2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
52 struct buffer_head
*bh
, *head
;
54 *delalloc
= *unmapped
= *unwritten
= 0;
56 bh
= head
= page_buffers(page
);
58 if (buffer_uptodate(bh
) && !buffer_mapped(bh
))
60 else if (buffer_unwritten(bh
))
62 else if (buffer_delay(bh
))
64 } while ((bh
= bh
->b_this_page
) != head
);
67 #if defined(XFS_RW_TRACE)
76 loff_t isize
= i_size_read(inode
);
77 loff_t offset
= page_offset(page
);
78 int delalloc
= -1, unmapped
= -1, unwritten
= -1;
80 if (page_has_buffers(page
))
81 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
87 ktrace_enter(ip
->i_rwtrace
,
88 (void *)((unsigned long)tag
),
93 (void *)((unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip
->i_d
.di_size
& 0xffffffff)),
95 (void *)((unsigned long)((isize
>> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize
& 0xffffffff)),
97 (void *)((unsigned long)((offset
>> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset
& 0xffffffff)),
99 (void *)((unsigned long)delalloc
),
100 (void *)((unsigned long)unmapped
),
101 (void *)((unsigned long)unwritten
),
102 (void *)((unsigned long)current_pid()),
106 #define xfs_page_trace(tag, inode, page, pgoff)
109 STATIC
struct block_device
*
110 xfs_find_bdev_for_inode(
111 struct xfs_inode
*ip
)
113 struct xfs_mount
*mp
= ip
->i_mount
;
115 if (XFS_IS_REALTIME_INODE(ip
))
116 return mp
->m_rtdev_targp
->bt_bdev
;
118 return mp
->m_ddev_targp
->bt_bdev
;
122 * Schedule IO completion handling on a xfsdatad if this was
123 * the final hold on this ioend. If we are asked to wait,
124 * flush the workqueue.
131 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
132 queue_work(xfsdatad_workqueue
, &ioend
->io_work
);
134 flush_workqueue(xfsdatad_workqueue
);
139 * We're now finished for good with this ioend structure.
140 * Update the page state via the associated buffer_heads,
141 * release holds on the inode and bio, and finally free
142 * up memory. Do not use the ioend after this.
148 struct buffer_head
*bh
, *next
;
150 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
151 next
= bh
->b_private
;
152 bh
->b_end_io(bh
, !ioend
->io_error
);
154 if (unlikely(ioend
->io_error
)) {
155 vn_ioerror(XFS_I(ioend
->io_inode
), ioend
->io_error
,
158 vn_iowake(XFS_I(ioend
->io_inode
));
159 mempool_free(ioend
, xfs_ioend_pool
);
163 * Update on-disk file size now that data has been written to disk.
164 * The current in-memory file size is i_size. If a write is beyond
165 * eof i_new_size will be the intended file size until i_size is
166 * updated. If this write does not extend all the way to the valid
167 * file size then restrict this update to the end of the write.
173 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
177 ASSERT((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
);
178 ASSERT(ioend
->io_type
!= IOMAP_READ
);
180 if (unlikely(ioend
->io_error
))
183 bsize
= ioend
->io_offset
+ ioend
->io_size
;
185 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
187 isize
= MAX(ip
->i_size
, ip
->i_new_size
);
188 isize
= MIN(isize
, bsize
);
190 if (ip
->i_d
.di_size
< isize
) {
191 ip
->i_d
.di_size
= isize
;
192 ip
->i_update_core
= 1;
193 ip
->i_update_size
= 1;
194 mark_inode_dirty_sync(ioend
->io_inode
);
197 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
201 * Buffered IO write completion for delayed allocate extents.
204 xfs_end_bio_delalloc(
205 struct work_struct
*work
)
208 container_of(work
, xfs_ioend_t
, io_work
);
210 xfs_setfilesize(ioend
);
211 xfs_destroy_ioend(ioend
);
215 * Buffered IO write completion for regular, written extents.
219 struct work_struct
*work
)
222 container_of(work
, xfs_ioend_t
, io_work
);
224 xfs_setfilesize(ioend
);
225 xfs_destroy_ioend(ioend
);
229 * IO write completion for unwritten extents.
231 * Issue transactions to convert a buffer range from unwritten
232 * to written extents.
