2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
74 int sysctl_tcp_timestamps __read_mostly
= 1;
75 int sysctl_tcp_window_scaling __read_mostly
= 1;
76 int sysctl_tcp_sack __read_mostly
= 1;
77 int sysctl_tcp_fack __read_mostly
= 1;
78 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
79 int sysctl_tcp_ecn __read_mostly
;
80 int sysctl_tcp_dsack __read_mostly
= 1;
81 int sysctl_tcp_app_win __read_mostly
= 31;
82 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
84 int sysctl_tcp_stdurg __read_mostly
;
85 int sysctl_tcp_rfc1337 __read_mostly
;
86 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
87 int sysctl_tcp_frto __read_mostly
= 2;
88 int sysctl_tcp_frto_response __read_mostly
;
89 int sysctl_tcp_nometrics_save __read_mostly
;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
92 int sysctl_tcp_abc __read_mostly
;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 /* Adapt the MSS value used to make delayed ack decision to the
121 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
123 struct inet_connection_sock
*icsk
= inet_csk(sk
);
124 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
127 icsk
->icsk_ack
.last_seg_size
= 0;
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
132 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
133 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
134 icsk
->icsk_ack
.rcv_mss
= len
;
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
139 * "len" is invariant segment length, including TCP header.
141 len
+= skb
->data
- skb_transport_header(skb
);
142 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
148 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
149 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
154 len
-= tcp_sk(sk
)->tcp_header_len
;
155 icsk
->icsk_ack
.last_seg_size
= len
;
157 icsk
->icsk_ack
.rcv_mss
= len
;
161 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
162 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
163 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
167 static void tcp_incr_quickack(struct sock
*sk
)
169 struct inet_connection_sock
*icsk
= inet_csk(sk
);
170 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
174 if (quickacks
> icsk
->icsk_ack
.quick
)
175 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
178 void tcp_enter_quickack_mode(struct sock
*sk
)
180 struct inet_connection_sock
*icsk
= inet_csk(sk
);
181 tcp_incr_quickack(sk
);
182 icsk
->icsk_ack
.pingpong
= 0;
183 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
190 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
192 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
193 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
198 if (tp
->ecn_flags
& TCP_ECN_OK
)
199 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
204 if (tcp_hdr(skb
)->cwr
)
205 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
210 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
213 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
215 if (tp
->ecn_flags
& TCP_ECN_OK
) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
217 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
222 tcp_enter_quickack_mode((struct sock
*)tp
);
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
228 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
229 tp
->ecn_flags
&= ~TCP_ECN_OK
;
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
234 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
235 tp
->ecn_flags
&= ~TCP_ECN_OK
;
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
240 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
245 /* Buffer size and advertised window tuning.
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 static void tcp_fixup_sndbuf(struct sock
*sk
)
252 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
253 sizeof(struct sk_buff
);
255 if (sk
->sk_sndbuf
< 3 * sndmem
)
256 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
287 struct tcp_sock
*tp
= tcp_sk(sk
);
289 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
290 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
292 while (tp
->rcv_ssthresh
<= window
) {
293 if (truesize
<= skb
->len
)
294 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
302 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
304 struct tcp_sock
*tp
= tcp_sk(sk
);
307 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
308 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
309 !tcp_memory_pressure
) {
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
315 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
316 incr
= 2 * tp
->advmss
;
318 incr
= __tcp_grow_window(sk
, skb
);
321 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
323 inet_csk(sk
)->icsk_ack
.quick
|= 1;
328 /* 3. Tuning rcvbuf, when connection enters established state. */
330 static void tcp_fixup_rcvbuf(struct sock
*sk
)
332 struct tcp_sock
*tp
= tcp_sk(sk
);
333 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
341 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
342 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
345 /* 4. Try to fixup all. It is made immediately after connection enters
348 static void tcp_init_buffer_space(struct sock
*sk
)
350 struct tcp_sock
*tp
= tcp_sk(sk
);
353 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
354 tcp_fixup_rcvbuf(sk
);
355 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
356 tcp_fixup_sndbuf(sk
);
358 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
360 maxwin
= tcp_full_space(sk
);
362 if (tp
->window_clamp
>= maxwin
) {
363 tp
->window_clamp
= maxwin
;
365 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
366 tp
->window_clamp
= max(maxwin
-
367 (maxwin
>> sysctl_tcp_app_win
),
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win
&&
373 tp
->window_clamp
> 2 * tp
->advmss
&&
374 tp
->window_clamp
+ tp
->advmss
> maxwin
)
375 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
377 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
378 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock
*sk
)
384 struct tcp_sock
*tp
= tcp_sk(sk
);
385 struct inet_connection_sock
*icsk
= inet_csk(sk
);
387 icsk
->icsk_ack
.quick
= 0;
389 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
390 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
391 !tcp_memory_pressure
&&
392 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
393 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
396 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
397 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 void tcp_initialize_rcv_mss(struct sock
*sk
)
409 struct tcp_sock
*tp
= tcp_sk(sk
);
410 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
412 hint
= min(hint
, tp
->rcv_wnd
/ 2);
413 hint
= min(hint
, TCP_MIN_RCVMSS
);
414 hint
= max(hint
, TCP_MIN_MSS
);
416 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
419 /* Receiver "autotuning" code.
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
430 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
432 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
438 if (new_sample
!= 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
450 m
-= (new_sample
>> 3);
452 } else if (m
< new_sample
)
455 /* No previous measure. */
459 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
460 tp
->rcv_rtt_est
.rtt
= new_sample
;
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
465 if (tp
->rcv_rtt_est
.time
== 0)
467 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
469 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
472 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
473 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
476 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
477 const struct sk_buff
*skb
)
479 struct tcp_sock
*tp
= tcp_sk(sk
);
480 if (tp
->rx_opt
.rcv_tsecr
&&
481 (TCP_SKB_CB(skb
)->end_seq
-
482 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
483 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
490 void tcp_rcv_space_adjust(struct sock
*sk
)
492 struct tcp_sock
*tp
= tcp_sk(sk
);
496 if (tp
->rcvq_space
.time
== 0)
499 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
500 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
503 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
505 space
= max(tp
->rcvq_space
.space
, space
);
507 if (tp
->rcvq_space
.space
!= space
) {
510 tp
->rcvq_space
.space
= space
;
512 if (sysctl_tcp_moderate_rcvbuf
&&
513 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
514 int new_clamp
= space
;
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
523 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
524 16 + sizeof(struct sk_buff
));
525 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
528 space
= min(space
, sysctl_tcp_rmem
[2]);
529 if (space
> sk
->sk_rcvbuf
) {
530 sk
->sk_rcvbuf
= space
;
532 /* Make the window clamp follow along. */
533 tp
->window_clamp
= new_clamp
;
539 tp
->rcvq_space
.seq
= tp
->copied_seq
;
540 tp
->rcvq_space
.time
= tcp_time_stamp
;
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
553 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
555 struct tcp_sock
*tp
= tcp_sk(sk
);
556 struct inet_connection_sock
*icsk
= inet_csk(sk
);
559 inet_csk_schedule_ack(sk
);
561 tcp_measure_rcv_mss(sk
, skb
);
563 tcp_rcv_rtt_measure(tp
);
565 now
= tcp_time_stamp
;
567 if (!icsk
->icsk_ack
.ato
) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
571 tcp_incr_quickack(sk
);
572 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
574 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
576 if (m
<= TCP_ATO_MIN
/ 2) {
577 /* The fastest case is the first. */
578 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
579 } else if (m
< icsk
->icsk_ack
.ato
) {
580 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
581 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
582 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
583 } else if (m
> icsk
->icsk_rto
) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
587 tcp_incr_quickack(sk
);
591 icsk
->icsk_ack
.lrcvtime
= now
;
593 TCP_ECN_check_ce(tp
, skb
);
596 tcp_grow_window(sk
, skb
);
599 static u32
tcp_rto_min(struct sock
*sk
)
601 struct dst_entry
*dst
= __sk_dst_get(sk
);
602 u32 rto_min
= TCP_RTO_MIN
;
604 if (dst
&& dst_metric_locked(dst
, RTAX_RTO_MIN
))
605 rto_min
= dst_metric_rtt(dst
, RTAX_RTO_MIN
);
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
618 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
620 struct tcp_sock
*tp
= tcp_sk(sk
);
621 long m
= mrtt
; /* RTT */
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
642 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
643 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
645 m
= -m
; /* m is now abs(error) */
646 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
658 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
660 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp
->mdev
> tp
->mdev_max
) {
662 tp
->mdev_max
= tp
->mdev
;
663 if (tp
->mdev_max
> tp
->rttvar
)
664 tp
->rttvar
= tp
->mdev_max
;
666 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
667 if (tp
->mdev_max
< tp
->rttvar
)
668 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
669 tp
->rtt_seq
= tp
->snd_nxt
;
670 tp
->mdev_max
= tcp_rto_min(sk
);
673 /* no previous measure. */
674 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
675 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
676 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
677 tp
->rtt_seq
= tp
->snd_nxt
;
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
684 static inline void tcp_set_rto(struct sock
*sk
)
686 const struct tcp_sock
*tp
= tcp_sk(sk
);
687 /* Old crap is replaced with new one. 8)
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
697 inet_csk(sk
)->icsk_rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
705 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
706 * guarantees that rto is higher.
708 if (inet_csk(sk
)->icsk_rto
> TCP_RTO_MAX
)
709 inet_csk(sk
)->icsk_rto
= TCP_RTO_MAX
;
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 void tcp_update_metrics(struct sock
*sk
)
718 struct tcp_sock
*tp
= tcp_sk(sk
);
719 struct dst_entry
*dst
= __sk_dst_get(sk
);
721 if (sysctl_tcp_nometrics_save
)
726 if (dst
&& (dst
->flags
& DST_HOST
)) {
727 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
731 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
736 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
737 dst
->metrics
[RTAX_RTT
- 1] = 0;
741 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
748 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
750 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
752 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
755 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
760 /* Scale deviation to rttvar fixed point */
765 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
769 var
-= (var
- m
) >> 2;
771 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
774 if (tp
->snd_ssthresh
>= 0xFFFF) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
777 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
778 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
779 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
780 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
781 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
782 dst
->metrics
[RTAX_CWND
- 1] = tp
->snd_cwnd
;
783 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
784 icsk
->icsk_ca_state
== TCP_CA_Open
) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
787 dst
->metrics
[RTAX_SSTHRESH
-1] =
788 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
789 if (!dst_metric_locked(dst
, RTAX_CWND
))
790 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_cwnd
) >> 1;
792 /* Else slow start did not finish, cwnd is non-sense,
793 ssthresh may be also invalid.
795 if (!dst_metric_locked(dst
, RTAX_CWND
))
796 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_ssthresh
) >> 1;
797 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
798 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
799 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
800 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
803 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
804 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
805 tp
->reordering
!= sysctl_tcp_reordering
)
806 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
811 /* Numbers are taken from RFC3390.
813 * John Heffner states:
815 * The RFC specifies a window of no more than 4380 bytes
816 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
817 * is a bit misleading because they use a clamp at 4380 bytes
818 * rather than use a multiplier in the relevant range.
820 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
822 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
825 if (tp
->mss_cache
> 1460)
828 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
830 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
836 struct tcp_sock
*tp
= tcp_sk(sk
);
837 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
839 tp
->prior_ssthresh
= 0;
841 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
844 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
845 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
846 tcp_packets_in_flight(tp
) + 1U);
847 tp
->snd_cwnd_cnt
= 0;
848 tp
->high_seq
= tp
->snd_nxt
;
849 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
850 TCP_ECN_queue_cwr(tp
);
852 tcp_set_ca_state(sk
, TCP_CA_CWR
);
857 * Packet counting of FACK is based on in-order assumptions, therefore TCP
858 * disables it when reordering is detected
860 static void tcp_disable_fack(struct tcp_sock
*tp
)
862 /* RFC3517 uses different metric in lost marker => reset on change */
864 tp
->lost_skb_hint
= NULL
;
865 tp
->rx_opt
.sack_ok
&= ~2;
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock
*tp
)
871 tp
->rx_opt
.sack_ok
|= 4;
874 /* Initialize metrics on socket. */
876 static void tcp_init_metrics(struct sock
*sk
)
878 struct tcp_sock
*tp
= tcp_sk(sk
);
879 struct dst_entry
*dst
= __sk_dst_get(sk
);
886 if (dst_metric_locked(dst
, RTAX_CWND
))
887 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
888 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
889 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
890 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
891 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
893 if (dst_metric(dst
, RTAX_REORDERING
) &&
894 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
895 tcp_disable_fack(tp
);
896 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
899 if (dst_metric(dst
, RTAX_RTT
) == 0)
902 if (!tp
->srtt
&& dst_metric_rtt(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
910 * A bit of theory. RTT is time passed after "normal" sized packet
911 * is sent until it is ACKed. In normal circumstances sending small
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
919 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
920 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
921 tp
->rtt_seq
= tp
->snd_nxt
;
923 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
924 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
925 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
928 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
930 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
931 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
935 /* Play conservative. If timestamps are not
936 * supported, TCP will fail to recalculate correct
937 * rtt, if initial rto is too small. FORGET ALL AND RESET!
939 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
941 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
942 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
946 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
949 struct tcp_sock
*tp
= tcp_sk(sk
);
950 if (metric
> tp
->reordering
) {
953 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
955 /* This exciting event is worth to be remembered. 8) */
957 mib_idx
= LINUX_MIB_TCPTSREORDER
;
958 else if (tcp_is_reno(tp
))
959 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
960 else if (tcp_is_fack(tp
))
961 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
963 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
965 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
966 #if FASTRETRANS_DEBUG > 1
967 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
968 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
972 tp
->undo_marker
? tp
->undo_retrans
: 0);
974 tcp_disable_fack(tp
);
978 /* This must be called before lost_out is incremented */
979 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
981 if ((tp
->retransmit_skb_hint
== NULL
) ||
982 before(TCP_SKB_CB(skb
)->seq
,
983 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
984 tp
->retransmit_skb_hint
= skb
;
987 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
988 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
991 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
993 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
994 tcp_verify_retransmit_hint(tp
, skb
);
996 tp
->lost_out
+= tcp_skb_pcount(skb
);
997 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
1002 struct sk_buff
*skb
)
1004 tcp_verify_retransmit_hint(tp
, skb
);
1006 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1007 tp
->lost_out
+= tcp_skb_pcount(skb
);
1008 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1012 /* This procedure tags the retransmission queue when SACKs arrive.
1014 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015 * Packets in queue with these bits set are counted in variables
1016 * sacked_out, retrans_out and lost_out, correspondingly.
1018 * Valid combinations are:
1019 * Tag InFlight Description
1020 * 0 1 - orig segment is in flight.
1021 * S 0 - nothing flies, orig reached receiver.
1022 * L 0 - nothing flies, orig lost by net.
1023 * R 2 - both orig and retransmit are in flight.
1024 * L|R 1 - orig is lost, retransmit is in flight.
1025 * S|R 1 - orig reached receiver, retrans is still in flight.
1026 * (L|S|R is logically valid, it could occur when L|R is sacked,
1027 * but it is equivalent to plain S and code short-curcuits it to S.
1028 * L|S is logically invalid, it would mean -1 packet in flight 8))
1030 * These 6 states form finite state machine, controlled by the following events:
1031 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033 * 3. Loss detection event of one of three flavors:
1034 * A. Scoreboard estimator decided the packet is lost.
1035 * A'. Reno "three dupacks" marks head of queue lost.
1036 * A''. Its FACK modfication, head until snd.fack is lost.
1037 * B. SACK arrives sacking data transmitted after never retransmitted
1038 * hole was sent out.
1039 * C. SACK arrives sacking SND.NXT at the moment, when the
1040 * segment was retransmitted.
