2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation, version 2.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
54 #include "conditional.h"
62 extern void selnl_notify_policyload(u32 seqno
);
63 unsigned int policydb_loaded_version
;
65 int selinux_policycap_netpeer
;
66 int selinux_policycap_openperm
;
69 * This is declared in avc.c
71 extern const struct selinux_class_perm selinux_class_perm
;
73 static DEFINE_RWLOCK(policy_rwlock
);
75 static struct sidtab sidtab
;
76 struct policydb policydb
;
80 * The largest sequence number that has been used when
81 * providing an access decision to the access vector cache.
82 * The sequence number only changes when a policy change
85 static u32 latest_granting
;
87 /* Forward declaration. */
88 static int context_struct_to_string(struct context
*context
, char **scontext
,
91 static int context_struct_compute_av(struct context
*scontext
,
92 struct context
*tcontext
,
95 struct av_decision
*avd
);
97 * Return the boolean value of a constraint expression
98 * when it is applied to the specified source and target
101 * xcontext is a special beast... It is used by the validatetrans rules
102 * only. For these rules, scontext is the context before the transition,
103 * tcontext is the context after the transition, and xcontext is the context
104 * of the process performing the transition. All other callers of
105 * constraint_expr_eval should pass in NULL for xcontext.
107 static int constraint_expr_eval(struct context
*scontext
,
108 struct context
*tcontext
,
109 struct context
*xcontext
,
110 struct constraint_expr
*cexpr
)
114 struct role_datum
*r1
, *r2
;
115 struct mls_level
*l1
, *l2
;
116 struct constraint_expr
*e
;
117 int s
[CEXPR_MAXDEPTH
];
120 for (e
= cexpr
; e
; e
= e
->next
) {
121 switch (e
->expr_type
) {
137 if (sp
== (CEXPR_MAXDEPTH
-1))
141 val1
= scontext
->user
;
142 val2
= tcontext
->user
;
145 val1
= scontext
->type
;
146 val2
= tcontext
->type
;
149 val1
= scontext
->role
;
150 val2
= tcontext
->role
;
151 r1
= policydb
.role_val_to_struct
[val1
- 1];
152 r2
= policydb
.role_val_to_struct
[val2
- 1];
155 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
159 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
163 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
165 !ebitmap_get_bit(&r2
->dominates
,
173 l1
= &(scontext
->range
.level
[0]);
174 l2
= &(tcontext
->range
.level
[0]);
177 l1
= &(scontext
->range
.level
[0]);
178 l2
= &(tcontext
->range
.level
[1]);
181 l1
= &(scontext
->range
.level
[1]);
182 l2
= &(tcontext
->range
.level
[0]);
185 l1
= &(scontext
->range
.level
[1]);
186 l2
= &(tcontext
->range
.level
[1]);
189 l1
= &(scontext
->range
.level
[0]);
190 l2
= &(scontext
->range
.level
[1]);
193 l1
= &(tcontext
->range
.level
[0]);
194 l2
= &(tcontext
->range
.level
[1]);
199 s
[++sp
] = mls_level_eq(l1
, l2
);
202 s
[++sp
] = !mls_level_eq(l1
, l2
);
205 s
[++sp
] = mls_level_dom(l1
, l2
);
208 s
[++sp
] = mls_level_dom(l2
, l1
);
211 s
[++sp
] = mls_level_incomp(l2
, l1
);
225 s
[++sp
] = (val1
== val2
);
228 s
[++sp
] = (val1
!= val2
);
236 if (sp
== (CEXPR_MAXDEPTH
-1))
239 if (e
->attr
& CEXPR_TARGET
)
241 else if (e
->attr
& CEXPR_XTARGET
) {
248 if (e
->attr
& CEXPR_USER
)
250 else if (e
->attr
& CEXPR_ROLE
)
252 else if (e
->attr
& CEXPR_TYPE
)
261 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
264 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
282 * security_boundary_permission - drops violated permissions
283 * on boundary constraint.
285 static void type_attribute_bounds_av(struct context
*scontext
,
286 struct context
*tcontext
,
289 struct av_decision
*avd
)
291 struct context lo_scontext
;
292 struct context lo_tcontext
;
293 struct av_decision lo_avd
;
294 struct type_datum
*source
295 = policydb
.type_val_to_struct
[scontext
->type
- 1];
296 struct type_datum
*target
297 = policydb
.type_val_to_struct
[tcontext
->type
- 1];
300 if (source
->bounds
) {
301 memset(&lo_avd
, 0, sizeof(lo_avd
));
303 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
304 lo_scontext
.type
= source
->bounds
;
306 context_struct_compute_av(&lo_scontext
,
311 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
312 return; /* no masked permission */
313 masked
= ~lo_avd
.allowed
& avd
->allowed
;
316 if (target
->bounds
) {
317 memset(&lo_avd
, 0, sizeof(lo_avd
));
319 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
320 lo_tcontext
.type
= target
->bounds
;
322 context_struct_compute_av(scontext
,
327 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
328 return; /* no masked permission */
329 masked
= ~lo_avd
.allowed
& avd
->allowed
;
332 if (source
->bounds
&& target
->bounds
) {
333 memset(&lo_avd
, 0, sizeof(lo_avd
));
335 * lo_scontext and lo_tcontext are already
339 context_struct_compute_av(&lo_scontext
,
344 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
345 return; /* no masked permission */
346 masked
= ~lo_avd
.allowed
& avd
->allowed
;
350 struct audit_buffer
*ab
;
352 = policydb
.p_type_val_to_name
[source
->value
- 1];
354 = policydb
.p_type_val_to_name
[target
->value
- 1];
356 = policydb
.p_class_val_to_name
[tclass
- 1];
358 /* mask violated permissions */
359 avd
->allowed
&= ~masked
;
361 /* notice to userspace via audit message */
362 ab
= audit_log_start(current
->audit_context
,
363 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
367 audit_log_format(ab
, "av boundary violation: "
368 "source=%s target=%s tclass=%s",
369 stype_name
, ttype_name
, tclass_name
);
370 avc_dump_av(ab
, tclass
, masked
);
376 * Compute access vectors based on a context structure pair for
377 * the permissions in a particular class.
379 static int context_struct_compute_av(struct context
*scontext
,
380 struct context
*tcontext
,
383 struct av_decision
*avd
)
385 struct constraint_node
*constraint
;
386 struct role_allow
*ra
;
387 struct avtab_key avkey
;
388 struct avtab_node
*node
;
389 struct class_datum
*tclass_datum
;
390 struct ebitmap
*sattr
, *tattr
;
391 struct ebitmap_node
*snode
, *tnode
;
392 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
396 * Remap extended Netlink classes for old policy versions.
397 * Do this here rather than socket_type_to_security_class()
398 * in case a newer policy version is loaded, allowing sockets
399 * to remain in the correct class.
401 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
402 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
403 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
404 tclass
= SECCLASS_NETLINK_SOCKET
;
407 * Initialize the access vectors to the default values.
410 avd
->decided
= 0xffffffff;
412 avd
->auditdeny
= 0xffffffff;
413 avd
->seqno
= latest_granting
;
416 * Check for all the invalid cases.
418 * - tclass > policy and > kernel
419 * - tclass > policy but is a userspace class
420 * - tclass > policy but we do not allow unknowns
422 if (unlikely(!tclass
))
424 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
425 if (tclass
> kdefs
->cts_len
||
426 !kdefs
->class_to_string
[tclass
] ||
427 !policydb
.allow_unknown
)
431 * Kernel class and we allow unknown so pad the allow decision
432 * the pad will be all 1 for unknown classes.
