2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
43 #include <asm/tlbflush.h>
48 #define DO_NUMA(x) do { (x); } while (0)
51 #define DO_NUMA(x) do { } while (0)
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
77 * KSM solves this problem by several techniques:
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
105 struct hlist_node link
;
106 struct list_head mm_list
;
107 struct rmap_item
*rmap_list
;
108 struct mm_struct
*mm
;
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
118 * There is only the one ksm_scan instance of this cursor structure.
121 struct mm_slot
*mm_slot
;
122 unsigned long address
;
123 struct rmap_item
**rmap_list
;
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @list: linked into migrate_nodes, pending placement in the proper node tree
132 * @hlist: hlist head of rmap_items using this ksm page
133 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
134 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138 struct rb_node node
; /* when node of stable tree */
139 struct { /* when listed for migration */
140 struct list_head
*head
;
141 struct list_head list
;
144 struct hlist_head hlist
;
152 * struct rmap_item - reverse mapping item for virtual addresses
153 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
154 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
155 * @nid: NUMA node id of unstable tree in which linked (may not match page)
156 * @mm: the memory structure this rmap_item is pointing into
157 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
158 * @oldchecksum: previous checksum of the page at that virtual address
159 * @node: rb node of this rmap_item in the unstable tree
160 * @head: pointer to stable_node heading this list in the stable tree
161 * @hlist: link into hlist of rmap_items hanging off that stable_node
164 struct rmap_item
*rmap_list
;
166 struct anon_vma
*anon_vma
; /* when stable */
168 int nid
; /* when node of unstable tree */
171 struct mm_struct
*mm
;
172 unsigned long address
; /* + low bits used for flags below */
173 unsigned int oldchecksum
; /* when unstable */
175 struct rb_node node
; /* when node of unstable tree */
176 struct { /* when listed from stable tree */
177 struct stable_node
*head
;
178 struct hlist_node hlist
;
183 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
184 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
185 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
187 /* The stable and unstable tree heads */
188 static struct rb_root one_stable_tree
[1] = { RB_ROOT
};
189 static struct rb_root one_unstable_tree
[1] = { RB_ROOT
};
190 static struct rb_root
*root_stable_tree
= one_stable_tree
;
191 static struct rb_root
*root_unstable_tree
= one_unstable_tree
;
193 /* Recently migrated nodes of stable tree, pending proper placement */
194 static LIST_HEAD(migrate_nodes
);
196 #define MM_SLOTS_HASH_BITS 10
197 static DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
199 static struct mm_slot ksm_mm_head
= {
200 .mm_list
= LIST_HEAD_INIT(ksm_mm_head
.mm_list
),
202 static struct ksm_scan ksm_scan
= {
203 .mm_slot
= &ksm_mm_head
,
206 static struct kmem_cache
*rmap_item_cache
;
207 static struct kmem_cache
*stable_node_cache
;
208 static struct kmem_cache
*mm_slot_cache
;
210 /* The number of nodes in the stable tree */
211 static unsigned long ksm_pages_shared
;
213 /* The number of page slots additionally sharing those nodes */
214 static unsigned long ksm_pages_sharing
;
216 /* The number of nodes in the unstable tree */
217 static unsigned long ksm_pages_unshared
;
219 /* The number of rmap_items in use: to calculate pages_volatile */
220 static unsigned long ksm_rmap_items
;
222 /* Number of pages ksmd should scan in one batch */
223 static unsigned int ksm_thread_pages_to_scan
= 100;
225 /* Milliseconds ksmd should sleep between batches */
226 static unsigned int ksm_thread_sleep_millisecs
= 20;
228 /* Checksum of an empty (zeroed) page */
229 static unsigned int zero_checksum __read_mostly
;
231 /* Whether to merge empty (zeroed) pages with actual zero pages */
232 static bool ksm_use_zero_pages __read_mostly
;
235 /* Zeroed when merging across nodes is not allowed */
236 static unsigned int ksm_merge_across_nodes
= 1;
237 static int ksm_nr_node_ids
= 1;
239 #define ksm_merge_across_nodes 1U
240 #define ksm_nr_node_ids 1
243 #define KSM_RUN_STOP 0
244 #define KSM_RUN_MERGE 1
245 #define KSM_RUN_UNMERGE 2
246 #define KSM_RUN_OFFLINE 4
247 static unsigned long ksm_run
= KSM_RUN_STOP
;
248 static void wait_while_offlining(void);
250 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait
);
251 static DEFINE_MUTEX(ksm_thread_mutex
);
252 static DEFINE_SPINLOCK(ksm_mmlist_lock
);
254 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
255 sizeof(struct __struct), __alignof__(struct __struct),\
258 static int __init
ksm_slab_init(void)
260 rmap_item_cache
= KSM_KMEM_CACHE(rmap_item
, 0);
261 if (!rmap_item_cache
)
264 stable_node_cache
= KSM_KMEM_CACHE(stable_node
, 0);
265 if (!stable_node_cache
)
268 mm_slot_cache
= KSM_KMEM_CACHE(mm_slot
, 0);
275 kmem_cache_destroy(stable_node_cache
);
277 kmem_cache_destroy(rmap_item_cache
);
282 static void __init
ksm_slab_free(void)
284 kmem_cache_destroy(mm_slot_cache
);
285 kmem_cache_destroy(stable_node_cache
);
286 kmem_cache_destroy(rmap_item_cache
);
287 mm_slot_cache
= NULL
;
290 static inline struct rmap_item
*alloc_rmap_item(void)
292 struct rmap_item
*rmap_item
;
294 rmap_item
= kmem_cache_zalloc(rmap_item_cache
, GFP_KERNEL
|
295 __GFP_NORETRY
| __GFP_NOWARN
);
301 static inline void free_rmap_item(struct rmap_item
*rmap_item
)
304 rmap_item
->mm
= NULL
; /* debug safety */
305 kmem_cache_free(rmap_item_cache
, rmap_item
);
308 static inline struct stable_node
*alloc_stable_node(void)
311 * The allocation can take too long with GFP_KERNEL when memory is under
312 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
313 * grants access to memory reserves, helping to avoid this problem.
315 return kmem_cache_alloc(stable_node_cache
, GFP_KERNEL
| __GFP_HIGH
);
318 static inline void free_stable_node(struct stable_node
*stable_node
)
320 kmem_cache_free(stable_node_cache
, stable_node
);
323 static inline struct mm_slot
*alloc_mm_slot(void)
325 if (!mm_slot_cache
) /* initialization failed */
327 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
330 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
332 kmem_cache_free(mm_slot_cache
, mm_slot
);
335 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
337 struct mm_slot
*slot
;
339 hash_for_each_possible(mm_slots_hash
, slot
, link
, (unsigned long)mm
)
346 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
347 struct mm_slot
*mm_slot
)
350 hash_add(mm_slots_hash
, &mm_slot
->link
, (unsigned long)mm
);
354 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
355 * page tables after it has passed through ksm_exit() - which, if necessary,
356 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
357 * a special flag: they can just back out as soon as mm_users goes to zero.
358 * ksm_test_exit() is used throughout to make this test for exit: in some
359 * places for correctness, in some places just to avoid unnecessary work.
361 static inline bool ksm_test_exit(struct mm_struct
*mm
)
363 return atomic_read(&mm
->mm_users
) == 0;
367 * We use break_ksm to break COW on a ksm page: it's a stripped down
369 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
372 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
373 * in case the application has unmapped and remapped mm,addr meanwhile.
374 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
375 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
377 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
378 * of the process that owns 'vma'. We also do not want to enforce
379 * protection keys here anyway.
381 static int break_ksm(struct vm_area_struct
*vma
, unsigned long addr
)
388 page
= follow_page(vma
, addr
,
389 FOLL_GET
| FOLL_MIGRATION
| FOLL_REMOTE
);
390 if (IS_ERR_OR_NULL(page
))
393 ret
= handle_mm_fault(vma
, addr
,
394 FAULT_FLAG_WRITE
| FAULT_FLAG_REMOTE
);
396 ret
= VM_FAULT_WRITE
;
398 } while (!(ret
& (VM_FAULT_WRITE
| VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
| VM_FAULT_OOM
)));
400 * We must loop because handle_mm_fault() may back out if there's
401 * any difficulty e.g. if pte accessed bit gets updated concurrently.
