airport: remove useless return in a function returning void
[linux/fpc-iii.git] / kernel / fork.c
blob2a372a0e206fa2de99dbfdd594f86f6eb927bf40
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/acct.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/freezer.h>
56 #include <linux/delayacct.h>
57 #include <linux/taskstats_kern.h>
58 #include <linux/random.h>
59 #include <linux/tty.h>
60 #include <linux/proc_fs.h>
61 #include <linux/blkdev.h>
62 #include <trace/sched.h>
64 #include <asm/pgtable.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/cacheflush.h>
69 #include <asm/tlbflush.h>
72 * Protected counters by write_lock_irq(&tasklist_lock)
74 unsigned long total_forks; /* Handle normal Linux uptimes. */
75 int nr_threads; /* The idle threads do not count.. */
77 int max_threads; /* tunable limit on nr_threads */
79 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
81 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
83 int nr_processes(void)
85 int cpu;
86 int total = 0;
88 for_each_online_cpu(cpu)
89 total += per_cpu(process_counts, cpu);
91 return total;
94 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
95 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
96 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
97 static struct kmem_cache *task_struct_cachep;
98 #endif
100 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
101 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
103 #ifdef CONFIG_DEBUG_STACK_USAGE
104 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
105 #else
106 gfp_t mask = GFP_KERNEL;
107 #endif
108 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
111 static inline void free_thread_info(struct thread_info *ti)
113 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
115 #endif
117 /* SLAB cache for signal_struct structures (tsk->signal) */
118 static struct kmem_cache *signal_cachep;
120 /* SLAB cache for sighand_struct structures (tsk->sighand) */
121 struct kmem_cache *sighand_cachep;
123 /* SLAB cache for files_struct structures (tsk->files) */
124 struct kmem_cache *files_cachep;
126 /* SLAB cache for fs_struct structures (tsk->fs) */
127 struct kmem_cache *fs_cachep;
129 /* SLAB cache for vm_area_struct structures */
130 struct kmem_cache *vm_area_cachep;
132 /* SLAB cache for mm_struct structures (tsk->mm) */
133 static struct kmem_cache *mm_cachep;
135 void free_task(struct task_struct *tsk)
137 prop_local_destroy_single(&tsk->dirties);
138 free_thread_info(tsk->stack);
139 rt_mutex_debug_task_free(tsk);
140 free_task_struct(tsk);
142 EXPORT_SYMBOL(free_task);
144 void __put_task_struct(struct task_struct *tsk)
146 WARN_ON(!tsk->exit_state);
147 WARN_ON(atomic_read(&tsk->usage));
148 WARN_ON(tsk == current);
150 security_task_free(tsk);
151 free_uid(tsk->user);
152 put_group_info(tsk->group_info);
153 delayacct_tsk_free(tsk);
155 if (!profile_handoff_task(tsk))
156 free_task(tsk);
160 * macro override instead of weak attribute alias, to workaround
161 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
163 #ifndef arch_task_cache_init
164 #define arch_task_cache_init()
165 #endif
167 void __init fork_init(unsigned long mempages)
169 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
170 #ifndef ARCH_MIN_TASKALIGN
171 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
172 #endif
173 /* create a slab on which task_structs can be allocated */
174 task_struct_cachep =
175 kmem_cache_create("task_struct", sizeof(struct task_struct),
176 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
177 #endif
179 /* do the arch specific task caches init */
180 arch_task_cache_init();
183 * The default maximum number of threads is set to a safe
184 * value: the thread structures can take up at most half
185 * of memory.
187 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
190 * we need to allow at least 20 threads to boot a system
192 if(max_threads < 20)
193 max_threads = 20;
195 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
196 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
197 init_task.signal->rlim[RLIMIT_SIGPENDING] =
198 init_task.signal->rlim[RLIMIT_NPROC];
201 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
202 struct task_struct *src)
204 *dst = *src;
205 return 0;
208 static struct task_struct *dup_task_struct(struct task_struct *orig)
210 struct task_struct *tsk;
211 struct thread_info *ti;
212 int err;
214 prepare_to_copy(orig);
216 tsk = alloc_task_struct();
217 if (!tsk)
218 return NULL;
220 ti = alloc_thread_info(tsk);
221 if (!ti) {
222 free_task_struct(tsk);
223 return NULL;
226 err = arch_dup_task_struct(tsk, orig);
227 if (err)
228 goto out;
230 tsk->stack = ti;
232 err = prop_local_init_single(&tsk->dirties);
233 if (err)
234 goto out;
236 setup_thread_stack(tsk, orig);
238 #ifdef CONFIG_CC_STACKPROTECTOR
239 tsk->stack_canary = get_random_int();
240 #endif
242 /* One for us, one for whoever does the "release_task()" (usually parent) */
243 atomic_set(&tsk->usage,2);
244 atomic_set(&tsk->fs_excl, 0);
245 #ifdef CONFIG_BLK_DEV_IO_TRACE
246 tsk->btrace_seq = 0;
247 #endif
248 tsk->splice_pipe = NULL;
249 return tsk;
251 out:
252 free_thread_info(ti);
253 free_task_struct(tsk);
254 return NULL;
257 #ifdef CONFIG_MMU
258 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
260 struct vm_area_struct *mpnt, *tmp, **pprev;
261 struct rb_node **rb_link, *rb_parent;
262 int retval;
263 unsigned long charge;
264 struct mempolicy *pol;
266 down_write(&oldmm->mmap_sem);
