struct dentry
*dentry
= file
->f_path
.dentry
;
1755 rc
= cifs_revalidate(dentry
);
1757 cFYI(1, ("Validation prior to mmap failed, error=%d", rc
));
1761 rc
= generic_file_mmap(file
, vma
);
1767 static void cifs_copy_cache_pages(struct address_space
*mapping
,
1768 struct list_head
*pages
, int bytes_read
, char *data
,
1769 struct pagevec
*plru_pvec
)
1774 while (bytes_read
> 0) {
1775 if (list_empty(pages
))
1778 page
= list_entry(pages
->prev
, struct page
, lru
);
1779 list_del(&page
->lru
);
1781 if (add_to_page_cache(page
, mapping
, page
->index
,
1783 page_cache_release(page
);
1784 cFYI(1, ("Add page cache failed"));
1785 data
+= PAGE_CACHE_SIZE
;
1786 bytes_read
-= PAGE_CACHE_SIZE
;
1790 target
= kmap_atomic(page
, KM_USER0
);
1792 if (PAGE_CACHE_SIZE
> bytes_read
) {
1793 memcpy(target
, data
, bytes_read
);
1794 /* zero the tail end of this partial page */
1795 memset(target
+ bytes_read
, 0,
1796 PAGE_CACHE_SIZE
- bytes_read
);
1799 memcpy(target
, data
, PAGE_CACHE_SIZE
);
1800 bytes_read
-= PAGE_CACHE_SIZE
;
1802 kunmap_atomic(target
, KM_USER0
);
1804 flush_dcache_page(page
);
1805 SetPageUptodate(page
);
1807 if (!pagevec_add(plru_pvec
, page
))
1808 __pagevec_lru_add_file(plru_pvec
);
1809 data
+= PAGE_CACHE_SIZE
;
1814 static int cifs_readpages(struct file
*file
, struct address_space
*mapping
,
1815 struct list_head
*page_list
, unsigned num_pages
)
1821 struct cifs_sb_info
*cifs_sb
;
1822 struct cifsTconInfo
*pTcon
;
1823 unsigned int bytes_read
= 0;
1824 unsigned int read_size
, i
;
1825 char *smb_read_data
= NULL
;
1826 struct smb_com_read_rsp
*pSMBr
;
1827 struct pagevec lru_pvec
;
1828 struct cifsFileInfo
*open_file
;
1829 int buf_type
= CIFS_NO_BUFFER
;
1832 if (file
->private_data
== NULL
) {
1836 open_file
= (struct cifsFileInfo
*)file
->private_data
;
1837 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1838 pTcon
= cifs_sb
->tcon
;
1840 pagevec_init(&lru_pvec
, 0);
1841 cFYI(DBG2
, ("rpages: num pages %d", num_pages
));
1842 for (i
= 0; i
< num_pages
; ) {
1843 unsigned contig_pages
;
1844 struct page
*tmp_page
;
1845 unsigned long expected_index
;
1847 if (list_empty(page_list
))
1850 page
= list_entry(page_list
->prev
, struct page
, lru
);
1851 offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1853 /* count adjacent pages that we will read into */
1856 list_entry(page_list
->prev
, struct page
, lru
)->index
;
1857 list_for_each_entry_reverse(tmp_page
, page_list
, lru
) {
1858 if (tmp_page
->index
== expected_index
) {
1864 if (contig_pages
+ i
> num_pages
)
1865 contig_pages
= num_pages
- i
;
1867 /* for reads over a certain size could initiate async
1870 read_size
= contig_pages
* PAGE_CACHE_SIZE
;
1871 /* Read size needs to be in multiples of one page */
1872 read_size
= min_t(const unsigned int, read_size
,
1873 cifs_sb
->rsize
& PAGE_CACHE_MASK
);
1874 cFYI(DBG2
, ("rpages: read size 0x%x contiguous pages %d",
1875 read_size
, contig_pages
));
1877 while (rc
== -EAGAIN
) {
1878 if ((open_file
->invalidHandle
) &&
1879 (!open_file
->closePend
)) {
1880 rc
= cifs_reopen_file(file
, true);
1885 rc
= CIFSSMBRead(xid
, pTcon
,
1888 &bytes_read
, &smb_read_data
,
1890 /* BB more RC checks ? */
1891 if (rc
== -EAGAIN
) {
1892 if (smb_read_data
) {
1893 if (buf_type
== CIFS_SMALL_BUFFER
)
1894 cifs_small_buf_release(smb_read_data
);