403 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
404 * COW has been broken, even if the vma does not permit VM_WRITE;
405 * but note that a concurrent fault might break PageKsm for us.
407 * VM_FAULT_SIGBUS could occur if we race with truncation of the
408 * backing file, which also invalidates anonymous pages: that's
409 * okay, that truncation will have unmapped the PageKsm for us.
411 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
412 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
413 * current task has TIF_MEMDIE set, and will be OOM killed on return
414 * to user; and ksmd, having no mm, would never be chosen for that.
416 * But if the mm is in a limited mem_cgroup, then the fault may fail
417 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
418 * even ksmd can fail in this way - though it's usually breaking ksm
419 * just to undo a merge it made a moment before, so unlikely to oom.
421 * That's a pity: we might therefore have more kernel pages allocated
422 * than we're counting as nodes in the stable tree; but ksm_do_scan
423 * will retry to break_cow on each pass, so should recover the page
424 * in due course. The important thing is to not let VM_MERGEABLE
425 * be cleared while any such pages might remain in the area.
427 return (ret
& VM_FAULT_OOM
) ? -ENOMEM
: 0;
430 static struct vm_area_struct
*find_mergeable_vma(struct mm_struct
*mm
,
433 struct vm_area_struct
*vma
;
434 if (ksm_test_exit(mm
))
436 vma
= find_vma(mm
, addr
);
437 if (!vma
|| vma
->vm_start
> addr
)
439 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
444 static void break_cow(struct rmap_item
*rmap_item
)
446 struct mm_struct
*mm
= rmap_item
->mm
;
447 unsigned long addr
= rmap_item
->address
;
448 struct vm_area_struct
*vma
;
451 * It is not an accident that whenever we want to break COW
452 * to undo, we also need to drop a reference to the anon_vma.
454 put_anon_vma(rmap_item
->anon_vma
);
456 down_read(&mm
->mmap_sem
);
457 vma
= find_mergeable_vma(mm
, addr
);
459 break_ksm(vma
, addr
);
460 up_read(&mm
->mmap_sem
);
463 static struct page
*get_mergeable_page(struct rmap_item
*rmap_item
)
465 struct mm_struct
*mm
= rmap_item
->mm
;
466 unsigned long addr
= rmap_item
->address
;
467 struct vm_area_struct
*vma
;
470 down_read(&mm
->mmap_sem
);
471 vma
= find_mergeable_vma(mm
, addr
);
475 page
= follow_page(vma
, addr
, FOLL_GET
);
476 if (IS_ERR_OR_NULL(page
))
478 if (PageAnon(page
)) {
479 flush_anon_page(vma
, page
, addr
);
480 flush_dcache_page(page
);
486 up_read(&mm
->mmap_sem
);
491 * This helper is used for getting right index into array of tree roots.
492 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
493 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
494 * every node has its own stable and unstable tree.
496 static inline int get_kpfn_nid(unsigned long kpfn
)
498 return ksm_merge_across_nodes
? 0 : NUMA(pfn_to_nid(kpfn
));
501 static void remove_node_from_stable_tree(struct stable_node
*stable_node
)
503 struct rmap_item
*rmap_item
;
505 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
506 if (rmap_item
->hlist
.next
)
510 put_anon_vma(rmap_item
->anon_vma
);
511 rmap_item
->address
&= PAGE_MASK
;
515 if (stable_node
->head
== &migrate_nodes
)
516 list_del(&stable_node
->list
);
518 rb_erase(&stable_node
->node
,
519 root_stable_tree
+ NUMA(stable_node
->nid
));
520 free_stable_node(stable_node
);
524 * get_ksm_page: checks if the page indicated by the stable node
525 * is still its ksm page, despite having held no reference to it.
526 * In which case we can trust the content of the page, and it
527 * returns the gotten page; but if the page has now been zapped,
528 * remove the stale node from the stable tree and return NULL.
529 * But beware, the stable node's page might be being migrated.
531 * You would expect the stable_node to hold a reference to the ksm page.
532 * But if it increments the page's count, swapping out has to wait for
533 * ksmd to come around again before it can free the page, which may take
534 * seconds or even minutes: much too unresponsive. So instead we use a
535 * "keyhole reference": access to the ksm page from the stable node peeps
536 * out through its keyhole to see if that page still holds the right key,
537 * pointing back to this stable node. This relies on freeing a PageAnon
538 * page to reset its page->mapping to NULL, and relies on no other use of
539 * a page to put something that might look like our key in page->mapping.
540 * is on its way to being freed; but it is an anomaly to bear in mind.
542 static struct page
*get_ksm_page(struct stable_node
*stable_node
, bool lock_it
)
545 void *expected_mapping
;
548 expected_mapping
= (void *)((unsigned long)stable_node
|
551 kpfn
= READ_ONCE(stable_node
->kpfn
);
552 page
= pfn_to_page(kpfn
);
555 * page is computed from kpfn, so on most architectures reading
556 * page->mapping is naturally ordered after reading node->kpfn,
557 * but on Alpha we need to be more careful.
559 smp_read_barrier_depends();
560 if (READ_ONCE(page
->mapping
) != expected_mapping
)
564 * We cannot do anything with the page while its refcount is 0.
565 * Usually 0 means free, or tail of a higher-order page: in which
566 * case this node is no longer referenced, and should be freed;
567 * however, it might mean that the page is under page_freeze_refs().
568 * The __remove_mapping() case is easy, again the node is now stale;
569 * but if page is swapcache in migrate_page_move_mapping(), it might
570 * still be our page, in which case it's essential to keep the node.
572 while (!get_page_unless_zero(page
)) {
574 * Another check for page->mapping != expected_mapping would
575 * work here too. We have chosen the !PageSwapCache test to
576 * optimize the common case, when the page is or is about to
577 * be freed: PageSwapCache is cleared (under spin_lock_irq)
578 * in the freeze_refs section of __remove_mapping(); but Anon
579 * page->mapping reset to NULL later, in free_pages_prepare().
581 if (!PageSwapCache(page
))
586 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
593 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
603 * We come here from above when page->mapping or !PageSwapCache
604 * suggests that the node is stale; but it might be under migration.
605 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
606 * before checking whether node->kpfn has been changed.
609 if (READ_ONCE(stable_node
->kpfn
) != kpfn
)
611 remove_node_from_stable_tree(stable_node
);
616 * Removing rmap_item from stable or unstable tree.
617 * This function will clean the information from the stable/unstable tree.
619 static void remove_rmap_item_from_tree(struct rmap_item
*rmap_item
)
621 if (rmap_item
->address
& STABLE_FLAG
) {
622 struct stable_node
*stable_node
;
625 stable_node
= rmap_item
->head
;
626 page
= get_ksm_page(stable_node
, true);
630 hlist_del(&rmap_item
->hlist
);
634 if (!hlist_empty(&stable_node
->hlist
))
639 put_anon_vma(rmap_item
->anon_vma
);
640 rmap_item
->address
&= PAGE_MASK
;
642 } else if (rmap_item
->address
& UNSTABLE_FLAG
) {
645 * Usually ksmd can and must skip the rb_erase, because
646 * root_unstable_tree was already reset to RB_ROOT.
647 * But be careful when an mm is exiting: do the rb_erase
648 * if this rmap_item was inserted by this scan, rather
649 * than left over from before.
651 age
= (unsigned char)(ksm_scan
.seqnr
- rmap_item
->address
);
654 rb_erase(&rmap_item
->node
,
655 root_unstable_tree
+ NUMA(rmap_item
->nid
));
656 ksm_pages_unshared
--;
657 rmap_item
->address
&= PAGE_MASK
;
660 cond_resched(); /* we're called from many long loops */
663 static void remove_trailing_rmap_items(struct mm_slot
*mm_slot
,
664 struct rmap_item
**rmap_list
)
667 struct rmap_item
*rmap_item
= *rmap_list
;
668 *rmap_list
= rmap_item
->rmap_list
;
669 remove_rmap_item_from_tree(rmap_item
);
670 free_rmap_item(rmap_item
);
675 * Though it's very tempting to unmerge rmap_items from stable tree rather
676 * than check every pte of a given vma, the locking doesn't quite work for
677 * that - an rmap_item is assigned to the stable tree after inserting ksm
678 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
679 * rmap_items from parent to child at fork time (so as not to waste time
680 * if exit comes before the next scan reaches it).