235 xfs_end_bio_unwritten(
236 struct work_struct
*work
)
239 container_of(work
, xfs_ioend_t
, io_work
);
240 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
241 xfs_off_t offset
= ioend
->io_offset
;
242 size_t size
= ioend
->io_size
;
244 if (likely(!ioend
->io_error
)) {
245 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
247 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
249 ioend
->io_error
= error
;
251 xfs_setfilesize(ioend
);
253 xfs_destroy_ioend(ioend
);
257 * IO read completion for regular, written extents.
261 struct work_struct
*work
)
264 container_of(work
, xfs_ioend_t
, io_work
);
266 xfs_destroy_ioend(ioend
);
270 * Allocate and initialise an IO completion structure.
271 * We need to track unwritten extent write completion here initially.
272 * We'll need to extend this for updating the ondisk inode size later
282 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
285 * Set the count to 1 initially, which will prevent an I/O
286 * completion callback from happening before we have started
287 * all the I/O from calling the completion routine too early.
289 atomic_set(&ioend
->io_remaining
, 1);
291 ioend
->io_list
= NULL
;
292 ioend
->io_type
= type
;
293 ioend
->io_inode
= inode
;
294 ioend
->io_buffer_head
= NULL
;
295 ioend
->io_buffer_tail
= NULL
;
296 atomic_inc(&XFS_I(ioend
->io_inode
)->i_iocount
);
297 ioend
->io_offset
= 0;
300 if (type
== IOMAP_UNWRITTEN
)
301 INIT_WORK(&ioend
->io_work
, xfs_end_bio_unwritten
);
302 else if (type
== IOMAP_DELAY
)
303 INIT_WORK(&ioend
->io_work
, xfs_end_bio_delalloc
);
304 else if (type
== IOMAP_READ
)
305 INIT_WORK(&ioend
->io_work
, xfs_end_bio_read
);
307 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
320 xfs_inode_t
*ip
= XFS_I(inode
);
321 int error
, nmaps
= 1;
323 error
= xfs_iomap(ip
, offset
, count
,
324 flags
, mapp
, &nmaps
);
325 if (!error
&& (flags
& (BMAPI_WRITE
|BMAPI_ALLOCATE
)))
326 xfs_iflags_set(ip
, XFS_IMODIFIED
);
335 return offset
>= iomapp
->iomap_offset
&&
336 offset
< iomapp
->iomap_offset
+ iomapp
->iomap_bsize
;
340 * BIO completion handler for buffered IO.
347 xfs_ioend_t
*ioend
= bio
->bi_private
;
349 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
350 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
352 /* Toss bio and pass work off to an xfsdatad thread */
353 bio
->bi_private
= NULL
;
354 bio
->bi_end_io
= NULL
;
357 xfs_finish_ioend(ioend
, 0);
361 xfs_submit_ioend_bio(
365 atomic_inc(&ioend
->io_remaining
);
367 bio
->bi_private
= ioend
;
368 bio
->bi_end_io
= xfs_end_bio
;
370 submit_bio(WRITE
, bio
);
371 ASSERT(!bio_flagged(bio
, BIO_EOPNOTSUPP
));
377 struct buffer_head
*bh
)
380 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
383 bio
= bio_alloc(GFP_NOIO
, nvecs
);
387 ASSERT(bio
->bi_private
== NULL
);
388 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
389 bio
->bi_bdev
= bh
->b_bdev
;
395 xfs_start_buffer_writeback(
396 struct buffer_head
*bh
)
398 ASSERT(buffer_mapped(bh
));
399 ASSERT(buffer_locked(bh
));
400 ASSERT(!buffer_delay(bh
));
401 ASSERT(!buffer_unwritten(bh
));
403 mark_buffer_async_write(bh
);
404 set_buffer_uptodate(bh
);
405 clear_buffer_dirty(bh
);
409 xfs_start_page_writeback(
414 ASSERT(PageLocked(page
));
415 ASSERT(!PageWriteback(page
));
417 clear_page_dirty_for_io(page
);
418 set_page_writeback(page
);
420 /* If no buffers on the page are to be written, finish it here */
422 end_page_writeback(page
);
425 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
427 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
431 * Submit all of the bios for all of the ioends we have saved up, covering the
432 * initial writepage page and also any probed pages.
434 * Because we may have multiple ioends spanning a page, we need to start
435 * writeback on all the buffers before we submit them for I/O. If we mark the
436 * buffers as we got, then we can end up with a page that only has buffers
437 * marked async write and I/O complete on can occur before we mark the other
438 * buffers async write.