1041 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1043 * It is pleasant to note, that state diagram turns out to be commutative,
1044 * so that we are allowed not to be bothered by order of our actions,
1045 * when multiple events arrive simultaneously. (see the function below).
1047 * Reordering detection.
1048 * --------------------
1049 * Reordering metric is maximal distance, which a packet can be displaced
1050 * in packet stream. With SACKs we can estimate it:
1052 * 1. SACK fills old hole and the corresponding segment was not
1053 * ever retransmitted -> reordering. Alas, we cannot use it
1054 * when segment was retransmitted.
1055 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056 * for retransmitted and already SACKed segment -> reordering..
1057 * Both of these heuristics are not used in Loss state, when we cannot
1058 * account for retransmits accurately.
1060 * SACK block validation.
1061 * ----------------------
1063 * SACK block range validation checks that the received SACK block fits to
1064 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065 * Note that SND.UNA is not included to the range though being valid because
1066 * it means that the receiver is rather inconsistent with itself reporting
1067 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068 * perfectly valid, however, in light of RFC2018 which explicitly states
1069 * that "SACK block MUST reflect the newest segment. Even if the newest
1070 * segment is going to be discarded ...", not that it looks very clever
1071 * in case of head skb. Due to potentional receiver driven attacks, we
1072 * choose to avoid immediate execution of a walk in write queue due to
1073 * reneging and defer head skb's loss recovery to standard loss recovery
1074 * procedure that will eventually trigger (nothing forbids us doing this).
1076 * Implements also blockage to start_seq wrap-around. Problem lies in the
1077 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078 * there's no guarantee that it will be before snd_nxt (n). The problem
1079 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1082 * <- outs wnd -> <- wrapzone ->
1083 * u e n u_w e_w s n_w
1085 * |<------------+------+----- TCP seqno space --------------+---------->|
1086 * ...-- <2^31 ->| |<--------...
1087 * ...---- >2^31 ------>| |<--------...
1089 * Current code wouldn't be vulnerable but it's better still to discard such
1090 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093 * equal to the ideal case (infinite seqno space without wrap caused issues).
1095 * With D-SACK the lower bound is extended to cover sequence space below
1096 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097 * again, D-SACK block must not to go across snd_una (for the same reason as
1098 * for the normal SACK blocks, explained above). But there all simplicity
1099 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100 * fully below undo_marker they do not affect behavior in anyway and can
1101 * therefore be safely ignored. In rare cases (which are more or less
1102 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103 * fragmentation and packet reordering past skb's retransmission. To consider
1104 * them correctly, the acceptable range must be extended even more though
1105 * the exact amount is rather hard to quantify. However, tp->max_window can
1106 * be used as an exaggerated estimate.
1108 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1109 u32 start_seq
, u32 end_seq
)
1111 /* Too far in future, or reversed (interpretation is ambiguous) */
1112 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1115 /* Nasty start_seq wrap-around check (see comments above) */
1116 if (!before(start_seq
, tp
->snd_nxt
))
1119 /* In outstanding window? ...This is valid exit for D-SACKs too.
1120 * start_seq == snd_una is non-sensical (see comments above)
1122 if (after(start_seq
, tp
->snd_una
))
1125 if (!is_dsack
|| !tp
->undo_marker
)
1128 /* ...Then it's D-SACK, and must reside below snd_una completely */
1129 if (!after(end_seq
, tp
->snd_una
))
1132 if (!before(start_seq
, tp
->undo_marker
))
1136 if (!after(end_seq
, tp
->undo_marker
))
1139 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1140 * start_seq < undo_marker and end_seq >= undo_marker.
1142 return !before(start_seq
, end_seq
- tp
->max_window
);
1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146 * Event "C". Later note: FACK people cheated me again 8), we have to account
1147 * for reordering! Ugly, but should help.
1149 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150 * less than what is now known to be received by the other end (derived from
1151 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152 * retransmitted skbs to avoid some costly processing per ACKs.
1154 static void tcp_mark_lost_retrans(struct sock
*sk
)
1156 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1157 struct tcp_sock
*tp
= tcp_sk(sk
);
1158 struct sk_buff
*skb
;
1160 u32 new_low_seq
= tp
->snd_nxt
;
1161 u32 received_upto
= tcp_highest_sack_seq(tp
);
1163 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1164 !after(received_upto
, tp
->lost_retrans_low
) ||
1165 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1168 tcp_for_write_queue(skb
, sk
) {
1169 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1171 if (skb
== tcp_send_head(sk
))
1173 if (cnt
== tp
->retrans_out
)
1175 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1178 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1181 if (after(received_upto
, ack_seq
) &&
1183 !before(received_upto
,
1184 ack_seq
+ tp
->reordering
* tp
->mss_cache
))) {
1185 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1186 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1188 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1189 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1191 if (before(ack_seq
, new_low_seq
))
1192 new_low_seq
= ack_seq
;
1193 cnt
+= tcp_skb_pcount(skb
);
1197 if (tp
->retrans_out
)
1198 tp
->lost_retrans_low
= new_low_seq
;
1201 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1202 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1205 struct tcp_sock
*tp
= tcp_sk(sk
);
1206 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1207 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1210 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1213 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1214 } else if (num_sacks
> 1) {
1215 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1216 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1218 if (!after(end_seq_0
, end_seq_1
) &&
1219 !before(start_seq_0
, start_seq_1
)) {
1222 NET_INC_STATS_BH(sock_net(sk
),
1223 LINUX_MIB_TCPDSACKOFORECV
);
1227 /* D-SACK for already forgotten data... Do dumb counting. */
1229 !after(end_seq_0
, prior_snd_una
) &&
1230 after(end_seq_0
, tp
->undo_marker
))
1236 struct tcp_sacktag_state
{
1242 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1243 * the incoming SACK may not exactly match but we can find smaller MSS
1244 * aligned portion of it that matches. Therefore we might need to fragment
1245 * which may fail and creates some hassle (caller must handle error case
1248 * FIXME: this could be merged to shift decision code
1250 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1251 u32 start_seq
, u32 end_seq
)
1254 unsigned int pkt_len
;
1257 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1258 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1260 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1261 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1262 mss
= tcp_skb_mss(skb
);
1263 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1266 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1270 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1275 /* Round if necessary so that SACKs cover only full MSSes
1276 * and/or the remaining small portion (if present)
1278 if (pkt_len
> mss
) {
1279 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1280 if (!in_sack
&& new_len
< pkt_len
) {
1282 if (new_len
> skb
->len
)
1287 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1295 static u8
tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1296 struct tcp_sacktag_state
*state
,
1297 int dup_sack
, int pcount
)
1299 struct tcp_sock
*tp
= tcp_sk(sk
);
1300 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1301 int fack_count
= state
->fack_count
;
1303 /* Account D-SACK for retransmitted packet. */
1304 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1305 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1307 if (sacked
& TCPCB_SACKED_ACKED
)
1308 state
->reord
= min(fack_count
, state
->reord
);
1311 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1312 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1315 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1316 if (sacked
& TCPCB_SACKED_RETRANS
) {
1317 /* If the segment is not tagged as lost,
1318 * we do not clear RETRANS, believing
1319 * that retransmission is still in flight.
1321 if (sacked
& TCPCB_LOST
) {
1322 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1323 tp
->lost_out
-= pcount
;
1324 tp
->retrans_out
-= pcount
;
1327 if (!(sacked
& TCPCB_RETRANS
)) {
1328 /* New sack for not retransmitted frame,
1329 * which was in hole. It is reordering.
1331 if (before(TCP_SKB_CB(skb
)->seq
,
1332 tcp_highest_sack_seq(tp
)))
1333 state
->reord
= min(fack_count
,
1336 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1337 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1338 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1341 if (sacked
& TCPCB_LOST
) {
1342 sacked
&= ~TCPCB_LOST
;
1343 tp
->lost_out
-= pcount
;
1347 sacked
|= TCPCB_SACKED_ACKED
;
1348 state
->flag
|= FLAG_DATA_SACKED
;
1349 tp
->sacked_out
+= pcount
;
1351 fack_count
+= pcount
;
1353 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1354 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1355 before(TCP_SKB_CB(skb
)->seq
,
1356 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1357 tp
->lost_cnt_hint
+= pcount
;
1359 if (fack_count
> tp
->fackets_out
)
1360 tp
->fackets_out
= fack_count
;
1363 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1364 * frames and clear it. undo_retrans is decreased above, L|R frames
1365 * are accounted above as well.
1367 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1368 sacked
&= ~TCPCB_SACKED_RETRANS
;
1369 tp
->retrans_out
-= pcount
;
1375 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1376 struct tcp_sacktag_state
*state
,
1377 unsigned int pcount
, int shifted
, int mss
)
1379 struct tcp_sock
*tp
= tcp_sk(sk
);
1380 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1384 /* Tweak before seqno plays */
1385 if (!tcp_is_fack(tp
) && tcp_is_sack(tp
) && tp
->lost_skb_hint
&&
1386 !before(TCP_SKB_CB(tp
->lost_skb_hint
)->seq
, TCP_SKB_CB(skb
)->seq
))
1387 tp
->lost_cnt_hint
+= pcount
;
1389 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1390 TCP_SKB_CB(skb
)->seq
+= shifted
;
1392 skb_shinfo(prev
)->gso_segs
+= pcount
;
1393 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1394 skb_shinfo(skb
)->gso_segs
-= pcount
;
1396 /* When we're adding to gso_segs == 1, gso_size will be zero,
1397 * in theory this shouldn't be necessary but as long as DSACK
1398 * code can come after this skb later on it's better to keep
1399 * setting gso_size to something.
1401 if (!skb_shinfo(prev
)->gso_size
) {
1402 skb_shinfo(prev
)->gso_size
= mss
;
1403 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1406 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1407 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1408 skb_shinfo(skb
)->gso_size
= 0;
1409 skb_shinfo(skb
)->gso_type
= 0;
1412 /* We discard results */
1413 tcp_sacktag_one(skb
, sk
, state
, 0, pcount
);
1415 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1416 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1419 BUG_ON(!tcp_skb_pcount(skb
));
1420 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1424 /* Whole SKB was eaten :-) */
1426 if (skb
== tp
->retransmit_skb_hint
)
1427 tp
->retransmit_skb_hint
= prev
;
1428 if (skb
== tp
->scoreboard_skb_hint
)
1429 tp
->scoreboard_skb_hint
= prev
;
1430 if (skb
== tp
->lost_skb_hint
) {
1431 tp
->lost_skb_hint
= prev
;
1432 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1435 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1436 if (skb
== tcp_highest_sack(sk
))
1437 tcp_advance_highest_sack(sk
, skb
);
1439 tcp_unlink_write_queue(skb
, sk
);
1440 sk_wmem_free_skb(sk
, skb
);
1442 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1447 /* I wish gso_size would have a bit more sane initialization than
1448 * something-or-zero which complicates things
1450 static int tcp_skb_seglen(struct sk_buff
*skb
)
1452 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1455 /* Shifting pages past head area doesn't work */
1456 static int skb_can_shift(struct sk_buff
*skb
)
1458 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1461 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1464 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1465 struct tcp_sacktag_state
*state
,
1466 u32 start_seq
, u32 end_seq
,
1469 struct tcp_sock
*tp
= tcp_sk(sk
);
1470 struct sk_buff
*prev
;
1476 if (!sk_can_gso(sk
))
1479 /* Normally R but no L won't result in plain S */
1481 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1483 if (!skb_can_shift(skb
))
1485 /* This frame is about to be dropped (was ACKed). */
1486 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1489 /* Can only happen with delayed DSACK + discard craziness */
1490 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1492 prev
= tcp_write_queue_prev(sk
, skb
);
1494 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1497 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1498 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1502 pcount
= tcp_skb_pcount(skb
);
1503 mss
= tcp_skb_seglen(skb
);
1505 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1506 * drop this restriction as unnecessary
1508 if (mss
!= tcp_skb_seglen(prev
))
1511 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1513 /* CHECKME: This is non-MSS split case only?, this will
1514 * cause skipped skbs due to advancing loop btw, original
1515 * has that feature too
1517 if (tcp_skb_pcount(skb
) <= 1)
1520 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1522 /* TODO: head merge to next could be attempted here
1523 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1524 * though it might not be worth of the additional hassle
1526 * ...we can probably just fallback to what was done
1527 * previously. We could try merging non-SACKed ones
1528 * as well but it probably isn't going to buy off
1529 * because later SACKs might again split them, and
1530 * it would make skb timestamp tracking considerably
1536 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1538 BUG_ON(len
> skb
->len
);
1540 /* MSS boundaries should be honoured or else pcount will
1541 * severely break even though it makes things bit trickier.
1542 * Optimize common case to avoid most of the divides
1544 mss
= tcp_skb_mss(skb
);
1546 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1547 * drop this restriction as unnecessary
1549 if (mss
!= tcp_skb_seglen(prev
))
1554 } else if (len
< mss
) {
1562 if (!skb_shift(prev
, skb
, len
))
1564 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
))
1567 /* Hole filled allows collapsing with the next as well, this is very
1568 * useful when hole on every nth skb pattern happens
1570 if (prev
== tcp_write_queue_tail(sk
))
1572 skb
= tcp_write_queue_next(sk
, prev
);
1574 if (!skb_can_shift(skb
) ||
1575 (skb
== tcp_send_head(sk
)) ||
1576 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1577 (mss
!= tcp_skb_seglen(skb
)))
1581 if (skb_shift(prev
, skb
, len
)) {
1582 pcount
+= tcp_skb_pcount(skb
);
1583 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
);
1587 state
->fack_count
+= pcount
;
1594 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1598 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1599 struct tcp_sack_block
*next_dup
,
1600 struct tcp_sacktag_state
*state
,
1601 u32 start_seq
, u32 end_seq
,
1604 struct tcp_sock
*tp
= tcp_sk(sk
);
1605 struct sk_buff
*tmp
;
1607 tcp_for_write_queue_from(skb
, sk
) {
1609 int dup_sack
= dup_sack_in
;
1611 if (skb
== tcp_send_head(sk
))
1614 /* queue is in-order => we can short-circuit the walk early */
1615 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1618 if ((next_dup
!= NULL
) &&
1619 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1620 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1621 next_dup
->start_seq
,
1627 /* skb reference here is a bit tricky to get right, since
1628 * shifting can eat and free both this skb and the next,
1629 * so not even _safe variant of the loop is enough.
1632 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1633 start_seq
, end_seq
, dup_sack
);
1642 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1648 if (unlikely(in_sack
< 0))
1652 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1655 tcp_skb_pcount(skb
));
1657 if (!before(TCP_SKB_CB(skb
)->seq
,
1658 tcp_highest_sack_seq(tp
)))
1659 tcp_advance_highest_sack(sk
, skb
);
1662 state
->fack_count
+= tcp_skb_pcount(skb
);
1667 /* Avoid all extra work that is being done by sacktag while walking in
1670 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1671 struct tcp_sacktag_state
*state
,
1674 tcp_for_write_queue_from(skb
, sk
) {
1675 if (skb
== tcp_send_head(sk
))
1678 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1681 state
->fack_count
+= tcp_skb_pcount(skb
);
1686 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1688 struct tcp_sack_block
*next_dup
,
1689 struct tcp_sacktag_state
*state
,
1692 if (next_dup
== NULL
)
1695 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1696 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1697 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1698 next_dup
->start_seq
, next_dup
->end_seq
,
1705 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1707 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1711 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1714 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1715 struct tcp_sock
*tp
= tcp_sk(sk
);
1716 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1717 TCP_SKB_CB(ack_skb
)->sacked
);
1718 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1719 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1720 struct tcp_sack_block
*cache
;
1721 struct tcp_sacktag_state state
;
1722 struct sk_buff
*skb
;
1723 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1725 int found_dup_sack
= 0;
1727 int first_sack_index
;
1730 state
.reord
= tp
->packets_out
;
1732 if (!tp
->sacked_out
) {
1733 if (WARN_ON(tp
->fackets_out
))
1734 tp
->fackets_out
= 0;
1735 tcp_highest_sack_reset(sk
);
1738 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1739 num_sacks
, prior_snd_una
);
1741 state
.flag
|= FLAG_DSACKING_ACK
;
1743 /* Eliminate too old ACKs, but take into
1744 * account more or less fresh ones, they can
1745 * contain valid SACK info.