682 * Similarly, although we'd like to remove rmap_items (so updating counts
683 * and freeing memory) when unmerging an area, it's easier to leave that
684 * to the next pass of ksmd - consider, for example, how ksmd might be
685 * in cmp_and_merge_page on one of the rmap_items we would be removing.
687 static int unmerge_ksm_pages(struct vm_area_struct
*vma
,
688 unsigned long start
, unsigned long end
)
693 for (addr
= start
; addr
< end
&& !err
; addr
+= PAGE_SIZE
) {
694 if (ksm_test_exit(vma
->vm_mm
))
696 if (signal_pending(current
))
699 err
= break_ksm(vma
, addr
);
706 * Only called through the sysfs control interface:
708 static int remove_stable_node(struct stable_node
*stable_node
)
713 page
= get_ksm_page(stable_node
, true);
716 * get_ksm_page did remove_node_from_stable_tree itself.
721 if (WARN_ON_ONCE(page_mapped(page
))) {
723 * This should not happen: but if it does, just refuse to let
724 * merge_across_nodes be switched - there is no need to panic.
729 * The stable node did not yet appear stale to get_ksm_page(),
730 * since that allows for an unmapped ksm page to be recognized
731 * right up until it is freed; but the node is safe to remove.
732 * This page might be in a pagevec waiting to be freed,
733 * or it might be PageSwapCache (perhaps under writeback),
734 * or it might have been removed from swapcache a moment ago.
736 set_page_stable_node(page
, NULL
);
737 remove_node_from_stable_tree(stable_node
);
746 static int remove_all_stable_nodes(void)
748 struct stable_node
*stable_node
, *next
;
752 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
753 while (root_stable_tree
[nid
].rb_node
) {
754 stable_node
= rb_entry(root_stable_tree
[nid
].rb_node
,
755 struct stable_node
, node
);
756 if (remove_stable_node(stable_node
)) {
758 break; /* proceed to next nid */
763 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
764 if (remove_stable_node(stable_node
))
771 static int unmerge_and_remove_all_rmap_items(void)
773 struct mm_slot
*mm_slot
;
774 struct mm_struct
*mm
;
775 struct vm_area_struct
*vma
;
778 spin_lock(&ksm_mmlist_lock
);
779 ksm_scan
.mm_slot
= list_entry(ksm_mm_head
.mm_list
.next
,
780 struct mm_slot
, mm_list
);
781 spin_unlock(&ksm_mmlist_lock
);
783 for (mm_slot
= ksm_scan
.mm_slot
;
784 mm_slot
!= &ksm_mm_head
; mm_slot
= ksm_scan
.mm_slot
) {
786 down_read(&mm
->mmap_sem
);
787 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
788 if (ksm_test_exit(mm
))
790 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
792 err
= unmerge_ksm_pages(vma
,
793 vma
->vm_start
, vma
->vm_end
);
798 remove_trailing_rmap_items(mm_slot
, &mm_slot
->rmap_list
);
799 up_read(&mm
->mmap_sem
);
801 spin_lock(&ksm_mmlist_lock
);
802 ksm_scan
.mm_slot
= list_entry(mm_slot
->mm_list
.next
,
803 struct mm_slot
, mm_list
);
804 if (ksm_test_exit(mm
)) {
805 hash_del(&mm_slot
->link
);
806 list_del(&mm_slot
->mm_list
);
807 spin_unlock(&ksm_mmlist_lock
);
809 free_mm_slot(mm_slot
);
810 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
813 spin_unlock(&ksm_mmlist_lock
);
816 /* Clean up stable nodes, but don't worry if some are still busy */
817 remove_all_stable_nodes();
822 up_read(&mm
->mmap_sem
);
823 spin_lock(&ksm_mmlist_lock
);
824 ksm_scan
.mm_slot
= &ksm_mm_head
;
825 spin_unlock(&ksm_mmlist_lock
);
828 #endif /* CONFIG_SYSFS */
830 static u32
calc_checksum(struct page
*page
)
833 void *addr
= kmap_atomic(page
);
834 checksum
= jhash2(addr
, PAGE_SIZE
/ 4, 17);
839 static int memcmp_pages(struct page
*page1
, struct page
*page2
)
844 addr1
= kmap_atomic(page1
);
845 addr2
= kmap_atomic(page2
);
846 ret
= memcmp(addr1
, addr2
, PAGE_SIZE
);
847 kunmap_atomic(addr2
);
848 kunmap_atomic(addr1
);
852 static inline int pages_identical(struct page
*page1
, struct page
*page2
)
854 return !memcmp_pages(page1
, page2
);
857 static int write_protect_page(struct vm_area_struct
*vma
, struct page
*page
,
860 struct mm_struct
*mm
= vma
->vm_mm
;
861 struct page_vma_mapped_walk pvmw
= {
867 unsigned long mmun_start
; /* For mmu_notifiers */
868 unsigned long mmun_end
; /* For mmu_notifiers */
870 pvmw
.address
= page_address_in_vma(page
, vma
);
871 if (pvmw
.address
== -EFAULT
)
874 BUG_ON(PageTransCompound(page
));
876 mmun_start
= pvmw
.address
;
877 mmun_end
= pvmw
.address
+ PAGE_SIZE
;
878 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
880 if (!page_vma_mapped_walk(&pvmw
))
882 if (WARN_ONCE(!pvmw
.pte
, "Unexpected PMD mapping?"))
885 if (pte_write(*pvmw
.pte
) || pte_dirty(*pvmw
.pte
) ||
886 (pte_protnone(*pvmw
.pte
) && pte_savedwrite(*pvmw
.pte
))) {
889 swapped
= PageSwapCache(page
);
890 flush_cache_page(vma
, pvmw
.address
, page_to_pfn(page
));
892 * Ok this is tricky, when get_user_pages_fast() run it doesn't
893 * take any lock, therefore the check that we are going to make
894 * with the pagecount against the mapcount is racey and
895 * O_DIRECT can happen right after the check.
896 * So we clear the pte and flush the tlb before the check
897 * this assure us that no O_DIRECT can happen after the check
898 * or in the middle of the check.
900 entry
= ptep_clear_flush_notify(vma
, pvmw
.address
, pvmw
.pte
);
902 * Check that no O_DIRECT or similar I/O is in progress on the
905 if (page_mapcount(page
) + 1 + swapped
!= page_count(page
)) {
906 set_pte_at(mm
, pvmw
.address
, pvmw
.pte
, entry
);
909 if (pte_dirty(entry
))
910 set_page_dirty(page
);
912 if (pte_protnone(entry
))
913 entry
= pte_mkclean(pte_clear_savedwrite(entry
));
915 entry
= pte_mkclean(pte_wrprotect(entry
));
916 set_pte_at_notify(mm
, pvmw
.address
, pvmw
.pte
, entry
);
918 *orig_pte
= *pvmw
.pte
;
922 page_vma_mapped_walk_done(&pvmw
);
924 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
930 * replace_page - replace page in vma by new ksm page
931 * @vma: vma that holds the pte pointing to page
932 * @page: the page we are replacing by kpage
933 * @kpage: the ksm page we replace page by
934 * @orig_pte: the original value of the pte
936 * Returns 0 on success, -EFAULT on failure.
938 static int replace_page(struct vm_area_struct
*vma
, struct page
*page
,
939 struct page
*kpage
, pte_t orig_pte
)
941 struct mm_struct
*mm
= vma
->vm_mm
;
948 unsigned long mmun_start
; /* For mmu_notifiers */
949 unsigned long mmun_end
; /* For mmu_notifiers */
951 addr
= page_address_in_vma(page
, vma
);
955 pmd
= mm_find_pmd(mm
, addr
);
960 mmun_end
= addr
+ PAGE_SIZE
;
961 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
963 ptep
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
964 if (!pte_same(*ptep
, orig_pte
)) {
965 pte_unmap_unlock(ptep
, ptl
);
970 * No need to check ksm_use_zero_pages here: we can only have a
971 * zero_page here if ksm_use_zero_pages was enabled alreaady.