440 * The end result of this is that we trip a bug in end_page_writeback() because
441 * we call it twice for the one page as the code in end_buffer_async_write()
442 * assumes that all buffers on the page are started at the same time.
444 * The fix is two passes across the ioend list - one to start writeback on the
445 * buffer_heads, and then submit them for I/O on the second pass.
451 xfs_ioend_t
*head
= ioend
;
453 struct buffer_head
*bh
;
455 sector_t lastblock
= 0;
457 /* Pass 1 - start writeback */
459 next
= ioend
->io_list
;
460 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
461 xfs_start_buffer_writeback(bh
);
463 } while ((ioend
= next
) != NULL
);
465 /* Pass 2 - submit I/O */
468 next
= ioend
->io_list
;
471 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
475 bio
= xfs_alloc_ioend_bio(bh
);
476 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
477 xfs_submit_ioend_bio(ioend
, bio
);
481 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
482 xfs_submit_ioend_bio(ioend
, bio
);
486 lastblock
= bh
->b_blocknr
;
489 xfs_submit_ioend_bio(ioend
, bio
);
490 xfs_finish_ioend(ioend
, 0);
491 } while ((ioend
= next
) != NULL
);
495 * Cancel submission of all buffer_heads so far in this endio.
496 * Toss the endio too. Only ever called for the initial page
497 * in a writepage request, so only ever one page.
504 struct buffer_head
*bh
, *next_bh
;
507 next
= ioend
->io_list
;
508 bh
= ioend
->io_buffer_head
;
510 next_bh
= bh
->b_private
;
511 clear_buffer_async_write(bh
);
513 } while ((bh
= next_bh
) != NULL
);
515 vn_iowake(XFS_I(ioend
->io_inode
));
516 mempool_free(ioend
, xfs_ioend_pool
);
517 } while ((ioend
= next
) != NULL
);
521 * Test to see if we've been building up a completion structure for
522 * earlier buffers -- if so, we try to append to this ioend if we
523 * can, otherwise we finish off any current ioend and start another.
524 * Return true if we've finished the given ioend.
529 struct buffer_head
*bh
,
532 xfs_ioend_t
**result
,
535 xfs_ioend_t
*ioend
= *result
;
537 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
538 xfs_ioend_t
*previous
= *result
;
540 ioend
= xfs_alloc_ioend(inode
, type
);
541 ioend
->io_offset
= offset
;
542 ioend
->io_buffer_head
= bh
;
543 ioend
->io_buffer_tail
= bh
;
545 previous
->io_list
= ioend
;
548 ioend
->io_buffer_tail
->b_private
= bh
;
549 ioend
->io_buffer_tail
= bh
;
552 bh
->b_private
= NULL
;
553 ioend
->io_size
+= bh
->b_size
;
558 struct buffer_head
*bh
,
565 ASSERT(mp
->iomap_bn
!= IOMAP_DADDR_NULL
);
567 bn
= (mp
->iomap_bn
>> (block_bits
- BBSHIFT
)) +
568 ((offset
- mp
->iomap_offset
) >> block_bits
);
570 ASSERT(bn
|| (mp
->iomap_flags
& IOMAP_REALTIME
));
573 set_buffer_mapped(bh
);
578 struct buffer_head
*bh
,
583 ASSERT(!(iomapp
->iomap_flags
& IOMAP_HOLE
));
584 ASSERT(!(iomapp
->iomap_flags
& IOMAP_DELAY
));
587 xfs_map_buffer(bh
, iomapp
, offset
, block_bits
);
588 bh
->b_bdev
= iomapp
->iomap_target
->bt_bdev
;
589 set_buffer_mapped(bh
);
590 clear_buffer_delay(bh
);
591 clear_buffer_unwritten(bh
);
595 * Look for a page at index that is suitable for clustering.