1747 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1750 if (!tp
->packets_out
)
1754 first_sack_index
= 0;
1755 for (i
= 0; i
< num_sacks
; i
++) {
1756 int dup_sack
= !i
&& found_dup_sack
;
1758 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1759 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1761 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1762 sp
[used_sacks
].start_seq
,
1763 sp
[used_sacks
].end_seq
)) {
1767 if (!tp
->undo_marker
)
1768 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1770 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1772 /* Don't count olds caused by ACK reordering */
1773 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1774 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1776 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1779 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1781 first_sack_index
= -1;
1785 /* Ignore very old stuff early */
1786 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1792 /* order SACK blocks to allow in order walk of the retrans queue */
1793 for (i
= used_sacks
- 1; i
> 0; i
--) {
1794 for (j
= 0; j
< i
; j
++) {
1795 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1796 struct tcp_sack_block tmp
;
1802 /* Track where the first SACK block goes to */
1803 if (j
== first_sack_index
)
1804 first_sack_index
= j
+ 1;
1809 skb
= tcp_write_queue_head(sk
);
1810 state
.fack_count
= 0;
1813 if (!tp
->sacked_out
) {
1814 /* It's already past, so skip checking against it */
1815 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1817 cache
= tp
->recv_sack_cache
;
1818 /* Skip empty blocks in at head of the cache */
1819 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1824 while (i
< used_sacks
) {
1825 u32 start_seq
= sp
[i
].start_seq
;
1826 u32 end_seq
= sp
[i
].end_seq
;
1827 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1828 struct tcp_sack_block
*next_dup
= NULL
;
1830 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1831 next_dup
= &sp
[i
+ 1];
1833 /* Event "B" in the comment above. */
1834 if (after(end_seq
, tp
->high_seq
))
1835 state
.flag
|= FLAG_DATA_LOST
;
1837 /* Skip too early cached blocks */
1838 while (tcp_sack_cache_ok(tp
, cache
) &&
1839 !before(start_seq
, cache
->end_seq
))
1842 /* Can skip some work by looking recv_sack_cache? */
1843 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1844 after(end_seq
, cache
->start_seq
)) {
1847 if (before(start_seq
, cache
->start_seq
)) {
1848 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1850 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1857 /* Rest of the block already fully processed? */
1858 if (!after(end_seq
, cache
->end_seq
))
1861 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1865 /* ...tail remains todo... */
1866 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1867 /* ...but better entrypoint exists! */
1868 skb
= tcp_highest_sack(sk
);
1871 state
.fack_count
= tp
->fackets_out
;
1876 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1877 /* Check overlap against next cached too (past this one already) */
1882 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1883 skb
= tcp_highest_sack(sk
);
1886 state
.fack_count
= tp
->fackets_out
;
1888 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1891 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1892 start_seq
, end_seq
, dup_sack
);
1895 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1896 * due to in-order walk
1898 if (after(end_seq
, tp
->frto_highmark
))
1899 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1904 /* Clear the head of the cache sack blocks so we can skip it next time */
1905 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1906 tp
->recv_sack_cache
[i
].start_seq
= 0;
1907 tp
->recv_sack_cache
[i
].end_seq
= 0;
1909 for (j
= 0; j
< used_sacks
; j
++)
1910 tp
->recv_sack_cache
[i
++] = sp
[j
];
1912 tcp_mark_lost_retrans(sk
);
1914 tcp_verify_left_out(tp
);
1916 if ((state
.reord
< tp
->fackets_out
) &&
1917 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1918 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1919 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1923 #if FASTRETRANS_DEBUG > 0
1924 WARN_ON((int)tp
->sacked_out
< 0);
1925 WARN_ON((int)tp
->lost_out
< 0);
1926 WARN_ON((int)tp
->retrans_out
< 0);
1927 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1932 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1933 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1935 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1939 holes
= max(tp
->lost_out
, 1U);
1940 holes
= min(holes
, tp
->packets_out
);
1942 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1943 tp
->sacked_out
= tp
->packets_out
- holes
;
1949 /* If we receive more dupacks than we expected counting segments
1950 * in assumption of absent reordering, interpret this as reordering.
1951 * The only another reason could be bug in receiver TCP.
1953 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1955 struct tcp_sock
*tp
= tcp_sk(sk
);
1956 if (tcp_limit_reno_sacked(tp
))
1957 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1960 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1962 static void tcp_add_reno_sack(struct sock
*sk
)
1964 struct tcp_sock
*tp
= tcp_sk(sk
);
1966 tcp_check_reno_reordering(sk
, 0);
1967 tcp_verify_left_out(tp
);
1970 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1972 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1974 struct tcp_sock
*tp
= tcp_sk(sk
);
1977 /* One ACK acked hole. The rest eat duplicate ACKs. */
1978 if (acked
- 1 >= tp
->sacked_out
)
1981 tp
->sacked_out
-= acked
- 1;
1983 tcp_check_reno_reordering(sk
, acked
);
1984 tcp_verify_left_out(tp
);
1987 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1992 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1994 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1997 /* F-RTO can only be used if TCP has never retransmitted anything other than
1998 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2000 int tcp_use_frto(struct sock
*sk
)
2002 const struct tcp_sock
*tp
= tcp_sk(sk
);
2003 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2004 struct sk_buff
*skb
;
2006 if (!sysctl_tcp_frto
)
2009 /* MTU probe and F-RTO won't really play nicely along currently */
2010 if (icsk
->icsk_mtup
.probe_size
)
2013 if (tcp_is_sackfrto(tp
))
2016 /* Avoid expensive walking of rexmit queue if possible */
2017 if (tp
->retrans_out
> 1)
2020 skb
= tcp_write_queue_head(sk
);
2021 if (tcp_skb_is_last(sk
, skb
))
2023 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2024 tcp_for_write_queue_from(skb
, sk
) {
2025 if (skb
== tcp_send_head(sk
))
2027 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2029 /* Short-circuit when first non-SACKed skb has been checked */
2030 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2036 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2037 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2038 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2039 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2040 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2041 * bits are handled if the Loss state is really to be entered (in
2042 * tcp_enter_frto_loss).
2044 * Do like tcp_enter_loss() would; when RTO expires the second time it
2046 * "Reduce ssthresh if it has not yet been made inside this window."
2048 void tcp_enter_frto(struct sock
*sk
)
2050 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2051 struct tcp_sock
*tp
= tcp_sk(sk
);
2052 struct sk_buff
*skb
;
2054 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2055 tp
->snd_una
== tp
->high_seq
||
2056 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2057 !icsk
->icsk_retransmits
)) {
2058 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2059 /* Our state is too optimistic in ssthresh() call because cwnd
2060 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2061 * recovery has not yet completed. Pattern would be this: RTO,
2062 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2064 * RFC4138 should be more specific on what to do, even though
2065 * RTO is quite unlikely to occur after the first Cumulative ACK
2066 * due to back-off and complexity of triggering events ...
2068 if (tp
->frto_counter
) {
2070 stored_cwnd
= tp
->snd_cwnd
;
2072 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2073 tp
->snd_cwnd
= stored_cwnd
;
2075 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2077 /* ... in theory, cong.control module could do "any tricks" in
2078 * ssthresh(), which means that ca_state, lost bits and lost_out
2079 * counter would have to be faked before the call occurs. We
2080 * consider that too expensive, unlikely and hacky, so modules
2081 * using these in ssthresh() must deal these incompatibility
2082 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2084 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2087 tp
->undo_marker
= tp
->snd_una
;
2088 tp
->undo_retrans
= 0;
2090 skb
= tcp_write_queue_head(sk
);
2091 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2092 tp
->undo_marker
= 0;
2093 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2094 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2095 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2097 tcp_verify_left_out(tp
);
2099 /* Too bad if TCP was application limited */
2100 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2102 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2103 * The last condition is necessary at least in tp->frto_counter case.
2105 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2106 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2107 after(tp
->high_seq
, tp
->snd_una
)) {
2108 tp
->frto_highmark
= tp
->high_seq
;
2110 tp
->frto_highmark
= tp
->snd_nxt
;
2112 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2113 tp
->high_seq
= tp
->snd_nxt
;
2114 tp
->frto_counter
= 1;
2117 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2118 * which indicates that we should follow the traditional RTO recovery,
2119 * i.e. mark everything lost and do go-back-N retransmission.
2121 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2123 struct tcp_sock
*tp
= tcp_sk(sk
);
2124 struct sk_buff
*skb
;
2127 tp
->retrans_out
= 0;
2128 if (tcp_is_reno(tp
))
2129 tcp_reset_reno_sack(tp
);
2131 tcp_for_write_queue(skb
, sk
) {
2132 if (skb
== tcp_send_head(sk
))
2135 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2137 * Count the retransmission made on RTO correctly (only when
2138 * waiting for the first ACK and did not get it)...
2140 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2141 /* For some reason this R-bit might get cleared? */
2142 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2143 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2144 /* ...enter this if branch just for the first segment */
2145 flag
|= FLAG_DATA_ACKED
;
2147 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2148 tp
->undo_marker
= 0;
2149 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2152 /* Marking forward transmissions that were made after RTO lost
2153 * can cause unnecessary retransmissions in some scenarios,
2154 * SACK blocks will mitigate that in some but not in all cases.
2155 * We used to not mark them but it was causing break-ups with
2156 * receivers that do only in-order receival.
2158 * TODO: we could detect presence of such receiver and select
2159 * different behavior per flow.
2161 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2162 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2163 tp
->lost_out
+= tcp_skb_pcount(skb
);
2164 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2167 tcp_verify_left_out(tp
);
2169 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2170 tp
->snd_cwnd_cnt
= 0;
2171 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2172 tp
->frto_counter
= 0;
2173 tp
->bytes_acked
= 0;
2175 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2176 sysctl_tcp_reordering
);
2177 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2178 tp
->high_seq
= tp
->snd_nxt
;
2179 TCP_ECN_queue_cwr(tp
);
2181 tcp_clear_all_retrans_hints(tp
);
2184 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2186 tp
->retrans_out
= 0;
2189 tp
->undo_marker
= 0;
2190 tp
->undo_retrans
= 0;
2193 void tcp_clear_retrans(struct tcp_sock
*tp
)
2195 tcp_clear_retrans_partial(tp
);
2197 tp
->fackets_out
= 0;
2201 /* Enter Loss state. If "how" is not zero, forget all SACK information
2202 * and reset tags completely, otherwise preserve SACKs. If receiver
2203 * dropped its ofo queue, we will know this due to reneging detection.
2205 void tcp_enter_loss(struct sock
*sk
, int how
)
2207 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2208 struct tcp_sock
*tp
= tcp_sk(sk
);
2209 struct sk_buff
*skb
;
2211 /* Reduce ssthresh if it has not yet been made inside this window. */
2212 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2213 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2214 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2215 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2216 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2219 tp
->snd_cwnd_cnt
= 0;
2220 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2222 tp
->bytes_acked
= 0;
2223 tcp_clear_retrans_partial(tp
);
2225 if (tcp_is_reno(tp
))
2226 tcp_reset_reno_sack(tp
);
2229 /* Push undo marker, if it was plain RTO and nothing
2230 * was retransmitted. */
2231 tp
->undo_marker
= tp
->snd_una
;
2234 tp
->fackets_out
= 0;
2236 tcp_clear_all_retrans_hints(tp
);
2238 tcp_for_write_queue(skb
, sk
) {
2239 if (skb
== tcp_send_head(sk
))
2242 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2243 tp
->undo_marker
= 0;
2244 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2245 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2246 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2247 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2248 tp
->lost_out
+= tcp_skb_pcount(skb
);
2249 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2252 tcp_verify_left_out(tp
);
2254 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2255 sysctl_tcp_reordering
);
2256 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2257 tp
->high_seq
= tp
->snd_nxt
;
2258 TCP_ECN_queue_cwr(tp
);
2259 /* Abort F-RTO algorithm if one is in progress */
2260 tp
->frto_counter
= 0;
2263 /* If ACK arrived pointing to a remembered SACK, it means that our
2264 * remembered SACKs do not reflect real state of receiver i.e.
2265 * receiver _host_ is heavily congested (or buggy).
2267 * Do processing similar to RTO timeout.
2269 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2271 if (flag
& FLAG_SACK_RENEGING
) {
2272 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2273 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2275 tcp_enter_loss(sk
, 1);
2276 icsk
->icsk_retransmits
++;
2277 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2278 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2279 icsk
->icsk_rto
, TCP_RTO_MAX
);
2285 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2287 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2290 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2291 * counter when SACK is enabled (without SACK, sacked_out is used for
2294 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2295 * segments up to the highest received SACK block so far and holes in
2298 * With reordering, holes may still be in flight, so RFC3517 recovery
2299 * uses pure sacked_out (total number of SACKed segments) even though
2300 * it violates the RFC that uses duplicate ACKs, often these are equal
2301 * but when e.g. out-of-window ACKs or packet duplication occurs,
2302 * they differ. Since neither occurs due to loss, TCP should really
2305 static inline int tcp_dupack_heurestics(struct tcp_sock
*tp
)
2307 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2310 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2312 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
2315 static inline int tcp_head_timedout(struct sock
*sk
)
2317 struct tcp_sock
*tp
= tcp_sk(sk
);
2319 return tp
->packets_out
&&
2320 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2323 /* Linux NewReno/SACK/FACK/ECN state machine.
2324 * --------------------------------------
2326 * "Open" Normal state, no dubious events, fast path.
2327 * "Disorder" In all the respects it is "Open",
2328 * but requires a bit more attention. It is entered when
2329 * we see some SACKs or dupacks. It is split of "Open"
2330 * mainly to move some processing from fast path to slow one.
2331 * "CWR" CWND was reduced due to some Congestion Notification event.
2332 * It can be ECN, ICMP source quench, local device congestion.
2333 * "Recovery" CWND was reduced, we are fast-retransmitting.
2334 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2336 * tcp_fastretrans_alert() is entered:
2337 * - each incoming ACK, if state is not "Open"
2338 * - when arrived ACK is unusual, namely:
2343 * Counting packets in flight is pretty simple.
2345 * in_flight = packets_out - left_out + retrans_out
2347 * packets_out is SND.NXT-SND.UNA counted in packets.
2349 * retrans_out is number of retransmitted segments.
2351 * left_out is number of segments left network, but not ACKed yet.
2353 * left_out = sacked_out + lost_out
2355 * sacked_out: Packets, which arrived to receiver out of order
2356 * and hence not ACKed. With SACKs this number is simply
2357 * amount of SACKed data. Even without SACKs
2358 * it is easy to give pretty reliable estimate of this number,
2359 * counting duplicate ACKs.
2361 * lost_out: Packets lost by network. TCP has no explicit
2362 * "loss notification" feedback from network (for now).
2363 * It means that this number can be only _guessed_.
2364 * Actually, it is the heuristics to predict lossage that
2365 * distinguishes different algorithms.
2367 * F.e. after RTO, when all the queue is considered as lost,
2368 * lost_out = packets_out and in_flight = retrans_out.
2370 * Essentially, we have now two algorithms counting
2373 * FACK: It is the simplest heuristics. As soon as we decided
2374 * that something is lost, we decide that _all_ not SACKed
2375 * packets until the most forward SACK are lost. I.e.
2376 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2377 * It is absolutely correct estimate, if network does not reorder
2378 * packets. And it loses any connection to reality when reordering
2379 * takes place. We use FACK by default until reordering
2380 * is suspected on the path to this destination.