973 if (!is_zero_pfn(page_to_pfn(kpage
))) {
975 page_add_anon_rmap(kpage
, vma
, addr
, false);
976 newpte
= mk_pte(kpage
, vma
->vm_page_prot
);
978 newpte
= pte_mkspecial(pfn_pte(page_to_pfn(kpage
),
982 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
983 ptep_clear_flush_notify(vma
, addr
, ptep
);
984 set_pte_at_notify(mm
, addr
, ptep
, newpte
);
986 page_remove_rmap(page
, false);
987 if (!page_mapped(page
))
988 try_to_free_swap(page
);
991 pte_unmap_unlock(ptep
, ptl
);
994 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1000 * try_to_merge_one_page - take two pages and merge them into one
1001 * @vma: the vma that holds the pte pointing to page
1002 * @page: the PageAnon page that we want to replace with kpage
1003 * @kpage: the PageKsm page that we want to map instead of page,
1004 * or NULL the first time when we want to use page as kpage.
1006 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1008 static int try_to_merge_one_page(struct vm_area_struct
*vma
,
1009 struct page
*page
, struct page
*kpage
)
1011 pte_t orig_pte
= __pte(0);
1014 if (page
== kpage
) /* ksm page forked */
1017 if (!PageAnon(page
))
1021 * We need the page lock to read a stable PageSwapCache in
1022 * write_protect_page(). We use trylock_page() instead of
1023 * lock_page() because we don't want to wait here - we
1024 * prefer to continue scanning and merging different pages,
1025 * then come back to this page when it is unlocked.
1027 if (!trylock_page(page
))
1030 if (PageTransCompound(page
)) {
1031 err
= split_huge_page(page
);
1037 * If this anonymous page is mapped only here, its pte may need
1038 * to be write-protected. If it's mapped elsewhere, all of its
1039 * ptes are necessarily already write-protected. But in either
1040 * case, we need to lock and check page_count is not raised.
1042 if (write_protect_page(vma
, page
, &orig_pte
) == 0) {
1045 * While we hold page lock, upgrade page from
1046 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1047 * stable_tree_insert() will update stable_node.
1049 set_page_stable_node(page
, NULL
);
1050 mark_page_accessed(page
);
1052 * Page reclaim just frees a clean page with no dirty
1053 * ptes: make sure that the ksm page would be swapped.
1055 if (!PageDirty(page
))
1058 } else if (pages_identical(page
, kpage
))
1059 err
= replace_page(vma
, page
, kpage
, orig_pte
);
1062 if ((vma
->vm_flags
& VM_LOCKED
) && kpage
&& !err
) {
1063 munlock_vma_page(page
);
1064 if (!PageMlocked(kpage
)) {
1067 mlock_vma_page(kpage
);
1068 page
= kpage
; /* for final unlock */
1079 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1080 * but no new kernel page is allocated: kpage must already be a ksm page.
1082 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1084 static int try_to_merge_with_ksm_page(struct rmap_item
*rmap_item
,
1085 struct page
*page
, struct page
*kpage
)
1087 struct mm_struct
*mm
= rmap_item
->mm
;
1088 struct vm_area_struct
*vma
;
1091 down_read(&mm
->mmap_sem
);
1092 vma
= find_mergeable_vma(mm
, rmap_item
->address
);
1096 err
= try_to_merge_one_page(vma
, page
, kpage
);
1100 /* Unstable nid is in union with stable anon_vma: remove first */
1101 remove_rmap_item_from_tree(rmap_item
);
1103 /* Must get reference to anon_vma while still holding mmap_sem */
1104 rmap_item
->anon_vma
= vma
->anon_vma
;
1105 get_anon_vma(vma
->anon_vma
);
1107 up_read(&mm
->mmap_sem
);
1112 * try_to_merge_two_pages - take two identical pages and prepare them
1113 * to be merged into one page.
1115 * This function returns the kpage if we successfully merged two identical
1116 * pages into one ksm page, NULL otherwise.
1118 * Note that this function upgrades page to ksm page: if one of the pages
1119 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1121 static struct page
*try_to_merge_two_pages(struct rmap_item
*rmap_item
,
1123 struct rmap_item
*tree_rmap_item
,
1124 struct page
*tree_page
)
1128 err
= try_to_merge_with_ksm_page(rmap_item
, page
, NULL
);
1130 err
= try_to_merge_with_ksm_page(tree_rmap_item
,
1133 * If that fails, we have a ksm page with only one pte
1134 * pointing to it: so break it.
1137 break_cow(rmap_item
);
1139 return err
? NULL
: page
;
1143 * stable_tree_search - search for page inside the stable tree
1145 * This function checks if there is a page inside the stable tree
1146 * with identical content to the page that we are scanning right now.
1148 * This function returns the stable tree node of identical content if found,
1151 static struct page
*stable_tree_search(struct page
*page
)
1154 struct rb_root
*root
;
1155 struct rb_node
**new;
1156 struct rb_node
*parent
;
1157 struct stable_node
*stable_node
;
1158 struct stable_node
*page_node
;
1160 page_node
= page_stable_node(page
);
1161 if (page_node
&& page_node
->head
!= &migrate_nodes
) {
1162 /* ksm page forked */
1167 nid
= get_kpfn_nid(page_to_pfn(page
));
1168 root
= root_stable_tree
+ nid
;
1170 new = &root
->rb_node
;
1174 struct page
*tree_page
;
1178 stable_node
= rb_entry(*new, struct stable_node
, node
);
1179 tree_page
= get_ksm_page(stable_node
, false);
1182 * If we walked over a stale stable_node,
1183 * get_ksm_page() will call rb_erase() and it
1184 * may rebalance the tree from under us. So
1185 * restart the search from scratch. Returning
1186 * NULL would be safe too, but we'd generate
1187 * false negative insertions just because some
1188 * stable_node was stale.
1193 ret
= memcmp_pages(page
, tree_page
);
1194 put_page(tree_page
);
1198 new = &parent
->rb_left
;
1200 new = &parent
->rb_right
;
1203 * Lock and unlock the stable_node's page (which
1204 * might already have been migrated) so that page
1205 * migration is sure to notice its raised count.
1206 * It would be more elegant to return stable_node
1207 * than kpage, but that involves more changes.
1209 tree_page
= get_ksm_page(stable_node
, true);
1211 unlock_page(tree_page
);
1212 if (get_kpfn_nid(stable_node
->kpfn
) !=
1213 NUMA(stable_node
->nid
)) {
1214 put_page(tree_page
);
1220 * There is now a place for page_node, but the tree may
1221 * have been rebalanced, so re-evaluate parent and new.
1232 list_del(&page_node
->list
);
1233 DO_NUMA(page_node
->nid
= nid
);
1234 rb_link_node(&page_node
->node
, parent
, new);
1235 rb_insert_color(&page_node
->node
, root
);
1241 list_del(&page_node
->list
);
1242 DO_NUMA(page_node
->nid
= nid
);
1243 rb_replace_node(&stable_node
->node
, &page_node
->node
, root
);
1246 rb_erase(&stable_node
->node
, root
);
1249 stable_node
->head
= &migrate_nodes
;
1250 list_add(&stable_node
->list
, stable_node
->head
);
1255 * stable_tree_insert - insert stable tree node pointing to new ksm page
1256 * into the stable tree.
1258 * This function returns the stable tree node just allocated on success,
1261 static struct stable_node
*stable_tree_insert(struct page
*kpage
)
1265 struct rb_root
*root
;
1266 struct rb_node
**new;
1267 struct rb_node
*parent
;
1268 struct stable_node
*stable_node
;
1270 kpfn
= page_to_pfn(kpage
);
1271 nid
= get_kpfn_nid(kpfn
);
1272 root
= root_stable_tree
+ nid
;
1275 new = &root
->rb_node
;
1278 struct page
*tree_page
;
1282 stable_node
= rb_entry(*new, struct stable_node
, node
);
1283 tree_page
= get_ksm_page(stable_node
, false);
1286 * If we walked over a stale stable_node,
1287 * get_ksm_page() will call rb_erase() and it
1288 * may rebalance the tree from under us. So
1289 * restart the search from scratch. Returning
1290 * NULL would be safe too, but we'd generate
1291 * false negative insertions just because some
1292 * stable_node was stale.
1297 ret
= memcmp_pages(kpage
, tree_page
);
1298 put_page(tree_page
);
1302 new = &parent
->rb_left
;
1304 new = &parent
->rb_right
;
1307 * It is not a bug that stable_tree_search() didn't
1308 * find this node: because at that time our page was
1309 * not yet write-protected, so may have changed since.
