1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/fs/binfmt_elf.c
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
13 #include <linux/module.h>
14 #include <linux/kernel.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
49 #define user_long_t long
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
60 static int load_elf_binary(struct linux_binprm
*bprm
);
63 static int load_elf_library(struct file
*);
65 #define load_elf_library NULL
69 * If we don't support core dumping, then supply a NULL so we
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params
*cprm
);
75 #define elf_core_dump NULL
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
81 #define ELF_MIN_ALIGN PAGE_SIZE
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS 0
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92 static struct linux_binfmt elf_format
= {
93 .module
= THIS_MODULE
,
94 .load_binary
= load_elf_binary
,
95 .load_shlib
= load_elf_library
,
96 .core_dump
= elf_core_dump
,
97 .min_coredump
= ELF_EXEC_PAGESIZE
,
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102 static int set_brk(unsigned long start
, unsigned long end
, int prot
)
104 start
= ELF_PAGEALIGN(start
);
105 end
= ELF_PAGEALIGN(end
);
108 * Map the last of the bss segment.
109 * If the header is requesting these pages to be
110 * executable, honour that (ppc32 needs this).
112 int error
= vm_brk_flags(start
, end
- start
,
113 prot
& PROT_EXEC
? VM_EXEC
: 0);
117 current
->mm
->start_brk
= current
->mm
->brk
= end
;
121 /* We need to explicitly zero any fractional pages
122 after the data section (i.e. bss). This would
123 contain the junk from the file that should not
126 static int padzero(unsigned long elf_bss
)
130 nbyte
= ELF_PAGEOFFSET(elf_bss
);
132 nbyte
= ELF_MIN_ALIGN
- nbyte
;
133 if (clear_user((void __user
*) elf_bss
, nbyte
))
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 (((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
154 #ifndef ELF_BASE_PLATFORM
156 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158 * will be copied to the user stack in the same manner as AT_PLATFORM.
160 #define ELF_BASE_PLATFORM NULL
164 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
165 unsigned long load_addr
, unsigned long interp_load_addr
)
167 unsigned long p
= bprm
->p
;
168 int argc
= bprm
->argc
;
169 int envc
= bprm
->envc
;
170 elf_addr_t __user
*sp
;
171 elf_addr_t __user
*u_platform
;
172 elf_addr_t __user
*u_base_platform
;
173 elf_addr_t __user
*u_rand_bytes
;
174 const char *k_platform
= ELF_PLATFORM
;
175 const char *k_base_platform
= ELF_BASE_PLATFORM
;
176 unsigned char k_rand_bytes
[16];
178 elf_addr_t
*elf_info
;
180 const struct cred
*cred
= current_cred();
181 struct vm_area_struct
*vma
;
184 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 * evictions by the processes running on the same package. One
186 * thing we can do is to shuffle the initial stack for them.
189 p
= arch_align_stack(p
);
192 * If this architecture has a platform capability string, copy it
193 * to userspace. In some cases (Sparc), this info is impossible
194 * for userspace to get any other way, in others (i386) it is
199 size_t len
= strlen(k_platform
) + 1;
201 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
202 if (__copy_to_user(u_platform
, k_platform
, len
))
207 * If this architecture has a "base" platform capability
208 * string, copy it to userspace.
210 u_base_platform
= NULL
;
211 if (k_base_platform
) {
212 size_t len
= strlen(k_base_platform
) + 1;
214 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
215 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
220 * Generate 16 random bytes for userspace PRNG seeding.
222 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
223 u_rand_bytes
= (elf_addr_t __user
*)
224 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
225 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
228 /* Create the ELF interpreter info */
229 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
230 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
233 elf_info[ei_index++] = id; \
234 elf_info[ei_index++] = val; \
239 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 * ARCH_DLINFO changes
246 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
247 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
248 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
249 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
250 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
251 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
252 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
253 NEW_AUX_ENT(AT_FLAGS
, 0);
254 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
255 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
256 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
257 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
258 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
259 NEW_AUX_ENT(AT_SECURE
, bprm
->secureexec
);
260 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
262 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
264 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
266 NEW_AUX_ENT(AT_PLATFORM
,
267 (elf_addr_t
)(unsigned long)u_platform
);
269 if (k_base_platform
) {
270 NEW_AUX_ENT(AT_BASE_PLATFORM
,
271 (elf_addr_t
)(unsigned long)u_base_platform
);
273 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
274 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
277 /* AT_NULL is zero; clear the rest too */
278 memset(&elf_info
[ei_index
], 0,
279 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
281 /* And advance past the AT_NULL entry. */
284 sp
= STACK_ADD(p
, ei_index
);
286 items
= (argc
+ 1) + (envc
+ 1) + 1;
287 bprm
->p
= STACK_ROUND(sp
, items
);
289 /* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
292 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
294 sp
= (elf_addr_t __user
*)bprm
->p
;
299 * Grow the stack manually; some architectures have a limit on how
300 * far ahead a user-space access may be in order to grow the stack.
302 vma
= find_extend_vma(current
->mm
, bprm
->p
);
306 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 if (__put_user(argc
, sp
++))
310 /* Populate list of argv pointers back to argv strings. */
311 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
314 if (__put_user((elf_addr_t
)p
, sp
++))
316 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
317 if (!len
|| len
> MAX_ARG_STRLEN
)
321 if (__put_user(0, sp
++))
323 current
->mm
->arg_end
= p
;
325 /* Populate list of envp pointers back to envp strings. */
326 current
->mm
->env_end
= current
->mm
->env_start
= p
;
329 if (__put_user((elf_addr_t
)p
, sp
++))
331 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
332 if (!len
|| len
> MAX_ARG_STRLEN
)
336 if (__put_user(0, sp
++))
338 current
->mm
->env_end
= p
;
340 /* Put the elf_info on the stack in the right place. */
341 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
348 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
349 const struct elf_phdr
*eppnt
, int prot
, int type
,
350 unsigned long total_size
)
352 unsigned long map_addr
;
353 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
354 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
355 addr
= ELF_PAGESTART(addr
);
356 size
= ELF_PAGEALIGN(size
);
358 /* mmap() will return -EINVAL if given a zero size, but a
359 * segment with zero filesize is perfectly valid */
364 * total_size is the size of the ELF (interpreter) image.