267 flush_cache_dup_mm(oldmm);
269 * Not linked in yet - no deadlock potential:
271 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
273 mm->locked_vm = 0;
274 mm->mmap = NULL;
275 mm->mmap_cache = NULL;
276 mm->free_area_cache = oldmm->mmap_base;
277 mm->cached_hole_size = ~0UL;
278 mm->map_count = 0;
279 cpus_clear(mm->cpu_vm_mask);
280 mm->mm_rb = RB_ROOT;
281 rb_link = &mm->mm_rb.rb_node;
282 rb_parent = NULL;
283 pprev = &mm->mmap;
285 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
286 struct file *file;
288 if (mpnt->vm_flags & VM_DONTCOPY) {
289 long pages = vma_pages(mpnt);
290 mm->total_vm -= pages;
291 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
292 -pages);
293 continue;
295 charge = 0;
296 if (mpnt->vm_flags & VM_ACCOUNT) {
297 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
298 if (security_vm_enough_memory(len))
299 goto fail_nomem;
300 charge = len;
302 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
303 if (!tmp)
304 goto fail_nomem;
305 *tmp = *mpnt;
306 pol = mpol_dup(vma_policy(mpnt));
307 retval = PTR_ERR(pol);
308 if (IS_ERR(pol))
309 goto fail_nomem_policy;
310 vma_set_policy(tmp, pol);
311 tmp->vm_flags &= ~VM_LOCKED;
312 tmp->vm_mm = mm;
313 tmp->vm_next = NULL;
314 anon_vma_link(tmp);
315 file = tmp->vm_file;
316 if (file) {
317 struct inode *inode = file->f_path.dentry->d_inode;
318 get_file(file);
319 if (tmp->vm_flags & VM_DENYWRITE)
320 atomic_dec(&inode->i_writecount);
322 /* insert tmp into the share list, just after mpnt */
323 spin_lock(&file->f_mapping->i_mmap_lock);
324 tmp->vm_truncate_count = mpnt->vm_truncate_count;
325 flush_dcache_mmap_lock(file->f_mapping);
326 vma_prio_tree_add(tmp, mpnt);
327 flush_dcache_mmap_unlock(file->f_mapping);
328 spin_unlock(&file->f_mapping->i_mmap_lock);
332 * Clear hugetlb-related page reserves for children. This only
333 * affects MAP_PRIVATE mappings. Faults generated by the child
334 * are not guaranteed to succeed, even if read-only
336 if (is_vm_hugetlb_page(tmp))
337 reset_vma_resv_huge_pages(tmp);
340 * Link in the new vma and copy the page table entries.
342 *pprev = tmp;
343 pprev = &tmp->vm_next;
345 __vma_link_rb(mm, tmp, rb_link, rb_parent);
346 rb_link = &tmp->vm_rb.rb_right;
347 rb_parent = &tmp->vm_rb;
349 mm->map_count++;
350 retval = copy_page_range(mm, oldmm, mpnt);
352 if (tmp->vm_ops && tmp->vm_ops->open)
353 tmp->vm_ops->open(tmp);
355 if (retval)
356 goto out;
358 /* a new mm has just been created */
359 arch_dup_mmap(oldmm, mm);
360 retval = 0;
361 out:
362 up_write(&mm->mmap_sem);
363 flush_tlb_mm(oldmm);
364 up_write(&oldmm->mmap_sem);
365 return retval;
366 fail_nomem_policy:
367 kmem_cache_free(vm_area_cachep, tmp);
368 fail_nomem:
369 retval = -ENOMEM;
370 vm_unacct_memory(charge);
371 goto out;
374 static inline int mm_alloc_pgd(struct mm_struct * mm)
376 mm->pgd = pgd_alloc(mm);
377 if (unlikely(!mm->pgd))
378 return -ENOMEM;
379 return 0;
382 static inline void mm_free_pgd(struct mm_struct * mm)
384 pgd_free(mm, mm->pgd);
386 #else
387 #define dup_mmap(mm, oldmm) (0)
388 #define mm_alloc_pgd(mm) (0)
389 #define mm_free_pgd(mm)
390 #endif /* CONFIG_MMU */
392 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
394 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
395 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
397 #include <linux/init_task.h>
399 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
401 atomic_set(&mm->mm_users, 1);
402 atomic_set(&mm->mm_count, 1);
403 init_rwsem(&mm->mmap_sem);
404 INIT_LIST_HEAD(&mm->mmlist);
405 mm->flags = (current->mm) ? current->mm->flags
406 : MMF_DUMP_FILTER_DEFAULT;
407 mm->core_state = NULL;
408 mm->nr_ptes = 0;
409 set_mm_counter(mm, file_rss, 0);
410 set_mm_counter(mm, anon_rss, 0);
411 spin_lock_init(&mm->page_table_lock);
412 rwlock_init(&mm->ioctx_list_lock);
413 mm->ioctx_list = NULL;
414 mm->free_area_cache = TASK_UNMAPPED_BASE;
415 mm->cached_hole_size = ~0UL;
416 mm_init_owner(mm, p);
418 if (likely(!mm_alloc_pgd(mm))) {
419 mm->def_flags = 0;
420 mmu_notifier_mm_init(mm);
421 return mm;
424 free_mm(mm);
425 return NULL;
429 * Allocate and initialize an mm_struct.
431 struct mm_struct * mm_alloc(void)
433 struct mm_struct * mm;
435 mm = allocate_mm();
436 if (mm) {
437 memset(mm, 0, sizeof(*mm));
438 mm = mm_init(mm, current);
440 return mm;
444 * Called when the last reference to the mm
445 * is dropped: either by a lazy thread or by
446 * mmput. Free the page directory and the mm.
448 void __mmdrop(struct mm_struct *mm)
450 BUG_ON(mm == &init_mm);
451 mm_free_pgd(mm);
452 destroy_context(mm);
453 mmu_notifier_mm_destroy(mm);
454 free_mm(mm);
456 EXPORT_SYMBOL_GPL(__mmdrop);
459 * Decrement the use count and release all resources for an mm.
461 void mmput(struct mm_struct *mm)
463 might_sleep();
465 if (atomic_dec_and_test(&mm->mm_users)) {
466 exit_aio(mm);
467 exit_mmap(mm);
468 set_mm_exe_file(mm, NULL);
469 if (!list_empty(&mm->mmlist)) {
470 spin_lock(&mmlist_lock);
471 list_del(&mm->mmlist);
472 spin_unlock(&mmlist_lock);
474 put_swap_token(mm);
475 mmdrop(mm);
478 EXPORT_SYMBOL_GPL(mmput);
481 * get_task_mm - acquire a reference to the task's mm
483 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
484 * this kernel workthread has transiently adopted a user mm with use_mm,
485 * to do its AIO) is not set and if so returns a reference to it, after
486 * bumping up the use count. User must release the mm via mmput()
487 * after use. Typically used by /proc and ptrace.