1315 stable_node
= alloc_stable_node();
1319 INIT_HLIST_HEAD(&stable_node
->hlist
);
1320 stable_node
->kpfn
= kpfn
;
1321 set_page_stable_node(kpage
, stable_node
);
1322 DO_NUMA(stable_node
->nid
= nid
);
1323 rb_link_node(&stable_node
->node
, parent
, new);
1324 rb_insert_color(&stable_node
->node
, root
);
1330 * unstable_tree_search_insert - search for identical page,
1331 * else insert rmap_item into the unstable tree.
1333 * This function searches for a page in the unstable tree identical to the
1334 * page currently being scanned; and if no identical page is found in the
1335 * tree, we insert rmap_item as a new object into the unstable tree.
1337 * This function returns pointer to rmap_item found to be identical
1338 * to the currently scanned page, NULL otherwise.
1340 * This function does both searching and inserting, because they share
1341 * the same walking algorithm in an rbtree.
1344 struct rmap_item
*unstable_tree_search_insert(struct rmap_item
*rmap_item
,
1346 struct page
**tree_pagep
)
1348 struct rb_node
**new;
1349 struct rb_root
*root
;
1350 struct rb_node
*parent
= NULL
;
1353 nid
= get_kpfn_nid(page_to_pfn(page
));
1354 root
= root_unstable_tree
+ nid
;
1355 new = &root
->rb_node
;
1358 struct rmap_item
*tree_rmap_item
;
1359 struct page
*tree_page
;
1363 tree_rmap_item
= rb_entry(*new, struct rmap_item
, node
);
1364 tree_page
= get_mergeable_page(tree_rmap_item
);
1369 * Don't substitute a ksm page for a forked page.
1371 if (page
== tree_page
) {
1372 put_page(tree_page
);
1376 ret
= memcmp_pages(page
, tree_page
);
1380 put_page(tree_page
);
1381 new = &parent
->rb_left
;
1382 } else if (ret
> 0) {
1383 put_page(tree_page
);
1384 new = &parent
->rb_right
;
1385 } else if (!ksm_merge_across_nodes
&&
1386 page_to_nid(tree_page
) != nid
) {
1388 * If tree_page has been migrated to another NUMA node,
1389 * it will be flushed out and put in the right unstable
1390 * tree next time: only merge with it when across_nodes.
1392 put_page(tree_page
);
1395 *tree_pagep
= tree_page
;
1396 return tree_rmap_item
;
1400 rmap_item
->address
|= UNSTABLE_FLAG
;
1401 rmap_item
->address
|= (ksm_scan
.seqnr
& SEQNR_MASK
);
1402 DO_NUMA(rmap_item
->nid
= nid
);
1403 rb_link_node(&rmap_item
->node
, parent
, new);
1404 rb_insert_color(&rmap_item
->node
, root
);
1406 ksm_pages_unshared
++;
1411 * stable_tree_append - add another rmap_item to the linked list of
1412 * rmap_items hanging off a given node of the stable tree, all sharing
1413 * the same ksm page.
1415 static void stable_tree_append(struct rmap_item
*rmap_item
,
1416 struct stable_node
*stable_node
)
1418 rmap_item
->head
= stable_node
;
1419 rmap_item
->address
|= STABLE_FLAG
;
1420 hlist_add_head(&rmap_item
->hlist
, &stable_node
->hlist
);
1422 if (rmap_item
->hlist
.next
)
1423 ksm_pages_sharing
++;
1429 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1430 * if not, compare checksum to previous and if it's the same, see if page can
1431 * be inserted into the unstable tree, or merged with a page already there and
1432 * both transferred to the stable tree.
1434 * @page: the page that we are searching identical page to.
1435 * @rmap_item: the reverse mapping into the virtual address of this page
1437 static void cmp_and_merge_page(struct page
*page
, struct rmap_item
*rmap_item
)
1439 struct rmap_item
*tree_rmap_item
;
1440 struct page
*tree_page
= NULL
;
1441 struct stable_node
*stable_node
;
1443 unsigned int checksum
;
1446 stable_node
= page_stable_node(page
);
1448 if (stable_node
->head
!= &migrate_nodes
&&
1449 get_kpfn_nid(stable_node
->kpfn
) != NUMA(stable_node
->nid
)) {
1450 rb_erase(&stable_node
->node
,
1451 root_stable_tree
+ NUMA(stable_node
->nid
));
1452 stable_node
->head
= &migrate_nodes
;
1453 list_add(&stable_node
->list
, stable_node
->head
);
1455 if (stable_node
->head
!= &migrate_nodes
&&
1456 rmap_item
->head
== stable_node
)
1460 /* We first start with searching the page inside the stable tree */
1461 kpage
= stable_tree_search(page
);
1462 if (kpage
== page
&& rmap_item
->head
== stable_node
) {
1467 remove_rmap_item_from_tree(rmap_item
);
1470 err
= try_to_merge_with_ksm_page(rmap_item
, page
, kpage
);
1473 * The page was successfully merged:
1474 * add its rmap_item to the stable tree.
1477 stable_tree_append(rmap_item
, page_stable_node(kpage
));
1485 * If the hash value of the page has changed from the last time
1486 * we calculated it, this page is changing frequently: therefore we
1487 * don't want to insert it in the unstable tree, and we don't want
1488 * to waste our time searching for something identical to it there.
1490 checksum
= calc_checksum(page
);
1491 if (rmap_item
->oldchecksum
!= checksum
) {
1492 rmap_item
->oldchecksum
= checksum
;
1497 * Same checksum as an empty page. We attempt to merge it with the
1498 * appropriate zero page if the user enabled this via sysfs.
1500 if (ksm_use_zero_pages
&& (checksum
== zero_checksum
)) {
1501 struct vm_area_struct
*vma
;
1503 vma
= find_mergeable_vma(rmap_item
->mm
, rmap_item
->address
);
1504 err
= try_to_merge_one_page(vma
, page
,
1505 ZERO_PAGE(rmap_item
->address
));
1507 * In case of failure, the page was not really empty, so we
1508 * need to continue. Otherwise we're done.
1514 unstable_tree_search_insert(rmap_item
, page
, &tree_page
);
1515 if (tree_rmap_item
) {
1516 kpage
= try_to_merge_two_pages(rmap_item
, page
,
1517 tree_rmap_item
, tree_page
);
1518 put_page(tree_page
);
1521 * The pages were successfully merged: insert new
1522 * node in the stable tree and add both rmap_items.
1525 stable_node
= stable_tree_insert(kpage
);
1527 stable_tree_append(tree_rmap_item
, stable_node
);
1528 stable_tree_append(rmap_item
, stable_node
);
1533 * If we fail to insert the page into the stable tree,
1534 * we will have 2 virtual addresses that are pointing
1535 * to a ksm page left outside the stable tree,
1536 * in which case we need to break_cow on both.
1539 break_cow(tree_rmap_item
);
1540 break_cow(rmap_item
);
1546 static struct rmap_item
*get_next_rmap_item(struct mm_slot
*mm_slot
,
1547 struct rmap_item
**rmap_list
,
1550 struct rmap_item
*rmap_item
;
1552 while (*rmap_list
) {
1553 rmap_item
= *rmap_list
;
1554 if ((rmap_item
->address
& PAGE_MASK
) == addr
)
1556 if (rmap_item
->address
> addr
)
1558 *rmap_list
= rmap_item
->rmap_list
;
1559 remove_rmap_item_from_tree(rmap_item
);
1560 free_rmap_item(rmap_item
);
1563 rmap_item
= alloc_rmap_item();
1565 /* It has already been zeroed */
1566 rmap_item
->mm
= mm_slot
->mm
;
1567 rmap_item
->address
= addr
;
1568 rmap_item
->rmap_list
= *rmap_list
;
1569 *rmap_list
= rmap_item
;
1574 static struct rmap_item
*scan_get_next_rmap_item(struct page
**page
)
1576 struct mm_struct
*mm
;
1577 struct mm_slot
*slot
;
1578 struct vm_area_struct
*vma
;
1579 struct rmap_item
*rmap_item
;
1582 if (list_empty(&ksm_mm_head
.mm_list
))
1585 slot
= ksm_scan
.mm_slot
;
1586 if (slot
== &ksm_mm_head
) {
1588 * A number of pages can hang around indefinitely on per-cpu
1589 * pagevecs, raised page count preventing write_protect_page
1590 * from merging them. Though it doesn't really matter much,
1591 * it is puzzling to see some stuck in pages_volatile until
1592 * other activity jostles them out, and they also prevented
1593 * LTP's KSM test from succeeding deterministically; so drain
1594 * them here (here rather than on entry to ksm_do_scan(),
1595 * so we don't IPI too often when pages_to_scan is set low).