365 * The _first_ mmap needs to know the full size, otherwise
366 * randomization might put this image into an overlapping
367 * position with the ELF binary image. (since size < total_size)
368 * So we first map the 'big' image - and unmap the remainder at
369 * the end. (which unmap is needed for ELF images with holes.)
372 total_size
= ELF_PAGEALIGN(total_size
);
373 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
374 if (!BAD_ADDR(map_addr
))
375 vm_munmap(map_addr
+size
, total_size
-size
);
377 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
379 if ((type
& MAP_FIXED_NOREPLACE
) &&
380 PTR_ERR((void *)map_addr
) == -EEXIST
)
381 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 task_pid_nr(current
), current
->comm
, (void *)addr
);
387 #endif /* !elf_map */
389 static unsigned long total_mapping_size(const struct elf_phdr
*cmds
, int nr
)
391 int i
, first_idx
= -1, last_idx
= -1;
393 for (i
= 0; i
< nr
; i
++) {
394 if (cmds
[i
].p_type
== PT_LOAD
) {
403 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
404 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
408 * load_elf_phdrs() - load ELF program headers
409 * @elf_ex: ELF header of the binary whose program headers should be loaded
410 * @elf_file: the opened ELF binary file
412 * Loads ELF program headers from the binary file elf_file, which has the ELF
413 * header pointed to by elf_ex, into a newly allocated array. The caller is
414 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
416 static struct elf_phdr
*load_elf_phdrs(const struct elfhdr
*elf_ex
,
417 struct file
*elf_file
)
419 struct elf_phdr
*elf_phdata
= NULL
;
420 int retval
, err
= -1;
421 loff_t pos
= elf_ex
->e_phoff
;
425 * If the size of this structure has changed, then punt, since
426 * we will be doing the wrong thing.
428 if (elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
431 /* Sanity check the number of program headers... */
432 /* ...and their total size. */
433 size
= sizeof(struct elf_phdr
) * elf_ex
->e_phnum
;
434 if (size
== 0 || size
> 65536 || size
> ELF_MIN_ALIGN
)
437 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
441 /* Read in the program headers */
442 retval
= kernel_read(elf_file
, elf_phdata
, size
, &pos
);
443 if (retval
!= size
) {
444 err
= (retval
< 0) ? retval
: -EIO
;
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
461 * struct arch_elf_state - arch-specific ELF loading state
463 * This structure is used to preserve architecture specific data during
464 * the loading of an ELF file, throughout the checking of architecture
465 * specific ELF headers & through to the point where the ELF load is
466 * known to be proceeding (ie. SET_PERSONALITY).
468 * This implementation is a dummy for architectures which require no
471 struct arch_elf_state
{
474 #define INIT_ARCH_ELF_STATE {}
477 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478 * @ehdr: The main ELF header
479 * @phdr: The program header to check
480 * @elf: The open ELF file
481 * @is_interp: True if the phdr is from the interpreter of the ELF being
482 * loaded, else false.
483 * @state: Architecture-specific state preserved throughout the process
484 * of loading the ELF.
486 * Inspects the program header phdr to validate its correctness and/or
487 * suitability for the system. Called once per ELF program header in the
488 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
491 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492 * with that return code.
494 static inline int arch_elf_pt_proc(struct elfhdr
*ehdr
,
495 struct elf_phdr
*phdr
,
496 struct file
*elf
, bool is_interp
,
497 struct arch_elf_state
*state
)
499 /* Dummy implementation, always proceed */
504 * arch_check_elf() - check an ELF executable
505 * @ehdr: The main ELF header
506 * @has_interp: True if the ELF has an interpreter, else false.
507 * @interp_ehdr: The interpreter's ELF header
508 * @state: Architecture-specific state preserved throughout the process
509 * of loading the ELF.
511 * Provides a final opportunity for architecture code to reject the loading
512 * of the ELF & cause an exec syscall to return an error. This is called after
513 * all program headers to be checked by arch_elf_pt_proc have been.
515 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516 * with that return code.
518 static inline int arch_check_elf(struct elfhdr
*ehdr
, bool has_interp
,
519 struct elfhdr
*interp_ehdr
,
520 struct arch_elf_state
*state
)
522 /* Dummy implementation, always proceed */
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
528 static inline int make_prot(u32 p_flags
)
541 /* This is much more generalized than the library routine read function,
542 so we keep this separate. Technically the library read function
543 is only provided so that we can read a.out libraries that have
546 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
547 struct file
*interpreter
, unsigned long *interp_map_addr
,
548 unsigned long no_base
, struct elf_phdr
*interp_elf_phdata
)
550 struct elf_phdr
*eppnt
;
551 unsigned long load_addr
= 0;
552 int load_addr_set
= 0;
553 unsigned long last_bss
= 0, elf_bss
= 0;
555 unsigned long error
= ~0UL;
556 unsigned long total_size
;
559 /* First of all, some simple consistency checks */
560 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
561 interp_elf_ex
->e_type
!= ET_DYN
)
563 if (!elf_check_arch(interp_elf_ex
) ||
564 elf_check_fdpic(interp_elf_ex
))
566 if (!interpreter
->f_op
->mmap
)
569 total_size
= total_mapping_size(interp_elf_phdata
,
570 interp_elf_ex
->e_phnum
);
576 eppnt
= interp_elf_phdata
;
577 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
578 if (eppnt
->p_type
== PT_LOAD
) {
579 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
580 int elf_prot
= make_prot(eppnt
->p_flags
);
581 unsigned long vaddr
= 0;
582 unsigned long k
, map_addr
;
584 vaddr
= eppnt
->p_vaddr
;
585 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
586 elf_type
|= MAP_FIXED_NOREPLACE
;
587 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
590 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
591 eppnt
, elf_prot
, elf_type
, total_size
);
593 if (!*interp_map_addr
)
594 *interp_map_addr
= map_addr
;
596 if (BAD_ADDR(map_addr
))
599 if (!load_addr_set
&&
600 interp_elf_ex
->e_type
== ET_DYN
) {
601 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
606 * Check to see if the section's size will overflow the
607 * allowed task size. Note that p_filesz must always be
608 * <= p_memsize so it's only necessary to check p_memsz.