2382 * NewReno: when Recovery is entered, we assume that one segment
2383 * is lost (classic Reno). While we are in Recovery and
2384 * a partial ACK arrives, we assume that one more packet
2385 * is lost (NewReno). This heuristics are the same in NewReno
2388 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2389 * deflation etc. CWND is real congestion window, never inflated, changes
2390 * only according to classic VJ rules.
2392 * Really tricky (and requiring careful tuning) part of algorithm
2393 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2394 * The first determines the moment _when_ we should reduce CWND and,
2395 * hence, slow down forward transmission. In fact, it determines the moment
2396 * when we decide that hole is caused by loss, rather than by a reorder.
2398 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2399 * holes, caused by lost packets.
2401 * And the most logically complicated part of algorithm is undo
2402 * heuristics. We detect false retransmits due to both too early
2403 * fast retransmit (reordering) and underestimated RTO, analyzing
2404 * timestamps and D-SACKs. When we detect that some segments were
2405 * retransmitted by mistake and CWND reduction was wrong, we undo
2406 * window reduction and abort recovery phase. This logic is hidden
2407 * inside several functions named tcp_try_undo_<something>.
2410 /* This function decides, when we should leave Disordered state
2411 * and enter Recovery phase, reducing congestion window.
2413 * Main question: may we further continue forward transmission
2414 * with the same cwnd?
2416 static int tcp_time_to_recover(struct sock
*sk
)
2418 struct tcp_sock
*tp
= tcp_sk(sk
);
2421 /* Do not perform any recovery during F-RTO algorithm */
2422 if (tp
->frto_counter
)
2425 /* Trick#1: The loss is proven. */
2429 /* Not-A-Trick#2 : Classic rule... */
2430 if (tcp_dupack_heurestics(tp
) > tp
->reordering
)
2433 /* Trick#3 : when we use RFC2988 timer restart, fast
2434 * retransmit can be triggered by timeout of queue head.
2436 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2439 /* Trick#4: It is still not OK... But will it be useful to delay
2442 packets_out
= tp
->packets_out
;
2443 if (packets_out
<= tp
->reordering
&&
2444 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2445 !tcp_may_send_now(sk
)) {
2446 /* We have nothing to send. This connection is limited
2447 * either by receiver window or by application.
2455 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2456 * is against sacked "cnt", otherwise it's against facked "cnt"
2458 static void tcp_mark_head_lost(struct sock
*sk
, int packets
)
2460 struct tcp_sock
*tp
= tcp_sk(sk
);
2461 struct sk_buff
*skb
;
2466 WARN_ON(packets
> tp
->packets_out
);
2467 if (tp
->lost_skb_hint
) {
2468 skb
= tp
->lost_skb_hint
;
2469 cnt
= tp
->lost_cnt_hint
;
2471 skb
= tcp_write_queue_head(sk
);
2475 tcp_for_write_queue_from(skb
, sk
) {
2476 if (skb
== tcp_send_head(sk
))
2478 /* TODO: do this better */
2479 /* this is not the most efficient way to do this... */
2480 tp
->lost_skb_hint
= skb
;
2481 tp
->lost_cnt_hint
= cnt
;
2483 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2487 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2488 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2489 cnt
+= tcp_skb_pcount(skb
);
2491 if (cnt
> packets
) {
2492 if (tcp_is_sack(tp
) || (oldcnt
>= packets
))
2495 mss
= skb_shinfo(skb
)->gso_size
;
2496 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2502 tcp_skb_mark_lost(tp
, skb
);
2504 tcp_verify_left_out(tp
);
2507 /* Account newly detected lost packet(s) */
2509 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2511 struct tcp_sock
*tp
= tcp_sk(sk
);
2513 if (tcp_is_reno(tp
)) {
2514 tcp_mark_head_lost(sk
, 1);
2515 } else if (tcp_is_fack(tp
)) {
2516 int lost
= tp
->fackets_out
- tp
->reordering
;
2519 tcp_mark_head_lost(sk
, lost
);
2521 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2522 if (sacked_upto
< fast_rexmit
)
2523 sacked_upto
= fast_rexmit
;
2524 tcp_mark_head_lost(sk
, sacked_upto
);
2527 /* New heuristics: it is possible only after we switched
2528 * to restart timer each time when something is ACKed.
2529 * Hence, we can detect timed out packets during fast
2530 * retransmit without falling to slow start.
2532 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
)) {
2533 struct sk_buff
*skb
;
2535 skb
= tp
->scoreboard_skb_hint
? tp
->scoreboard_skb_hint
2536 : tcp_write_queue_head(sk
);
2538 tcp_for_write_queue_from(skb
, sk
) {
2539 if (skb
== tcp_send_head(sk
))
2541 if (!tcp_skb_timedout(sk
, skb
))
2544 tcp_skb_mark_lost(tp
, skb
);
2547 tp
->scoreboard_skb_hint
= skb
;
2549 tcp_verify_left_out(tp
);
2553 /* CWND moderation, preventing bursts due to too big ACKs
2554 * in dubious situations.
2556 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2558 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2559 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2560 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2563 /* Lower bound on congestion window is slow start threshold
2564 * unless congestion avoidance choice decides to overide it.
2566 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2568 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2570 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2573 /* Decrease cwnd each second ack. */
2574 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2576 struct tcp_sock
*tp
= tcp_sk(sk
);
2577 int decr
= tp
->snd_cwnd_cnt
+ 1;
2579 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2580 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2581 tp
->snd_cwnd_cnt
= decr
& 1;
2584 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2585 tp
->snd_cwnd
-= decr
;
2587 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2588 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2592 /* Nothing was retransmitted or returned timestamp is less
2593 * than timestamp of the first retransmission.
2595 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2597 return !tp
->retrans_stamp
||
2598 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2599 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2602 /* Undo procedures. */
2604 #if FASTRETRANS_DEBUG > 1
2605 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2607 struct tcp_sock
*tp
= tcp_sk(sk
);
2608 struct inet_sock
*inet
= inet_sk(sk
);
2610 if (sk
->sk_family
== AF_INET
) {
2611 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2613 &inet
->daddr
, ntohs(inet
->dport
),
2614 tp
->snd_cwnd
, tcp_left_out(tp
),
2615 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2618 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2619 else if (sk
->sk_family
== AF_INET6
) {
2620 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2621 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2623 &np
->daddr
, ntohs(inet
->dport
),
2624 tp
->snd_cwnd
, tcp_left_out(tp
),
2625 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2631 #define DBGUNDO(x...) do { } while (0)
2634 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2636 struct tcp_sock
*tp
= tcp_sk(sk
);
2638 if (tp
->prior_ssthresh
) {
2639 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2641 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2642 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2644 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2646 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2647 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2648 TCP_ECN_withdraw_cwr(tp
);
2651 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2653 tcp_moderate_cwnd(tp
);
2654 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2657 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2659 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2662 /* People celebrate: "We love our President!" */
2663 static int tcp_try_undo_recovery(struct sock
*sk
)
2665 struct tcp_sock
*tp
= tcp_sk(sk
);
2667 if (tcp_may_undo(tp
)) {
2670 /* Happy end! We did not retransmit anything
2671 * or our original transmission succeeded.
2673 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2674 tcp_undo_cwr(sk
, 1);
2675 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2676 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2678 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2680 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2681 tp
->undo_marker
= 0;
2683 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2684 /* Hold old state until something *above* high_seq
2685 * is ACKed. For Reno it is MUST to prevent false
2686 * fast retransmits (RFC2582). SACK TCP is safe. */
2687 tcp_moderate_cwnd(tp
);
2690 tcp_set_ca_state(sk
, TCP_CA_Open
);
2694 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2695 static void tcp_try_undo_dsack(struct sock
*sk
)
2697 struct tcp_sock
*tp
= tcp_sk(sk
);
2699 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2700 DBGUNDO(sk
, "D-SACK");
2701 tcp_undo_cwr(sk
, 1);
2702 tp
->undo_marker
= 0;
2703 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2707 /* Undo during fast recovery after partial ACK. */
2709 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2711 struct tcp_sock
*tp
= tcp_sk(sk
);
2712 /* Partial ACK arrived. Force Hoe's retransmit. */
2713 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2715 if (tcp_may_undo(tp
)) {
2716 /* Plain luck! Hole if filled with delayed
2717 * packet, rather than with a retransmit.
2719 if (tp
->retrans_out
== 0)
2720 tp
->retrans_stamp
= 0;
2722 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2725 tcp_undo_cwr(sk
, 0);
2726 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2728 /* So... Do not make Hoe's retransmit yet.
2729 * If the first packet was delayed, the rest
2730 * ones are most probably delayed as well.
2737 /* Undo during loss recovery after partial ACK. */
2738 static int tcp_try_undo_loss(struct sock
*sk
)
2740 struct tcp_sock
*tp
= tcp_sk(sk
);
2742 if (tcp_may_undo(tp
)) {
2743 struct sk_buff
*skb
;
2744 tcp_for_write_queue(skb
, sk
) {
2745 if (skb
== tcp_send_head(sk
))
2747 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2750 tcp_clear_all_retrans_hints(tp
);
2752 DBGUNDO(sk
, "partial loss");
2754 tcp_undo_cwr(sk
, 1);
2755 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2756 inet_csk(sk
)->icsk_retransmits
= 0;
2757 tp
->undo_marker
= 0;
2758 if (tcp_is_sack(tp
))
2759 tcp_set_ca_state(sk
, TCP_CA_Open
);
2765 static inline void tcp_complete_cwr(struct sock
*sk
)
2767 struct tcp_sock
*tp
= tcp_sk(sk
);
2768 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2769 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2770 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2773 static void tcp_try_keep_open(struct sock
*sk
)
2775 struct tcp_sock
*tp
= tcp_sk(sk
);
2776 int state
= TCP_CA_Open
;
2778 if (tcp_left_out(tp
) || tp
->retrans_out
|| tp
->undo_marker
)
2779 state
= TCP_CA_Disorder
;
2781 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2782 tcp_set_ca_state(sk
, state
);
2783 tp
->high_seq
= tp
->snd_nxt
;
2787 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2789 struct tcp_sock
*tp
= tcp_sk(sk
);
2791 tcp_verify_left_out(tp
);
2793 if (!tp
->frto_counter
&& tp
->retrans_out
== 0)
2794 tp
->retrans_stamp
= 0;
2796 if (flag
& FLAG_ECE
)
2797 tcp_enter_cwr(sk
, 1);
2799 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2800 tcp_try_keep_open(sk
);
2801 tcp_moderate_cwnd(tp
);
2803 tcp_cwnd_down(sk
, flag
);
2807 static void tcp_mtup_probe_failed(struct sock
*sk
)
2809 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2811 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2812 icsk
->icsk_mtup
.probe_size
= 0;
2815 static void tcp_mtup_probe_success(struct sock
*sk
, struct sk_buff
*skb
)
2817 struct tcp_sock
*tp
= tcp_sk(sk
);
2818 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2820 /* FIXME: breaks with very large cwnd */
2821 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2822 tp
->snd_cwnd
= tp
->snd_cwnd
*
2823 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2824 icsk
->icsk_mtup
.probe_size
;
2825 tp
->snd_cwnd_cnt
= 0;
2826 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2827 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
2829 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2830 icsk
->icsk_mtup
.probe_size
= 0;
2831 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2834 /* Do a simple retransmit without using the backoff mechanisms in
2835 * tcp_timer. This is used for path mtu discovery.
2836 * The socket is already locked here.
2838 void tcp_simple_retransmit(struct sock
*sk
)
2840 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2841 struct tcp_sock
*tp
= tcp_sk(sk
);
2842 struct sk_buff
*skb
;
2843 unsigned int mss
= tcp_current_mss(sk
, 0);
2844 u32 prior_lost
= tp
->lost_out
;
2846 tcp_for_write_queue(skb
, sk
) {
2847 if (skb
== tcp_send_head(sk
))
2849 if (tcp_skb_seglen(skb
) > mss
&&
2850 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2851 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2852 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2853 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2855 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2859 tcp_clear_retrans_hints_partial(tp
);
2861 if (prior_lost
== tp
->lost_out
)
2864 if (tcp_is_reno(tp
))
2865 tcp_limit_reno_sacked(tp
);
2867 tcp_verify_left_out(tp
);
2869 /* Don't muck with the congestion window here.
2870 * Reason is that we do not increase amount of _data_
2871 * in network, but units changed and effective
2872 * cwnd/ssthresh really reduced now.
2874 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2875 tp
->high_seq
= tp
->snd_nxt
;
2876 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2877 tp
->prior_ssthresh
= 0;
2878 tp
->undo_marker
= 0;
2879 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2881 tcp_xmit_retransmit_queue(sk
);
2884 /* Process an event, which can update packets-in-flight not trivially.
2885 * Main goal of this function is to calculate new estimate for left_out,
2886 * taking into account both packets sitting in receiver's buffer and
2887 * packets lost by network.
2889 * Besides that it does CWND reduction, when packet loss is detected
2890 * and changes state of machine.
2892 * It does _not_ decide what to send, it is made in function
2893 * tcp_xmit_retransmit_queue().
2895 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2897 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2898 struct tcp_sock
*tp
= tcp_sk(sk
);
2899 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2900 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2901 (tcp_fackets_out(tp
) > tp
->reordering
));
2902 int fast_rexmit
= 0, mib_idx
;
2904 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2906 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2907 tp
->fackets_out
= 0;
2909 /* Now state machine starts.
2910 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2911 if (flag
& FLAG_ECE
)
2912 tp
->prior_ssthresh
= 0;
2914 /* B. In all the states check for reneging SACKs. */
2915 if (tcp_check_sack_reneging(sk
, flag
))
2918 /* C. Process data loss notification, provided it is valid. */
2919 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2920 before(tp
->snd_una
, tp
->high_seq
) &&
2921 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2922 tp
->fackets_out
> tp
->reordering
) {
2923 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
);
2924 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
2927 /* D. Check consistency of the current state. */
2928 tcp_verify_left_out(tp
);
2930 /* E. Check state exit conditions. State can be terminated
2931 * when high_seq is ACKed. */
2932 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2933 WARN_ON(tp
->retrans_out
!= 0);
2934 tp
->retrans_stamp
= 0;
2935 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2936 switch (icsk
->icsk_ca_state
) {
2938 icsk
->icsk_retransmits
= 0;
2939 if (tcp_try_undo_recovery(sk
))
2944 /* CWR is to be held something *above* high_seq
2945 * is ACKed for CWR bit to reach receiver. */
2946 if (tp
->snd_una
!= tp
->high_seq
) {
2947 tcp_complete_cwr(sk
);
2948 tcp_set_ca_state(sk
, TCP_CA_Open
);
2952 case TCP_CA_Disorder
:
2953 tcp_try_undo_dsack(sk
);
2954 if (!tp
->undo_marker
||
2955 /* For SACK case do not Open to allow to undo
2956 * catching for all duplicate ACKs. */
2957 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
2958 tp
->undo_marker
= 0;
2959 tcp_set_ca_state(sk
, TCP_CA_Open
);
2963 case TCP_CA_Recovery
:
2964 if (tcp_is_reno(tp
))
2965 tcp_reset_reno_sack(tp
);
2966 if (tcp_try_undo_recovery(sk
))
2968 tcp_complete_cwr(sk
);
2973 /* F. Process state. */
2974 switch (icsk
->icsk_ca_state
) {
2975 case TCP_CA_Recovery
:
2976 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2977 if (tcp_is_reno(tp
) && is_dupack
)
2978 tcp_add_reno_sack(sk
);
2980 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2983 if (flag
& FLAG_DATA_ACKED
)
2984 icsk
->icsk_retransmits
= 0;
2985 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
2986 tcp_reset_reno_sack(tp
);
2987 if (!tcp_try_undo_loss(sk
)) {
2988 tcp_moderate_cwnd(tp
);
2989 tcp_xmit_retransmit_queue(sk
);
2992 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2994 /* Loss is undone; fall through to processing in Open state. */
2996 if (tcp_is_reno(tp
)) {
2997 if (flag
& FLAG_SND_UNA_ADVANCED
)
2998 tcp_reset_reno_sack(tp
);
3000 tcp_add_reno_sack(sk
);
3003 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3004 tcp_try_undo_dsack(sk
);
3006 if (!tcp_time_to_recover(sk
)) {
3007 tcp_try_to_open(sk
, flag
);
3011 /* MTU probe failure: don't reduce cwnd */
3012 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3013 icsk
->icsk_mtup
.probe_size
&&
3014 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3015 tcp_mtup_probe_failed(sk
);
3016 /* Restores the reduction we did in tcp_mtup_probe() */
3018 tcp_simple_retransmit(sk
);
3022 /* Otherwise enter Recovery state */
3024 if (tcp_is_reno(tp
))
3025 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3027 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3029 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3031 tp
->high_seq
= tp
->snd_nxt
;
3032 tp
->prior_ssthresh
= 0;
3033 tp
->undo_marker
= tp
->snd_una
;
3034 tp
->undo_retrans
= tp
->retrans_out
;
3036 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3037 if (!(flag
& FLAG_ECE
))
3038 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3039 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3040 TCP_ECN_queue_cwr(tp
);
3043 tp
->bytes_acked
= 0;
3044 tp
->snd_cwnd_cnt
= 0;
3045 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3049 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3050 tcp_update_scoreboard(sk
, fast_rexmit
);
3051 tcp_cwnd_down(sk
, flag
);
3052 tcp_xmit_retransmit_queue(sk
);
3055 static void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3057 tcp_rtt_estimator(sk
, seq_rtt
);
3059 inet_csk(sk
)->icsk_backoff
= 0;
3062 /* Read draft-ietf-tcplw-high-performance before mucking
3063 * with this code. (Supersedes RFC1323)
3065 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3067 /* RTTM Rule: A TSecr value received in a segment is used to
3068 * update the averaged RTT measurement only if the segment
3069 * acknowledges some new data, i.e., only if it advances the
3070 * left edge of the send window.