1597 lru_add_drain_all();
1600 * Whereas stale stable_nodes on the stable_tree itself
1601 * get pruned in the regular course of stable_tree_search(),
1602 * those moved out to the migrate_nodes list can accumulate:
1603 * so prune them once before each full scan.
1605 if (!ksm_merge_across_nodes
) {
1606 struct stable_node
*stable_node
, *next
;
1609 list_for_each_entry_safe(stable_node
, next
,
1610 &migrate_nodes
, list
) {
1611 page
= get_ksm_page(stable_node
, false);
1618 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++)
1619 root_unstable_tree
[nid
] = RB_ROOT
;
1621 spin_lock(&ksm_mmlist_lock
);
1622 slot
= list_entry(slot
->mm_list
.next
, struct mm_slot
, mm_list
);
1623 ksm_scan
.mm_slot
= slot
;
1624 spin_unlock(&ksm_mmlist_lock
);
1626 * Although we tested list_empty() above, a racing __ksm_exit
1627 * of the last mm on the list may have removed it since then.
1629 if (slot
== &ksm_mm_head
)
1632 ksm_scan
.address
= 0;
1633 ksm_scan
.rmap_list
= &slot
->rmap_list
;
1637 down_read(&mm
->mmap_sem
);
1638 if (ksm_test_exit(mm
))
1641 vma
= find_vma(mm
, ksm_scan
.address
);
1643 for (; vma
; vma
= vma
->vm_next
) {
1644 if (!(vma
->vm_flags
& VM_MERGEABLE
))
1646 if (ksm_scan
.address
< vma
->vm_start
)
1647 ksm_scan
.address
= vma
->vm_start
;
1649 ksm_scan
.address
= vma
->vm_end
;
1651 while (ksm_scan
.address
< vma
->vm_end
) {
1652 if (ksm_test_exit(mm
))
1654 *page
= follow_page(vma
, ksm_scan
.address
, FOLL_GET
);
1655 if (IS_ERR_OR_NULL(*page
)) {
1656 ksm_scan
.address
+= PAGE_SIZE
;
1660 if (PageAnon(*page
)) {
1661 flush_anon_page(vma
, *page
, ksm_scan
.address
);
1662 flush_dcache_page(*page
);
1663 rmap_item
= get_next_rmap_item(slot
,
1664 ksm_scan
.rmap_list
, ksm_scan
.address
);
1666 ksm_scan
.rmap_list
=
1667 &rmap_item
->rmap_list
;
1668 ksm_scan
.address
+= PAGE_SIZE
;
1671 up_read(&mm
->mmap_sem
);
1675 ksm_scan
.address
+= PAGE_SIZE
;
1680 if (ksm_test_exit(mm
)) {
1681 ksm_scan
.address
= 0;
1682 ksm_scan
.rmap_list
= &slot
->rmap_list
;
1685 * Nuke all the rmap_items that are above this current rmap:
1686 * because there were no VM_MERGEABLE vmas with such addresses.
1688 remove_trailing_rmap_items(slot
, ksm_scan
.rmap_list
);
1690 spin_lock(&ksm_mmlist_lock
);
1691 ksm_scan
.mm_slot
= list_entry(slot
->mm_list
.next
,
1692 struct mm_slot
, mm_list
);
1693 if (ksm_scan
.address
== 0) {
1695 * We've completed a full scan of all vmas, holding mmap_sem
1696 * throughout, and found no VM_MERGEABLE: so do the same as
1697 * __ksm_exit does to remove this mm from all our lists now.
1698 * This applies either when cleaning up after __ksm_exit
1699 * (but beware: we can reach here even before __ksm_exit),
1700 * or when all VM_MERGEABLE areas have been unmapped (and
1701 * mmap_sem then protects against race with MADV_MERGEABLE).
1703 hash_del(&slot
->link
);
1704 list_del(&slot
->mm_list
);
1705 spin_unlock(&ksm_mmlist_lock
);
1708 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
1709 up_read(&mm
->mmap_sem
);
1712 up_read(&mm
->mmap_sem
);
1714 * up_read(&mm->mmap_sem) first because after
1715 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1716 * already have been freed under us by __ksm_exit()
1717 * because the "mm_slot" is still hashed and
1718 * ksm_scan.mm_slot doesn't point to it anymore.
1720 spin_unlock(&ksm_mmlist_lock
);
1723 /* Repeat until we've completed scanning the whole list */
1724 slot
= ksm_scan
.mm_slot
;
1725 if (slot
!= &ksm_mm_head
)
1733 * ksm_do_scan - the ksm scanner main worker function.
1734 * @scan_npages - number of pages we want to scan before we return.
1736 static void ksm_do_scan(unsigned int scan_npages
)
1738 struct rmap_item
*rmap_item
;
1739 struct page
*uninitialized_var(page
);
1741 while (scan_npages
-- && likely(!freezing(current
))) {
1743 rmap_item
= scan_get_next_rmap_item(&page
);
1746 cmp_and_merge_page(page
, rmap_item
);
1751 static int ksmd_should_run(void)
1753 return (ksm_run
& KSM_RUN_MERGE
) && !list_empty(&ksm_mm_head
.mm_list
);
1756 static int ksm_scan_thread(void *nothing
)
1759 set_user_nice(current
, 5);
1761 while (!kthread_should_stop()) {
1762 mutex_lock(&ksm_thread_mutex
);
1763 wait_while_offlining();
1764 if (ksmd_should_run())
1765 ksm_do_scan(ksm_thread_pages_to_scan
);
1766 mutex_unlock(&ksm_thread_mutex
);
1770 if (ksmd_should_run()) {
1771 schedule_timeout_interruptible(
1772 msecs_to_jiffies(ksm_thread_sleep_millisecs
));
1774 wait_event_freezable(ksm_thread_wait
,
1775 ksmd_should_run() || kthread_should_stop());
1781 int ksm_madvise(struct vm_area_struct
*vma
, unsigned long start
,
1782 unsigned long end
, int advice
, unsigned long *vm_flags
)
1784 struct mm_struct
*mm
= vma
->vm_mm
;
1788 case MADV_MERGEABLE
:
1790 * Be somewhat over-protective for now!
1792 if (*vm_flags
& (VM_MERGEABLE
| VM_SHARED
| VM_MAYSHARE
|
1793 VM_PFNMAP
| VM_IO
| VM_DONTEXPAND
|
1794 VM_HUGETLB
| VM_MIXEDMAP
))
1795 return 0; /* just ignore the advice */
1798 if (*vm_flags
& VM_SAO
)
1802 if (!test_bit(MMF_VM_MERGEABLE
, &mm
->flags
)) {
1803 err
= __ksm_enter(mm
);
1808 *vm_flags
|= VM_MERGEABLE
;
1811 case MADV_UNMERGEABLE
:
1812 if (!(*vm_flags
& VM_MERGEABLE
))
1813 return 0; /* just ignore the advice */
1815 if (vma
->anon_vma
) {
1816 err
= unmerge_ksm_pages(vma
, start
, end
);
1821 *vm_flags
&= ~VM_MERGEABLE
;
1828 int __ksm_enter(struct mm_struct
*mm
)
1830 struct mm_slot
*mm_slot
;
1833 mm_slot
= alloc_mm_slot();
1837 /* Check ksm_run too? Would need tighter locking */
1838 needs_wakeup
= list_empty(&ksm_mm_head
.mm_list
);
1840 spin_lock(&ksm_mmlist_lock
);
1841 insert_to_mm_slots_hash(mm
, mm_slot
);
1843 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1844 * insert just behind the scanning cursor, to let the area settle
1845 * down a little; when fork is followed by immediate exec, we don't
1846 * want ksmd to waste time setting up and tearing down an rmap_list.
1848 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1849 * scanning cursor, otherwise KSM pages in newly forked mms will be
1850 * missed: then we might as well insert at the end of the list.