610 k
= load_addr
+ eppnt
->p_vaddr
;
612 eppnt
->p_filesz
> eppnt
->p_memsz
||
613 eppnt
->p_memsz
> TASK_SIZE
||
614 TASK_SIZE
- eppnt
->p_memsz
< k
) {
620 * Find the end of the file mapping for this phdr, and
621 * keep track of the largest address we see for this.
623 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
628 * Do the same thing for the memory mapping - between
629 * elf_bss and last_bss is the bss section.
631 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_memsz
;
640 * Now fill out the bss section: first pad the last page from
641 * the file up to the page boundary, and zero it from elf_bss
642 * up to the end of the page.
644 if (padzero(elf_bss
)) {
649 * Next, align both the file and mem bss up to the page size,
650 * since this is where elf_bss was just zeroed up to, and where
651 * last_bss will end after the vm_brk_flags() below.
653 elf_bss
= ELF_PAGEALIGN(elf_bss
);
654 last_bss
= ELF_PAGEALIGN(last_bss
);
655 /* Finally, if there is still more bss to allocate, do it. */
656 if (last_bss
> elf_bss
) {
657 error
= vm_brk_flags(elf_bss
, last_bss
- elf_bss
,
658 bss_prot
& PROT_EXEC
? VM_EXEC
: 0);
669 * These are the functions used to load ELF style executables and shared
670 * libraries. There is no binary dependent code anywhere else.
673 static int load_elf_binary(struct linux_binprm
*bprm
)
675 struct file
*interpreter
= NULL
; /* to shut gcc up */
676 unsigned long load_addr
= 0, load_bias
= 0;
677 int load_addr_set
= 0;
679 struct elf_phdr
*elf_ppnt
, *elf_phdata
, *interp_elf_phdata
= NULL
;
680 unsigned long elf_bss
, elf_brk
;
683 unsigned long elf_entry
;
684 unsigned long interp_load_addr
= 0;
685 unsigned long start_code
, end_code
, start_data
, end_data
;
686 unsigned long reloc_func_desc __maybe_unused
= 0;
687 int executable_stack
= EXSTACK_DEFAULT
;
689 struct elfhdr elf_ex
;
690 struct elfhdr interp_elf_ex
;
692 struct arch_elf_state arch_state
= INIT_ARCH_ELF_STATE
;
693 struct pt_regs
*regs
;
695 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
701 /* Get the exec-header */
702 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
705 /* First of all, some simple consistency checks */
706 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
709 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
711 if (!elf_check_arch(&loc
->elf_ex
))
713 if (elf_check_fdpic(&loc
->elf_ex
))
715 if (!bprm
->file
->f_op
->mmap
)
718 elf_phdata
= load_elf_phdrs(&loc
->elf_ex
, bprm
->file
);
722 elf_ppnt
= elf_phdata
;
723 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
724 char *elf_interpreter
;
727 if (elf_ppnt
->p_type
!= PT_INTERP
)
731 * This is the program interpreter used for shared libraries -
732 * for now assume that this is an a.out format binary.
735 if (elf_ppnt
->p_filesz
> PATH_MAX
|| elf_ppnt
->p_filesz
< 2)
739 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
, GFP_KERNEL
);
740 if (!elf_interpreter
)
743 pos
= elf_ppnt
->p_offset
;
744 retval
= kernel_read(bprm
->file
, elf_interpreter
,
745 elf_ppnt
->p_filesz
, &pos
);
746 if (retval
!= elf_ppnt
->p_filesz
) {
749 goto out_free_interp
;
751 /* make sure path is NULL terminated */
753 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
754 goto out_free_interp
;
756 interpreter
= open_exec(elf_interpreter
);
757 kfree(elf_interpreter
);
758 retval
= PTR_ERR(interpreter
);
759 if (IS_ERR(interpreter
))
763 * If the binary is not readable then enforce mm->dumpable = 0
764 * regardless of the interpreter's permissions.