434 if (tclass
<= kdefs
->cts_len
&& policydb
.allow_unknown
)
435 avd
->allowed
= policydb
.undefined_perms
[tclass
- 1];
438 * Not in policy. Since decision is completed (all 1 or all 0) return.
440 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
443 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
446 * If a specific type enforcement rule was defined for
447 * this permission check, then use it.
449 avkey
.target_class
= tclass
;
450 avkey
.specified
= AVTAB_AV
;
451 sattr
= &policydb
.type_attr_map
[scontext
->type
- 1];
452 tattr
= &policydb
.type_attr_map
[tcontext
->type
- 1];
453 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
454 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
455 avkey
.source_type
= i
+ 1;
456 avkey
.target_type
= j
+ 1;
457 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
459 node
= avtab_search_node_next(node
, avkey
.specified
)) {
460 if (node
->key
.specified
== AVTAB_ALLOWED
)
461 avd
->allowed
|= node
->datum
.data
;
462 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
463 avd
->auditallow
|= node
->datum
.data
;
464 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
465 avd
->auditdeny
&= node
->datum
.data
;
468 /* Check conditional av table for additional permissions */
469 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
475 * Remove any permissions prohibited by a constraint (this includes
478 constraint
= tclass_datum
->constraints
;
480 if ((constraint
->permissions
& (avd
->allowed
)) &&
481 !constraint_expr_eval(scontext
, tcontext
, NULL
,
483 avd
->allowed
= (avd
->allowed
) & ~(constraint
->permissions
);
485 constraint
= constraint
->next
;
489 * If checking process transition permission and the
490 * role is changing, then check the (current_role, new_role)
493 if (tclass
== SECCLASS_PROCESS
&&
494 (avd
->allowed
& (PROCESS__TRANSITION
| PROCESS__DYNTRANSITION
)) &&
495 scontext
->role
!= tcontext
->role
) {
496 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
497 if (scontext
->role
== ra
->role
&&
498 tcontext
->role
== ra
->new_role
)
502 avd
->allowed
= (avd
->allowed
) & ~(PROCESS__TRANSITION
|
503 PROCESS__DYNTRANSITION
);
507 * If the given source and target types have boundary
508 * constraint, lazy checks have to mask any violated
509 * permission and notice it to userspace via audit.
511 type_attribute_bounds_av(scontext
, tcontext
,
512 tclass
, requested
, avd
);
517 if (!tclass
|| tclass
> kdefs
->cts_len
||
518 !kdefs
->class_to_string
[tclass
]) {
519 if (printk_ratelimit())
520 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
526 * Known to the kernel, but not to the policy.
527 * Handle as a denial (allowed is 0).
533 * Given a sid find if the type has the permissive flag set
535 int security_permissive_sid(u32 sid
)
537 struct context
*context
;
541 read_lock(&policy_rwlock
);
543 context
= sidtab_search(&sidtab
, sid
);
546 type
= context
->type
;
548 * we are intentionally using type here, not type-1, the 0th bit may
549 * someday indicate that we are globally setting permissive in policy.
551 rc
= ebitmap_get_bit(&policydb
.permissive_map
, type
);
553 read_unlock(&policy_rwlock
);
557 static int security_validtrans_handle_fail(struct context
*ocontext
,
558 struct context
*ncontext
,
559 struct context
*tcontext
,
562 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
563 u32 olen
, nlen
, tlen
;
565 if (context_struct_to_string(ocontext
, &o
, &olen
) < 0)
567 if (context_struct_to_string(ncontext
, &n
, &nlen
) < 0)
569 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
571 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
572 "security_validate_transition: denied for"
573 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
574 o
, n
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
580 if (!selinux_enforcing
)
585 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
588 struct context
*ocontext
;
589 struct context
*ncontext
;
590 struct context
*tcontext
;
591 struct class_datum
*tclass_datum
;
592 struct constraint_node
*constraint
;
598 read_lock(&policy_rwlock
);
601 * Remap extended Netlink classes for old policy versions.
602 * Do this here rather than socket_type_to_security_class()
603 * in case a newer policy version is loaded, allowing sockets
604 * to remain in the correct class.
606 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
607 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
608 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
609 tclass
= SECCLASS_NETLINK_SOCKET
;
611 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
612 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
617 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
619 ocontext
= sidtab_search(&sidtab
, oldsid
);
621 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
627 ncontext
= sidtab_search(&sidtab
, newsid
);
629 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
635 tcontext
= sidtab_search(&sidtab
, tasksid
);
637 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
643 constraint
= tclass_datum
->validatetrans
;
645 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
647 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
651 constraint
= constraint
->next
;
655 read_unlock(&policy_rwlock
);
660 * security_bounded_transition - check whether the given
661 * transition is directed to bounded, or not.
662 * It returns 0, if @newsid is bounded by @oldsid.
663 * Otherwise, it returns error code.
665 * @oldsid : current security identifier
666 * @newsid : destinated security identifier
668 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
670 struct context
*old_context
, *new_context
;
671 struct type_datum
*type
;
675 read_lock(&policy_rwlock
);
677 old_context
= sidtab_search(&sidtab
, old_sid
);
679 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
684 new_context
= sidtab_search(&sidtab
, new_sid
);
686 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
691 /* type/domain unchaned */
692 if (old_context
->type
== new_context
->type
) {
697 index
= new_context
->type
;
699 type
= policydb
.type_val_to_struct
[index
- 1];
702 /* not bounded anymore */
708 /* @newsid is bounded by @oldsid */
709 if (type
->bounds
== old_context
->type
) {
713 index
= type
->bounds
;
716 read_unlock(&policy_rwlock
);
723 * security_compute_av - Compute access vector decisions.
724 * @ssid: source security identifier
725 * @tsid: target security identifier
726 * @tclass: target security class
727 * @requested: requested permissions
728 * @avd: access vector decisions
730 * Compute a set of access vector decisions based on the
731 * SID pair (@ssid, @tsid) for the permissions in @tclass.
732 * Return -%EINVAL if any of the parameters are invalid or %0
733 * if the access vector decisions were computed successfully.
735 int security_compute_av(u32 ssid
,
739 struct av_decision
*avd
)
741 struct context
*scontext
= NULL
, *tcontext
= NULL
;
744 if (!ss_initialized
) {
745 avd
->allowed
= 0xffffffff;
746 avd
->decided
= 0xffffffff;
748 avd
->auditdeny
= 0xffffffff;
749 avd
->seqno
= latest_granting
;
753 read_lock(&policy_rwlock
);
755 scontext
= sidtab_search(&sidtab
, ssid
);
757 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
762 tcontext
= sidtab_search(&sidtab
, tsid
);
764 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
770 rc
= context_struct_compute_av(scontext
, tcontext
, tclass
,
773 read_unlock(&policy_rwlock
);
778 * Write the security context string representation of
779 * the context structure `context' into a dynamically
780 * allocated string of the correct size. Set `*scontext'
781 * to point to this string and set `*scontext_len' to
782 * the length of the string.