1852 if (ksm_run
& KSM_RUN_UNMERGE
)
1853 list_add_tail(&mm_slot
->mm_list
, &ksm_mm_head
.mm_list
);
1855 list_add_tail(&mm_slot
->mm_list
, &ksm_scan
.mm_slot
->mm_list
);
1856 spin_unlock(&ksm_mmlist_lock
);
1858 set_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
1862 wake_up_interruptible(&ksm_thread_wait
);
1867 void __ksm_exit(struct mm_struct
*mm
)
1869 struct mm_slot
*mm_slot
;
1870 int easy_to_free
= 0;
1873 * This process is exiting: if it's straightforward (as is the
1874 * case when ksmd was never running), free mm_slot immediately.
1875 * But if it's at the cursor or has rmap_items linked to it, use
1876 * mmap_sem to synchronize with any break_cows before pagetables
1877 * are freed, and leave the mm_slot on the list for ksmd to free.
1878 * Beware: ksm may already have noticed it exiting and freed the slot.
1881 spin_lock(&ksm_mmlist_lock
);
1882 mm_slot
= get_mm_slot(mm
);
1883 if (mm_slot
&& ksm_scan
.mm_slot
!= mm_slot
) {
1884 if (!mm_slot
->rmap_list
) {
1885 hash_del(&mm_slot
->link
);
1886 list_del(&mm_slot
->mm_list
);
1889 list_move(&mm_slot
->mm_list
,
1890 &ksm_scan
.mm_slot
->mm_list
);
1893 spin_unlock(&ksm_mmlist_lock
);
1896 free_mm_slot(mm_slot
);
1897 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
1899 } else if (mm_slot
) {
1900 down_write(&mm
->mmap_sem
);
1901 up_write(&mm
->mmap_sem
);
1905 struct page
*ksm_might_need_to_copy(struct page
*page
,
1906 struct vm_area_struct
*vma
, unsigned long address
)
1908 struct anon_vma
*anon_vma
= page_anon_vma(page
);
1909 struct page
*new_page
;
1911 if (PageKsm(page
)) {
1912 if (page_stable_node(page
) &&
1913 !(ksm_run
& KSM_RUN_UNMERGE
))
1914 return page
; /* no need to copy it */
1915 } else if (!anon_vma
) {
1916 return page
; /* no need to copy it */
1917 } else if (anon_vma
->root
== vma
->anon_vma
->root
&&
1918 page
->index
== linear_page_index(vma
, address
)) {
1919 return page
; /* still no need to copy it */
1921 if (!PageUptodate(page
))
1922 return page
; /* let do_swap_page report the error */
1924 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1926 copy_user_highpage(new_page
, page
, address
, vma
);
1928 SetPageDirty(new_page
);
1929 __SetPageUptodate(new_page
);
1930 __SetPageLocked(new_page
);
1936 void rmap_walk_ksm(struct page
*page
, struct rmap_walk_control
*rwc
)
1938 struct stable_node
*stable_node
;
1939 struct rmap_item
*rmap_item
;
1940 int search_new_forks
= 0;
1942 VM_BUG_ON_PAGE(!PageKsm(page
), page
);
1945 * Rely on the page lock to protect against concurrent modifications
1946 * to that page's node of the stable tree.
1948 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1950 stable_node
= page_stable_node(page
);
1954 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
1955 struct anon_vma
*anon_vma
= rmap_item
->anon_vma
;
1956 struct anon_vma_chain
*vmac
;
1957 struct vm_area_struct
*vma
;
1960 anon_vma_lock_read(anon_vma
);
1961 anon_vma_interval_tree_foreach(vmac
, &anon_vma
->rb_root
,
1965 if (rmap_item
->address
< vma
->vm_start
||
1966 rmap_item
->address
>= vma
->vm_end
)
1969 * Initially we examine only the vma which covers this
1970 * rmap_item; but later, if there is still work to do,
1971 * we examine covering vmas in other mms: in case they
1972 * were forked from the original since ksmd passed.
1974 if ((rmap_item
->mm
== vma
->vm_mm
) == search_new_forks
)
1977 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1980 if (!rwc
->rmap_one(page
, vma
,
1981 rmap_item
->address
, rwc
->arg
)) {
1982 anon_vma_unlock_read(anon_vma
);
1985 if (rwc
->done
&& rwc
->done(page
)) {
1986 anon_vma_unlock_read(anon_vma
);
1990 anon_vma_unlock_read(anon_vma
);
1992 if (!search_new_forks
++)
1996 #ifdef CONFIG_MIGRATION
1997 void ksm_migrate_page(struct page
*newpage
, struct page
*oldpage
)
1999 struct stable_node
*stable_node
;
2001 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
2002 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
2003 VM_BUG_ON_PAGE(newpage
->mapping
!= oldpage
->mapping
, newpage
);
2005 stable_node
= page_stable_node(newpage
);
2007 VM_BUG_ON_PAGE(stable_node
->kpfn
!= page_to_pfn(oldpage
), oldpage
);
2008 stable_node
->kpfn
= page_to_pfn(newpage
);
2010 * newpage->mapping was set in advance; now we need smp_wmb()
2011 * to make sure that the new stable_node->kpfn is visible
2012 * to get_ksm_page() before it can see that oldpage->mapping
2013 * has gone stale (or that PageSwapCache has been cleared).
2016 set_page_stable_node(oldpage
, NULL
);
2019 #endif /* CONFIG_MIGRATION */
2021 #ifdef CONFIG_MEMORY_HOTREMOVE
2022 static void wait_while_offlining(void)
2024 while (ksm_run
& KSM_RUN_OFFLINE
) {
2025 mutex_unlock(&ksm_thread_mutex
);
2026 wait_on_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
),
2027 TASK_UNINTERRUPTIBLE
);
2028 mutex_lock(&ksm_thread_mutex
);
2032 static void ksm_check_stable_tree(unsigned long start_pfn
,
2033 unsigned long end_pfn
)
2035 struct stable_node
*stable_node
, *next
;
2036 struct rb_node
*node
;
2039 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
2040 node
= rb_first(root_stable_tree
+ nid
);
2042 stable_node
= rb_entry(node
, struct stable_node
, node
);
2043 if (stable_node
->kpfn
>= start_pfn
&&
2044 stable_node
->kpfn
< end_pfn
) {
2046 * Don't get_ksm_page, page has already gone:
2047 * which is why we keep kpfn instead of page*
2049 remove_node_from_stable_tree(stable_node
);
2050 node
= rb_first(root_stable_tree
+ nid
);
2052 node
= rb_next(node
);
2056 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
2057 if (stable_node
->kpfn
>= start_pfn
&&
2058 stable_node
->kpfn
< end_pfn
)
2059 remove_node_from_stable_tree(stable_node
);
2064 static int ksm_memory_callback(struct notifier_block
*self
,
2065 unsigned long action
, void *arg
)
2067 struct memory_notify
*mn
= arg
;
2070 case MEM_GOING_OFFLINE
:
2072 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2073 * and remove_all_stable_nodes() while memory is going offline:
2074 * it is unsafe for them to touch the stable tree at this time.
2075 * But unmerge_ksm_pages(), rmap lookups and other entry points
2076 * which do not need the ksm_thread_mutex are all safe.
2078 mutex_lock(&ksm_thread_mutex
);
2079 ksm_run
|= KSM_RUN_OFFLINE
;
2080 mutex_unlock(&ksm_thread_mutex
);
2085 * Most of the work is done by page migration; but there might
2086 * be a few stable_nodes left over, still pointing to struct
2087 * pages which have been offlined: prune those from the tree,
2088 * otherwise get_ksm_page() might later try to access a
2089 * non-existent struct page.