766 would_dump(bprm
, interpreter
);
768 /* Get the exec headers */
770 retval
= kernel_read(interpreter
, &loc
->interp_elf_ex
,
771 sizeof(loc
->interp_elf_ex
), &pos
);
772 if (retval
!= sizeof(loc
->interp_elf_ex
)) {
775 goto out_free_dentry
;
781 kfree(elf_interpreter
);
785 elf_ppnt
= elf_phdata
;
786 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
787 switch (elf_ppnt
->p_type
) {
789 if (elf_ppnt
->p_flags
& PF_X
)
790 executable_stack
= EXSTACK_ENABLE_X
;
792 executable_stack
= EXSTACK_DISABLE_X
;
795 case PT_LOPROC
... PT_HIPROC
:
796 retval
= arch_elf_pt_proc(&loc
->elf_ex
, elf_ppnt
,
800 goto out_free_dentry
;
804 /* Some simple consistency checks for the interpreter */
807 /* Not an ELF interpreter */
808 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
809 goto out_free_dentry
;
810 /* Verify the interpreter has a valid arch */
811 if (!elf_check_arch(&loc
->interp_elf_ex
) ||
812 elf_check_fdpic(&loc
->interp_elf_ex
))
813 goto out_free_dentry
;
815 /* Load the interpreter program headers */
816 interp_elf_phdata
= load_elf_phdrs(&loc
->interp_elf_ex
,
818 if (!interp_elf_phdata
)
819 goto out_free_dentry
;
821 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
822 elf_ppnt
= interp_elf_phdata
;
823 for (i
= 0; i
< loc
->interp_elf_ex
.e_phnum
; i
++, elf_ppnt
++)
824 switch (elf_ppnt
->p_type
) {
825 case PT_LOPROC
... PT_HIPROC
:
826 retval
= arch_elf_pt_proc(&loc
->interp_elf_ex
,
827 elf_ppnt
, interpreter
,
830 goto out_free_dentry
;
836 * Allow arch code to reject the ELF at this point, whilst it's
837 * still possible to return an error to the code that invoked
840 retval
= arch_check_elf(&loc
->elf_ex
,
841 !!interpreter
, &loc
->interp_elf_ex
,
844 goto out_free_dentry
;
846 /* Flush all traces of the currently running executable */
847 retval
= flush_old_exec(bprm
);
849 goto out_free_dentry
;
851 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
852 may depend on the personality. */
853 SET_PERSONALITY2(loc
->elf_ex
, &arch_state
);
854 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
855 current
->personality
|= READ_IMPLIES_EXEC
;
857 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
858 current
->flags
|= PF_RANDOMIZE
;
860 setup_new_exec(bprm
);
861 install_exec_creds(bprm
);
863 /* Do this so that we can load the interpreter, if need be. We will
864 change some of these later */
865 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
868 goto out_free_dentry
;
878 /* Now we do a little grungy work by mmapping the ELF image into
879 the correct location in memory. */
880 for(i
= 0, elf_ppnt
= elf_phdata
;
881 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
882 int elf_prot
, elf_flags
;
883 unsigned long k
, vaddr
;
884 unsigned long total_size
= 0;
886 if (elf_ppnt
->p_type
!= PT_LOAD
)
889 if (unlikely (elf_brk
> elf_bss
)) {
892 /* There was a PT_LOAD segment with p_memsz > p_filesz
893 before this one. Map anonymous pages, if needed,
894 and clear the area. */
895 retval
= set_brk(elf_bss
+ load_bias
,
899 goto out_free_dentry
;
900 nbyte
= ELF_PAGEOFFSET(elf_bss
);
902 nbyte
= ELF_MIN_ALIGN
- nbyte
;
903 if (nbyte
> elf_brk
- elf_bss
)
904 nbyte
= elf_brk
- elf_bss
;
905 if (clear_user((void __user
*)elf_bss
+
908 * This bss-zeroing can fail if the ELF
909 * file specifies odd protections. So
910 * we don't check the return value
916 elf_prot
= make_prot(elf_ppnt
->p_flags
);
918 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
920 vaddr
= elf_ppnt
->p_vaddr
;
922 * If we are loading ET_EXEC or we have already performed
923 * the ET_DYN load_addr calculations, proceed normally.
925 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
926 elf_flags
|= MAP_FIXED
;
927 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
929 * This logic is run once for the first LOAD Program
930 * Header for ET_DYN binaries to calculate the
931 * randomization (load_bias) for all the LOAD
932 * Program Headers, and to calculate the entire
933 * size of the ELF mapping (total_size). (Note that
934 * load_addr_set is set to true later once the
935 * initial mapping is performed.)
937 * There are effectively two types of ET_DYN
938 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
939 * and loaders (ET_DYN without INTERP, since they
940 * _are_ the ELF interpreter). The loaders must
941 * be loaded away from programs since the program
942 * may otherwise collide with the loader (especially
943 * for ET_EXEC which does not have a randomized
944 * position). For example to handle invocations of
945 * "./ld.so someprog" to test out a new version of
946 * the loader, the subsequent program that the
947 * loader loads must avoid the loader itself, so
948 * they cannot share the same load range. Sufficient
949 * room for the brk must be allocated with the
950 * loader as well, since brk must be available with
953 * Therefore, programs are loaded offset from
954 * ELF_ET_DYN_BASE and loaders are loaded into the
955 * independently randomized mmap region (0 load_bias
956 * without MAP_FIXED).
959 load_bias
= ELF_ET_DYN_BASE
;
960 if (current
->flags
& PF_RANDOMIZE
)
961 load_bias
+= arch_mmap_rnd();
962 elf_flags
|= MAP_FIXED
;
967 * Since load_bias is used for all subsequent loading
968 * calculations, we must lower it by the first vaddr
969 * so that the remaining calculations based on the
970 * ELF vaddrs will be correctly offset. The result
971 * is then page aligned.
973 load_bias
= ELF_PAGESTART(load_bias
- vaddr
);
975 total_size
= total_mapping_size(elf_phdata
,
976 loc
->elf_ex
.e_phnum
);
979 goto out_free_dentry
;
983 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
984 elf_prot
, elf_flags
, total_size
);
985 if (BAD_ADDR(error
)) {
986 retval
= IS_ERR((void *)error
) ?
987 PTR_ERR((void*)error
) : -EINVAL
;
988 goto out_free_dentry
;
991 if (!load_addr_set
) {
993 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
994 if (loc
->elf_ex
.e_type
== ET_DYN
) {
996 ELF_PAGESTART(load_bias
+ vaddr
);
997 load_addr
+= load_bias
;
998 reloc_func_desc
= load_bias
;
1001 k
= elf_ppnt
->p_vaddr
;
1008 * Check to see if the section's size will overflow the
1009 * allowed task size. Note that p_filesz must always be
1010 * <= p_memsz so it is only necessary to check p_memsz.
1012 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
1013 elf_ppnt
->p_memsz
> TASK_SIZE
||
1014 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
1015 /* set_brk can never work. Avoid overflows. */
1017 goto out_free_dentry
;
1020 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
1024 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
1028 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
1030 bss_prot
= elf_prot
;
1035 loc
->elf_ex
.e_entry
+= load_bias
;
1036 elf_bss
+= load_bias
;
1037 elf_brk
+= load_bias
;
1038 start_code
+= load_bias
;
1039 end_code
+= load_bias
;
1040 start_data
+= load_bias
;
1041 end_data
+= load_bias
;
1043 /* Calling set_brk effectively mmaps the pages that we need
1044 * for the bss and break sections. We must do this before
1045 * mapping in the interpreter, to make sure it doesn't wind
1046 * up getting placed where the bss needs to go.