600 unsigned int pg_offset
,
605 if (PageWriteback(page
))
608 if (page
->mapping
&& PageDirty(page
)) {
609 if (page_has_buffers(page
)) {
610 struct buffer_head
*bh
, *head
;
612 bh
= head
= page_buffers(page
);
614 if (!buffer_uptodate(bh
))
616 if (mapped
!= buffer_mapped(bh
))
619 if (ret
>= pg_offset
)
621 } while ((bh
= bh
->b_this_page
) != head
);
623 ret
= mapped
? 0 : PAGE_CACHE_SIZE
;
632 struct page
*startpage
,
633 struct buffer_head
*bh
,
634 struct buffer_head
*head
,
638 pgoff_t tindex
, tlast
, tloff
;
642 /* First sum forwards in this page */
644 if (!buffer_uptodate(bh
) || (mapped
!= buffer_mapped(bh
)))
647 } while ((bh
= bh
->b_this_page
) != head
);
649 /* if we reached the end of the page, sum forwards in following pages */
650 tlast
= i_size_read(inode
) >> PAGE_CACHE_SHIFT
;
651 tindex
= startpage
->index
+ 1;
653 /* Prune this back to avoid pathological behavior */
654 tloff
= min(tlast
, startpage
->index
+ 64);
656 pagevec_init(&pvec
, 0);
657 while (!done
&& tindex
<= tloff
) {
658 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
660 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
663 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
664 struct page
*page
= pvec
.pages
[i
];
665 size_t pg_offset
, pg_len
= 0;
667 if (tindex
== tlast
) {
669 i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1);
675 pg_offset
= PAGE_CACHE_SIZE
;
677 if (page
->index
== tindex
&& trylock_page(page
)) {
678 pg_len
= xfs_probe_page(page
, pg_offset
, mapped
);
691 pagevec_release(&pvec
);
699 * Test if a given page is suitable for writing as part of an unwritten
700 * or delayed allocate extent.
707 if (PageWriteback(page
))
710 if (page
->mapping
&& page_has_buffers(page
)) {
711 struct buffer_head
*bh
, *head
;
714 bh
= head
= page_buffers(page
);
716 if (buffer_unwritten(bh
))
717 acceptable
= (type
== IOMAP_UNWRITTEN
);
718 else if (buffer_delay(bh
))
719 acceptable
= (type
== IOMAP_DELAY
);
720 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
721 acceptable
= (type
== IOMAP_NEW
);
724 } while ((bh
= bh
->b_this_page
) != head
);
734 * Allocate & map buffers for page given the extent map. Write it out.
735 * except for the original page of a writepage, this is called on
736 * delalloc/unwritten pages only, for the original page it is possible
737 * that the page has no mapping at all.
745 xfs_ioend_t
**ioendp
,
746 struct writeback_control
*wbc
,
750 struct buffer_head
*bh
, *head
;
751 xfs_off_t end_offset
;
752 unsigned long p_offset
;
754 int bbits
= inode
->i_blkbits
;
756 int count
= 0, done
= 0, uptodate
= 1;
757 xfs_off_t offset
= page_offset(page
);
759 if (page
->index
!= tindex
)
761 if (!trylock_page(page
))
763 if (PageWriteback(page
))
764 goto fail_unlock_page
;
765 if (page
->mapping
!= inode
->i_mapping
)
766 goto fail_unlock_page
;
767 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
768 goto fail_unlock_page
;
771 * page_dirty is initially a count of buffers on the page before
772 * EOF and is decremented as we move each into a cleanable state.
776 * End offset is the highest offset that this page should represent.
777 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
778 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
779 * hence give us the correct page_dirty count. On any other page,
780 * it will be zero and in that case we need page_dirty to be the
781 * count of buffers on the page.
783 end_offset
= min_t(unsigned long long,
784 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
787 len
= 1 << inode
->i_blkbits
;
788 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
790 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
791 page_dirty
= p_offset
/ len
;
793 bh
= head
= page_buffers(page
);
795 if (offset
>= end_offset
)
797 if (!buffer_uptodate(bh
))
799 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
804 if (buffer_unwritten(bh
) || buffer_delay(bh
)) {
805 if (buffer_unwritten(bh
))
806 type
= IOMAP_UNWRITTEN
;
810 if (!xfs_iomap_valid(mp
, offset
)) {
815 ASSERT(!(mp
->iomap_flags
& IOMAP_HOLE
));
816 ASSERT(!(mp
->iomap_flags
& IOMAP_DELAY
));
818 xfs_map_at_offset(bh
, offset
, bbits
, mp
);
820 xfs_add_to_ioend(inode
, bh
, offset
,
823 set_buffer_dirty(bh
);
825 mark_buffer_dirty(bh
);
831 if (buffer_mapped(bh
) && all_bh
&& startio
) {
833 xfs_add_to_ioend(inode
, bh
, offset
,
841 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
843 if (uptodate
&& bh
== head
)
844 SetPageUptodate(page
);
848 struct backing_dev_info
*bdi
;
850 bdi
= inode
->i_mapping
->backing_dev_info
;
852 if (bdi_write_congested(bdi
)) {
853 wbc
->encountered_congestion
= 1;
855 } else if (wbc
->nr_to_write
<= 0) {
859 xfs_start_page_writeback(page
, !page_dirty
, count
);
870 * Convert & write out a cluster of pages in the same extent as defined
871 * by mp and following the start page.