1895 else if (buf_type
== CIFS_LARGE_BUFFER
)
1896 cifs_buf_release(smb_read_data
);
1897 smb_read_data
= NULL
;
1901 if ((rc
< 0) || (smb_read_data
== NULL
)) {
1902 cFYI(1, ("Read error in readpages: %d", rc
));
1904 } else if (bytes_read
> 0) {
1905 task_io_account_read(bytes_read
);
1906 pSMBr
= (struct smb_com_read_rsp
*)smb_read_data
;
1907 cifs_copy_cache_pages(mapping
, page_list
, bytes_read
,
1908 smb_read_data
+ 4 /* RFC1001 hdr */ +
1909 le16_to_cpu(pSMBr
->DataOffset
), &lru_pvec
);
1911 i
+= bytes_read
>> PAGE_CACHE_SHIFT
;
1912 cifs_stats_bytes_read(pTcon
, bytes_read
);
1913 if ((bytes_read
& PAGE_CACHE_MASK
) != bytes_read
) {
1914 i
++; /* account for partial page */
1916 /* server copy of file can have smaller size
1918 /* BB do we need to verify this common case ?
1919 this case is ok - if we are at server EOF
1920 we will hit it on next read */
1925 cFYI(1, ("No bytes read (%d) at offset %lld . "
1926 "Cleaning remaining pages from readahead list",
1927 bytes_read
, offset
));
1928 /* BB turn off caching and do new lookup on
1929 file size at server? */
1932 if (smb_read_data
) {
1933 if (buf_type
== CIFS_SMALL_BUFFER
)
1934 cifs_small_buf_release(smb_read_data
);
1935 else if (buf_type
== CIFS_LARGE_BUFFER
)
1936 cifs_buf_release(smb_read_data
);
1937 smb_read_data
= NULL
;
1942 pagevec_lru_add_file(&lru_pvec
);
1944 /* need to free smb_read_data buf before exit */
1945 if (smb_read_data
) {
1946 if (buf_type
== CIFS_SMALL_BUFFER
)
1947 cifs_small_buf_release(smb_read_data
);
1948 else if (buf_type
== CIFS_LARGE_BUFFER
)
1949 cifs_buf_release(smb_read_data
);
1950 smb_read_data
= NULL
;
1957 static int cifs_readpage_worker(struct file
*file
, struct page
*page
,
1963 page_cache_get(page
);
1964 read_data
= kmap(page
);
1965 /* for reads over a certain size could initiate async read ahead */
1967 rc
= cifs_read(file
, read_data
, PAGE_CACHE_SIZE
, poffset
);
1972 cFYI(1, ("Bytes read %d", rc
));
1974 file
->f_path
.dentry
->d_inode
->i_atime
=
1975 current_fs_time(file
->f_path
.dentry
->d_inode
->i_sb
);
1977 if (PAGE_CACHE_SIZE
> rc
)
1978 memset(read_data
+ rc
, 0, PAGE_CACHE_SIZE
- rc
);
1980 flush_dcache_page(page
);
1981 SetPageUptodate(page
);
1986 page_cache_release(page
);
1990 static int cifs_readpage(struct file
*file
, struct page
*page
)
1992 loff_t offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1998 if (file
->private_data
== NULL
) {
2003 cFYI(1, ("readpage %p at offset %d 0x%x\n",
2004 page
, (int)offset
, (int)offset
));
2006 rc
= cifs_readpage_worker(file
, page
, &offset
);
2014 static int is_inode_writable(struct cifsInodeInfo
*cifs_inode
)
2016 struct cifsFileInfo
*open_file
;
2018 read_lock(&GlobalSMBSeslock
);
2019 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
2020 if (open_file
->closePend
)
2022 if (open_file
->pfile
&&
2023 ((open_file
->pfile
->f_flags
& O_RDWR
) ||
2024 (open_file
->pfile
->f_flags
& O_WRONLY
))) {
2025 read_unlock(&GlobalSMBSeslock
);
2029 read_unlock(&GlobalSMBSeslock
);
2033 /* We do not want to update the file size from server for inodes
2034 open for write - to avoid races with writepage extending
2035 the file - in the future we could consider allowing
2036 refreshing the inode only on increases in the file size
2037 but this is tricky to do without racing with writebehind
2038 page caching in the current Linux kernel design */