3072 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3073 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3075 * Changed: reset backoff as soon as we see the first valid sample.
3076 * If we do not, we get strongly overestimated rto. With timestamps
3077 * samples are accepted even from very old segments: f.e., when rtt=1
3078 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3079 * answer arrives rto becomes 120 seconds! If at least one of segments
3080 * in window is lost... Voila. --ANK (010210)
3082 struct tcp_sock
*tp
= tcp_sk(sk
);
3084 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3087 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3089 /* We don't have a timestamp. Can only use
3090 * packets that are not retransmitted to determine
3091 * rtt estimates. Also, we must not reset the
3092 * backoff for rto until we get a non-retransmitted
3093 * packet. This allows us to deal with a situation
3094 * where the network delay has increased suddenly.
3095 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3098 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3101 tcp_valid_rtt_meas(sk
, seq_rtt
);
3104 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3107 const struct tcp_sock
*tp
= tcp_sk(sk
);
3108 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3109 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3110 tcp_ack_saw_tstamp(sk
, flag
);
3111 else if (seq_rtt
>= 0)
3112 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3115 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3117 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3118 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3119 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3122 /* Restart timer after forward progress on connection.
3123 * RFC2988 recommends to restart timer to now+rto.
3125 static void tcp_rearm_rto(struct sock
*sk
)
3127 struct tcp_sock
*tp
= tcp_sk(sk
);
3129 if (!tp
->packets_out
) {
3130 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3132 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3133 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3137 /* If we get here, the whole TSO packet has not been acked. */
3138 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3140 struct tcp_sock
*tp
= tcp_sk(sk
);
3143 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3145 packets_acked
= tcp_skb_pcount(skb
);
3146 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3148 packets_acked
-= tcp_skb_pcount(skb
);
3150 if (packets_acked
) {
3151 BUG_ON(tcp_skb_pcount(skb
) == 0);
3152 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3155 return packets_acked
;
3158 /* Remove acknowledged frames from the retransmission queue. If our packet
3159 * is before the ack sequence we can discard it as it's confirmed to have
3160 * arrived at the other end.
3162 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3165 struct tcp_sock
*tp
= tcp_sk(sk
);
3166 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3167 struct sk_buff
*skb
;
3168 u32 now
= tcp_time_stamp
;
3169 int fully_acked
= 1;
3172 u32 reord
= tp
->packets_out
;
3173 u32 prior_sacked
= tp
->sacked_out
;
3175 s32 ca_seq_rtt
= -1;
3176 ktime_t last_ackt
= net_invalid_timestamp();
3178 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3179 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3182 u8 sacked
= scb
->sacked
;
3184 /* Determine how many packets and what bytes were acked, tso and else */
3185 if (after(scb
->end_seq
, tp
->snd_una
)) {
3186 if (tcp_skb_pcount(skb
) == 1 ||
3187 !after(tp
->snd_una
, scb
->seq
))
3190 acked_pcount
= tcp_tso_acked(sk
, skb
);
3195 end_seq
= tp
->snd_una
;
3197 acked_pcount
= tcp_skb_pcount(skb
);
3198 end_seq
= scb
->end_seq
;
3201 /* MTU probing checks */
3202 if (fully_acked
&& icsk
->icsk_mtup
.probe_size
&&
3203 !after(tp
->mtu_probe
.probe_seq_end
, scb
->end_seq
)) {
3204 tcp_mtup_probe_success(sk
, skb
);
3207 if (sacked
& TCPCB_RETRANS
) {
3208 if (sacked
& TCPCB_SACKED_RETRANS
)
3209 tp
->retrans_out
-= acked_pcount
;
3210 flag
|= FLAG_RETRANS_DATA_ACKED
;
3213 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3214 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3216 ca_seq_rtt
= now
- scb
->when
;
3217 last_ackt
= skb
->tstamp
;
3219 seq_rtt
= ca_seq_rtt
;
3221 if (!(sacked
& TCPCB_SACKED_ACKED
))
3222 reord
= min(pkts_acked
, reord
);
3225 if (sacked
& TCPCB_SACKED_ACKED
)
3226 tp
->sacked_out
-= acked_pcount
;
3227 if (sacked
& TCPCB_LOST
)
3228 tp
->lost_out
-= acked_pcount
;
3230 tp
->packets_out
-= acked_pcount
;
3231 pkts_acked
+= acked_pcount
;
3233 /* Initial outgoing SYN's get put onto the write_queue
3234 * just like anything else we transmit. It is not
3235 * true data, and if we misinform our callers that
3236 * this ACK acks real data, we will erroneously exit
3237 * connection startup slow start one packet too
3238 * quickly. This is severely frowned upon behavior.
3240 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
3241 flag
|= FLAG_DATA_ACKED
;
3243 flag
|= FLAG_SYN_ACKED
;
3244 tp
->retrans_stamp
= 0;
3250 tcp_unlink_write_queue(skb
, sk
);
3251 sk_wmem_free_skb(sk
, skb
);
3252 tp
->scoreboard_skb_hint
= NULL
;
3253 if (skb
== tp
->retransmit_skb_hint
)
3254 tp
->retransmit_skb_hint
= NULL
;
3255 if (skb
== tp
->lost_skb_hint
)
3256 tp
->lost_skb_hint
= NULL
;
3259 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3260 tp
->snd_up
= tp
->snd_una
;
3262 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3263 flag
|= FLAG_SACK_RENEGING
;
3265 if (flag
& FLAG_ACKED
) {
3266 const struct tcp_congestion_ops
*ca_ops
3267 = inet_csk(sk
)->icsk_ca_ops
;
3269 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3272 if (tcp_is_reno(tp
)) {
3273 tcp_remove_reno_sacks(sk
, pkts_acked
);
3275 /* Non-retransmitted hole got filled? That's reordering */
3276 if (reord
< prior_fackets
)
3277 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3279 /* No need to care for underflows here because
3280 * the lost_skb_hint gets NULLed if we're past it
3281 * (or something non-trivial happened)
3283 if (tcp_is_fack(tp
))
3284 tp
->lost_cnt_hint
-= pkts_acked
;
3286 tp
->lost_cnt_hint
-= prior_sacked
- tp
->sacked_out
;
3289 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3291 if (ca_ops
->pkts_acked
) {
3294 /* Is the ACK triggering packet unambiguous? */
3295 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3296 /* High resolution needed and available? */
3297 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3298 !ktime_equal(last_ackt
,
3299 net_invalid_timestamp()))
3300 rtt_us
= ktime_us_delta(ktime_get_real(),
3302 else if (ca_seq_rtt
> 0)
3303 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3306 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3310 #if FASTRETRANS_DEBUG > 0
3311 WARN_ON((int)tp
->sacked_out
< 0);
3312 WARN_ON((int)tp
->lost_out
< 0);
3313 WARN_ON((int)tp
->retrans_out
< 0);
3314 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3315 icsk
= inet_csk(sk
);
3317 printk(KERN_DEBUG
"Leak l=%u %d\n",
3318 tp
->lost_out
, icsk
->icsk_ca_state
);
3321 if (tp
->sacked_out
) {
3322 printk(KERN_DEBUG
"Leak s=%u %d\n",
3323 tp
->sacked_out
, icsk
->icsk_ca_state
);
3326 if (tp
->retrans_out
) {
3327 printk(KERN_DEBUG
"Leak r=%u %d\n",
3328 tp
->retrans_out
, icsk
->icsk_ca_state
);
3329 tp
->retrans_out
= 0;
3336 static void tcp_ack_probe(struct sock
*sk
)
3338 const struct tcp_sock
*tp
= tcp_sk(sk
);
3339 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3341 /* Was it a usable window open? */
3343 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3344 icsk
->icsk_backoff
= 0;
3345 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3346 /* Socket must be waked up by subsequent tcp_data_snd_check().
3347 * This function is not for random using!
3350 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3351 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3356 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3358 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3359 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
3362 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3364 const struct tcp_sock
*tp
= tcp_sk(sk
);
3365 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3366 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3369 /* Check that window update is acceptable.
3370 * The function assumes that snd_una<=ack<=snd_next.
3372 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3373 const u32 ack
, const u32 ack_seq
,
3376 return (after(ack
, tp
->snd_una
) ||
3377 after(ack_seq
, tp
->snd_wl1
) ||
3378 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
3381 /* Update our send window.
3383 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3384 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3386 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3389 struct tcp_sock
*tp
= tcp_sk(sk
);
3391 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3393 if (likely(!tcp_hdr(skb
)->syn
))
3394 nwin
<<= tp
->rx_opt
.snd_wscale
;
3396 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3397 flag
|= FLAG_WIN_UPDATE
;
3398 tcp_update_wl(tp
, ack
, ack_seq
);
3400 if (tp
->snd_wnd
!= nwin
) {
3403 /* Note, it is the only place, where
3404 * fast path is recovered for sending TCP.
3407 tcp_fast_path_check(sk
);
3409 if (nwin
> tp
->max_window
) {
3410 tp
->max_window
= nwin
;
3411 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3421 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3422 * continue in congestion avoidance.
3424 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3426 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3427 tp
->snd_cwnd_cnt
= 0;
3428 tp
->bytes_acked
= 0;
3429 TCP_ECN_queue_cwr(tp
);
3430 tcp_moderate_cwnd(tp
);
3433 /* A conservative spurious RTO response algorithm: reduce cwnd using
3434 * rate halving and continue in congestion avoidance.
3436 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3438 tcp_enter_cwr(sk
, 0);
3441 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3443 if (flag
& FLAG_ECE
)
3444 tcp_ratehalving_spur_to_response(sk
);
3446 tcp_undo_cwr(sk
, 1);
3449 /* F-RTO spurious RTO detection algorithm (RFC4138)
3451 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3452 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3453 * window (but not to or beyond highest sequence sent before RTO):
3454 * On First ACK, send two new segments out.
3455 * On Second ACK, RTO was likely spurious. Do spurious response (response
3456 * algorithm is not part of the F-RTO detection algorithm
3457 * given in RFC4138 but can be selected separately).
3458 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3459 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3460 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3461 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3463 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3464 * original window even after we transmit two new data segments.
3467 * on first step, wait until first cumulative ACK arrives, then move to
3468 * the second step. In second step, the next ACK decides.
3470 * F-RTO is implemented (mainly) in four functions:
3471 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3472 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3473 * called when tcp_use_frto() showed green light
3474 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3475 * - tcp_enter_frto_loss() is called if there is not enough evidence
3476 * to prove that the RTO is indeed spurious. It transfers the control
3477 * from F-RTO to the conventional RTO recovery
3479 static int tcp_process_frto(struct sock
*sk
, int flag
)
3481 struct tcp_sock
*tp
= tcp_sk(sk
);
3483 tcp_verify_left_out(tp
);
3485 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3486 if (flag
& FLAG_DATA_ACKED
)
3487 inet_csk(sk
)->icsk_retransmits
= 0;
3489 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3490 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3491 tp
->undo_marker
= 0;
3493 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3494 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3498 if (!tcp_is_sackfrto(tp
)) {
3499 /* RFC4138 shortcoming in step 2; should also have case c):
3500 * ACK isn't duplicate nor advances window, e.g., opposite dir
3503 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3506 if (!(flag
& FLAG_DATA_ACKED
)) {
3507 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3512 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3513 /* Prevent sending of new data. */
3514 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3515 tcp_packets_in_flight(tp
));
3519 if ((tp
->frto_counter
>= 2) &&
3520 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3521 ((flag
& FLAG_DATA_SACKED
) &&
3522 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3523 /* RFC4138 shortcoming (see comment above) */
3524 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3525 (flag
& FLAG_NOT_DUP
))
3528 tcp_enter_frto_loss(sk
, 3, flag
);
3533 if (tp
->frto_counter
== 1) {
3534 /* tcp_may_send_now needs to see updated state */
3535 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3536 tp
->frto_counter
= 2;
3538 if (!tcp_may_send_now(sk
))
3539 tcp_enter_frto_loss(sk
, 2, flag
);
3543 switch (sysctl_tcp_frto_response
) {
3545 tcp_undo_spur_to_response(sk
, flag
);
3548 tcp_conservative_spur_to_response(tp
);
3551 tcp_ratehalving_spur_to_response(sk
);
3554 tp
->frto_counter
= 0;
3555 tp
->undo_marker
= 0;
3556 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3561 /* This routine deals with incoming acks, but not outgoing ones. */
3562 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3564 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3565 struct tcp_sock
*tp
= tcp_sk(sk
);
3566 u32 prior_snd_una
= tp
->snd_una
;
3567 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3568 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3569 u32 prior_in_flight
;
3574 /* If the ack is newer than sent or older than previous acks
3575 * then we can probably ignore it.
3577 if (after(ack
, tp
->snd_nxt
))
3578 goto uninteresting_ack
;
3580 if (before(ack
, prior_snd_una
))
3583 if (after(ack
, prior_snd_una
))
3584 flag
|= FLAG_SND_UNA_ADVANCED
;
3586 if (sysctl_tcp_abc
) {
3587 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3588 tp
->bytes_acked
+= ack
- prior_snd_una
;
3589 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3590 /* we assume just one segment left network */
3591 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3595 prior_fackets
= tp
->fackets_out
;
3596 prior_in_flight
= tcp_packets_in_flight(tp
);
3598 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3599 /* Window is constant, pure forward advance.
3600 * No more checks are required.
3601 * Note, we use the fact that SND.UNA>=SND.WL2.
3603 tcp_update_wl(tp
, ack
, ack_seq
);
3605 flag
|= FLAG_WIN_UPDATE
;
3607 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3609 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3611 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3614 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3616 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3618 if (TCP_SKB_CB(skb
)->sacked
)
3619 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3621 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3624 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3627 /* We passed data and got it acked, remove any soft error
3628 * log. Something worked...