2091 ksm_check_stable_tree(mn
->start_pfn
,
2092 mn
->start_pfn
+ mn
->nr_pages
);
2095 case MEM_CANCEL_OFFLINE
:
2096 mutex_lock(&ksm_thread_mutex
);
2097 ksm_run
&= ~KSM_RUN_OFFLINE
;
2098 mutex_unlock(&ksm_thread_mutex
);
2100 smp_mb(); /* wake_up_bit advises this */
2101 wake_up_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
));
2107 static void wait_while_offlining(void)
2110 #endif /* CONFIG_MEMORY_HOTREMOVE */
2114 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2117 #define KSM_ATTR_RO(_name) \
2118 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2119 #define KSM_ATTR(_name) \
2120 static struct kobj_attribute _name##_attr = \
2121 __ATTR(_name, 0644, _name##_show, _name##_store)
2123 static ssize_t
sleep_millisecs_show(struct kobject
*kobj
,
2124 struct kobj_attribute
*attr
, char *buf
)
2126 return sprintf(buf
, "%u\n", ksm_thread_sleep_millisecs
);
2129 static ssize_t
sleep_millisecs_store(struct kobject
*kobj
,
2130 struct kobj_attribute
*attr
,
2131 const char *buf
, size_t count
)
2133 unsigned long msecs
;
2136 err
= kstrtoul(buf
, 10, &msecs
);
2137 if (err
|| msecs
> UINT_MAX
)
2140 ksm_thread_sleep_millisecs
= msecs
;
2144 KSM_ATTR(sleep_millisecs
);
2146 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
2147 struct kobj_attribute
*attr
, char *buf
)
2149 return sprintf(buf
, "%u\n", ksm_thread_pages_to_scan
);
2152 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
2153 struct kobj_attribute
*attr
,
2154 const char *buf
, size_t count
)
2157 unsigned long nr_pages
;
2159 err
= kstrtoul(buf
, 10, &nr_pages
);
2160 if (err
|| nr_pages
> UINT_MAX
)
2163 ksm_thread_pages_to_scan
= nr_pages
;
2167 KSM_ATTR(pages_to_scan
);
2169 static ssize_t
run_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2172 return sprintf(buf
, "%lu\n", ksm_run
);
2175 static ssize_t
run_store(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2176 const char *buf
, size_t count
)
2179 unsigned long flags
;
2181 err
= kstrtoul(buf
, 10, &flags
);
2182 if (err
|| flags
> UINT_MAX
)
2184 if (flags
> KSM_RUN_UNMERGE
)
2188 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2189 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2190 * breaking COW to free the pages_shared (but leaves mm_slots
2191 * on the list for when ksmd may be set running again).
2194 mutex_lock(&ksm_thread_mutex
);
2195 wait_while_offlining();
2196 if (ksm_run
!= flags
) {
2198 if (flags
& KSM_RUN_UNMERGE
) {
2199 set_current_oom_origin();
2200 err
= unmerge_and_remove_all_rmap_items();
2201 clear_current_oom_origin();
2203 ksm_run
= KSM_RUN_STOP
;
2208 mutex_unlock(&ksm_thread_mutex
);
2210 if (flags
& KSM_RUN_MERGE
)
2211 wake_up_interruptible(&ksm_thread_wait
);
2218 static ssize_t
merge_across_nodes_show(struct kobject
*kobj
,
2219 struct kobj_attribute
*attr
, char *buf
)
2221 return sprintf(buf
, "%u\n", ksm_merge_across_nodes
);
2224 static ssize_t
merge_across_nodes_store(struct kobject
*kobj
,
2225 struct kobj_attribute
*attr
,
2226 const char *buf
, size_t count
)
2231 err
= kstrtoul(buf
, 10, &knob
);
2237 mutex_lock(&ksm_thread_mutex
);
2238 wait_while_offlining();
2239 if (ksm_merge_across_nodes
!= knob
) {
2240 if (ksm_pages_shared
|| remove_all_stable_nodes())
2242 else if (root_stable_tree
== one_stable_tree
) {
2243 struct rb_root
*buf
;
2245 * This is the first time that we switch away from the
2246 * default of merging across nodes: must now allocate
2247 * a buffer to hold as many roots as may be needed.
2248 * Allocate stable and unstable together:
2249 * MAXSMP NODES_SHIFT 10 will use 16kB.
2251 buf
= kcalloc(nr_node_ids
+ nr_node_ids
, sizeof(*buf
),
2253 /* Let us assume that RB_ROOT is NULL is zero */
2257 root_stable_tree
= buf
;
2258 root_unstable_tree
= buf
+ nr_node_ids
;
2259 /* Stable tree is empty but not the unstable */
2260 root_unstable_tree
[0] = one_unstable_tree
[0];
2264 ksm_merge_across_nodes
= knob
;
2265 ksm_nr_node_ids
= knob
? 1 : nr_node_ids
;
2268 mutex_unlock(&ksm_thread_mutex
);
2270 return err
? err
: count
;
2272 KSM_ATTR(merge_across_nodes
);
2275 static ssize_t
use_zero_pages_show(struct kobject
*kobj
,
2276 struct kobj_attribute
*attr
, char *buf
)
2278 return sprintf(buf
, "%u\n", ksm_use_zero_pages
);
2280 static ssize_t
use_zero_pages_store(struct kobject
*kobj
,
2281 struct kobj_attribute
*attr
,
2282 const char *buf
, size_t count
)
2287 err
= kstrtobool(buf
, &value
);
2291 ksm_use_zero_pages
= value
;
2295 KSM_ATTR(use_zero_pages
);
2297 static ssize_t
pages_shared_show(struct kobject
*kobj
,
2298 struct kobj_attribute
*attr
, char *buf
)
2300 return sprintf(buf
, "%lu\n", ksm_pages_shared
);
2302 KSM_ATTR_RO(pages_shared
);
2304 static ssize_t
pages_sharing_show(struct kobject
*kobj
,
2305 struct kobj_attribute
*attr
, char *buf
)
2307 return sprintf(buf
, "%lu\n", ksm_pages_sharing
);
2309 KSM_ATTR_RO(pages_sharing
);
2311 static ssize_t
pages_unshared_show(struct kobject
*kobj
,
2312 struct kobj_attribute
*attr
, char *buf
)
2314 return sprintf(buf
, "%lu\n", ksm_pages_unshared
);
2316 KSM_ATTR_RO(pages_unshared
);
2318 static ssize_t
pages_volatile_show(struct kobject
*kobj
,
2319 struct kobj_attribute
*attr
, char *buf
)
2321 long ksm_pages_volatile
;
2323 ksm_pages_volatile
= ksm_rmap_items
- ksm_pages_shared
2324 - ksm_pages_sharing
- ksm_pages_unshared
;
2326 * It was not worth any locking to calculate that statistic,
2327 * but it might therefore sometimes be negative: conceal that.
2329 if (ksm_pages_volatile
< 0)
2330 ksm_pages_volatile
= 0;
2331 return sprintf(buf
, "%ld\n", ksm_pages_volatile
);
2333 KSM_ATTR_RO(pages_volatile
);
2335 static ssize_t
full_scans_show(struct kobject
*kobj
,
2336 struct kobj_attribute
*attr
, char *buf
)
2338 return sprintf(buf
, "%lu\n", ksm_scan
.seqnr
);
2340 KSM_ATTR_RO(full_scans
);
2342 static struct attribute
*ksm_attrs
[] = {
2343 &sleep_millisecs_attr
.attr
,
2344 &pages_to_scan_attr
.attr
,
2346 &pages_shared_attr
.attr
,
2347 &pages_sharing_attr
.attr
,
2348 &pages_unshared_attr
.attr
,
2349 &pages_volatile_attr
.attr
,
2350 &full_scans_attr
.attr
,
2352 &merge_across_nodes_attr
.attr
,
2354 &use_zero_pages_attr
.attr
,
2358 static struct attribute_group ksm_attr_group
= {
2362 #endif /* CONFIG_SYSFS */
2364 static int __init
ksm_init(void)
2366 struct task_struct
*ksm_thread
;
2369 /* The correct value depends on page size and endianness */
2370 zero_checksum
= calc_checksum(ZERO_PAGE(0));
2371 /* Default to false for backwards compatibility */
2372 ksm_use_zero_pages
= false;
2374 err
= ksm_slab_init();
2378 ksm_thread
= kthread_run(ksm_scan_thread
, NULL
, "ksmd");
2379 if (IS_ERR(ksm_thread
)) {
2380 pr_err("ksm: creating kthread failed\n");
2381 err
= PTR_ERR(ksm_thread
);
2386 err
= sysfs_create_group(mm_kobj
, &ksm_attr_group
);
2388 pr_err("ksm: register sysfs failed\n");
2389 kthread_stop(ksm_thread
);
2393 ksm_run
= KSM_RUN_MERGE
; /* no way for user to start it */
2395 #endif /* CONFIG_SYSFS */
2397 #ifdef CONFIG_MEMORY_HOTREMOVE
2398 /* There is no significance to this priority 100 */
2399 hotplug_memory_notifier(ksm_memory_callback
, 100);
2408 subsys_initcall(ksm_init
);