784 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
792 *scontext_len
= context
->len
;
793 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
799 /* Compute the size of the context. */
800 *scontext_len
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) + 1;
801 *scontext_len
+= strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) + 1;
802 *scontext_len
+= strlen(policydb
.p_type_val_to_name
[context
->type
- 1]) + 1;
803 *scontext_len
+= mls_compute_context_len(context
);
805 /* Allocate space for the context; caller must free this space. */
806 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
809 *scontext
= scontextp
;
812 * Copy the user name, role name and type name into the context.
814 sprintf(scontextp
, "%s:%s:%s",
815 policydb
.p_user_val_to_name
[context
->user
- 1],
816 policydb
.p_role_val_to_name
[context
->role
- 1],
817 policydb
.p_type_val_to_name
[context
->type
- 1]);
818 scontextp
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) +
819 1 + strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) +
820 1 + strlen(policydb
.p_type_val_to_name
[context
->type
- 1]);
822 mls_sid_to_context(context
, &scontextp
);
829 #include "initial_sid_to_string.h"
831 const char *security_get_initial_sid_context(u32 sid
)
833 if (unlikely(sid
> SECINITSID_NUM
))
835 return initial_sid_to_string
[sid
];
838 static int security_sid_to_context_core(u32 sid
, char **scontext
,
839 u32
*scontext_len
, int force
)
841 struct context
*context
;
847 if (!ss_initialized
) {
848 if (sid
<= SECINITSID_NUM
) {
851 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
852 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
857 strcpy(scontextp
, initial_sid_to_string
[sid
]);
858 *scontext
= scontextp
;
861 printk(KERN_ERR
"SELinux: %s: called before initial "
862 "load_policy on unknown SID %d\n", __func__
, sid
);
866 read_lock(&policy_rwlock
);
868 context
= sidtab_search_force(&sidtab
, sid
);
870 context
= sidtab_search(&sidtab
, sid
);
872 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
877 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
879 read_unlock(&policy_rwlock
);
886 * security_sid_to_context - Obtain a context for a given SID.
887 * @sid: security identifier, SID
888 * @scontext: security context
889 * @scontext_len: length in bytes
891 * Write the string representation of the context associated with @sid
892 * into a dynamically allocated string of the correct size. Set @scontext
893 * to point to this string and set @scontext_len to the length of the string.
895 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
897 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
900 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
902 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
906 * Caveat: Mutates scontext.
908 static int string_to_context_struct(struct policydb
*pol
,
909 struct sidtab
*sidtabp
,
915 struct role_datum
*role
;
916 struct type_datum
*typdatum
;
917 struct user_datum
*usrdatum
;
918 char *scontextp
, *p
, oldc
;
923 /* Parse the security context. */
926 scontextp
= (char *) scontext
;
928 /* Extract the user. */
930 while (*p
&& *p
!= ':')
938 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
942 ctx
->user
= usrdatum
->value
;
946 while (*p
&& *p
!= ':')
954 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
957 ctx
->role
= role
->value
;
961 while (*p
&& *p
!= ':')
966 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
967 if (!typdatum
|| typdatum
->attribute
)
970 ctx
->type
= typdatum
->value
;
972 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
976 if ((p
- scontext
) < scontext_len
) {
981 /* Check the validity of the new context. */
982 if (!policydb_context_isvalid(pol
, ctx
)) {
989 context_destroy(ctx
);
993 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
994 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
997 char *scontext2
, *str
= NULL
;
998 struct context context
;
1001 if (!ss_initialized
) {
1004 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1005 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1010 *sid
= SECINITSID_KERNEL
;
1015 /* Copy the string so that we can modify the copy as we parse it. */
1016 scontext2
= kmalloc(scontext_len
+1, gfp_flags
);
1019 memcpy(scontext2
, scontext
, scontext_len
);
1020 scontext2
[scontext_len
] = 0;
1023 /* Save another copy for storing in uninterpreted form */
1024 str
= kstrdup(scontext2
, gfp_flags
);
1031 read_lock(&policy_rwlock
);
1032 rc
= string_to_context_struct(&policydb
, &sidtab
,
1033 scontext2
, scontext_len
,
1035 if (rc
== -EINVAL
&& force
) {
1037 context
.len
= scontext_len
;
1041 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1042 context_destroy(&context
);
1044 read_unlock(&policy_rwlock
);
1051 * security_context_to_sid - Obtain a SID for a given security context.
1052 * @scontext: security context
1053 * @scontext_len: length in bytes
1054 * @sid: security identifier, SID
1056 * Obtains a SID associated with the security context that
1057 * has the string representation specified by @scontext.
1058 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1059 * memory is available, or 0 on success.
1061 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
1063 return security_context_to_sid_core(scontext
, scontext_len
,
1064 sid
, SECSID_NULL
, GFP_KERNEL
, 0);
1068 * security_context_to_sid_default - Obtain a SID for a given security context,
1069 * falling back to specified default if needed.
1071 * @scontext: security context
1072 * @scontext_len: length in bytes
1073 * @sid: security identifier, SID
1074 * @def_sid: default SID to assign on error
1076 * Obtains a SID associated with the security context that
1077 * has the string representation specified by @scontext.
1078 * The default SID is passed to the MLS layer to be used to allow
1079 * kernel labeling of the MLS field if the MLS field is not present
1080 * (for upgrading to MLS without full relabel).
1081 * Implicitly forces adding of the context even if it cannot be mapped yet.
1082 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1083 * memory is available, or 0 on success.
1085 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1086 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1088 return security_context_to_sid_core(scontext
, scontext_len
,
1089 sid
, def_sid
, gfp_flags
, 1);
1092 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1095 return security_context_to_sid_core(scontext
, scontext_len
,
1096 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1099 static int compute_sid_handle_invalid_context(
1100 struct context
*scontext
,
1101 struct context
*tcontext
,
1103 struct context
*newcontext
)
1105 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1106 u32 slen
, tlen
, nlen
;
1108 if (context_struct_to_string(scontext
, &s
, &slen
) < 0)
1110 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
1112 if (context_struct_to_string(newcontext
, &n
, &nlen
) < 0)
1114 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1115 "security_compute_sid: invalid context %s"
1119 n
, s
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
1124 if (!selinux_enforcing
)
1129 static int security_compute_sid(u32 ssid
,
1135 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1136 struct role_trans
*roletr
= NULL
;
1137 struct avtab_key avkey
;
1138 struct avtab_datum
*avdatum
;
1139 struct avtab_node
*node
;
1142 if (!ss_initialized
) {
1144 case SECCLASS_PROCESS
:
1154 context_init(&newcontext
);
1156 read_lock(&policy_rwlock
);
1158 scontext
= sidtab_search(&sidtab
, ssid
);
1160 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1165 tcontext
= sidtab_search(&sidtab
, tsid
);
1167 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1173 /* Set the user identity. */
1174 switch (specified
) {
1175 case AVTAB_TRANSITION
:
1177 /* Use the process user identity. */
1178 newcontext
.user
= scontext
->user
;
1181 /* Use the related object owner. */
1182 newcontext
.user
= tcontext
->user
;
1186 /* Set the role and type to default values. */
1188 case SECCLASS_PROCESS
:
1189 /* Use the current role and type of process. */
1190 newcontext
.role
= scontext
->role
;
1191 newcontext
.type
= scontext
->type
;
1194 /* Use the well-defined object role. */
1195 newcontext
.role
= OBJECT_R_VAL
;
1196 /* Use the type of the related object. */
1197 newcontext
.type
= tcontext
->type
;
1200 /* Look for a type transition/member/change rule. */
1201 avkey
.source_type
= scontext
->type
;
1202 avkey
.target_type
= tcontext
->type
;
1203 avkey
.target_class
= tclass
;
1204 avkey
.specified
= specified
;
1205 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1207 /* If no permanent rule, also check for enabled conditional rules */
1209 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1210 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1211 if (node
->key
.specified
& AVTAB_ENABLED
) {
1212 avdatum
= &node
->datum
;
1219 /* Use the type from the type transition/member/change rule. */
1220 newcontext
.type
= avdatum
->data
;
1223 /* Check for class-specific changes. */
1225 case SECCLASS_PROCESS
:
1226 if (specified
& AVTAB_TRANSITION
) {
1227 /* Look for a role transition rule. */
1228 for (roletr
= policydb
.role_tr
; roletr
;
1229 roletr
= roletr
->next
) {
1230 if (roletr
->role
== scontext
->role
&&
1231 roletr
->type
== tcontext
->type
) {
1232 /* Use the role transition rule. */
1233 newcontext
.role
= roletr
->new_role
;
1243 /* Set the MLS attributes.