1048 retval
= set_brk(elf_bss
, elf_brk
, bss_prot
);
1050 goto out_free_dentry
;
1051 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
1052 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
1053 goto out_free_dentry
;
1057 unsigned long interp_map_addr
= 0;
1059 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
1062 load_bias
, interp_elf_phdata
);
1063 if (!IS_ERR((void *)elf_entry
)) {
1065 * load_elf_interp() returns relocation
1068 interp_load_addr
= elf_entry
;
1069 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
1071 if (BAD_ADDR(elf_entry
)) {
1072 retval
= IS_ERR((void *)elf_entry
) ?
1073 (int)elf_entry
: -EINVAL
;
1074 goto out_free_dentry
;
1076 reloc_func_desc
= interp_load_addr
;
1078 allow_write_access(interpreter
);
1081 elf_entry
= loc
->elf_ex
.e_entry
;
1082 if (BAD_ADDR(elf_entry
)) {
1084 goto out_free_dentry
;
1088 kfree(interp_elf_phdata
);
1091 set_binfmt(&elf_format
);
1093 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1094 retval
= arch_setup_additional_pages(bprm
, !!interpreter
);
1097 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1099 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
1100 load_addr
, interp_load_addr
);
1103 current
->mm
->end_code
= end_code
;
1104 current
->mm
->start_code
= start_code
;
1105 current
->mm
->start_data
= start_data
;
1106 current
->mm
->end_data
= end_data
;
1107 current
->mm
->start_stack
= bprm
->p
;
1109 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
1111 * For architectures with ELF randomization, when executing
1112 * a loader directly (i.e. no interpreter listed in ELF
1113 * headers), move the brk area out of the mmap region
1114 * (since it grows up, and may collide early with the stack
1115 * growing down), and into the unused ELF_ET_DYN_BASE region.
1117 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE
) &&
1118 loc
->elf_ex
.e_type
== ET_DYN
&& !interpreter
)
1119 current
->mm
->brk
= current
->mm
->start_brk
=
1122 current
->mm
->brk
= current
->mm
->start_brk
=
1123 arch_randomize_brk(current
->mm
);
1124 #ifdef compat_brk_randomized
1125 current
->brk_randomized
= 1;
1129 if (current
->personality
& MMAP_PAGE_ZERO
) {
1130 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1131 and some applications "depend" upon this behavior.
1132 Since we do not have the power to recompile these, we
1133 emulate the SVr4 behavior. Sigh. */
1134 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
1135 MAP_FIXED
| MAP_PRIVATE
, 0);
1138 regs
= current_pt_regs();
1139 #ifdef ELF_PLAT_INIT
1141 * The ABI may specify that certain registers be set up in special
1142 * ways (on i386 %edx is the address of a DT_FINI function, for
1143 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1144 * that the e_entry field is the address of the function descriptor
1145 * for the startup routine, rather than the address of the startup
1146 * routine itself. This macro performs whatever initialization to
1147 * the regs structure is required as well as any relocations to the
1148 * function descriptor entries when executing dynamically links apps.
1150 ELF_PLAT_INIT(regs
, reloc_func_desc
);
1153 finalize_exec(bprm
);
1154 start_thread(regs
, elf_entry
, bprm
->p
);
1163 kfree(interp_elf_phdata
);
1164 allow_write_access(interpreter
);
1172 #ifdef CONFIG_USELIB
1173 /* This is really simpleminded and specialized - we are loading an
1174 a.out library that is given an ELF header. */
1175 static int load_elf_library(struct file
*file
)
1177 struct elf_phdr
*elf_phdata
;
1178 struct elf_phdr
*eppnt
;
1179 unsigned long elf_bss
, bss
, len
;
1180 int retval
, error
, i
, j
;
1181 struct elfhdr elf_ex
;
1185 retval
= kernel_read(file
, &elf_ex
, sizeof(elf_ex
), &pos
);
1186 if (retval
!= sizeof(elf_ex
))
1189 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1192 /* First of all, some simple consistency checks */
1193 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1194 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1196 if (elf_check_fdpic(&elf_ex
))
1199 /* Now read in all of the header information */
1201 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1202 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1205 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1211 pos
= elf_ex
.e_phoff
;
1212 retval
= kernel_read(file
, eppnt
, j
, &pos
);
1216 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1217 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1222 while (eppnt
->p_type
!= PT_LOAD
)
1225 /* Now use mmap to map the library into memory. */
1226 error
= vm_mmap(file
,
1227 ELF_PAGESTART(eppnt
->p_vaddr
),
1229 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1230 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1231 MAP_FIXED_NOREPLACE
| MAP_PRIVATE
| MAP_DENYWRITE
,
1233 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1234 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1237 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1238 if (padzero(elf_bss
)) {
1243 len
= ELF_PAGEALIGN(eppnt
->p_filesz
+ eppnt
->p_vaddr
);
1244 bss
= ELF_PAGEALIGN(eppnt
->p_memsz
+ eppnt
->p_vaddr
);
1246 error
= vm_brk(len
, bss
- len
);
1257 #endif /* #ifdef CONFIG_USELIB */
1259 #ifdef CONFIG_ELF_CORE
1263 * Modelled on fs/exec.c:aout_core_dump()
1264 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1268 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1269 * that are useful for post-mortem analysis are included in every core dump.
1270 * In that way we ensure that the core dump is fully interpretable later
1271 * without matching up the same kernel and hardware config to see what PC values
1272 * meant. These special mappings include - vDSO, vsyscall, and other
1273 * architecture specific mappings
1275 static bool always_dump_vma(struct vm_area_struct
*vma
)
1277 /* Any vsyscall mappings? */
1278 if (vma
== get_gate_vma(vma
->vm_mm
))
1282 * Assume that all vmas with a .name op should always be dumped.
1283 * If this changes, a new vm_ops field can easily be added.
1285 if (vma
->vm_ops
&& vma
->vm_ops
->name
&& vma
->vm_ops
->name(vma
))
1289 * arch_vma_name() returns non-NULL for special architecture mappings,
1290 * such as vDSO sections.