489 struct mm_struct *get_task_mm(struct task_struct *task)
491 struct mm_struct *mm;
493 task_lock(task);
494 mm = task->mm;
495 if (mm) {
496 if (task->flags & PF_KTHREAD)
497 mm = NULL;
498 else
499 atomic_inc(&mm->mm_users);
501 task_unlock(task);
502 return mm;
504 EXPORT_SYMBOL_GPL(get_task_mm);
506 /* Please note the differences between mmput and mm_release.
507 * mmput is called whenever we stop holding onto a mm_struct,
508 * error success whatever.
510 * mm_release is called after a mm_struct has been removed
511 * from the current process.
513 * This difference is important for error handling, when we
514 * only half set up a mm_struct for a new process and need to restore
515 * the old one. Because we mmput the new mm_struct before
516 * restoring the old one. . .
517 * Eric Biederman 10 January 1998
519 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
521 struct completion *vfork_done = tsk->vfork_done;
523 /* Get rid of any futexes when releasing the mm */
524 #ifdef CONFIG_FUTEX
525 if (unlikely(tsk->robust_list))
526 exit_robust_list(tsk);
527 #ifdef CONFIG_COMPAT
528 if (unlikely(tsk->compat_robust_list))
529 compat_exit_robust_list(tsk);
530 #endif
531 #endif
533 /* Get rid of any cached register state */
534 deactivate_mm(tsk, mm);
536 /* notify parent sleeping on vfork() */
537 if (vfork_done) {
538 tsk->vfork_done = NULL;
539 complete(vfork_done);
543 * If we're exiting normally, clear a user-space tid field if
544 * requested. We leave this alone when dying by signal, to leave
545 * the value intact in a core dump, and to save the unnecessary
546 * trouble otherwise. Userland only wants this done for a sys_exit.
548 if (tsk->clear_child_tid
549 && !(tsk->flags & PF_SIGNALED)
550 && atomic_read(&mm->mm_users) > 1) {
551 u32 __user * tidptr = tsk->clear_child_tid;
552 tsk->clear_child_tid = NULL;
555 * We don't check the error code - if userspace has
556 * not set up a proper pointer then tough luck.
558 put_user(0, tidptr);
559 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
564 * Allocate a new mm structure and copy contents from the
565 * mm structure of the passed in task structure.
567 struct mm_struct *dup_mm(struct task_struct *tsk)
569 struct mm_struct *mm, *oldmm = current->mm;
570 int err;
572 if (!oldmm)
573 return NULL;
575 mm = allocate_mm();
576 if (!mm)
577 goto fail_nomem;
579 memcpy(mm, oldmm, sizeof(*mm));
581 /* Initializing for Swap token stuff */
582 mm->token_priority = 0;
583 mm->last_interval = 0;
585 if (!mm_init(mm, tsk))
586 goto fail_nomem;
588 if (init_new_context(tsk, mm))
589 goto fail_nocontext;
591 dup_mm_exe_file(oldmm, mm);
593 err = dup_mmap(mm, oldmm);
594 if (err)
595 goto free_pt;
597 mm->hiwater_rss = get_mm_rss(mm);
598 mm->hiwater_vm = mm->total_vm;
600 return mm;
602 free_pt:
603 mmput(mm);
605 fail_nomem:
606 return NULL;
608 fail_nocontext:
610 * If init_new_context() failed, we cannot use mmput() to free the mm
611 * because it calls destroy_context()
613 mm_free_pgd(mm);
614 free_mm(mm);
615 return NULL;
618 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
620 struct mm_struct * mm, *oldmm;
621 int retval;
623 tsk->min_flt = tsk->maj_flt = 0;
624 tsk->nvcsw = tsk->nivcsw = 0;
626 tsk->mm = NULL;
627 tsk->active_mm = NULL;
630 * Are we cloning a kernel thread?
632 * We need to steal a active VM for that..
634 oldmm = current->mm;
635 if (!oldmm)
636 return 0;
638 if (clone_flags & CLONE_VM) {
639 atomic_inc(&oldmm->mm_users);
640 mm = oldmm;
641 goto good_mm;
644 retval = -ENOMEM;
645 mm = dup_mm(tsk);
646 if (!mm)
647 goto fail_nomem;
649 good_mm:
650 /* Initializing for Swap token stuff */
651 mm->token_priority = 0;
652 mm->last_interval = 0;
654 tsk->mm = mm;
655 tsk->active_mm = mm;
656 return 0;
658 fail_nomem:
659 return retval;
662 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
664 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
665 /* We don't need to lock fs - think why ;-) */
666 if (fs) {
667 atomic_set(&fs->count, 1);
668 rwlock_init(&fs->lock);
669 fs->umask = old->umask;
670 read_lock(&old->lock);
671 fs->root = old->root;
672 path_get(&old->root);
673 fs->pwd = old->pwd;
674 path_get(&old->pwd);
675 read_unlock(&old->lock);
677 return fs;
680 struct fs_struct *copy_fs_struct(struct fs_struct *old)
682 return __copy_fs_struct(old);
685 EXPORT_SYMBOL_GPL(copy_fs_struct);
687 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
689 if (clone_flags & CLONE_FS) {
690 atomic_inc(&current->fs->count);
691 return 0;
693 tsk->fs = __copy_fs_struct(current->fs);
694 if (!tsk->fs)
695 return -ENOMEM;
696 return 0;
699 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
701 struct files_struct *oldf, *newf;
702 int error = 0;
705 * A background process may not have any files ...