878 xfs_ioend_t
**ioendp
,
879 struct writeback_control
*wbc
,
887 pagevec_init(&pvec
, 0);
888 while (!done
&& tindex
<= tlast
) {
889 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
891 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
894 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
895 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
896 iomapp
, ioendp
, wbc
, startio
, all_bh
);
901 pagevec_release(&pvec
);
907 * Calling this without startio set means we are being asked to make a dirty
908 * page ready for freeing it's buffers. When called with startio set then
909 * we are coming from writepage.
911 * When called with startio set it is important that we write the WHOLE
913 * The bh->b_state's cannot know if any of the blocks or which block for
914 * that matter are dirty due to mmap writes, and therefore bh uptodate is
915 * only valid if the page itself isn't completely uptodate. Some layers
916 * may clear the page dirty flag prior to calling write page, under the
917 * assumption the entire page will be written out; by not writing out the
918 * whole page the page can be reused before all valid dirty data is
919 * written out. Note: in the case of a page that has been dirty'd by
920 * mapwrite and but partially setup by block_prepare_write the
921 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
922 * valid state, thus the whole page must be written out thing.
926 xfs_page_state_convert(
929 struct writeback_control
*wbc
,
931 int unmapped
) /* also implies page uptodate */
933 struct buffer_head
*bh
, *head
;
935 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
937 unsigned long p_offset
= 0;
939 __uint64_t end_offset
;
940 pgoff_t end_index
, last_index
, tlast
;
942 int flags
, err
, iomap_valid
= 0, uptodate
= 1;
943 int page_dirty
, count
= 0;
945 int all_bh
= unmapped
;
948 if (wbc
->sync_mode
== WB_SYNC_NONE
&& wbc
->nonblocking
)
949 trylock
|= BMAPI_TRYLOCK
;
952 /* Is this page beyond the end of the file? */
953 offset
= i_size_read(inode
);
954 end_index
= offset
>> PAGE_CACHE_SHIFT
;
955 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
956 if (page
->index
>= end_index
) {
957 if ((page
->index
>= end_index
+ 1) ||
958 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
966 * page_dirty is initially a count of buffers on the page before
967 * EOF and is decremented as we move each into a cleanable state.
971 * End offset is the highest offset that this page should represent.
972 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
973 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
974 * hence give us the correct page_dirty count. On any other page,
975 * it will be zero and in that case we need page_dirty to be the
976 * count of buffers on the page.
978 end_offset
= min_t(unsigned long long,
979 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
, offset
);
980 len
= 1 << inode
->i_blkbits
;
981 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
983 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
984 page_dirty
= p_offset
/ len
;
986 bh
= head
= page_buffers(page
);
987 offset
= page_offset(page
);
991 /* TODO: cleanup count and page_dirty */
994 if (offset
>= end_offset
)
996 if (!buffer_uptodate(bh
))
998 if (!(PageUptodate(page
) || buffer_uptodate(bh
)) && !startio
) {
1000 * the iomap is actually still valid, but the ioend
1001 * isn't. shouldn't happen too often.
1008 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1011 * First case, map an unwritten extent and prepare for
1012 * extent state conversion transaction on completion.
1014 * Second case, allocate space for a delalloc buffer.
1015 * We can return EAGAIN here in the release page case.
1017 * Third case, an unmapped buffer was found, and we are
1018 * in a path where we need to write the whole page out.
1020 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
1021 ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1022 !buffer_mapped(bh
) && (unmapped
|| startio
))) {
1026 * Make sure we don't use a read-only iomap
1028 if (flags
== BMAPI_READ
)
1031 if (buffer_unwritten(bh
)) {
1032 type
= IOMAP_UNWRITTEN
;
1033 flags
= BMAPI_WRITE
| BMAPI_IGNSTATE
;
1034 } else if (buffer_delay(bh
)) {
1036 flags
= BMAPI_ALLOCATE
| trylock
;
1039 flags
= BMAPI_WRITE
| BMAPI_MMAP
;
1044 * if we didn't have a valid mapping then we
1045 * need to ensure that we put the new mapping
1046 * in a new ioend structure. This needs to be
1047 * done to ensure that the ioends correctly
1048 * reflect the block mappings at io completion
1049 * for unwritten extent conversion.