1292 if (arch_vma_name(vma
))
1299 * Decide what to dump of a segment, part, all or none.
1301 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1302 unsigned long mm_flags
)
1304 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1306 /* always dump the vdso and vsyscall sections */
1307 if (always_dump_vma(vma
))
1310 if (vma
->vm_flags
& VM_DONTDUMP
)
1313 /* support for DAX */
1314 if (vma_is_dax(vma
)) {
1315 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_SHARED
))
1317 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_PRIVATE
))
1322 /* Hugetlb memory check */
1323 if (vma
->vm_flags
& VM_HUGETLB
) {
1324 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1326 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1331 /* Do not dump I/O mapped devices or special mappings */
1332 if (vma
->vm_flags
& VM_IO
)
1335 /* By default, dump shared memory if mapped from an anonymous file. */
1336 if (vma
->vm_flags
& VM_SHARED
) {
1337 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1338 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1343 /* Dump segments that have been written to. */
1344 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1346 if (vma
->vm_file
== NULL
)
1349 if (FILTER(MAPPED_PRIVATE
))
1353 * If this looks like the beginning of a DSO or executable mapping,
1354 * check for an ELF header. If we find one, dump the first page to
1355 * aid in determining what was mapped here.
1357 if (FILTER(ELF_HEADERS
) &&
1358 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1359 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1361 mm_segment_t fs
= get_fs();
1363 * Doing it this way gets the constant folded by GCC.
1367 char elfmag
[SELFMAG
];
1369 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1370 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1371 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1372 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1373 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1375 * Switch to the user "segment" for get_user(),
1376 * then put back what elf_core_dump() had in place.
1379 if (unlikely(get_user(word
, header
)))
1382 if (word
== magic
.cmp
)
1391 return vma
->vm_end
- vma
->vm_start
;
1394 /* An ELF note in memory */
1399 unsigned int datasz
;
1403 static int notesize(struct memelfnote
*en
)
1407 sz
= sizeof(struct elf_note
);
1408 sz
+= roundup(strlen(en
->name
) + 1, 4);
1409 sz
+= roundup(en
->datasz
, 4);
1414 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1417 en
.n_namesz
= strlen(men
->name
) + 1;
1418 en
.n_descsz
= men
->datasz
;
1419 en
.n_type
= men
->type
;
1421 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1422 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1423 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1426 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1427 u16 machine
, u32 flags
)
1429 memset(elf
, 0, sizeof(*elf
));
1431 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1432 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1433 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1434 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1435 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1437 elf
->e_type
= ET_CORE
;
1438 elf
->e_machine
= machine
;
1439 elf
->e_version
= EV_CURRENT
;
1440 elf
->e_phoff
= sizeof(struct elfhdr
);
1441 elf
->e_flags
= flags
;
1442 elf
->e_ehsize
= sizeof(struct elfhdr
);
1443 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1444 elf
->e_phnum
= segs
;
1447 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1449 phdr
->p_type
= PT_NOTE
;
1450 phdr
->p_offset
= offset
;
1453 phdr
->p_filesz
= sz
;
1459 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1460 unsigned int sz
, void *data
)
1469 * fill up all the fields in prstatus from the given task struct, except
1470 * registers which need to be filled up separately.
1472 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1473 struct task_struct
*p
, long signr
)
1475 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1476 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1477 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1479 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1481 prstatus
->pr_pid
= task_pid_vnr(p
);
1482 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1483 prstatus
->pr_sid
= task_session_vnr(p
);
1484 if (thread_group_leader(p
)) {
1485 struct task_cputime cputime
;
1488 * This is the record for the group leader. It shows the
1489 * group-wide total, not its individual thread total.
1491 thread_group_cputime(p
, &cputime
);
1492 prstatus
->pr_utime
= ns_to_timeval(cputime
.utime
);
1493 prstatus
->pr_stime
= ns_to_timeval(cputime
.stime
);
1497 task_cputime(p
, &utime
, &stime
);
1498 prstatus
->pr_utime
= ns_to_timeval(utime
);
1499 prstatus
->pr_stime
= ns_to_timeval(stime
);
1502 prstatus
->pr_cutime
= ns_to_timeval(p
->signal
->cutime
);
1503 prstatus
->pr_cstime
= ns_to_timeval(p
->signal
->cstime
);
1506 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1507 struct mm_struct
*mm
)
1509 const struct cred
*cred
;
1510 unsigned int i
, len
;
1512 /* first copy the parameters from user space */
1513 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1515 len
= mm
->arg_end
- mm
->arg_start
;
1516 if (len
>= ELF_PRARGSZ
)
1517 len
= ELF_PRARGSZ
-1;
1518 if (copy_from_user(&psinfo
->pr_psargs
,
1519 (const char __user
*)mm
->arg_start
, len
))
1521 for(i
= 0; i
< len
; i
++)
1522 if (psinfo
->pr_psargs
[i
] == 0)
1523 psinfo
->pr_psargs
[i
] = ' ';
1524 psinfo
->pr_psargs
[len
] = 0;
1527 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1529 psinfo
->pr_pid
= task_pid_vnr(p
);
1530 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1531 psinfo
->pr_sid
= task_session_vnr(p
);
1533 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1534 psinfo
->pr_state
= i
;
1535 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1536 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1537 psinfo
->pr_nice
= task_nice(p
);
1538 psinfo
->pr_flag
= p
->flags
;
1540 cred
= __task_cred(p
);
1541 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1542 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1544 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1549 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1551 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1555 while (auxv
[i
- 2] != AT_NULL
);
1556 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1559 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1560 const kernel_siginfo_t
*siginfo
)
1562 mm_segment_t old_fs
= get_fs();
1564 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1566 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1569 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1571 * Format of NT_FILE note:
1573 * long count -- how many files are mapped
1574 * long page_size -- units for file_ofs
1575 * array of [COUNT] elements of
1579 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1581 static int fill_files_note(struct memelfnote
*note
)
1583 struct vm_area_struct
*vma
;
1584 unsigned count
, size
, names_ofs
, remaining
, n
;
1586 user_long_t
*start_end_ofs
;
1587 char *name_base
, *name_curpos
;
1589 /* *Estimated* file count and total data size needed */
1590 count
= current
->mm
->map_count
;
1591 if (count
> UINT_MAX
/ 64)
1595 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1597 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1599 size
= round_up(size
, PAGE_SIZE
);
1600 data
= kvmalloc(size
, GFP_KERNEL
);
1601 if (ZERO_OR_NULL_PTR(data
))
1604 start_end_ofs
= data
+ 2;
1605 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1606 remaining
= size
- names_ofs
;
1608 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1610 const char *filename
;
1612 file
= vma
->vm_file
;
1615 filename
= file_path(file
, name_curpos
, remaining
);
1616 if (IS_ERR(filename
)) {
1617 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1619 size
= size
* 5 / 4;
1625 /* file_path() fills at the end, move name down */
1626 /* n = strlen(filename) + 1: */
1627 n
= (name_curpos
+ remaining
) - filename
;
1628 remaining
= filename
- name_curpos
;
1629 memmove(name_curpos
, filename
, n
);
1632 *start_end_ofs
++ = vma
->vm_start
;
1633 *start_end_ofs
++ = vma
->vm_end
;
1634 *start_end_ofs
++ = vma
->vm_pgoff
;
1638 /* Now we know exact count of files, can store it */
1640 data
[1] = PAGE_SIZE
;
1642 * Count usually is less than current->mm->map_count,
1643 * we need to move filenames down.