707 oldf = current->files;
708 if (!oldf)
709 goto out;
711 if (clone_flags & CLONE_FILES) {
712 atomic_inc(&oldf->count);
713 goto out;
716 newf = dup_fd(oldf, &error);
717 if (!newf)
718 goto out;
720 tsk->files = newf;
721 error = 0;
722 out:
723 return error;
726 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
728 #ifdef CONFIG_BLOCK
729 struct io_context *ioc = current->io_context;
731 if (!ioc)
732 return 0;
734 * Share io context with parent, if CLONE_IO is set
736 if (clone_flags & CLONE_IO) {
737 tsk->io_context = ioc_task_link(ioc);
738 if (unlikely(!tsk->io_context))
739 return -ENOMEM;
740 } else if (ioprio_valid(ioc->ioprio)) {
741 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
742 if (unlikely(!tsk->io_context))
743 return -ENOMEM;
745 tsk->io_context->ioprio = ioc->ioprio;
747 #endif
748 return 0;
751 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
753 struct sighand_struct *sig;
755 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
756 atomic_inc(&current->sighand->count);
757 return 0;
759 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
760 rcu_assign_pointer(tsk->sighand, sig);
761 if (!sig)
762 return -ENOMEM;
763 atomic_set(&sig->count, 1);
764 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
765 return 0;
768 void __cleanup_sighand(struct sighand_struct *sighand)
770 if (atomic_dec_and_test(&sighand->count))
771 kmem_cache_free(sighand_cachep, sighand);
776 * Initialize POSIX timer handling for a thread group.
778 static void posix_cpu_timers_init_group(struct signal_struct *sig)
780 /* Thread group counters. */
781 thread_group_cputime_init(sig);
783 /* Expiration times and increments. */
784 sig->it_virt_expires = cputime_zero;
785 sig->it_virt_incr = cputime_zero;
786 sig->it_prof_expires = cputime_zero;
787 sig->it_prof_incr = cputime_zero;
789 /* Cached expiration times. */
790 sig->cputime_expires.prof_exp = cputime_zero;
791 sig->cputime_expires.virt_exp = cputime_zero;
792 sig->cputime_expires.sched_exp = 0;
794 /* The timer lists. */
795 INIT_LIST_HEAD(&sig->cpu_timers[0]);
796 INIT_LIST_HEAD(&sig->cpu_timers[1]);
797 INIT_LIST_HEAD(&sig->cpu_timers[2]);
800 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
802 struct signal_struct *sig;
803 int ret;
805 if (clone_flags & CLONE_THREAD) {
806 ret = thread_group_cputime_clone_thread(current);
807 if (likely(!ret)) {
808 atomic_inc(&current->signal->count);
809 atomic_inc(&current->signal->live);
811 return ret;
813 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
814 tsk->signal = sig;
815 if (!sig)
816 return -ENOMEM;
818 ret = copy_thread_group_keys(tsk);
819 if (ret < 0) {
820 kmem_cache_free(signal_cachep, sig);
821 return ret;
824 atomic_set(&sig->count, 1);
825 atomic_set(&sig->live, 1);
826 init_waitqueue_head(&sig->wait_chldexit);
827 sig->flags = 0;
828 sig->group_exit_code = 0;
829 sig->group_exit_task = NULL;
830 sig->group_stop_count = 0;
831 sig->curr_target = tsk;
832 init_sigpending(&sig->shared_pending);
833 INIT_LIST_HEAD(&sig->posix_timers);
835 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
836 sig->it_real_incr.tv64 = 0;
837 sig->real_timer.function = it_real_fn;
839 sig->leader = 0; /* session leadership doesn't inherit */
840 sig->tty_old_pgrp = NULL;
841 sig->tty = NULL;
843 sig->cutime = sig->cstime = cputime_zero;
844 sig->gtime = cputime_zero;
845 sig->cgtime = cputime_zero;
846 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
847 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
848 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
849 task_io_accounting_init(&sig->ioac);
850 taskstats_tgid_init(sig);
852 task_lock(current->group_leader);
853 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
854 task_unlock(current->group_leader);
856 posix_cpu_timers_init_group(sig);
858 acct_init_pacct(&sig->pacct);
860 tty_audit_fork(sig);
862 return 0;
865 void __cleanup_signal(struct signal_struct *sig)
867 thread_group_cputime_free(sig);
868 exit_thread_group_keys(sig);
869 tty_kref_put(sig->tty);
870 kmem_cache_free(signal_cachep, sig);
873 static void cleanup_signal(struct task_struct *tsk)
875 struct signal_struct *sig = tsk->signal;
877 atomic_dec(&sig->live);
879 if (atomic_dec_and_test(&sig->count))
880 __cleanup_signal(sig);
883 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
885 unsigned long new_flags = p->flags;
887 new_flags &= ~PF_SUPERPRIV;
888 new_flags |= PF_FORKNOEXEC;
889 new_flags |= PF_STARTING;
890 p->flags = new_flags;
891 clear_freeze_flag(p);
894 asmlinkage long sys_set_tid_address(int __user *tidptr)
896 current->clear_child_tid = tidptr;
898 return task_pid_vnr(current);
901 static void rt_mutex_init_task(struct task_struct *p)
903 spin_lock_init(&p->pi_lock);
904 #ifdef CONFIG_RT_MUTEXES
905 plist_head_init(&p->pi_waiters, &p->pi_lock);
906 p->pi_blocked_on = NULL;
907 #endif
910 #ifdef CONFIG_MM_OWNER
911 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
913 mm->owner = p;
915 #endif /* CONFIG_MM_OWNER */
918 * Initialize POSIX timer handling for a single task.
920 static void posix_cpu_timers_init(struct task_struct *tsk)
922 tsk->cputime_expires.prof_exp = cputime_zero;
923 tsk->cputime_expires.virt_exp = cputime_zero;
924 tsk->cputime_expires.sched_exp = 0;
925 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
926 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
927 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
931 * This creates a new process as a copy of the old one,
932 * but does not actually start it yet.
934 * It copies the registers, and all the appropriate
935 * parts of the process environment (as per the clone
936 * flags). The actual kick-off is left to the caller.