3630 sk
->sk_err_soft
= 0;
3631 icsk
->icsk_probes_out
= 0;
3632 tp
->rcv_tstamp
= tcp_time_stamp
;
3633 prior_packets
= tp
->packets_out
;
3637 /* See if we can take anything off of the retransmit queue. */
3638 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3640 if (tp
->frto_counter
)
3641 frto_cwnd
= tcp_process_frto(sk
, flag
);
3642 /* Guarantee sacktag reordering detection against wrap-arounds */
3643 if (before(tp
->frto_highmark
, tp
->snd_una
))
3644 tp
->frto_highmark
= 0;
3646 if (tcp_ack_is_dubious(sk
, flag
)) {
3647 /* Advance CWND, if state allows this. */
3648 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3649 tcp_may_raise_cwnd(sk
, flag
))
3650 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3651 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3654 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3655 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3658 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3659 dst_confirm(sk
->sk_dst_cache
);
3664 /* If this ack opens up a zero window, clear backoff. It was
3665 * being used to time the probes, and is probably far higher than
3666 * it needs to be for normal retransmission.
3668 if (tcp_send_head(sk
))
3673 if (TCP_SKB_CB(skb
)->sacked
) {
3674 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3675 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3676 tcp_try_keep_open(sk
);
3680 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3684 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3685 * But, this can also be called on packets in the established flow when
3686 * the fast version below fails.
3688 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3692 struct tcphdr
*th
= tcp_hdr(skb
);
3693 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3695 ptr
= (unsigned char *)(th
+ 1);
3696 opt_rx
->saw_tstamp
= 0;
3698 while (length
> 0) {
3699 int opcode
= *ptr
++;
3705 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3710 if (opsize
< 2) /* "silly options" */
3712 if (opsize
> length
)
3713 return; /* don't parse partial options */
3716 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3717 u16 in_mss
= get_unaligned_be16(ptr
);
3719 if (opt_rx
->user_mss
&&
3720 opt_rx
->user_mss
< in_mss
)
3721 in_mss
= opt_rx
->user_mss
;
3722 opt_rx
->mss_clamp
= in_mss
;
3727 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3728 !estab
&& sysctl_tcp_window_scaling
) {
3729 __u8 snd_wscale
= *(__u8
*)ptr
;
3730 opt_rx
->wscale_ok
= 1;
3731 if (snd_wscale
> 14) {
3732 if (net_ratelimit())
3733 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3734 "scaling value %d >14 received.\n",
3738 opt_rx
->snd_wscale
= snd_wscale
;
3741 case TCPOPT_TIMESTAMP
:
3742 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3743 ((estab
&& opt_rx
->tstamp_ok
) ||
3744 (!estab
&& sysctl_tcp_timestamps
))) {
3745 opt_rx
->saw_tstamp
= 1;
3746 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3747 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3750 case TCPOPT_SACK_PERM
:
3751 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3752 !estab
&& sysctl_tcp_sack
) {
3753 opt_rx
->sack_ok
= 1;
3754 tcp_sack_reset(opt_rx
);
3759 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3760 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3762 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3765 #ifdef CONFIG_TCP_MD5SIG
3768 * The MD5 Hash has already been
3769 * checked (see tcp_v{4,6}_do_rcv()).
3781 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3783 __be32
*ptr
= (__be32
*)(th
+ 1);
3785 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3786 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3787 tp
->rx_opt
.saw_tstamp
= 1;
3789 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3791 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3797 /* Fast parse options. This hopes to only see timestamps.
3798 * If it is wrong it falls back on tcp_parse_options().
3800 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3801 struct tcp_sock
*tp
)
3803 if (th
->doff
== sizeof(struct tcphdr
) >> 2) {
3804 tp
->rx_opt
.saw_tstamp
= 0;
3806 } else if (tp
->rx_opt
.tstamp_ok
&&
3807 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
3808 if (tcp_parse_aligned_timestamp(tp
, th
))
3811 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
3815 #ifdef CONFIG_TCP_MD5SIG
3817 * Parse MD5 Signature option
3819 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3821 int length
= (th
->doff
<< 2) - sizeof (*th
);
3822 u8
*ptr
= (u8
*)(th
+ 1);
3824 /* If the TCP option is too short, we can short cut */
3825 if (length
< TCPOLEN_MD5SIG
)
3828 while (length
> 0) {
3829 int opcode
= *ptr
++;
3840 if (opsize
< 2 || opsize
> length
)
3842 if (opcode
== TCPOPT_MD5SIG
)
3852 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3854 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3855 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3858 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3860 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3861 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3862 * extra check below makes sure this can only happen
3863 * for pure ACK frames. -DaveM
3865 * Not only, also it occurs for expired timestamps.
3868 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) >= 0 ||
3869 get_seconds() >= tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
)
3870 tcp_store_ts_recent(tp
);
3874 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3876 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3877 * it can pass through stack. So, the following predicate verifies that
3878 * this segment is not used for anything but congestion avoidance or
3879 * fast retransmit. Moreover, we even are able to eliminate most of such
3880 * second order effects, if we apply some small "replay" window (~RTO)
3881 * to timestamp space.
3883 * All these measures still do not guarantee that we reject wrapped ACKs
3884 * on networks with high bandwidth, when sequence space is recycled fastly,
3885 * but it guarantees that such events will be very rare and do not affect
3886 * connection seriously. This doesn't look nice, but alas, PAWS is really
3889 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3890 * states that events when retransmit arrives after original data are rare.
3891 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3892 * the biggest problem on large power networks even with minor reordering.
3893 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3894 * up to bandwidth of 18Gigabit/sec. 8) ]
3897 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3899 struct tcp_sock
*tp
= tcp_sk(sk
);
3900 struct tcphdr
*th
= tcp_hdr(skb
);
3901 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3902 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3904 return (/* 1. Pure ACK with correct sequence number. */
3905 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3907 /* 2. ... and duplicate ACK. */
3908 ack
== tp
->snd_una
&&
3910 /* 3. ... and does not update window. */
3911 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3913 /* 4. ... and sits in replay window. */
3914 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3917 static inline int tcp_paws_discard(const struct sock
*sk
,
3918 const struct sk_buff
*skb
)
3920 const struct tcp_sock
*tp
= tcp_sk(sk
);
3921 return ((s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) > TCP_PAWS_WINDOW
&&
3922 get_seconds() < tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
3923 !tcp_disordered_ack(sk
, skb
));
3926 /* Check segment sequence number for validity.
3928 * Segment controls are considered valid, if the segment
3929 * fits to the window after truncation to the window. Acceptability
3930 * of data (and SYN, FIN, of course) is checked separately.
3931 * See tcp_data_queue(), for example.
3933 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3934 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3935 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3936 * (borrowed from freebsd)
3939 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3941 return !before(end_seq
, tp
->rcv_wup
) &&
3942 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3945 /* When we get a reset we do this. */
3946 static void tcp_reset(struct sock
*sk
)
3948 /* We want the right error as BSD sees it (and indeed as we do). */
3949 switch (sk
->sk_state
) {
3951 sk
->sk_err
= ECONNREFUSED
;
3953 case TCP_CLOSE_WAIT
:
3959 sk
->sk_err
= ECONNRESET
;
3962 if (!sock_flag(sk
, SOCK_DEAD
))
3963 sk
->sk_error_report(sk
);
3969 * Process the FIN bit. This now behaves as it is supposed to work
3970 * and the FIN takes effect when it is validly part of sequence
3971 * space. Not before when we get holes.
3973 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3974 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3977 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3978 * close and we go into CLOSING (and later onto TIME-WAIT)
3980 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3982 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
3984 struct tcp_sock
*tp
= tcp_sk(sk
);
3986 inet_csk_schedule_ack(sk
);
3988 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
3989 sock_set_flag(sk
, SOCK_DONE
);
3991 switch (sk
->sk_state
) {
3993 case TCP_ESTABLISHED
:
3994 /* Move to CLOSE_WAIT */
3995 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
3996 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
3999 case TCP_CLOSE_WAIT
:
4001 /* Received a retransmission of the FIN, do
4006 /* RFC793: Remain in the LAST-ACK state. */
4010 /* This case occurs when a simultaneous close
4011 * happens, we must ack the received FIN and
4012 * enter the CLOSING state.
4015 tcp_set_state(sk
, TCP_CLOSING
);
4018 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4020 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4023 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4024 * cases we should never reach this piece of code.
4026 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4027 __func__
, sk
->sk_state
);
4031 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4032 * Probably, we should reset in this case. For now drop them.
4034 __skb_queue_purge(&tp
->out_of_order_queue
);
4035 if (tcp_is_sack(tp
))
4036 tcp_sack_reset(&tp
->rx_opt
);
4039 if (!sock_flag(sk
, SOCK_DEAD
)) {
4040 sk
->sk_state_change(sk
);
4042 /* Do not send POLL_HUP for half duplex close. */
4043 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4044 sk
->sk_state
== TCP_CLOSE
)
4045 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4047 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4051 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4054 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4055 if (before(seq
, sp
->start_seq
))
4056 sp
->start_seq
= seq
;
4057 if (after(end_seq
, sp
->end_seq
))
4058 sp
->end_seq
= end_seq
;
4064 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4066 struct tcp_sock
*tp
= tcp_sk(sk
);
4068 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4071 if (before(seq
, tp
->rcv_nxt
))
4072 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4074 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4076 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4078 tp
->rx_opt
.dsack
= 1;
4079 tp
->duplicate_sack
[0].start_seq
= seq
;
4080 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4081 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
+ 1;
4085 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4087 struct tcp_sock
*tp
= tcp_sk(sk
);
4089 if (!tp
->rx_opt
.dsack
)
4090 tcp_dsack_set(sk
, seq
, end_seq
);
4092 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4095 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4097 struct tcp_sock
*tp
= tcp_sk(sk
);
4099 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4100 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4101 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4102 tcp_enter_quickack_mode(sk
);
4104 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4105 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4107 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4108 end_seq
= tp
->rcv_nxt
;
4109 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4116 /* These routines update the SACK block as out-of-order packets arrive or
4117 * in-order packets close up the sequence space.
4119 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4122 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4123 struct tcp_sack_block
*swalk
= sp
+ 1;
4125 /* See if the recent change to the first SACK eats into
4126 * or hits the sequence space of other SACK blocks, if so coalesce.
4128 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4129 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4132 /* Zap SWALK, by moving every further SACK up by one slot.
4133 * Decrease num_sacks.
4135 tp
->rx_opt
.num_sacks
--;
4136 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
+
4138 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4142 this_sack
++, swalk
++;
4146 static inline void tcp_sack_swap(struct tcp_sack_block
*sack1
,
4147 struct tcp_sack_block
*sack2
)
4151 tmp
= sack1
->start_seq
;
4152 sack1
->start_seq
= sack2
->start_seq
;
4153 sack2
->start_seq
= tmp
;
4155 tmp
= sack1
->end_seq
;
4156 sack1
->end_seq
= sack2
->end_seq
;
4157 sack2
->end_seq
= tmp
;
4160 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4162 struct tcp_sock
*tp
= tcp_sk(sk
);
4163 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4164 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4170 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4171 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4172 /* Rotate this_sack to the first one. */
4173 for (; this_sack
> 0; this_sack
--, sp
--)
4174 tcp_sack_swap(sp
, sp
- 1);
4176 tcp_sack_maybe_coalesce(tp
);
4181 /* Could not find an adjacent existing SACK, build a new one,
4182 * put it at the front, and shift everyone else down. We
4183 * always know there is at least one SACK present already here.
4185 * If the sack array is full, forget about the last one.
4187 if (this_sack
>= TCP_NUM_SACKS
) {
4189 tp
->rx_opt
.num_sacks
--;
4192 for (; this_sack
> 0; this_sack
--, sp
--)
4196 /* Build the new head SACK, and we're done. */
4197 sp
->start_seq
= seq
;
4198 sp
->end_seq
= end_seq
;
4199 tp
->rx_opt
.num_sacks
++;
4200 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
4203 /* RCV.NXT advances, some SACKs should be eaten. */
4205 static void tcp_sack_remove(struct tcp_sock
*tp
)
4207 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4208 int num_sacks
= tp
->rx_opt
.num_sacks
;
4211 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4212 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4213 tp
->rx_opt
.num_sacks
= 0;
4214 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.dsack
;
4218 for (this_sack
= 0; this_sack
< num_sacks
;) {
4219 /* Check if the start of the sack is covered by RCV.NXT. */
4220 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4223 /* RCV.NXT must cover all the block! */
4224 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4226 /* Zap this SACK, by moving forward any other SACKS. */
4227 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4228 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4235 if (num_sacks
!= tp
->rx_opt
.num_sacks
) {
4236 tp
->rx_opt
.num_sacks
= num_sacks
;
4237 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
+
4242 /* This one checks to see if we can put data from the
4243 * out_of_order queue into the receive_queue.
4245 static void tcp_ofo_queue(struct sock
*sk
)
4247 struct tcp_sock
*tp
= tcp_sk(sk
);
4248 __u32 dsack_high
= tp
->rcv_nxt
;
4249 struct sk_buff
*skb
;
4251 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4252 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4255 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4256 __u32 dsack
= dsack_high
;
4257 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4258 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4259 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4262 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4263 SOCK_DEBUG(sk
, "ofo packet was already received \n");
4264 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4268 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4269 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4270 TCP_SKB_CB(skb
)->end_seq
);
4272 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4273 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4274 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4275 if (tcp_hdr(skb
)->fin
)
4276 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4280 static int tcp_prune_ofo_queue(struct sock
*sk
);
4281 static int tcp_prune_queue(struct sock
*sk
);
4283 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4285 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4286 !sk_rmem_schedule(sk
, size
)) {
4288 if (tcp_prune_queue(sk
) < 0)
4291 if (!sk_rmem_schedule(sk
, size
)) {
4292 if (!tcp_prune_ofo_queue(sk
))
4295 if (!sk_rmem_schedule(sk
, size
))
4302 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4304 struct tcphdr
*th
= tcp_hdr(skb
);
4305 struct tcp_sock
*tp
= tcp_sk(sk
);
4308 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4311 __skb_pull(skb
, th
->doff
* 4);
4313 TCP_ECN_accept_cwr(tp
, skb
);
4315 if (tp
->rx_opt
.dsack
) {
4316 tp
->rx_opt
.dsack
= 0;
4317 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
;
4320 /* Queue data for delivery to the user.
4321 * Packets in sequence go to the receive queue.
4322 * Out of sequence packets to the out_of_order_queue.
4324 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4325 if (tcp_receive_window(tp
) == 0)
4328 /* Ok. In sequence. In window. */
4329 if (tp
->ucopy
.task
== current
&&
4330 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4331 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4332 int chunk
= min_t(unsigned int, skb
->len
,
4335 __set_current_state(TASK_RUNNING
);
4338 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4339 tp
->ucopy
.len
-= chunk
;
4340 tp
->copied_seq
+= chunk
;
4341 eaten
= (chunk
== skb
->len
&& !th
->fin
);
4342 tcp_rcv_space_adjust(sk
);
4350 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4353 skb_set_owner_r(skb
, sk
);
4354 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4356 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4358 tcp_event_data_recv(sk
, skb
);
4360 tcp_fin(skb
, sk
, th
);
4362 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4365 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4366 * gap in queue is filled.