1244 This is done last because it may allocate memory. */
1245 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
1249 /* Check the validity of the context. */
1250 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1251 rc
= compute_sid_handle_invalid_context(scontext
,
1258 /* Obtain the sid for the context. */
1259 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1261 read_unlock(&policy_rwlock
);
1262 context_destroy(&newcontext
);
1268 * security_transition_sid - Compute the SID for a new subject/object.
1269 * @ssid: source security identifier
1270 * @tsid: target security identifier
1271 * @tclass: target security class
1272 * @out_sid: security identifier for new subject/object
1274 * Compute a SID to use for labeling a new subject or object in the
1275 * class @tclass based on a SID pair (@ssid, @tsid).
1276 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1277 * if insufficient memory is available, or %0 if the new SID was
1278 * computed successfully.
1280 int security_transition_sid(u32 ssid
,
1285 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
, out_sid
);
1289 * security_member_sid - Compute the SID for member selection.
1290 * @ssid: source security identifier
1291 * @tsid: target security identifier
1292 * @tclass: target security class
1293 * @out_sid: security identifier for selected member
1295 * Compute a SID to use when selecting a member of a polyinstantiated
1296 * object of class @tclass based on a SID pair (@ssid, @tsid).
1297 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1298 * if insufficient memory is available, or %0 if the SID was
1299 * computed successfully.
1301 int security_member_sid(u32 ssid
,
1306 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
);
1310 * security_change_sid - Compute the SID for object relabeling.
1311 * @ssid: source security identifier
1312 * @tsid: target security identifier
1313 * @tclass: target security class
1314 * @out_sid: security identifier for selected member
1316 * Compute a SID to use for relabeling an object of class @tclass
1317 * based on a SID pair (@ssid, @tsid).
1318 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1319 * if insufficient memory is available, or %0 if the SID was
1320 * computed successfully.
1322 int security_change_sid(u32 ssid
,
1327 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
);
1331 * Verify that each kernel class that is defined in the
1334 static int validate_classes(struct policydb
*p
)
1337 struct class_datum
*cladatum
;
1338 struct perm_datum
*perdatum
;
1339 u32 nprim
, tmp
, common_pts_len
, perm_val
, pol_val
;
1341 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
1342 const char *def_class
, *def_perm
, *pol_class
;
1343 struct symtab
*perms
;
1344 bool print_unknown_handle
= 0;
1346 if (p
->allow_unknown
) {
1347 u32 num_classes
= kdefs
->cts_len
;
1348 p
->undefined_perms
= kcalloc(num_classes
, sizeof(u32
), GFP_KERNEL
);
1349 if (!p
->undefined_perms
)
1353 for (i
= 1; i
< kdefs
->cts_len
; i
++) {
1354 def_class
= kdefs
->class_to_string
[i
];
1357 if (i
> p
->p_classes
.nprim
) {
1359 "SELinux: class %s not defined in policy\n",
1361 if (p
->reject_unknown
)
1363 if (p
->allow_unknown
)
1364 p
->undefined_perms
[i
-1] = ~0U;
1365 print_unknown_handle
= 1;
1368 pol_class
= p
->p_class_val_to_name
[i
-1];
1369 if (strcmp(pol_class
, def_class
)) {
1371 "SELinux: class %d is incorrect, found %s but should be %s\n",
1372 i
, pol_class
, def_class
);
1376 for (i
= 0; i
< kdefs
->av_pts_len
; i
++) {
1377 class_val
= kdefs
->av_perm_to_string
[i
].tclass
;
1378 perm_val
= kdefs
->av_perm_to_string
[i
].value
;
1379 def_perm
= kdefs
->av_perm_to_string
[i
].name
;
1380 if (class_val
> p
->p_classes
.nprim
)
1382 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1383 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1385 perms
= &cladatum
->permissions
;
1386 nprim
= 1 << (perms
->nprim
- 1);
1387 if (perm_val
> nprim
) {
1389 "SELinux: permission %s in class %s not defined in policy\n",
1390 def_perm
, pol_class
);
1391 if (p
->reject_unknown
)
1393 if (p
->allow_unknown
)
1394 p
->undefined_perms
[class_val
-1] |= perm_val
;
1395 print_unknown_handle
= 1;
1398 perdatum
= hashtab_search(perms
->table
, def_perm
);
1399 if (perdatum
== NULL
) {
1401 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1402 def_perm
, pol_class
);
1405 pol_val
= 1 << (perdatum
->value
- 1);
1406 if (pol_val
!= perm_val
) {
1408 "SELinux: permission %s in class %s has incorrect value\n",
1409 def_perm
, pol_class
);
1413 for (i
= 0; i
< kdefs
->av_inherit_len
; i
++) {
1414 class_val
= kdefs
->av_inherit
[i
].tclass
;
1415 if (class_val
> p
->p_classes
.nprim
)
1417 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1418 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1420 if (!cladatum
->comdatum
) {
1422 "SELinux: class %s should have an inherits clause but does not\n",
1426 tmp
= kdefs
->av_inherit
[i
].common_base
;
1428 while (!(tmp
& 0x01)) {
1432 perms
= &cladatum
->comdatum
->permissions
;
1433 for (j
= 0; j
< common_pts_len
; j
++) {
1434 def_perm
= kdefs
->av_inherit
[i
].common_pts
[j
];
1435 if (j
>= perms
->nprim
) {
1437 "SELinux: permission %s in class %s not defined in policy\n",
1438 def_perm
, pol_class
);
1439 if (p
->reject_unknown
)
1441 if (p
->allow_unknown
)
1442 p
->undefined_perms
[class_val
-1] |= (1 << j
);
1443 print_unknown_handle
= 1;
1446 perdatum
= hashtab_search(perms
->table
, def_perm
);
1447 if (perdatum
== NULL
) {
1449 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1450 def_perm
, pol_class
);
1453 if (perdatum
->value
!= j
+ 1) {
1455 "SELinux: permission %s in class %s has incorrect value\n",
1456 def_perm
, pol_class
);
1461 if (print_unknown_handle
)
1462 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
1463 (security_get_allow_unknown() ? "allowed" : "denied"));
1467 /* Clone the SID into the new SID table. */
1468 static int clone_sid(u32 sid
,
1469 struct context
*context
,
1472 struct sidtab
*s
= arg
;
1474 return sidtab_insert(s
, sid
, context
);
1477 static inline int convert_context_handle_invalid_context(struct context
*context
)
1481 if (selinux_enforcing
) {
1487 if (!context_struct_to_string(context
, &s
, &len
)) {
1489 "SELinux: Context %s would be invalid if enforcing\n",
1497 struct convert_context_args
{
1498 struct policydb
*oldp
;
1499 struct policydb
*newp
;
1503 * Convert the values in the security context
1504 * structure `c' from the values specified
1505 * in the policy `p->oldp' to the values specified
1506 * in the policy `p->newp'. Verify that the
1507 * context is valid under the new policy.