938 static struct task_struct *copy_process(unsigned long clone_flags,
939 unsigned long stack_start,
940 struct pt_regs *regs,
941 unsigned long stack_size,
942 int __user *child_tidptr,
943 struct pid *pid,
944 int trace)
946 int retval;
947 struct task_struct *p;
948 int cgroup_callbacks_done = 0;
950 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
951 return ERR_PTR(-EINVAL);
954 * Thread groups must share signals as well, and detached threads
955 * can only be started up within the thread group.
957 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
958 return ERR_PTR(-EINVAL);
961 * Shared signal handlers imply shared VM. By way of the above,
962 * thread groups also imply shared VM. Blocking this case allows
963 * for various simplifications in other code.
965 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
966 return ERR_PTR(-EINVAL);
968 retval = security_task_create(clone_flags);
969 if (retval)
970 goto fork_out;
972 retval = -ENOMEM;
973 p = dup_task_struct(current);
974 if (!p)
975 goto fork_out;
977 rt_mutex_init_task(p);
979 #ifdef CONFIG_PROVE_LOCKING
980 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
981 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
982 #endif
983 retval = -EAGAIN;
984 if (atomic_read(&p->user->processes) >=
985 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
986 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
987 p->user != current->nsproxy->user_ns->root_user)
988 goto bad_fork_free;
991 atomic_inc(&p->user->__count);
992 atomic_inc(&p->user->processes);
993 get_group_info(p->group_info);
996 * If multiple threads are within copy_process(), then this check
997 * triggers too late. This doesn't hurt, the check is only there
998 * to stop root fork bombs.
1000 if (nr_threads >= max_threads)
1001 goto bad_fork_cleanup_count;
1003 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1004 goto bad_fork_cleanup_count;
1006 if (p->binfmt && !try_module_get(p->binfmt->module))
1007 goto bad_fork_cleanup_put_domain;
1009 p->did_exec = 0;
1010 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1011 copy_flags(clone_flags, p);
1012 INIT_LIST_HEAD(&p->children);
1013 INIT_LIST_HEAD(&p->sibling);
1014 #ifdef CONFIG_PREEMPT_RCU
1015 p->rcu_read_lock_nesting = 0;
1016 p->rcu_flipctr_idx = 0;
1017 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1018 p->vfork_done = NULL;
1019 spin_lock_init(&p->alloc_lock);
1021 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1022 init_sigpending(&p->pending);
1024 p->utime = cputime_zero;
1025 p->stime = cputime_zero;
1026 p->gtime = cputime_zero;
1027 p->utimescaled = cputime_zero;
1028 p->stimescaled = cputime_zero;
1029 p->prev_utime = cputime_zero;
1030 p->prev_stime = cputime_zero;
1032 p->default_timer_slack_ns = current->timer_slack_ns;
1034 #ifdef CONFIG_DETECT_SOFTLOCKUP
1035 p->last_switch_count = 0;
1036 p->last_switch_timestamp = 0;
1037 #endif
1039 task_io_accounting_init(&p->ioac);
1040 acct_clear_integrals(p);
1042 posix_cpu_timers_init(p);
1044 p->lock_depth = -1; /* -1 = no lock */
1045 do_posix_clock_monotonic_gettime(&p->start_time);
1046 p->real_start_time = p->start_time;
1047 monotonic_to_bootbased(&p->real_start_time);
1048 #ifdef CONFIG_SECURITY
1049 p->security = NULL;
1050 #endif
1051 p->cap_bset = current->cap_bset;
1052 p->io_context = NULL;
1053 p->audit_context = NULL;
1054 cgroup_fork(p);
1055 #ifdef CONFIG_NUMA
1056 p->mempolicy = mpol_dup(p->mempolicy);
1057 if (IS_ERR(p->mempolicy)) {
1058 retval = PTR_ERR(p->mempolicy);
1059 p->mempolicy = NULL;
1060 goto bad_fork_cleanup_cgroup;
1062 mpol_fix_fork_child_flag(p);
1063 #endif
1064 #ifdef CONFIG_TRACE_IRQFLAGS
1065 p->irq_events = 0;
1066 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1067 p->hardirqs_enabled = 1;
1068 #else
1069 p->hardirqs_enabled = 0;
1070 #endif
1071 p->hardirq_enable_ip = 0;
1072 p->hardirq_enable_event = 0;
1073 p->hardirq_disable_ip = _THIS_IP_;
1074 p->hardirq_disable_event = 0;
1075 p->softirqs_enabled = 1;
1076 p->softirq_enable_ip = _THIS_IP_;
1077 p->softirq_enable_event = 0;
1078 p->softirq_disable_ip = 0;
1079 p->softirq_disable_event = 0;
1080 p->hardirq_context = 0;
1081 p->softirq_context = 0;
1082 #endif
1083 #ifdef CONFIG_LOCKDEP
1084 p->lockdep_depth = 0; /* no locks held yet */
1085 p->curr_chain_key = 0;
1086 p->lockdep_recursion = 0;
1087 #endif
1089 #ifdef CONFIG_DEBUG_MUTEXES
1090 p->blocked_on = NULL; /* not blocked yet */
1091 #endif
1093 /* Perform scheduler related setup. Assign this task to a CPU. */
1094 sched_fork(p, clone_flags);
1096 if ((retval = security_task_alloc(p)))
1097 goto bad_fork_cleanup_policy;
1098 if ((retval = audit_alloc(p)))
1099 goto bad_fork_cleanup_security;
1100 /* copy all the process information */
1101 if ((retval = copy_semundo(clone_flags, p)))
1102 goto bad_fork_cleanup_audit;
1103 if ((retval = copy_files(clone_flags, p)))
1104 goto bad_fork_cleanup_semundo;
1105 if ((retval = copy_fs(clone_flags, p)))
1106 goto bad_fork_cleanup_files;
1107 if ((retval = copy_sighand(clone_flags, p)))
1108 goto bad_fork_cleanup_fs;
1109 if ((retval = copy_signal(clone_flags, p)))
1110 goto bad_fork_cleanup_sighand;
1111 if ((retval = copy_mm(clone_flags, p)))
1112 goto bad_fork_cleanup_signal;
1113 if ((retval = copy_keys(clone_flags, p)))
1114 goto bad_fork_cleanup_mm;
1115 if ((retval = copy_namespaces(clone_flags, p)))
1116 goto bad_fork_cleanup_keys;
1117 if ((retval = copy_io(clone_flags, p)))
1118 goto bad_fork_cleanup_namespaces;
1119 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1120 if (retval)
1121 goto bad_fork_cleanup_io;
1123 if (pid != &init_struct_pid) {
1124 retval = -ENOMEM;
1125 pid = alloc_pid(task_active_pid_ns(p));
1126 if (!pid)
1127 goto bad_fork_cleanup_io;
1129 if (clone_flags & CLONE_NEWPID) {
1130 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1131 if (retval < 0)
1132 goto bad_fork_free_pid;
1136 p->pid = pid_nr(pid);
1137 p->tgid = p->pid;
1138 if (clone_flags & CLONE_THREAD)
1139 p->tgid = current->tgid;
1141 if (current->nsproxy != p->nsproxy) {
1142 retval = ns_cgroup_clone(p, pid);
1143 if (retval)
1144 goto bad_fork_free_pid;
1147 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1149 * Clear TID on mm_release()?