1645 n
= current
->mm
->map_count
- count
;
1647 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1648 memmove(name_base
- shift_bytes
, name_base
,
1649 name_curpos
- name_base
);
1650 name_curpos
-= shift_bytes
;
1653 size
= name_curpos
- (char *)data
;
1654 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1658 #ifdef CORE_DUMP_USE_REGSET
1659 #include <linux/regset.h>
1661 struct elf_thread_core_info
{
1662 struct elf_thread_core_info
*next
;
1663 struct task_struct
*task
;
1664 struct elf_prstatus prstatus
;
1665 struct memelfnote notes
[0];
1668 struct elf_note_info
{
1669 struct elf_thread_core_info
*thread
;
1670 struct memelfnote psinfo
;
1671 struct memelfnote signote
;
1672 struct memelfnote auxv
;
1673 struct memelfnote files
;
1674 user_siginfo_t csigdata
;
1680 * When a regset has a writeback hook, we call it on each thread before
1681 * dumping user memory. On register window machines, this makes sure the
1682 * user memory backing the register data is up to date before we read it.
1684 static void do_thread_regset_writeback(struct task_struct
*task
,
1685 const struct user_regset
*regset
)
1687 if (regset
->writeback
)
1688 regset
->writeback(task
, regset
, 1);
1691 #ifndef PRSTATUS_SIZE
1692 #define PRSTATUS_SIZE(S, R) sizeof(S)
1695 #ifndef SET_PR_FPVALID
1696 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1699 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1700 const struct user_regset_view
*view
,
1701 long signr
, size_t *total
)
1704 unsigned int regset0_size
= regset_size(t
->task
, &view
->regsets
[0]);
1707 * NT_PRSTATUS is the one special case, because the regset data
1708 * goes into the pr_reg field inside the note contents, rather
1709 * than being the whole note contents. We fill the reset in here.
1710 * We assume that regset 0 is NT_PRSTATUS.
1712 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1713 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0], 0, regset0_size
,
1714 &t
->prstatus
.pr_reg
, NULL
);
1716 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1717 PRSTATUS_SIZE(t
->prstatus
, regset0_size
), &t
->prstatus
);
1718 *total
+= notesize(&t
->notes
[0]);
1720 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1723 * Each other regset might generate a note too. For each regset
1724 * that has no core_note_type or is inactive, we leave t->notes[i]
1725 * all zero and we'll know to skip writing it later.
1727 for (i
= 1; i
< view
->n
; ++i
) {
1728 const struct user_regset
*regset
= &view
->regsets
[i
];
1729 do_thread_regset_writeback(t
->task
, regset
);
1730 if (regset
->core_note_type
&& regset
->get
&&
1731 (!regset
->active
|| regset
->active(t
->task
, regset
) > 0)) {
1733 size_t size
= regset_size(t
->task
, regset
);
1734 void *data
= kmalloc(size
, GFP_KERNEL
);
1735 if (unlikely(!data
))
1737 ret
= regset
->get(t
->task
, regset
,
1738 0, size
, data
, NULL
);
1742 if (regset
->core_note_type
!= NT_PRFPREG
)
1743 fill_note(&t
->notes
[i
], "LINUX",
1744 regset
->core_note_type
,
1747 SET_PR_FPVALID(&t
->prstatus
,
1749 fill_note(&t
->notes
[i
], "CORE",
1750 NT_PRFPREG
, size
, data
);
1752 *total
+= notesize(&t
->notes
[i
]);
1760 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1761 struct elf_note_info
*info
,
1762 const kernel_siginfo_t
*siginfo
, struct pt_regs
*regs
)
1764 struct task_struct
*dump_task
= current
;
1765 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1766 struct elf_thread_core_info
*t
;
1767 struct elf_prpsinfo
*psinfo
;
1768 struct core_thread
*ct
;
1772 info
->thread
= NULL
;
1774 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1775 if (psinfo
== NULL
) {
1776 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1780 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1783 * Figure out how many notes we're going to need for each thread.
1785 info
->thread_notes
= 0;
1786 for (i
= 0; i
< view
->n
; ++i
)
1787 if (view
->regsets
[i
].core_note_type
!= 0)
1788 ++info
->thread_notes
;
1791 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1792 * since it is our one special case.
1794 if (unlikely(info
->thread_notes
== 0) ||
1795 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1801 * Initialize the ELF file header.
1803 fill_elf_header(elf
, phdrs
,
1804 view
->e_machine
, view
->e_flags
);
1807 * Allocate a structure for each thread.