2039 bool is_size_safe_to_change(struct cifsInodeInfo
*cifsInode
, __u64 end_of_file
)
2044 if (is_inode_writable(cifsInode
)) {
2045 /* This inode is open for write at least once */
2046 struct cifs_sb_info
*cifs_sb
;
2048 cifs_sb
= CIFS_SB(cifsInode
->vfs_inode
.i_sb
);
2049 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_DIRECT_IO
) {
2050 /* since no page cache to corrupt on directio
2051 we can change size safely */
2055 if (i_size_read(&cifsInode
->vfs_inode
) < end_of_file
)
2063 static int cifs_write_begin(struct file
*file
, struct address_space
*mapping
,
2064 loff_t pos
, unsigned len
, unsigned flags
,
2065 struct page
**pagep
, void **fsdata
)
2067 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2068 loff_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
2069 loff_t page_start
= pos
& PAGE_MASK
;
2074 cFYI(1, ("write_begin from %lld len %d", (long long)pos
, len
));
2076 page
= __grab_cache_page(mapping
, index
);
2082 if (PageUptodate(page
))
2086 * If we write a full page it will be up to date, no need to read from
2087 * the server. If the write is short, we'll end up doing a sync write
2090 if (len
== PAGE_CACHE_SIZE
)
2094 * optimize away the read when we have an oplock, and we're not
2095 * expecting to use any of the data we'd be reading in. That
2096 * is, when the page lies beyond the EOF, or straddles the EOF
2097 * and the write will cover all of the existing data.
2099 if (CIFS_I(mapping
->host
)->clientCanCacheRead
) {
2100 i_size
= i_size_read(mapping
->host
);
2101 if (page_start
>= i_size
||
2102 (offset
== 0 && (pos
+ len
) >= i_size
)) {
2103 zero_user_segments(page
, 0, offset
,
2107 * PageChecked means that the parts of the page
2108 * to which we're not writing are considered up
2109 * to date. Once the data is copied to the
2110 * page, it can be set uptodate.
2112 SetPageChecked(page
);
2117 if ((file
->f_flags
& O_ACCMODE
) != O_WRONLY
) {
2119 * might as well read a page, it is fast enough. If we get
2120 * an error, we don't need to return it. cifs_write_end will
2121 * do a sync write instead since PG_uptodate isn't set.
2123 cifs_readpage_worker(file
, page
, &page_start
);
2125 /* we could try using another file handle if there is one -
2126 but how would we lock it to prevent close of that handle
2127 racing with this read? In any case
2128 this will be written out by write_end so is fine */
2135 const struct address_space_operations cifs_addr_ops
= {
2136 .readpage
= cifs_readpage
,
2137 .readpages
= cifs_readpages
,
2138 .writepage
= cifs_writepage
,
2139 .writepages
= cifs_writepages
,
2140 .write_begin
= cifs_write_begin
,
2141 .write_end
= cifs_write_end
,
2142 .set_page_dirty
= __set_page_dirty_nobuffers
,
2143 /* .sync_page = cifs_sync_page, */
2148 * cifs_readpages requires the server to support a buffer large enough to
2149 * contain the header plus one complete page of data. Otherwise, we need
2150 * to leave cifs_readpages out of the address space operations.
2152 const struct address_space_operations cifs_addr_ops_smallbuf
= {
2153 .readpage
= cifs_readpage
,
2154 .writepage
= cifs_writepage
,
2155 .writepages
= cifs_writepages
,
2156 .write_begin
= cifs_write_begin
,
2157 .write_end
= cifs_write_end
,
2158 .set_page_dirty
= __set_page_dirty_nobuffers
,
2159 /* .sync_page = cifs_sync_page, */