1151 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1152 #ifdef CONFIG_FUTEX
1153 p->robust_list = NULL;
1154 #ifdef CONFIG_COMPAT
1155 p->compat_robust_list = NULL;
1156 #endif
1157 INIT_LIST_HEAD(&p->pi_state_list);
1158 p->pi_state_cache = NULL;
1159 #endif
1161 * sigaltstack should be cleared when sharing the same VM
1163 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1164 p->sas_ss_sp = p->sas_ss_size = 0;
1167 * Syscall tracing should be turned off in the child regardless
1168 * of CLONE_PTRACE.
1170 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1171 #ifdef TIF_SYSCALL_EMU
1172 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1173 #endif
1174 clear_all_latency_tracing(p);
1176 /* Our parent execution domain becomes current domain
1177 These must match for thread signalling to apply */
1178 p->parent_exec_id = p->self_exec_id;
1180 /* ok, now we should be set up.. */
1181 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1182 p->pdeath_signal = 0;
1183 p->exit_state = 0;
1186 * Ok, make it visible to the rest of the system.
1187 * We dont wake it up yet.
1189 p->group_leader = p;
1190 INIT_LIST_HEAD(&p->thread_group);
1192 /* Now that the task is set up, run cgroup callbacks if
1193 * necessary. We need to run them before the task is visible
1194 * on the tasklist. */
1195 cgroup_fork_callbacks(p);
1196 cgroup_callbacks_done = 1;
1198 /* Need tasklist lock for parent etc handling! */
1199 write_lock_irq(&tasklist_lock);
1202 * The task hasn't been attached yet, so its cpus_allowed mask will
1203 * not be changed, nor will its assigned CPU.
1205 * The cpus_allowed mask of the parent may have changed after it was
1206 * copied first time - so re-copy it here, then check the child's CPU
1207 * to ensure it is on a valid CPU (and if not, just force it back to
1208 * parent's CPU). This avoids alot of nasty races.
1210 p->cpus_allowed = current->cpus_allowed;
1211 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1212 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1213 !cpu_online(task_cpu(p))))
1214 set_task_cpu(p, smp_processor_id());
1216 /* CLONE_PARENT re-uses the old parent */
1217 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1218 p->real_parent = current->real_parent;
1219 else
1220 p->real_parent = current;
1222 spin_lock(&current->sighand->siglock);
1225 * Process group and session signals need to be delivered to just the
1226 * parent before the fork or both the parent and the child after the
1227 * fork. Restart if a signal comes in before we add the new process to
1228 * it's process group.
1229 * A fatal signal pending means that current will exit, so the new
1230 * thread can't slip out of an OOM kill (or normal SIGKILL).
1232 recalc_sigpending();
1233 if (signal_pending(current)) {
1234 spin_unlock(&current->sighand->siglock);
1235 write_unlock_irq(&tasklist_lock);
1236 retval = -ERESTARTNOINTR;
1237 goto bad_fork_free_pid;
1240 if (clone_flags & CLONE_THREAD) {
1241 p->group_leader = current->group_leader;
1242 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1245 if (likely(p->pid)) {
1246 list_add_tail(&p->sibling, &p->real_parent->children);
1247 tracehook_finish_clone(p, clone_flags, trace);
1249 if (thread_group_leader(p)) {
1250 if (clone_flags & CLONE_NEWPID)
1251 p->nsproxy->pid_ns->child_reaper = p;
1253 p->signal->leader_pid = pid;
1254 tty_kref_put(p->signal->tty);
1255 p->signal->tty = tty_kref_get(current->signal->tty);
1256 set_task_pgrp(p, task_pgrp_nr(current));
1257 set_task_session(p, task_session_nr(current));
1258 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1259 attach_pid(p, PIDTYPE_SID, task_session(current));
1260 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1261 __get_cpu_var(process_counts)++;
1263 attach_pid(p, PIDTYPE_PID, pid);
1264 nr_threads++;
1267 total_forks++;
1268 spin_unlock(&current->sighand->siglock);
1269 write_unlock_irq(&tasklist_lock);
1270 proc_fork_connector(p);
1271 cgroup_post_fork(p);
1272 return p;
1274 bad_fork_free_pid:
1275 if (pid != &init_struct_pid)
1276 free_pid(pid);
1277 bad_fork_cleanup_io:
1278 put_io_context(p->io_context);
1279 bad_fork_cleanup_namespaces:
1280 exit_task_namespaces(p);
1281 bad_fork_cleanup_keys:
1282 exit_keys(p);
1283 bad_fork_cleanup_mm:
1284 if (p->mm)
1285 mmput(p->mm);
1286 bad_fork_cleanup_signal:
1287 cleanup_signal(p);
1288 bad_fork_cleanup_sighand:
1289 __cleanup_sighand(p->sighand);
1290 bad_fork_cleanup_fs:
1291 exit_fs(p); /* blocking */
1292 bad_fork_cleanup_files:
1293 exit_files(p); /* blocking */
1294 bad_fork_cleanup_semundo:
1295 exit_sem(p);
1296 bad_fork_cleanup_audit:
1297 audit_free(p);
1298 bad_fork_cleanup_security:
1299 security_task_free(p);
1300 bad_fork_cleanup_policy:
1301 #ifdef CONFIG_NUMA
1302 mpol_put(p->mempolicy);
1303 bad_fork_cleanup_cgroup:
1304 #endif
1305 cgroup_exit(p, cgroup_callbacks_done);
1306 delayacct_tsk_free(p);
1307 if (p->binfmt)
1308 module_put(p->binfmt->module);
1309 bad_fork_cleanup_put_domain:
1310 module_put(task_thread_info(p)->exec_domain->module);
1311 bad_fork_cleanup_count:
1312 put_group_info(p->group_info);
1313 atomic_dec(&p->user->processes);
1314 free_uid(p->user);
1315 bad_fork_free:
1316 free_task(p);
1317 fork_out:
1318 return ERR_PTR(retval);
1321 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1323 memset(regs, 0, sizeof(struct pt_regs));
1324 return regs;
1327 struct task_struct * __cpuinit fork_idle(int cpu)
1329 struct task_struct *task;
1330 struct pt_regs regs;
1332 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1333 &init_struct_pid, 0);
1334 if (!IS_ERR(task))
1335 init_idle(task, cpu);
1337 return task;
1341 * Ok, this is the main fork-routine.