1052 if (type
== IOMAP_NEW
) {
1053 size
= xfs_probe_cluster(inode
,
1059 err
= xfs_map_blocks(inode
, offset
, size
,
1063 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1066 xfs_map_at_offset(bh
, offset
,
1067 inode
->i_blkbits
, &iomap
);
1069 xfs_add_to_ioend(inode
, bh
, offset
,
1073 set_buffer_dirty(bh
);
1075 mark_buffer_dirty(bh
);
1080 } else if (buffer_uptodate(bh
) && startio
) {
1082 * we got here because the buffer is already mapped.
1083 * That means it must already have extents allocated
1084 * underneath it. Map the extent by reading it.
1086 if (!iomap_valid
|| flags
!= BMAPI_READ
) {
1088 size
= xfs_probe_cluster(inode
, page
, bh
,
1090 err
= xfs_map_blocks(inode
, offset
, size
,
1094 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1098 * We set the type to IOMAP_NEW in case we are doing a
1099 * small write at EOF that is extending the file but
1100 * without needing an allocation. We need to update the
1101 * file size on I/O completion in this case so it is
1102 * the same case as having just allocated a new extent
1103 * that we are writing into for the first time.
1106 if (trylock_buffer(bh
)) {
1107 ASSERT(buffer_mapped(bh
));
1110 xfs_add_to_ioend(inode
, bh
, offset
, type
,
1111 &ioend
, !iomap_valid
);
1117 } else if ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1118 (unmapped
|| startio
)) {
1125 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1127 if (uptodate
&& bh
== head
)
1128 SetPageUptodate(page
);
1131 xfs_start_page_writeback(page
, 1, count
);
1133 if (ioend
&& iomap_valid
) {
1134 offset
= (iomap
.iomap_offset
+ iomap
.iomap_bsize
- 1) >>
1136 tlast
= min_t(pgoff_t
, offset
, last_index
);
1137 xfs_cluster_write(inode
, page
->index
+ 1, &iomap
, &ioend
,
1138 wbc
, startio
, all_bh
, tlast
);
1142 xfs_submit_ioend(iohead
);
1148 xfs_cancel_ioend(iohead
);
1151 * If it's delalloc and we have nowhere to put it,
1152 * throw it away, unless the lower layers told
1155 if (err
!= -EAGAIN
) {
1157 block_invalidatepage(page
, 0);
1158 ClearPageUptodate(page
);
1164 * writepage: Called from one of two places:
1166 * 1. we are flushing a delalloc buffer head.
1168 * 2. we are writing out a dirty page. Typically the page dirty
1169 * state is cleared before we get here. In this case is it
1170 * conceivable we have no buffer heads.
1172 * For delalloc space on the page we need to allocate space and
1173 * flush it. For unmapped buffer heads on the page we should
1174 * allocate space if the page is uptodate. For any other dirty
1175 * buffer heads on the page we should flush them.
1177 * If we detect that a transaction would be required to flush
1178 * the page, we have to check the process flags first, if we
1179 * are already in a transaction or disk I/O during allocations
1180 * is off, we need to fail the writepage and redirty the page.
1186 struct writeback_control
*wbc
)
1190 int delalloc
, unmapped
, unwritten
;
1191 struct inode
*inode
= page
->mapping
->host
;
1193 xfs_page_trace(XFS_WRITEPAGE_ENTER
, inode
, page
, 0);
1196 * We need a transaction if:
1197 * 1. There are delalloc buffers on the page
1198 * 2. The page is uptodate and we have unmapped buffers
1199 * 3. The page is uptodate and we have no buffers
1200 * 4. There are unwritten buffers on the page
1203 if (!page_has_buffers(page
)) {
1207 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1208 if (!PageUptodate(page
))
1210 need_trans
= delalloc
+ unmapped
+ unwritten
;
1214 * If we need a transaction and the process flags say
1215 * we are already in a transaction, or no IO is allowed
1216 * then mark the page dirty again and leave the page
1219 if (current_test_flags(PF_FSTRANS
) && need_trans
)
1223 * Delay hooking up buffer heads until we have
1224 * made our go/no-go decision.
1226 if (!page_has_buffers(page
))
1227 create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
1230 * Convert delayed allocate, unwritten or unmapped space
1231 * to real space and flush out to disk.