1509 static int convert_context(u32 key
,
1513 struct convert_context_args
*args
;
1514 struct context oldc
;
1515 struct role_datum
*role
;
1516 struct type_datum
*typdatum
;
1517 struct user_datum
*usrdatum
;
1526 s
= kstrdup(c
->str
, GFP_KERNEL
);
1531 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1532 c
->len
, &ctx
, SECSID_NULL
);
1536 "SELinux: Context %s became valid (mapped).\n",
1538 /* Replace string with mapped representation. */
1540 memcpy(c
, &ctx
, sizeof(*c
));
1542 } else if (rc
== -EINVAL
) {
1543 /* Retain string representation for later mapping. */
1547 /* Other error condition, e.g. ENOMEM. */
1549 "SELinux: Unable to map context %s, rc = %d.\n",
1555 rc
= context_cpy(&oldc
, c
);
1561 /* Convert the user. */
1562 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1563 args
->oldp
->p_user_val_to_name
[c
->user
- 1]);
1566 c
->user
= usrdatum
->value
;
1568 /* Convert the role. */
1569 role
= hashtab_search(args
->newp
->p_roles
.table
,
1570 args
->oldp
->p_role_val_to_name
[c
->role
- 1]);
1573 c
->role
= role
->value
;
1575 /* Convert the type. */
1576 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1577 args
->oldp
->p_type_val_to_name
[c
->type
- 1]);
1580 c
->type
= typdatum
->value
;
1582 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1586 /* Check the validity of the new context. */
1587 if (!policydb_context_isvalid(args
->newp
, c
)) {
1588 rc
= convert_context_handle_invalid_context(&oldc
);
1593 context_destroy(&oldc
);
1598 /* Map old representation to string and save it. */
1599 if (context_struct_to_string(&oldc
, &s
, &len
))
1601 context_destroy(&oldc
);
1606 "SELinux: Context %s became invalid (unmapped).\n",
1612 static void security_load_policycaps(void)
1614 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1615 POLICYDB_CAPABILITY_NETPEER
);
1616 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1617 POLICYDB_CAPABILITY_OPENPERM
);
1620 extern void selinux_complete_init(void);
1621 static int security_preserve_bools(struct policydb
*p
);
1624 * security_load_policy - Load a security policy configuration.
1625 * @data: binary policy data
1626 * @len: length of data in bytes
1628 * Load a new set of security policy configuration data,
1629 * validate it and convert the SID table as necessary.
1630 * This function will flush the access vector cache after
1631 * loading the new policy.
1633 int security_load_policy(void *data
, size_t len
)
1635 struct policydb oldpolicydb
, newpolicydb
;
1636 struct sidtab oldsidtab
, newsidtab
;
1637 struct convert_context_args args
;
1640 struct policy_file file
= { data
, len
}, *fp
= &file
;
1642 if (!ss_initialized
) {
1644 if (policydb_read(&policydb
, fp
)) {
1645 avtab_cache_destroy();
1648 if (policydb_load_isids(&policydb
, &sidtab
)) {
1649 policydb_destroy(&policydb
);
1650 avtab_cache_destroy();
1653 /* Verify that the kernel defined classes are correct. */
1654 if (validate_classes(&policydb
)) {
1656 "SELinux: the definition of a class is incorrect\n");
1657 sidtab_destroy(&sidtab
);
1658 policydb_destroy(&policydb
);
1659 avtab_cache_destroy();
1662 security_load_policycaps();
1663 policydb_loaded_version
= policydb
.policyvers
;
1665 seqno
= ++latest_granting
;
1666 selinux_complete_init();
1667 avc_ss_reset(seqno
);
1668 selnl_notify_policyload(seqno
);
1669 selinux_netlbl_cache_invalidate();
1670 selinux_xfrm_notify_policyload();
1675 sidtab_hash_eval(&sidtab
, "sids");
1678 if (policydb_read(&newpolicydb
, fp
))
1681 if (sidtab_init(&newsidtab
)) {
1682 policydb_destroy(&newpolicydb
);
1686 /* Verify that the kernel defined classes are correct. */
1687 if (validate_classes(&newpolicydb
)) {
1689 "SELinux: the definition of a class is incorrect\n");
1694 rc
= security_preserve_bools(&newpolicydb
);
1696 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1700 /* Clone the SID table. */
1701 sidtab_shutdown(&sidtab
);
1702 if (sidtab_map(&sidtab
, clone_sid
, &newsidtab
)) {
1708 * Convert the internal representations of contexts
1709 * in the new SID table.
1711 args
.oldp
= &policydb
;
1712 args
.newp
= &newpolicydb
;
1713 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1717 /* Save the old policydb and SID table to free later. */
1718 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1719 sidtab_set(&oldsidtab
, &sidtab
);
1721 /* Install the new policydb and SID table. */
1722 write_lock_irq(&policy_rwlock
);
1723 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1724 sidtab_set(&sidtab
, &newsidtab
);
1725 security_load_policycaps();
1726 seqno
= ++latest_granting
;
1727 policydb_loaded_version
= policydb
.policyvers
;
1728 write_unlock_irq(&policy_rwlock
);
1730 /* Free the old policydb and SID table. */
1731 policydb_destroy(&oldpolicydb
);
1732 sidtab_destroy(&oldsidtab
);
1734 avc_ss_reset(seqno
);
1735 selnl_notify_policyload(seqno
);
1736 selinux_netlbl_cache_invalidate();
1737 selinux_xfrm_notify_policyload();
1742 sidtab_destroy(&newsidtab
);
1743 policydb_destroy(&newpolicydb
);
1749 * security_port_sid - Obtain the SID for a port.
1750 * @protocol: protocol number
1751 * @port: port number
1752 * @out_sid: security identifier
1754 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
1759 read_lock(&policy_rwlock
);
1761 c
= policydb
.ocontexts
[OCON_PORT
];
1763 if (c
->u
.port
.protocol
== protocol
&&
1764 c
->u
.port
.low_port
<= port
&&
1765 c
->u
.port
.high_port
>= port
)
1772 rc
= sidtab_context_to_sid(&sidtab
,
1778 *out_sid
= c
->sid
[0];
1780 *out_sid
= SECINITSID_PORT
;
1784 read_unlock(&policy_rwlock
);
1789 * security_netif_sid - Obtain the SID for a network interface.
1790 * @name: interface name
1791 * @if_sid: interface SID
1793 int security_netif_sid(char *name
, u32
*if_sid
)
1798 read_lock(&policy_rwlock
);
1800 c
= policydb
.ocontexts
[OCON_NETIF
];
1802 if (strcmp(name
, c
->u
.name
) == 0)
1808 if (!c
->sid
[0] || !c
->sid
[1]) {
1809 rc
= sidtab_context_to_sid(&sidtab
,
1814 rc
= sidtab_context_to_sid(&sidtab
,
1820 *if_sid
= c
->sid
[0];
1822 *if_sid
= SECINITSID_NETIF
;
1825 read_unlock(&policy_rwlock
);
1829 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1833 for (i
= 0; i
< 4; i
++)
1834 if (addr
[i
] != (input
[i
] & mask
[i
])) {
1843 * security_node_sid - Obtain the SID for a node (host).