4368 if (skb_queue_empty(&tp
->out_of_order_queue
))
4369 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4372 if (tp
->rx_opt
.num_sacks
)
4373 tcp_sack_remove(tp
);
4375 tcp_fast_path_check(sk
);
4379 else if (!sock_flag(sk
, SOCK_DEAD
))
4380 sk
->sk_data_ready(sk
, 0);
4384 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4385 /* A retransmit, 2nd most common case. Force an immediate ack. */
4386 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4387 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4390 tcp_enter_quickack_mode(sk
);
4391 inet_csk_schedule_ack(sk
);
4397 /* Out of window. F.e. zero window probe. */
4398 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4401 tcp_enter_quickack_mode(sk
);
4403 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4404 /* Partial packet, seq < rcv_next < end_seq */
4405 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4406 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4407 TCP_SKB_CB(skb
)->end_seq
);
4409 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4411 /* If window is closed, drop tail of packet. But after
4412 * remembering D-SACK for its head made in previous line.
4414 if (!tcp_receive_window(tp
))
4419 TCP_ECN_check_ce(tp
, skb
);
4421 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4424 /* Disable header prediction. */
4426 inet_csk_schedule_ack(sk
);
4428 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4429 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4431 skb_set_owner_r(skb
, sk
);
4433 if (!skb_peek(&tp
->out_of_order_queue
)) {
4434 /* Initial out of order segment, build 1 SACK. */
4435 if (tcp_is_sack(tp
)) {
4436 tp
->rx_opt
.num_sacks
= 1;
4437 tp
->rx_opt
.dsack
= 0;
4438 tp
->rx_opt
.eff_sacks
= 1;
4439 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4440 tp
->selective_acks
[0].end_seq
=
4441 TCP_SKB_CB(skb
)->end_seq
;
4443 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4445 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
4446 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4447 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4449 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4450 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4452 if (!tp
->rx_opt
.num_sacks
||
4453 tp
->selective_acks
[0].end_seq
!= seq
)
4456 /* Common case: data arrive in order after hole. */
4457 tp
->selective_acks
[0].end_seq
= end_seq
;
4461 /* Find place to insert this segment. */
4463 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4465 } while ((skb1
= skb1
->prev
) !=
4466 (struct sk_buff
*)&tp
->out_of_order_queue
);
4468 /* Do skb overlap to previous one? */
4469 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
4470 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4471 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4472 /* All the bits are present. Drop. */
4474 tcp_dsack_set(sk
, seq
, end_seq
);
4477 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4478 /* Partial overlap. */
4479 tcp_dsack_set(sk
, seq
,
4480 TCP_SKB_CB(skb1
)->end_seq
);
4485 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4487 /* And clean segments covered by new one as whole. */
4488 while ((skb1
= skb
->next
) !=
4489 (struct sk_buff
*)&tp
->out_of_order_queue
&&
4490 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
4491 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4492 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4496 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4497 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4498 TCP_SKB_CB(skb1
)->end_seq
);
4503 if (tcp_is_sack(tp
))
4504 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4508 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4509 struct sk_buff_head
*list
)
4511 struct sk_buff
*next
= skb
->next
;
4513 __skb_unlink(skb
, list
);
4515 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4520 /* Collapse contiguous sequence of skbs head..tail with
4521 * sequence numbers start..end.
4522 * Segments with FIN/SYN are not collapsed (only because this
4526 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4527 struct sk_buff
*head
, struct sk_buff
*tail
,
4530 struct sk_buff
*skb
;
4532 /* First, check that queue is collapsible and find
4533 * the point where collapsing can be useful. */
4534 for (skb
= head
; skb
!= tail
;) {
4535 /* No new bits? It is possible on ofo queue. */
4536 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4537 skb
= tcp_collapse_one(sk
, skb
, list
);
4541 /* The first skb to collapse is:
4543 * - bloated or contains data before "start" or
4544 * overlaps to the next one.
4546 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4547 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4548 before(TCP_SKB_CB(skb
)->seq
, start
) ||
4549 (skb
->next
!= tail
&&
4550 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
4553 /* Decided to skip this, advance start seq. */
4554 start
= TCP_SKB_CB(skb
)->end_seq
;
4557 if (skb
== tail
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4560 while (before(start
, end
)) {
4561 struct sk_buff
*nskb
;
4562 unsigned int header
= skb_headroom(skb
);
4563 int copy
= SKB_MAX_ORDER(header
, 0);
4565 /* Too big header? This can happen with IPv6. */
4568 if (end
- start
< copy
)
4570 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4574 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4575 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4577 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4579 skb_reserve(nskb
, header
);
4580 memcpy(nskb
->head
, skb
->head
, header
);
4581 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4582 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4583 __skb_queue_before(list
, skb
, nskb
);
4584 skb_set_owner_r(nskb
, sk
);
4586 /* Copy data, releasing collapsed skbs. */
4588 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4589 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4593 size
= min(copy
, size
);
4594 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4596 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4600 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4601 skb
= tcp_collapse_one(sk
, skb
, list
);
4603 tcp_hdr(skb
)->syn
||
4611 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4612 * and tcp_collapse() them until all the queue is collapsed.
4614 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4616 struct tcp_sock
*tp
= tcp_sk(sk
);
4617 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4618 struct sk_buff
*head
;
4624 start
= TCP_SKB_CB(skb
)->seq
;
4625 end
= TCP_SKB_CB(skb
)->end_seq
;
4631 /* Segment is terminated when we see gap or when
4632 * we are at the end of all the queue. */
4633 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
4634 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4635 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4636 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4637 head
, skb
, start
, end
);
4639 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
4641 /* Start new segment */
4642 start
= TCP_SKB_CB(skb
)->seq
;
4643 end
= TCP_SKB_CB(skb
)->end_seq
;
4645 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4646 start
= TCP_SKB_CB(skb
)->seq
;
4647 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4648 end
= TCP_SKB_CB(skb
)->end_seq
;
4654 * Purge the out-of-order queue.
4655 * Return true if queue was pruned.
4657 static int tcp_prune_ofo_queue(struct sock
*sk
)
4659 struct tcp_sock
*tp
= tcp_sk(sk
);
4662 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4663 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4664 __skb_queue_purge(&tp
->out_of_order_queue
);
4666 /* Reset SACK state. A conforming SACK implementation will
4667 * do the same at a timeout based retransmit. When a connection
4668 * is in a sad state like this, we care only about integrity
4669 * of the connection not performance.
4671 if (tp
->rx_opt
.sack_ok
)
4672 tcp_sack_reset(&tp
->rx_opt
);
4679 /* Reduce allocated memory if we can, trying to get
4680 * the socket within its memory limits again.
4682 * Return less than zero if we should start dropping frames
4683 * until the socket owning process reads some of the data
4684 * to stabilize the situation.
4686 static int tcp_prune_queue(struct sock
*sk
)
4688 struct tcp_sock
*tp
= tcp_sk(sk
);
4690 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4692 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4694 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4695 tcp_clamp_window(sk
);
4696 else if (tcp_memory_pressure
)
4697 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4699 tcp_collapse_ofo_queue(sk
);
4700 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4701 sk
->sk_receive_queue
.next
,
4702 (struct sk_buff
*)&sk
->sk_receive_queue
,
4703 tp
->copied_seq
, tp
->rcv_nxt
);
4706 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4709 /* Collapsing did not help, destructive actions follow.
4710 * This must not ever occur. */
4712 tcp_prune_ofo_queue(sk
);
4714 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4717 /* If we are really being abused, tell the caller to silently
4718 * drop receive data on the floor. It will get retransmitted
4719 * and hopefully then we'll have sufficient space.
4721 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4723 /* Massive buffer overcommit. */
4728 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4729 * As additional protections, we do not touch cwnd in retransmission phases,
4730 * and if application hit its sndbuf limit recently.
4732 void tcp_cwnd_application_limited(struct sock
*sk
)
4734 struct tcp_sock
*tp
= tcp_sk(sk
);
4736 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4737 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4738 /* Limited by application or receiver window. */
4739 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4740 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4741 if (win_used
< tp
->snd_cwnd
) {
4742 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4743 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4745 tp
->snd_cwnd_used
= 0;
4747 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4750 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4752 struct tcp_sock
*tp
= tcp_sk(sk
);
4754 /* If the user specified a specific send buffer setting, do
4757 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4760 /* If we are under global TCP memory pressure, do not expand. */
4761 if (tcp_memory_pressure
)
4764 /* If we are under soft global TCP memory pressure, do not expand. */
4765 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4768 /* If we filled the congestion window, do not expand. */
4769 if (tp
->packets_out
>= tp
->snd_cwnd
)
4775 /* When incoming ACK allowed to free some skb from write_queue,
4776 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4777 * on the exit from tcp input handler.
4779 * PROBLEM: sndbuf expansion does not work well with largesend.
4781 static void tcp_new_space(struct sock
*sk
)
4783 struct tcp_sock
*tp
= tcp_sk(sk
);
4785 if (tcp_should_expand_sndbuf(sk
)) {
4786 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4787 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4788 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4789 tp
->reordering
+ 1);
4790 sndmem
*= 2 * demanded
;
4791 if (sndmem
> sk
->sk_sndbuf
)
4792 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4793 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4796 sk
->sk_write_space(sk
);
4799 static void tcp_check_space(struct sock
*sk
)
4801 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4802 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4803 if (sk
->sk_socket
&&
4804 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4809 static inline void tcp_data_snd_check(struct sock
*sk
)
4811 tcp_push_pending_frames(sk
);
4812 tcp_check_space(sk
);
4816 * Check if sending an ack is needed.
4818 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4820 struct tcp_sock
*tp
= tcp_sk(sk
);
4822 /* More than one full frame received... */
4823 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
4824 /* ... and right edge of window advances far enough.
4825 * (tcp_recvmsg() will send ACK otherwise). Or...
4827 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4828 /* We ACK each frame or... */
4829 tcp_in_quickack_mode(sk
) ||
4830 /* We have out of order data. */
4831 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4832 /* Then ack it now */
4835 /* Else, send delayed ack. */
4836 tcp_send_delayed_ack(sk
);
4840 static inline void tcp_ack_snd_check(struct sock
*sk
)
4842 if (!inet_csk_ack_scheduled(sk
)) {
4843 /* We sent a data segment already. */
4846 __tcp_ack_snd_check(sk
, 1);
4850 * This routine is only called when we have urgent data
4851 * signaled. Its the 'slow' part of tcp_urg. It could be
4852 * moved inline now as tcp_urg is only called from one
4853 * place. We handle URGent data wrong. We have to - as
4854 * BSD still doesn't use the correction from RFC961.
4855 * For 1003.1g we should support a new option TCP_STDURG to permit
4856 * either form (or just set the sysctl tcp_stdurg).
4859 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4861 struct tcp_sock
*tp
= tcp_sk(sk
);
4862 u32 ptr
= ntohs(th
->urg_ptr
);
4864 if (ptr
&& !sysctl_tcp_stdurg
)
4866 ptr
+= ntohl(th
->seq
);
4868 /* Ignore urgent data that we've already seen and read. */
4869 if (after(tp
->copied_seq
, ptr
))
4872 /* Do not replay urg ptr.
4874 * NOTE: interesting situation not covered by specs.
4875 * Misbehaving sender may send urg ptr, pointing to segment,
4876 * which we already have in ofo queue. We are not able to fetch
4877 * such data and will stay in TCP_URG_NOTYET until will be eaten
4878 * by recvmsg(). Seems, we are not obliged to handle such wicked
4879 * situations. But it is worth to think about possibility of some
4880 * DoSes using some hypothetical application level deadlock.
4882 if (before(ptr
, tp
->rcv_nxt
))
4885 /* Do we already have a newer (or duplicate) urgent pointer? */
4886 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4889 /* Tell the world about our new urgent pointer. */
4892 /* We may be adding urgent data when the last byte read was
4893 * urgent. To do this requires some care. We cannot just ignore
4894 * tp->copied_seq since we would read the last urgent byte again
4895 * as data, nor can we alter copied_seq until this data arrives
4896 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4898 * NOTE. Double Dutch. Rendering to plain English: author of comment
4899 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4900 * and expect that both A and B disappear from stream. This is _wrong_.
4901 * Though this happens in BSD with high probability, this is occasional.
4902 * Any application relying on this is buggy. Note also, that fix "works"
4903 * only in this artificial test. Insert some normal data between A and B and we will
4904 * decline of BSD again. Verdict: it is better to remove to trap
4907 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4908 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
4909 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4911 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4912 __skb_unlink(skb
, &sk
->sk_receive_queue
);
4917 tp
->urg_data
= TCP_URG_NOTYET
;
4920 /* Disable header prediction. */
4924 /* This is the 'fast' part of urgent handling. */
4925 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
4927 struct tcp_sock
*tp
= tcp_sk(sk
);
4929 /* Check if we get a new urgent pointer - normally not. */
4931 tcp_check_urg(sk
, th
);
4933 /* Do we wait for any urgent data? - normally not... */
4934 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4935 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4938 /* Is the urgent pointer pointing into this packet? */
4939 if (ptr
< skb
->len
) {
4941 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4943 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4944 if (!sock_flag(sk
, SOCK_DEAD
))
4945 sk
->sk_data_ready(sk
, 0);
4950 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4952 struct tcp_sock
*tp
= tcp_sk(sk
);
4953 int chunk
= skb
->len
- hlen
;
4957 if (skb_csum_unnecessary(skb
))
4958 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4960 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4964 tp
->ucopy
.len
-= chunk
;
4965 tp
->copied_seq
+= chunk
;
4966 tcp_rcv_space_adjust(sk
);
4973 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
4974 struct sk_buff
*skb
)
4978 if (sock_owned_by_user(sk
)) {
4980 result
= __tcp_checksum_complete(skb
);
4983 result
= __tcp_checksum_complete(skb
);
4988 static inline int tcp_checksum_complete_user(struct sock
*sk
,
4989 struct sk_buff
*skb
)
4991 return !skb_csum_unnecessary(skb
) &&
4992 __tcp_checksum_complete_user(sk
, skb
);
4995 #ifdef CONFIG_NET_DMA
4996 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
4999 struct tcp_sock
*tp
= tcp_sk(sk
);
5000 int chunk
= skb
->len
- hlen
;
5002 int copied_early
= 0;
5004 if (tp
->ucopy
.wakeup
)
5007 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5008 tp
->ucopy
.dma_chan
= get_softnet_dma();
5010 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5012 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5014 tp
->ucopy
.iov
, chunk
,
5015 tp
->ucopy
.pinned_list
);
5020 tp
->ucopy
.dma_cookie
= dma_cookie
;
5023 tp
->ucopy
.len
-= chunk
;
5024 tp
->copied_seq
+= chunk
;
5025 tcp_rcv_space_adjust(sk
);
5027 if ((tp
->ucopy
.len
== 0) ||
5028 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5029 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5030 tp
->ucopy
.wakeup
= 1;
5031 sk
->sk_data_ready(sk
, 0);
5033 } else if (chunk
> 0) {
5034 tp
->ucopy
.wakeup
= 1;
5035 sk
->sk_data_ready(sk
, 0);
5038 return copied_early
;
5040 #endif /* CONFIG_NET_DMA */
5042 /* Does PAWS and seqno based validation of an incoming segment, flags will
5043 * play significant role here.
5045 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5046 struct tcphdr
*th
, int syn_inerr
)
5048 struct tcp_sock
*tp
= tcp_sk(sk
);
5050 /* RFC1323: H1. Apply PAWS check first. */
5051 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5052 tcp_paws_discard(sk
, skb
)) {
5054 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5055 tcp_send_dupack(sk
, skb
);
5058 /* Reset is accepted even if it did not pass PAWS. */
5061 /* Step 1: check sequence number */
5062 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5063 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5064 * (RST) segments are validated by checking their SEQ-fields."
5065 * And page 69: "If an incoming segment is not acceptable,
5066 * an acknowledgment should be sent in reply (unless the RST
5067 * bit is set, if so drop the segment and return)".
5070 tcp_send_dupack(sk
, skb
);
5074 /* Step 2: check RST bit */
5080 /* ts_recent update must be made after we are sure that the packet
5083 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5085 /* step 3: check security and precedence [ignored] */
5087 /* step 4: Check for a SYN in window. */
5088 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5090 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5091 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5104 * TCP receive function for the ESTABLISHED state.