1233 error
= xfs_page_state_convert(inode
, page
, wbc
, 1, unmapped
);
1234 if (error
== -EAGAIN
)
1236 if (unlikely(error
< 0))
1242 redirty_page_for_writepage(wbc
, page
);
1252 struct address_space
*mapping
,
1253 struct writeback_control
*wbc
)
1255 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1256 return generic_writepages(mapping
, wbc
);
1260 * Called to move a page into cleanable state - and from there
1261 * to be released. Possibly the page is already clean. We always
1262 * have buffer heads in this call.
1264 * Returns 0 if the page is ok to release, 1 otherwise.
1266 * Possible scenarios are:
1268 * 1. We are being called to release a page which has been written
1269 * to via regular I/O. buffer heads will be dirty and possibly
1270 * delalloc. If no delalloc buffer heads in this case then we
1271 * can just return zero.
1273 * 2. We are called to release a page which has been written via
1274 * mmap, all we need to do is ensure there is no delalloc
1275 * state in the buffer heads, if not we can let the caller
1276 * free them and we should come back later via writepage.
1283 struct inode
*inode
= page
->mapping
->host
;
1284 int dirty
, delalloc
, unmapped
, unwritten
;
1285 struct writeback_control wbc
= {
1286 .sync_mode
= WB_SYNC_ALL
,
1290 xfs_page_trace(XFS_RELEASEPAGE_ENTER
, inode
, page
, 0);
1292 if (!page_has_buffers(page
))
1295 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1296 if (!delalloc
&& !unwritten
)
1299 if (!(gfp_mask
& __GFP_FS
))
1302 /* If we are already inside a transaction or the thread cannot
1303 * do I/O, we cannot release this page.
1305 if (current_test_flags(PF_FSTRANS
))
1309 * Convert delalloc space to real space, do not flush the
1310 * data out to disk, that will be done by the caller.
1311 * Never need to allocate space here - we will always
1312 * come back to writepage in that case.
1314 dirty
= xfs_page_state_convert(inode
, page
, &wbc
, 0, 0);
1315 if (dirty
== 0 && !unwritten
)
1320 return try_to_free_buffers(page
);
1325 struct inode
*inode
,
1327 struct buffer_head
*bh_result
,
1330 bmapi_flags_t flags
)
1338 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1339 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1340 size
= bh_result
->b_size
;
1342 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1345 error
= xfs_iomap(XFS_I(inode
), offset
, size
,
1346 create
? flags
: BMAPI_READ
, &iomap
, &niomap
);
1352 if (iomap
.iomap_bn
!= IOMAP_DADDR_NULL
) {
1354 * For unwritten extents do not report a disk address on
1355 * the read case (treat as if we're reading into a hole).
1357 if (create
|| !(iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1358 xfs_map_buffer(bh_result
, &iomap
, offset
,
1361 if (create
&& (iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1363 bh_result
->b_private
= inode
;
1364 set_buffer_unwritten(bh_result
);
1369 * If this is a realtime file, data may be on a different device.
1370 * to that pointed to from the buffer_head b_bdev currently.
1372 bh_result
->b_bdev
= iomap
.iomap_target
->bt_bdev
;
1375 * If we previously allocated a block out beyond eof and we are now
1376 * coming back to use it then we will need to flag it as new even if it
1377 * has a disk address.
1379 * With sub-block writes into unwritten extents we also need to mark
1380 * the buffer as new so that the unwritten parts of the buffer gets
1384 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1385 (offset
>= i_size_read(inode
)) ||
1386 (iomap
.iomap_flags
& (IOMAP_NEW
|IOMAP_UNWRITTEN
))))
1387 set_buffer_new(bh_result
);
1389 if (iomap
.iomap_flags
& IOMAP_DELAY
) {
1392 set_buffer_uptodate(bh_result
);
1393 set_buffer_mapped(bh_result
);
1394 set_buffer_delay(bh_result
);
1398 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1399 ASSERT(iomap
.iomap_bsize
- iomap
.iomap_delta
> 0);
1400 offset
= min_t(xfs_off_t
,
1401 iomap
.iomap_bsize
- iomap
.iomap_delta
, size
);
1402 bh_result
->b_size
= (ssize_t
)min_t(xfs_off_t
, LONG_MAX
, offset
);
1410 struct inode
*inode
,
1412 struct buffer_head
*bh_result
,
1415 return __xfs_get_blocks(inode
, iblock
,
1416 bh_result
, create
, 0, BMAPI_WRITE
);
1420 xfs_get_blocks_direct(
1421 struct inode
*inode
,
1423 struct buffer_head
*bh_result
,
1426 return __xfs_get_blocks(inode
, iblock
,
1427 bh_result
, create
, 1, BMAPI_WRITE
|BMAPI_DIRECT
);
1437 xfs_ioend_t
*ioend
= iocb
->private;
1440 * Non-NULL private data means we need to issue a transaction to
1441 * convert a range from unwritten to written extents. This needs
1442 * to happen from process context but aio+dio I/O completion
1443 * happens from irq context so we need to defer it to a workqueue.