1343 * It copies the process, and if successful kick-starts
1344 * it and waits for it to finish using the VM if required.
1346 long do_fork(unsigned long clone_flags,
1347 unsigned long stack_start,
1348 struct pt_regs *regs,
1349 unsigned long stack_size,
1350 int __user *parent_tidptr,
1351 int __user *child_tidptr)
1353 struct task_struct *p;
1354 int trace = 0;
1355 long nr;
1358 * We hope to recycle these flags after 2.6.26
1360 if (unlikely(clone_flags & CLONE_STOPPED)) {
1361 static int __read_mostly count = 100;
1363 if (count > 0 && printk_ratelimit()) {
1364 char comm[TASK_COMM_LEN];
1366 count--;
1367 printk(KERN_INFO "fork(): process `%s' used deprecated "
1368 "clone flags 0x%lx\n",
1369 get_task_comm(comm, current),
1370 clone_flags & CLONE_STOPPED);
1375 * When called from kernel_thread, don't do user tracing stuff.
1377 if (likely(user_mode(regs)))
1378 trace = tracehook_prepare_clone(clone_flags);
1380 p = copy_process(clone_flags, stack_start, regs, stack_size,
1381 child_tidptr, NULL, trace);
1383 * Do this prior waking up the new thread - the thread pointer
1384 * might get invalid after that point, if the thread exits quickly.
1386 if (!IS_ERR(p)) {
1387 struct completion vfork;
1389 trace_sched_process_fork(current, p);
1391 nr = task_pid_vnr(p);
1393 if (clone_flags & CLONE_PARENT_SETTID)
1394 put_user(nr, parent_tidptr);
1396 if (clone_flags & CLONE_VFORK) {
1397 p->vfork_done = &vfork;
1398 init_completion(&vfork);
1401 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1404 * We set PF_STARTING at creation in case tracing wants to
1405 * use this to distinguish a fully live task from one that
1406 * hasn't gotten to tracehook_report_clone() yet. Now we
1407 * clear it and set the child going.
1409 p->flags &= ~PF_STARTING;
1411 if (unlikely(clone_flags & CLONE_STOPPED)) {
1413 * We'll start up with an immediate SIGSTOP.
1415 sigaddset(&p->pending.signal, SIGSTOP);
1416 set_tsk_thread_flag(p, TIF_SIGPENDING);
1417 __set_task_state(p, TASK_STOPPED);
1418 } else {
1419 wake_up_new_task(p, clone_flags);
1422 tracehook_report_clone_complete(trace, regs,
1423 clone_flags, nr, p);
1425 if (clone_flags & CLONE_VFORK) {
1426 freezer_do_not_count();
1427 wait_for_completion(&vfork);
1428 freezer_count();
1429 tracehook_report_vfork_done(p, nr);
1431 } else {
1432 nr = PTR_ERR(p);
1434 return nr;
1437 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1438 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1439 #endif
1441 static void sighand_ctor(void *data)
1443 struct sighand_struct *sighand = data;
1445 spin_lock_init(&sighand->siglock);
1446 init_waitqueue_head(&sighand->signalfd_wqh);
1449 void __init proc_caches_init(void)
1451 sighand_cachep = kmem_cache_create("sighand_cache",
1452 sizeof(struct sighand_struct), 0,
1453 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1454 sighand_ctor);
1455 signal_cachep = kmem_cache_create("signal_cache",
1456 sizeof(struct signal_struct), 0,
1457 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1458 files_cachep = kmem_cache_create("files_cache",
1459 sizeof(struct files_struct), 0,
1460 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1461 fs_cachep = kmem_cache_create("fs_cache",
1462 sizeof(struct fs_struct), 0,
1463 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1464 vm_area_cachep = kmem_cache_create("vm_area_struct",
1465 sizeof(struct vm_area_struct), 0,
1466 SLAB_PANIC, NULL);
1467 mm_cachep = kmem_cache_create("mm_struct",
1468 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1469 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1473 * Check constraints on flags passed to the unshare system call and
1474 * force unsharing of additional process context as appropriate.
1476 static void check_unshare_flags(unsigned long *flags_ptr)
1479 * If unsharing a thread from a thread group, must also
1480 * unshare vm.
1482 if (*flags_ptr & CLONE_THREAD)
1483 *flags_ptr |= CLONE_VM;
1486 * If unsharing vm, must also unshare signal handlers.