1844 * @domain: communication domain aka address family
1846 * @addrlen: address length in bytes
1847 * @out_sid: security identifier
1849 int security_node_sid(u16 domain
,
1857 read_lock(&policy_rwlock
);
1863 if (addrlen
!= sizeof(u32
)) {
1868 addr
= *((u32
*)addrp
);
1870 c
= policydb
.ocontexts
[OCON_NODE
];
1872 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
1880 if (addrlen
!= sizeof(u64
) * 2) {
1884 c
= policydb
.ocontexts
[OCON_NODE6
];
1886 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
1894 *out_sid
= SECINITSID_NODE
;
1900 rc
= sidtab_context_to_sid(&sidtab
,
1906 *out_sid
= c
->sid
[0];
1908 *out_sid
= SECINITSID_NODE
;
1912 read_unlock(&policy_rwlock
);
1919 * security_get_user_sids - Obtain reachable SIDs for a user.
1920 * @fromsid: starting SID
1921 * @username: username
1922 * @sids: array of reachable SIDs for user
1923 * @nel: number of elements in @sids
1925 * Generate the set of SIDs for legal security contexts
1926 * for a given user that can be reached by @fromsid.
1927 * Set *@sids to point to a dynamically allocated
1928 * array containing the set of SIDs. Set *@nel to the
1929 * number of elements in the array.
1932 int security_get_user_sids(u32 fromsid
,
1937 struct context
*fromcon
, usercon
;
1938 u32
*mysids
= NULL
, *mysids2
, sid
;
1939 u32 mynel
= 0, maxnel
= SIDS_NEL
;
1940 struct user_datum
*user
;
1941 struct role_datum
*role
;
1942 struct ebitmap_node
*rnode
, *tnode
;
1948 if (!ss_initialized
)
1951 read_lock(&policy_rwlock
);
1953 context_init(&usercon
);
1955 fromcon
= sidtab_search(&sidtab
, fromsid
);
1961 user
= hashtab_search(policydb
.p_users
.table
, username
);
1966 usercon
.user
= user
->value
;
1968 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
1974 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
1975 role
= policydb
.role_val_to_struct
[i
];
1977 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
1980 if (mls_setup_user_range(fromcon
, user
, &usercon
))
1983 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
1986 if (mynel
< maxnel
) {
1987 mysids
[mynel
++] = sid
;
1990 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
1995 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
1998 mysids
[mynel
++] = sid
;
2004 read_unlock(&policy_rwlock
);
2010 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2016 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2017 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2019 PROCESS__TRANSITION
, AVC_STRICT
,
2022 mysids2
[j
++] = mysids
[i
];
2034 * security_genfs_sid - Obtain a SID for a file in a filesystem
2035 * @fstype: filesystem type
2036 * @path: path from root of mount
2037 * @sclass: file security class
2038 * @sid: SID for path
2040 * Obtain a SID to use for a file in a filesystem that
2041 * cannot support xattr or use a fixed labeling behavior like
2042 * transition SIDs or task SIDs.
2044 int security_genfs_sid(const char *fstype
,
2050 struct genfs
*genfs
;
2052 int rc
= 0, cmp
= 0;
2054 while (path
[0] == '/' && path
[1] == '/')
2057 read_lock(&policy_rwlock
);
2059 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2060 cmp
= strcmp(fstype
, genfs
->fstype
);
2065 if (!genfs
|| cmp
) {
2066 *sid
= SECINITSID_UNLABELED
;
2071 for (c
= genfs
->head
; c
; c
= c
->next
) {
2072 len
= strlen(c
->u
.name
);
2073 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2074 (strncmp(c
->u
.name
, path
, len
) == 0))
2079 *sid
= SECINITSID_UNLABELED
;
2085 rc
= sidtab_context_to_sid(&sidtab
,
2094 read_unlock(&policy_rwlock
);
2099 * security_fs_use - Determine how to handle labeling for a filesystem.
2100 * @fstype: filesystem type
2101 * @behavior: labeling behavior
2102 * @sid: SID for filesystem (superblock)
2104 int security_fs_use(
2106 unsigned int *behavior
,
2112 read_lock(&policy_rwlock
);
2114 c
= policydb
.ocontexts
[OCON_FSUSE
];
2116 if (strcmp(fstype
, c
->u
.name
) == 0)
2122 *behavior
= c
->v
.behavior
;
2124 rc
= sidtab_context_to_sid(&sidtab
,
2132 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
2134 *behavior
= SECURITY_FS_USE_NONE
;
2137 *behavior
= SECURITY_FS_USE_GENFS
;
2142 read_unlock(&policy_rwlock
);
2146 int security_get_bools(int *len
, char ***names
, int **values
)
2148 int i
, rc
= -ENOMEM
;
2150 read_lock(&policy_rwlock
);
2154 *len
= policydb
.p_bools
.nprim
;
2160 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2164 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2168 for (i
= 0; i
< *len
; i
++) {
2170 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2171 name_len
= strlen(policydb
.p_bool_val_to_name
[i
]) + 1;
2172 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2175 strncpy((*names
)[i
], policydb
.p_bool_val_to_name
[i
], name_len
);
2176 (*names
)[i
][name_len
- 1] = 0;
2180 read_unlock(&policy_rwlock
);
2184 for (i
= 0; i
< *len
; i
++)
2192 int security_set_bools(int len
, int *values
)
2195 int lenp
, seqno
= 0;
2196 struct cond_node
*cur
;
2198 write_lock_irq(&policy_rwlock
);
2200 lenp
= policydb
.p_bools
.nprim
;
2206 for (i
= 0; i
< len
; i
++) {
2207 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2208 audit_log(current
->audit_context
, GFP_ATOMIC
,
2209 AUDIT_MAC_CONFIG_CHANGE
,
2210 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2211 policydb
.p_bool_val_to_name
[i
],
2213 policydb
.bool_val_to_struct
[i
]->state
,
2214 audit_get_loginuid(current
),
2215 audit_get_sessionid(current
));
2218 policydb
.bool_val_to_struct
[i
]->state
= 1;
2220 policydb
.bool_val_to_struct
[i
]->state
= 0;
2223 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2224 rc
= evaluate_cond_node(&policydb
, cur
);
2229 seqno
= ++latest_granting
;
2232 write_unlock_irq(&policy_rwlock
);
2234 avc_ss_reset(seqno
);
2235 selnl_notify_policyload(seqno
);
2236 selinux_xfrm_notify_policyload();
2241 int security_get_bool_value(int bool)
2246 read_lock(&policy_rwlock
);
2248 len
= policydb
.p_bools
.nprim
;
2254 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2256 read_unlock(&policy_rwlock
);
2260 static int security_preserve_bools(struct policydb
*p
)
2262 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2263 char **bnames
= NULL
;
2264 struct cond_bool_datum
*booldatum
;
2265 struct cond_node
*cur
;
2267 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2270 for (i
= 0; i
< nbools
; i
++) {
2271 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2273 booldatum
->state
= bvalues
[i
];
2275 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2276 rc
= evaluate_cond_node(p
, cur
);
2283 for (i
= 0; i
< nbools
; i
++)
2292 * security_sid_mls_copy() - computes a new sid based on the given
2293 * sid and the mls portion of mls_sid.