1444 * This is not necessary for synchronous direct I/O, but we do
1445 * it anyway to keep the code uniform and simpler.
1447 * Well, if only it were that simple. Because synchronous direct I/O
1448 * requires extent conversion to occur *before* we return to userspace,
1449 * we have to wait for extent conversion to complete. Look at the
1450 * iocb that has been passed to us to determine if this is AIO or
1451 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1452 * workqueue and wait for it to complete.
1454 * The core direct I/O code might be changed to always call the
1455 * completion handler in the future, in which case all this can
1458 ioend
->io_offset
= offset
;
1459 ioend
->io_size
= size
;
1460 if (ioend
->io_type
== IOMAP_READ
) {
1461 xfs_finish_ioend(ioend
, 0);
1462 } else if (private && size
> 0) {
1463 xfs_finish_ioend(ioend
, is_sync_kiocb(iocb
));
1466 * A direct I/O write ioend starts it's life in unwritten
1467 * state in case they map an unwritten extent. This write
1468 * didn't map an unwritten extent so switch it's completion
1471 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
1472 xfs_finish_ioend(ioend
, 0);
1476 * blockdev_direct_IO can return an error even after the I/O
1477 * completion handler was called. Thus we need to protect
1478 * against double-freeing.
1480 iocb
->private = NULL
;
1487 const struct iovec
*iov
,
1489 unsigned long nr_segs
)
1491 struct file
*file
= iocb
->ki_filp
;
1492 struct inode
*inode
= file
->f_mapping
->host
;
1493 struct block_device
*bdev
;
1496 bdev
= xfs_find_bdev_for_inode(XFS_I(inode
));
1499 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_UNWRITTEN
);
1500 ret
= blockdev_direct_IO_own_locking(rw
, iocb
, inode
,
1501 bdev
, iov
, offset
, nr_segs
,
1502 xfs_get_blocks_direct
,
1505 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_READ
);
1506 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
1507 bdev
, iov
, offset
, nr_segs
,
1508 xfs_get_blocks_direct
,
1512 if (unlikely(ret
!= -EIOCBQUEUED
&& iocb
->private))
1513 xfs_destroy_ioend(iocb
->private);
1520 struct address_space
*mapping
,
1524 struct page
**pagep
,
1528 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1534 struct address_space
*mapping
,
1537 struct inode
*inode
= (struct inode
*)mapping
->host
;
1538 struct xfs_inode
*ip
= XFS_I(inode
);
1540 xfs_itrace_entry(XFS_I(inode
));
1541 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1542 xfs_flush_pages(ip
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1543 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1544 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1549 struct file
*unused
,
1552 return mpage_readpage(page
, xfs_get_blocks
);
1557 struct file
*unused
,
1558 struct address_space
*mapping
,
1559 struct list_head
*pages
,
1562 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1566 xfs_vm_invalidatepage(
1568 unsigned long offset
)
1570 xfs_page_trace(XFS_INVALIDPAGE_ENTER
,
1571 page
->mapping
->host
, page
, offset
);
1572 block_invalidatepage(page
, offset
);
1575 const struct address_space_operations xfs_address_space_operations
= {
1576 .readpage
= xfs_vm_readpage
,
1577 .readpages
= xfs_vm_readpages
,
1578 .writepage
= xfs_vm_writepage
,
1579 .writepages
= xfs_vm_writepages
,
1580 .sync_page
= block_sync_page
,
1581 .releasepage
= xfs_vm_releasepage
,
1582 .invalidatepage
= xfs_vm_invalidatepage
,
1583 .write_begin
= xfs_vm_write_begin
,
1584 .write_end
= generic_write_end
,
1585 .bmap
= xfs_vm_bmap
,
1586 .direct_IO
= xfs_vm_direct_IO
,
1587 .migratepage
= buffer_migrate_page
,