1488 if (*flags_ptr & CLONE_VM)
1489 *flags_ptr |= CLONE_SIGHAND;
1492 * If unsharing signal handlers and the task was created
1493 * using CLONE_THREAD, then must unshare the thread
1495 if ((*flags_ptr & CLONE_SIGHAND) &&
1496 (atomic_read(&current->signal->count) > 1))
1497 *flags_ptr |= CLONE_THREAD;
1500 * If unsharing namespace, must also unshare filesystem information.
1502 if (*flags_ptr & CLONE_NEWNS)
1503 *flags_ptr |= CLONE_FS;
1507 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1509 static int unshare_thread(unsigned long unshare_flags)
1511 if (unshare_flags & CLONE_THREAD)
1512 return -EINVAL;
1514 return 0;
1518 * Unshare the filesystem structure if it is being shared
1520 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1522 struct fs_struct *fs = current->fs;
1524 if ((unshare_flags & CLONE_FS) &&
1525 (fs && atomic_read(&fs->count) > 1)) {
1526 *new_fsp = __copy_fs_struct(current->fs);
1527 if (!*new_fsp)
1528 return -ENOMEM;
1531 return 0;
1535 * Unsharing of sighand is not supported yet
1537 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1539 struct sighand_struct *sigh = current->sighand;
1541 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1542 return -EINVAL;
1543 else
1544 return 0;
1548 * Unshare vm if it is being shared
1550 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1552 struct mm_struct *mm = current->mm;
1554 if ((unshare_flags & CLONE_VM) &&
1555 (mm && atomic_read(&mm->mm_users) > 1)) {
1556 return -EINVAL;
1559 return 0;
1563 * Unshare file descriptor table if it is being shared
1565 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1567 struct files_struct *fd = current->files;
1568 int error = 0;
1570 if ((unshare_flags & CLONE_FILES) &&
1571 (fd && atomic_read(&fd->count) > 1)) {
1572 *new_fdp = dup_fd(fd, &error);
1573 if (!*new_fdp)
1574 return error;
1577 return 0;
1581 * unshare allows a process to 'unshare' part of the process
1582 * context which was originally shared using clone. copy_*
1583 * functions used by do_fork() cannot be used here directly
1584 * because they modify an inactive task_struct that is being
1585 * constructed. Here we are modifying the current, active,
1586 * task_struct.
1588 asmlinkage long sys_unshare(unsigned long unshare_flags)
1590 int err = 0;
1591 struct fs_struct *fs, *new_fs = NULL;
1592 struct sighand_struct *new_sigh = NULL;
1593 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1594 struct files_struct *fd, *new_fd = NULL;
1595 struct nsproxy *new_nsproxy = NULL;
1596 int do_sysvsem = 0;
1598 check_unshare_flags(&unshare_flags);
1600 /* Return -EINVAL for all unsupported flags */
1601 err = -EINVAL;
1602 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1603 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1604 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1605 CLONE_NEWNET))
1606 goto bad_unshare_out;
1609 * CLONE_NEWIPC must also detach from the undolist: after switching
1610 * to a new ipc namespace, the semaphore arrays from the old
1611 * namespace are unreachable.
1613 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1614 do_sysvsem = 1;
1615 if ((err = unshare_thread(unshare_flags)))
1616 goto bad_unshare_out;
1617 if ((err = unshare_fs(unshare_flags, &new_fs)))
1618 goto bad_unshare_cleanup_thread;
1619 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1620 goto bad_unshare_cleanup_fs;
1621 if ((err = unshare_vm(unshare_flags, &new_mm)))
1622 goto bad_unshare_cleanup_sigh;
1623 if ((err = unshare_fd(unshare_flags, &new_fd)))
1624 goto bad_unshare_cleanup_vm;
1625 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1626 new_fs)))
1627 goto bad_unshare_cleanup_fd;
1629 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1630 if (do_sysvsem) {
1632 * CLONE_SYSVSEM is equivalent to sys_exit().
1634 exit_sem(current);
1637 if (new_nsproxy) {
1638 switch_task_namespaces(current, new_nsproxy);
1639 new_nsproxy = NULL;
1642 task_lock(current);
1644 if (new_fs) {
1645 fs = current->fs;
1646 current->fs = new_fs;
1647 new_fs = fs;
1650 if (new_mm) {
1651 mm = current->mm;
1652 active_mm = current->active_mm;
1653 current->mm = new_mm;
1654 current->active_mm = new_mm;
1655 activate_mm(active_mm, new_mm);
1656 new_mm = mm;
1659 if (new_fd) {
1660 fd = current->files;
1661 current->files = new_fd;
1662 new_fd = fd;
1665 task_unlock(current);
1668 if (new_nsproxy)
1669 put_nsproxy(new_nsproxy);
1671 bad_unshare_cleanup_fd:
1672 if (new_fd)
1673 put_files_struct(new_fd);
1675 bad_unshare_cleanup_vm:
1676 if (new_mm)
1677 mmput(new_mm);
1679 bad_unshare_cleanup_sigh:
1680 if (new_sigh)
1681 if (atomic_dec_and_test(&new_sigh->count))
1682 kmem_cache_free(sighand_cachep, new_sigh);
1684 bad_unshare_cleanup_fs:
1685 if (new_fs)
1686 put_fs_struct(new_fs);
1688 bad_unshare_cleanup_thread:
1689 bad_unshare_out:
1690 return err;
1694 * Helper to unshare the files of the current task.
1695 * We don't want to expose copy_files internals to
1696 * the exec layer of the kernel.
1699 int unshare_files(struct files_struct **displaced)
1701 struct task_struct *task = current;
1702 struct files_struct *copy = NULL;
1703 int error;
1705 error = unshare_fd(CLONE_FILES, &copy);
1706 if (error || !copy) {
1707 *displaced = NULL;
1708 return error;
1710 *displaced = task->files;
1711 task_lock(task);
1712 task->files = copy;
1713 task_unlock(task);
1714 return 0;