5106 * It is split into a fast path and a slow path. The fast path is
5108 * - A zero window was announced from us - zero window probing
5109 * is only handled properly in the slow path.
5110 * - Out of order segments arrived.
5111 * - Urgent data is expected.
5112 * - There is no buffer space left
5113 * - Unexpected TCP flags/window values/header lengths are received
5114 * (detected by checking the TCP header against pred_flags)
5115 * - Data is sent in both directions. Fast path only supports pure senders
5116 * or pure receivers (this means either the sequence number or the ack
5117 * value must stay constant)
5118 * - Unexpected TCP option.
5120 * When these conditions are not satisfied it drops into a standard
5121 * receive procedure patterned after RFC793 to handle all cases.
5122 * The first three cases are guaranteed by proper pred_flags setting,
5123 * the rest is checked inline. Fast processing is turned on in
5124 * tcp_data_queue when everything is OK.
5126 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5127 struct tcphdr
*th
, unsigned len
)
5129 struct tcp_sock
*tp
= tcp_sk(sk
);
5133 * Header prediction.
5134 * The code loosely follows the one in the famous
5135 * "30 instruction TCP receive" Van Jacobson mail.
5137 * Van's trick is to deposit buffers into socket queue
5138 * on a device interrupt, to call tcp_recv function
5139 * on the receive process context and checksum and copy
5140 * the buffer to user space. smart...
5142 * Our current scheme is not silly either but we take the
5143 * extra cost of the net_bh soft interrupt processing...
5144 * We do checksum and copy also but from device to kernel.
5147 tp
->rx_opt
.saw_tstamp
= 0;
5149 /* pred_flags is 0xS?10 << 16 + snd_wnd
5150 * if header_prediction is to be made
5151 * 'S' will always be tp->tcp_header_len >> 2
5152 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5153 * turn it off (when there are holes in the receive
5154 * space for instance)
5155 * PSH flag is ignored.
5158 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5159 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
5160 int tcp_header_len
= tp
->tcp_header_len
;
5162 /* Timestamp header prediction: tcp_header_len
5163 * is automatically equal to th->doff*4 due to pred_flags
5167 /* Check timestamp */
5168 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5169 /* No? Slow path! */
5170 if (!tcp_parse_aligned_timestamp(tp
, th
))
5173 /* If PAWS failed, check it more carefully in slow path */
5174 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5177 /* DO NOT update ts_recent here, if checksum fails
5178 * and timestamp was corrupted part, it will result
5179 * in a hung connection since we will drop all
5180 * future packets due to the PAWS test.
5184 if (len
<= tcp_header_len
) {
5185 /* Bulk data transfer: sender */
5186 if (len
== tcp_header_len
) {
5187 /* Predicted packet is in window by definition.
5188 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5189 * Hence, check seq<=rcv_wup reduces to:
5191 if (tcp_header_len
==
5192 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5193 tp
->rcv_nxt
== tp
->rcv_wup
)
5194 tcp_store_ts_recent(tp
);
5196 /* We know that such packets are checksummed
5199 tcp_ack(sk
, skb
, 0);
5201 tcp_data_snd_check(sk
);
5203 } else { /* Header too small */
5204 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5209 int copied_early
= 0;
5211 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5212 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5213 #ifdef CONFIG_NET_DMA
5214 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5219 if (tp
->ucopy
.task
== current
&&
5220 sock_owned_by_user(sk
) && !copied_early
) {
5221 __set_current_state(TASK_RUNNING
);
5223 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5227 /* Predicted packet is in window by definition.
5228 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5229 * Hence, check seq<=rcv_wup reduces to:
5231 if (tcp_header_len
==
5232 (sizeof(struct tcphdr
) +
5233 TCPOLEN_TSTAMP_ALIGNED
) &&
5234 tp
->rcv_nxt
== tp
->rcv_wup
)
5235 tcp_store_ts_recent(tp
);
5237 tcp_rcv_rtt_measure_ts(sk
, skb
);
5239 __skb_pull(skb
, tcp_header_len
);
5240 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5241 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5244 tcp_cleanup_rbuf(sk
, skb
->len
);
5247 if (tcp_checksum_complete_user(sk
, skb
))
5250 /* Predicted packet is in window by definition.
5251 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5252 * Hence, check seq<=rcv_wup reduces to:
5254 if (tcp_header_len
==
5255 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5256 tp
->rcv_nxt
== tp
->rcv_wup
)
5257 tcp_store_ts_recent(tp
);
5259 tcp_rcv_rtt_measure_ts(sk
, skb
);
5261 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5264 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5266 /* Bulk data transfer: receiver */
5267 __skb_pull(skb
, tcp_header_len
);
5268 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5269 skb_set_owner_r(skb
, sk
);
5270 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5273 tcp_event_data_recv(sk
, skb
);
5275 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5276 /* Well, only one small jumplet in fast path... */
5277 tcp_ack(sk
, skb
, FLAG_DATA
);
5278 tcp_data_snd_check(sk
);
5279 if (!inet_csk_ack_scheduled(sk
))
5283 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5284 __tcp_ack_snd_check(sk
, 0);
5286 #ifdef CONFIG_NET_DMA
5288 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5294 sk
->sk_data_ready(sk
, 0);
5300 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5304 * Standard slow path.
5307 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5313 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5315 tcp_rcv_rtt_measure_ts(sk
, skb
);
5317 /* Process urgent data. */
5318 tcp_urg(sk
, skb
, th
);
5320 /* step 7: process the segment text */
5321 tcp_data_queue(sk
, skb
);
5323 tcp_data_snd_check(sk
);
5324 tcp_ack_snd_check(sk
);
5328 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5335 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5336 struct tcphdr
*th
, unsigned len
)
5338 struct tcp_sock
*tp
= tcp_sk(sk
);
5339 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5340 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5342 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
5346 * "If the state is SYN-SENT then
5347 * first check the ACK bit
5348 * If the ACK bit is set
5349 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5350 * a reset (unless the RST bit is set, if so drop
5351 * the segment and return)"
5353 * We do not send data with SYN, so that RFC-correct
5356 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5357 goto reset_and_undo
;
5359 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5360 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5362 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5363 goto reset_and_undo
;
5366 /* Now ACK is acceptable.
5368 * "If the RST bit is set
5369 * If the ACK was acceptable then signal the user "error:
5370 * connection reset", drop the segment, enter CLOSED state,
5371 * delete TCB, and return."
5380 * "fifth, if neither of the SYN or RST bits is set then
5381 * drop the segment and return."
5387 goto discard_and_undo
;
5390 * "If the SYN bit is on ...
5391 * are acceptable then ...
5392 * (our SYN has been ACKed), change the connection
5393 * state to ESTABLISHED..."
5396 TCP_ECN_rcv_synack(tp
, th
);
5398 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5399 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5401 /* Ok.. it's good. Set up sequence numbers and
5402 * move to established.
5404 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5405 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5407 /* RFC1323: The window in SYN & SYN/ACK segments is
5410 tp
->snd_wnd
= ntohs(th
->window
);
5411 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
5413 if (!tp
->rx_opt
.wscale_ok
) {
5414 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5415 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5418 if (tp
->rx_opt
.saw_tstamp
) {
5419 tp
->rx_opt
.tstamp_ok
= 1;
5420 tp
->tcp_header_len
=
5421 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5422 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5423 tcp_store_ts_recent(tp
);
5425 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5428 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5429 tcp_enable_fack(tp
);
5432 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5433 tcp_initialize_rcv_mss(sk
);
5435 /* Remember, tcp_poll() does not lock socket!
5436 * Change state from SYN-SENT only after copied_seq
5437 * is initialized. */
5438 tp
->copied_seq
= tp
->rcv_nxt
;
5440 tcp_set_state(sk
, TCP_ESTABLISHED
);
5442 security_inet_conn_established(sk
, skb
);
5444 /* Make sure socket is routed, for correct metrics. */
5445 icsk
->icsk_af_ops
->rebuild_header(sk
);
5447 tcp_init_metrics(sk
);
5449 tcp_init_congestion_control(sk
);
5451 /* Prevent spurious tcp_cwnd_restart() on first data
5454 tp
->lsndtime
= tcp_time_stamp
;
5456 tcp_init_buffer_space(sk
);
5458 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5459 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5461 if (!tp
->rx_opt
.snd_wscale
)
5462 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5466 if (!sock_flag(sk
, SOCK_DEAD
)) {
5467 sk
->sk_state_change(sk
);
5468 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5471 if (sk
->sk_write_pending
||
5472 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5473 icsk
->icsk_ack
.pingpong
) {
5474 /* Save one ACK. Data will be ready after
5475 * several ticks, if write_pending is set.
5477 * It may be deleted, but with this feature tcpdumps
5478 * look so _wonderfully_ clever, that I was not able
5479 * to stand against the temptation 8) --ANK
5481 inet_csk_schedule_ack(sk
);
5482 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5483 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5484 tcp_incr_quickack(sk
);
5485 tcp_enter_quickack_mode(sk
);
5486 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5487 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5498 /* No ACK in the segment */
5502 * "If the RST bit is set
5504 * Otherwise (no ACK) drop the segment and return."
5507 goto discard_and_undo
;
5511 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5512 tcp_paws_check(&tp
->rx_opt
, 0))
5513 goto discard_and_undo
;
5516 /* We see SYN without ACK. It is attempt of
5517 * simultaneous connect with crossed SYNs.
5518 * Particularly, it can be connect to self.
5520 tcp_set_state(sk
, TCP_SYN_RECV
);
5522 if (tp
->rx_opt
.saw_tstamp
) {
5523 tp
->rx_opt
.tstamp_ok
= 1;
5524 tcp_store_ts_recent(tp
);
5525 tp
->tcp_header_len
=
5526 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5528 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5531 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5532 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5534 /* RFC1323: The window in SYN & SYN/ACK segments is
5537 tp
->snd_wnd
= ntohs(th
->window
);
5538 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5539 tp
->max_window
= tp
->snd_wnd
;
5541 TCP_ECN_rcv_syn(tp
, th
);
5544 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5545 tcp_initialize_rcv_mss(sk
);
5547 tcp_send_synack(sk
);
5549 /* Note, we could accept data and URG from this segment.
5550 * There are no obstacles to make this.
5552 * However, if we ignore data in ACKless segments sometimes,
5553 * we have no reasons to accept it sometimes.
5554 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5555 * is not flawless. So, discard packet for sanity.
5556 * Uncomment this return to process the data.
5563 /* "fifth, if neither of the SYN or RST bits is set then
5564 * drop the segment and return."
5568 tcp_clear_options(&tp
->rx_opt
);
5569 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5573 tcp_clear_options(&tp
->rx_opt
);
5574 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5579 * This function implements the receiving procedure of RFC 793 for
5580 * all states except ESTABLISHED and TIME_WAIT.
5581 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5582 * address independent.
5585 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5586 struct tcphdr
*th
, unsigned len
)
5588 struct tcp_sock
*tp
= tcp_sk(sk
);
5589 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5593 tp
->rx_opt
.saw_tstamp
= 0;
5595 switch (sk
->sk_state
) {
5607 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5610 /* Now we have several options: In theory there is
5611 * nothing else in the frame. KA9Q has an option to
5612 * send data with the syn, BSD accepts data with the
5613 * syn up to the [to be] advertised window and
5614 * Solaris 2.1 gives you a protocol error. For now
5615 * we just ignore it, that fits the spec precisely
5616 * and avoids incompatibilities. It would be nice in
5617 * future to drop through and process the data.
5619 * Now that TTCP is starting to be used we ought to
5621 * But, this leaves one open to an easy denial of
5622 * service attack, and SYN cookies can't defend
5623 * against this problem. So, we drop the data
5624 * in the interest of security over speed unless
5625 * it's still in use.
5633 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5637 /* Do step6 onward by hand. */
5638 tcp_urg(sk
, skb
, th
);
5640 tcp_data_snd_check(sk
);
5644 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5648 /* step 5: check the ACK field */
5650 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5652 switch (sk
->sk_state
) {
5655 tp
->copied_seq
= tp
->rcv_nxt
;
5657 tcp_set_state(sk
, TCP_ESTABLISHED
);
5658 sk
->sk_state_change(sk
);
5660 /* Note, that this wakeup is only for marginal
5661 * crossed SYN case. Passively open sockets
5662 * are not waked up, because sk->sk_sleep ==
5663 * NULL and sk->sk_socket == NULL.
5667 SOCK_WAKE_IO
, POLL_OUT
);
5669 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5670 tp
->snd_wnd
= ntohs(th
->window
) <<
5671 tp
->rx_opt
.snd_wscale
;
5672 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
5673 TCP_SKB_CB(skb
)->seq
);
5675 /* tcp_ack considers this ACK as duplicate
5676 * and does not calculate rtt.
5677 * Fix it at least with timestamps.
5679 if (tp
->rx_opt
.saw_tstamp
&&
5680 tp
->rx_opt
.rcv_tsecr
&& !tp
->srtt
)
5681 tcp_ack_saw_tstamp(sk
, 0);
5683 if (tp
->rx_opt
.tstamp_ok
)
5684 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5686 /* Make sure socket is routed, for
5689 icsk
->icsk_af_ops
->rebuild_header(sk
);
5691 tcp_init_metrics(sk
);
5693 tcp_init_congestion_control(sk
);
5695 /* Prevent spurious tcp_cwnd_restart() on
5696 * first data packet.
5698 tp
->lsndtime
= tcp_time_stamp
;
5701 tcp_initialize_rcv_mss(sk
);
5702 tcp_init_buffer_space(sk
);
5703 tcp_fast_path_on(tp
);
5710 if (tp
->snd_una
== tp
->write_seq
) {
5711 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5712 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5713 dst_confirm(sk
->sk_dst_cache
);
5715 if (!sock_flag(sk
, SOCK_DEAD
))
5716 /* Wake up lingering close() */
5717 sk
->sk_state_change(sk
);
5721 if (tp
->linger2
< 0 ||
5722 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5723 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5725 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5729 tmo
= tcp_fin_time(sk
);
5730 if (tmo
> TCP_TIMEWAIT_LEN
) {
5731 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5732 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5733 /* Bad case. We could lose such FIN otherwise.
5734 * It is not a big problem, but it looks confusing
5735 * and not so rare event. We still can lose it now,
5736 * if it spins in bh_lock_sock(), but it is really
5739 inet_csk_reset_keepalive_timer(sk
, tmo
);
5741 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5749 if (tp
->snd_una
== tp
->write_seq
) {
5750 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5756 if (tp
->snd_una
== tp
->write_seq
) {
5757 tcp_update_metrics(sk
);
5766 /* step 6: check the URG bit */
5767 tcp_urg(sk
, skb
, th
);
5769 /* step 7: process the segment text */
5770 switch (sk
->sk_state
) {
5771 case TCP_CLOSE_WAIT
:
5774 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5778 /* RFC 793 says to queue data in these states,
5779 * RFC 1122 says we MUST send a reset.
5780 * BSD 4.4 also does reset.
5782 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5783 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5784 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5785 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5791 case TCP_ESTABLISHED
:
5792 tcp_data_queue(sk
, skb
);
5797 /* tcp_data could move socket to TIME-WAIT */
5798 if (sk
->sk_state
!= TCP_CLOSE
) {
5799 tcp_data_snd_check(sk
);
5800 tcp_ack_snd_check(sk
);
5810 EXPORT_SYMBOL(sysctl_tcp_ecn
);
5811 EXPORT_SYMBOL(sysctl_tcp_reordering
);
5812 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
5813 EXPORT_SYMBOL(tcp_parse_options
);
5814 #ifdef CONFIG_TCP_MD5SIG
5815 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
5817 EXPORT_SYMBOL(tcp_rcv_established
);
5818 EXPORT_SYMBOL(tcp_rcv_state_process
);
5819 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);