2295 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2297 struct context
*context1
;
2298 struct context
*context2
;
2299 struct context newcon
;
2304 if (!ss_initialized
|| !selinux_mls_enabled
) {
2309 context_init(&newcon
);
2311 read_lock(&policy_rwlock
);
2312 context1
= sidtab_search(&sidtab
, sid
);
2314 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2320 context2
= sidtab_search(&sidtab
, mls_sid
);
2322 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2328 newcon
.user
= context1
->user
;
2329 newcon
.role
= context1
->role
;
2330 newcon
.type
= context1
->type
;
2331 rc
= mls_context_cpy(&newcon
, context2
);
2335 /* Check the validity of the new context. */
2336 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2337 rc
= convert_context_handle_invalid_context(&newcon
);
2342 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2346 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2347 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2348 "security_sid_mls_copy: invalid context %s", s
);
2353 read_unlock(&policy_rwlock
);
2354 context_destroy(&newcon
);
2360 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2361 * @nlbl_sid: NetLabel SID
2362 * @nlbl_type: NetLabel labeling protocol type
2363 * @xfrm_sid: XFRM SID
2366 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2367 * resolved into a single SID it is returned via @peer_sid and the function
2368 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2369 * returns a negative value. A table summarizing the behavior is below:
2371 * | function return | @sid
2372 * ------------------------------+-----------------+-----------------
2373 * no peer labels | 0 | SECSID_NULL
2374 * single peer label | 0 | <peer_label>
2375 * multiple, consistent labels | 0 | <peer_label>
2376 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2379 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2384 struct context
*nlbl_ctx
;
2385 struct context
*xfrm_ctx
;
2387 /* handle the common (which also happens to be the set of easy) cases
2388 * right away, these two if statements catch everything involving a
2389 * single or absent peer SID/label */
2390 if (xfrm_sid
== SECSID_NULL
) {
2391 *peer_sid
= nlbl_sid
;
2394 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2395 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2397 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2398 *peer_sid
= xfrm_sid
;
2402 /* we don't need to check ss_initialized here since the only way both
2403 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2404 * security server was initialized and ss_initialized was true */
2405 if (!selinux_mls_enabled
) {
2406 *peer_sid
= SECSID_NULL
;
2410 read_lock(&policy_rwlock
);
2412 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2414 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2415 __func__
, nlbl_sid
);
2419 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2421 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2422 __func__
, xfrm_sid
);
2426 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2429 read_unlock(&policy_rwlock
);
2431 /* at present NetLabel SIDs/labels really only carry MLS
2432 * information so if the MLS portion of the NetLabel SID
2433 * matches the MLS portion of the labeled XFRM SID/label
2434 * then pass along the XFRM SID as it is the most
2436 *peer_sid
= xfrm_sid
;
2438 *peer_sid
= SECSID_NULL
;
2442 static int get_classes_callback(void *k
, void *d
, void *args
)
2444 struct class_datum
*datum
= d
;
2445 char *name
= k
, **classes
= args
;
2446 int value
= datum
->value
- 1;
2448 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2449 if (!classes
[value
])
2455 int security_get_classes(char ***classes
, int *nclasses
)
2459 read_lock(&policy_rwlock
);
2461 *nclasses
= policydb
.p_classes
.nprim
;
2462 *classes
= kcalloc(*nclasses
, sizeof(*classes
), GFP_ATOMIC
);
2466 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2470 for (i
= 0; i
< *nclasses
; i
++)
2471 kfree((*classes
)[i
]);
2476 read_unlock(&policy_rwlock
);
2480 static int get_permissions_callback(void *k
, void *d
, void *args
)
2482 struct perm_datum
*datum
= d
;
2483 char *name
= k
, **perms
= args
;
2484 int value
= datum
->value
- 1;
2486 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2493 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2495 int rc
= -ENOMEM
, i
;
2496 struct class_datum
*match
;
2498 read_lock(&policy_rwlock
);
2500 match
= hashtab_search(policydb
.p_classes
.table
, class);
2502 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2508 *nperms
= match
->permissions
.nprim
;
2509 *perms
= kcalloc(*nperms
, sizeof(*perms
), GFP_ATOMIC
);
2513 if (match
->comdatum
) {
2514 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2515 get_permissions_callback
, *perms
);
2520 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2526 read_unlock(&policy_rwlock
);
2530 read_unlock(&policy_rwlock
);
2531 for (i
= 0; i
< *nperms
; i
++)
2537 int security_get_reject_unknown(void)
2539 return policydb
.reject_unknown
;
2542 int security_get_allow_unknown(void)
2544 return policydb
.allow_unknown
;
2548 * security_policycap_supported - Check for a specific policy capability
2549 * @req_cap: capability
2552 * This function queries the currently loaded policy to see if it supports the
2553 * capability specified by @req_cap. Returns true (1) if the capability is
2554 * supported, false (0) if it isn't supported.
2557 int security_policycap_supported(unsigned int req_cap
)
2561 read_lock(&policy_rwlock
);
2562 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2563 read_unlock(&policy_rwlock
);
2568 struct selinux_audit_rule
{
2570 struct context au_ctxt
;
2573 void selinux_audit_rule_free(void *vrule
)
2575 struct selinux_audit_rule
*rule
= vrule
;
2578 context_destroy(&rule
->au_ctxt
);
2583 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2585 struct selinux_audit_rule
*tmprule
;
2586 struct role_datum
*roledatum
;
2587 struct type_datum
*typedatum
;
2588 struct user_datum
*userdatum
;
2589 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2594 if (!ss_initialized
)
2598 case AUDIT_SUBJ_USER
:
2599 case AUDIT_SUBJ_ROLE
:
2600 case AUDIT_SUBJ_TYPE
:
2601 case AUDIT_OBJ_USER
:
2602 case AUDIT_OBJ_ROLE
:
2603 case AUDIT_OBJ_TYPE
:
2604 /* only 'equals' and 'not equals' fit user, role, and type */
2605 if (op
!= AUDIT_EQUAL
&& op
!= AUDIT_NOT_EQUAL
)
2608 case AUDIT_SUBJ_SEN
:
2609 case AUDIT_SUBJ_CLR
:
2610 case AUDIT_OBJ_LEV_LOW
:
2611 case AUDIT_OBJ_LEV_HIGH
:
2612 /* we do not allow a range, indicated by the presense of '-' */
2613 if (strchr(rulestr
, '-'))
2617 /* only the above fields are valid */
2621 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2625 context_init(&tmprule
->au_ctxt
);
2627 read_lock(&policy_rwlock
);
2629 tmprule
->au_seqno
= latest_granting
;
2632 case AUDIT_SUBJ_USER
:
2633 case AUDIT_OBJ_USER
:
2634 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2638 tmprule
->au_ctxt
.user
= userdatum
->value
;
2640 case AUDIT_SUBJ_ROLE
:
2641 case AUDIT_OBJ_ROLE
:
2642 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2646 tmprule
->au_ctxt
.role
= roledatum
->value
;
2648 case AUDIT_SUBJ_TYPE
:
2649 case AUDIT_OBJ_TYPE
:
2650 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2654 tmprule
->au_ctxt
.type
= typedatum
->value
;
2656 case AUDIT_SUBJ_SEN
:
2657 case AUDIT_SUBJ_CLR
:
2658 case AUDIT_OBJ_LEV_LOW
:
2659 case AUDIT_OBJ_LEV_HIGH
:
2660 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2664 read_unlock(&policy_rwlock
);
2667 selinux_audit_rule_free(tmprule
);
2676 /* Check to see if the rule contains any selinux fields */
2677 int selinux_audit_rule_known(struct audit_krule
*rule
)
2681 for (i
= 0; i
< rule
->field_count
; i
++) {
2682 struct audit_field
*f
= &rule
->fields
[i
];
2684 case AUDIT_SUBJ_USER
:
2685 case AUDIT_SUBJ_ROLE
:
2686 case AUDIT_SUBJ_TYPE
:
2687 case AUDIT_SUBJ_SEN
:
2688 case AUDIT_SUBJ_CLR
:
2689 case AUDIT_OBJ_USER
:
2690 case AUDIT_OBJ_ROLE
:
2691 case AUDIT_OBJ_TYPE
:
2692 case AUDIT_OBJ_LEV_LOW
:
2693 case AUDIT_OBJ_LEV_HIGH
:
2701 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2702 struct audit_context
*actx
)
2704 struct context
*ctxt
;
2705 struct mls_level
*level
;
2706 struct selinux_audit_rule
*rule
= vrule
;
2710 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2711 "selinux_audit_rule_match: missing rule\n");
2715 read_lock(&policy_rwlock
);
2717 if (rule
->au_seqno
< latest_granting
) {
2718 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2719 "selinux_audit_rule_match: stale rule\n");
2724 ctxt
= sidtab_search(&sidtab
, sid
);
2726 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2727 "selinux_audit_rule_match: unrecognized SID %d\n",
2733 /* a field/op pair that is not caught here will simply fall through
2736 case AUDIT_SUBJ_USER
:
2737 case AUDIT_OBJ_USER
:
2740 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2742 case AUDIT_NOT_EQUAL
:
2743 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2747 case AUDIT_SUBJ_ROLE
:
2748 case AUDIT_OBJ_ROLE
:
2751 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2753 case AUDIT_NOT_EQUAL
:
2754 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2758 case AUDIT_SUBJ_TYPE
:
2759 case AUDIT_OBJ_TYPE
:
2762 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2764 case AUDIT_NOT_EQUAL
:
2765 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2769 case AUDIT_SUBJ_SEN
:
2770 case AUDIT_SUBJ_CLR
:
2771 case AUDIT_OBJ_LEV_LOW
:
2772 case AUDIT_OBJ_LEV_HIGH
:
2773 level
= ((field
== AUDIT_SUBJ_SEN
||
2774 field
== AUDIT_OBJ_LEV_LOW
) ?
2775 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2778 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2781 case AUDIT_NOT_EQUAL
:
2782 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2785 case AUDIT_LESS_THAN
:
2786 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2788 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2791 case AUDIT_LESS_THAN_OR_EQUAL
:
2792 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2795 case AUDIT_GREATER_THAN
:
2796 match
= (mls_level_dom(level
,
2797 &rule
->au_ctxt
.range
.level
[0]) &&
2798 !mls_level_eq(level
,
2799 &rule
->au_ctxt
.range
.level
[0]));
2801 case AUDIT_GREATER_THAN_OR_EQUAL
:
2802 match
= mls_level_dom(level
,
2803 &rule
->au_ctxt
.range
.level
[0]);
2809 read_unlock(&policy_rwlock
);
2813 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
2815 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2816 u16
class, u32 perms
, u32
*retained
)
2820 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2821 err
= aurule_callback();
2825 static int __init
aurule_init(void)
2829 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2830 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2832 panic("avc_add_callback() failed, error %d\n", err
);
2836 __initcall(aurule_init
);
2838 #ifdef CONFIG_NETLABEL
2840 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2841 * @secattr: the NetLabel packet security attributes
2842 * @sid: the SELinux SID
2845 * Attempt to cache the context in @ctx, which was derived from the packet in
2846 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2847 * already been initialized.
2850 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
2855 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
2856 if (sid_cache
== NULL
)
2858 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
2859 if (secattr
->cache
== NULL
) {
2865 secattr
->cache
->free
= kfree
;
2866 secattr
->cache
->data
= sid_cache
;
2867 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
2871 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2872 * @secattr: the NetLabel packet security attributes
2873 * @sid: the SELinux SID
2876 * Convert the given NetLabel security attributes in @secattr into a
2877 * SELinux SID. If the @secattr field does not contain a full SELinux
2878 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2879 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2880 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2881 * conversion for future lookups. Returns zero on success, negative values on
2885 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
2889 struct context
*ctx
;
2890 struct context ctx_new
;
2892 if (!ss_initialized
) {
2897 read_lock(&policy_rwlock
);
2899 if (secattr
->flags
& NETLBL_SECATTR_CACHE
) {
2900 *sid
= *(u32
*)secattr
->cache
->data
;
2902 } else if (secattr
->flags
& NETLBL_SECATTR_SECID
) {
2903 *sid
= secattr
->attr
.secid
;
2905 } else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
2906 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
2908 goto netlbl_secattr_to_sid_return
;
2910 context_init(&ctx_new
);
2911 ctx_new
.user
= ctx
->user
;
2912 ctx_new
.role
= ctx
->role
;
2913 ctx_new
.type
= ctx
->type
;
2914 mls_import_netlbl_lvl(&ctx_new
, secattr
);
2915 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
2916 if (ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
2917 secattr
->attr
.mls
.cat
) != 0)
2918 goto netlbl_secattr_to_sid_return
;
2919 memcpy(&ctx_new
.range
.level
[1].cat
,
2920 &ctx_new
.range
.level
[0].cat
,
2921 sizeof(ctx_new
.range
.level
[0].cat
));
2923 if (mls_context_isvalid(&policydb
, &ctx_new
) != 1)
2924 goto netlbl_secattr_to_sid_return_cleanup
;
2926 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2928 goto netlbl_secattr_to_sid_return_cleanup
;
2930 security_netlbl_cache_add(secattr
, *sid
);
2932 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2938 netlbl_secattr_to_sid_return
:
2939 read_unlock(&policy_rwlock
);
2941 netlbl_secattr_to_sid_return_cleanup
:
2942 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2943 goto netlbl_secattr_to_sid_return
;
2947 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2948 * @sid: the SELinux SID
2949 * @secattr: the NetLabel packet security attributes
2952 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2953 * Returns zero on success, negative values on failure.
2956 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
2959 struct context
*ctx
;
2961 if (!ss_initialized
)
2964 read_lock(&policy_rwlock
);
2965 ctx
= sidtab_search(&sidtab
, sid
);
2968 goto netlbl_sid_to_secattr_failure
;
2970 secattr
->domain
= kstrdup(policydb
.p_type_val_to_name
[ctx
->type
- 1],
2972 if (secattr
->domain
== NULL
) {
2974 goto netlbl_sid_to_secattr_failure
;
2976 secattr
->attr
.secid
= sid
;
2977 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
2978 mls_export_netlbl_lvl(ctx
, secattr
);
2979 rc
= mls_export_netlbl_cat(ctx
, secattr
);
2981 goto netlbl_sid_to_secattr_failure
;
2982 read_unlock(&policy_rwlock
);
2986 netlbl_sid_to_secattr_failure
:
2987 read_unlock(&policy_rwlock
);
2990 #endif /* CONFIG_NETLABEL */