1809 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1810 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1811 notes
[info
->thread_notes
]),
1817 if (ct
->task
== dump_task
|| !info
->thread
) {
1818 t
->next
= info
->thread
;
1822 * Make sure to keep the original task at
1823 * the head of the list.
1825 t
->next
= info
->thread
->next
;
1826 info
->thread
->next
= t
;
1831 * Now fill in each thread's information.
1833 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1834 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1838 * Fill in the two process-wide notes.
1840 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1841 info
->size
+= notesize(&info
->psinfo
);
1843 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1844 info
->size
+= notesize(&info
->signote
);
1846 fill_auxv_note(&info
->auxv
, current
->mm
);
1847 info
->size
+= notesize(&info
->auxv
);
1849 if (fill_files_note(&info
->files
) == 0)
1850 info
->size
+= notesize(&info
->files
);
1855 static size_t get_note_info_size(struct elf_note_info
*info
)
1861 * Write all the notes for each thread. When writing the first thread, the
1862 * process-wide notes are interleaved after the first thread-specific note.
1864 static int write_note_info(struct elf_note_info
*info
,
1865 struct coredump_params
*cprm
)
1868 struct elf_thread_core_info
*t
= info
->thread
;
1873 if (!writenote(&t
->notes
[0], cprm
))
1876 if (first
&& !writenote(&info
->psinfo
, cprm
))
1878 if (first
&& !writenote(&info
->signote
, cprm
))
1880 if (first
&& !writenote(&info
->auxv
, cprm
))
1882 if (first
&& info
->files
.data
&&
1883 !writenote(&info
->files
, cprm
))
1886 for (i
= 1; i
< info
->thread_notes
; ++i
)
1887 if (t
->notes
[i
].data
&&
1888 !writenote(&t
->notes
[i
], cprm
))
1898 static void free_note_info(struct elf_note_info
*info
)
1900 struct elf_thread_core_info
*threads
= info
->thread
;
1903 struct elf_thread_core_info
*t
= threads
;
1905 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1906 for (i
= 1; i
< info
->thread_notes
; ++i
)
1907 kfree(t
->notes
[i
].data
);
1910 kfree(info
->psinfo
.data
);
1911 kvfree(info
->files
.data
);
1916 /* Here is the structure in which status of each thread is captured. */
1917 struct elf_thread_status
1919 struct list_head list
;
1920 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1921 elf_fpregset_t fpu
; /* NT_PRFPREG */
1922 struct task_struct
*thread
;
1923 #ifdef ELF_CORE_COPY_XFPREGS
1924 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1926 struct memelfnote notes
[3];
1931 * In order to add the specific thread information for the elf file format,
1932 * we need to keep a linked list of every threads pr_status and then create
1933 * a single section for them in the final core file.
1935 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1938 struct task_struct
*p
= t
->thread
;
1941 fill_prstatus(&t
->prstatus
, p
, signr
);
1942 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1944 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1947 sz
+= notesize(&t
->notes
[0]);
1949 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1951 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1954 sz
+= notesize(&t
->notes
[1]);
1957 #ifdef ELF_CORE_COPY_XFPREGS
1958 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1959 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1960 sizeof(t
->xfpu
), &t
->xfpu
);
1962 sz
+= notesize(&t
->notes
[2]);
1968 struct elf_note_info
{
1969 struct memelfnote
*notes
;
1970 struct memelfnote
*notes_files
;
1971 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1972 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1973 struct list_head thread_list
;
1974 elf_fpregset_t
*fpu
;
1975 #ifdef ELF_CORE_COPY_XFPREGS
1976 elf_fpxregset_t
*xfpu
;
1978 user_siginfo_t csigdata
;
1979 int thread_status_size
;
1983 static int elf_note_info_init(struct elf_note_info
*info
)
1985 memset(info
, 0, sizeof(*info
));
1986 INIT_LIST_HEAD(&info
->thread_list
);
1988 /* Allocate space for ELF notes */
1989 info
->notes
= kmalloc_array(8, sizeof(struct memelfnote
), GFP_KERNEL
);
1992 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1995 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1996 if (!info
->prstatus
)
1998 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
2001 #ifdef ELF_CORE_COPY_XFPREGS
2002 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
2009 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
2010 struct elf_note_info
*info
,
2011 const kernel_siginfo_t
*siginfo
, struct pt_regs
*regs
)
2013 struct core_thread
*ct
;
2014 struct elf_thread_status
*ets
;
2016 if (!elf_note_info_init(info
))
2019 for (ct
= current
->mm
->core_state
->dumper
.next
;
2020 ct
; ct
= ct
->next
) {
2021 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
2025 ets
->thread
= ct
->task
;
2026 list_add(&ets
->list
, &info
->thread_list
);
2029 list_for_each_entry(ets
, &info
->thread_list
, list
) {
2032 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
2033 info
->thread_status_size
+= sz
;
2035 /* now collect the dump for the current */
2036 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
2037 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
2038 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
2041 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
2044 * Set up the notes in similar form to SVR4 core dumps made
2045 * with info from their /proc.
2048 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
2049 sizeof(*info
->prstatus
), info
->prstatus
);
2050 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
2051 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
2052 sizeof(*info
->psinfo
), info
->psinfo
);
2054 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
2055 fill_auxv_note(info
->notes
+ 3, current
->mm
);
2058 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
2059 info
->notes_files
= info
->notes
+ info
->numnote
;
2063 /* Try to dump the FPU. */
2064 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
2066 if (info
->prstatus
->pr_fpvalid
)
2067 fill_note(info
->notes
+ info
->numnote
++,
2068 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
2069 #ifdef ELF_CORE_COPY_XFPREGS
2070 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
2071 fill_note(info
->notes
+ info
->numnote
++,
2072 "LINUX", ELF_CORE_XFPREG_TYPE
,
2073 sizeof(*info
->xfpu
), info
->xfpu
);
2079 static size_t get_note_info_size(struct elf_note_info
*info
)
2084 for (i
= 0; i
< info
->numnote
; i
++)
2085 sz
+= notesize(info
->notes
+ i
);
2087 sz
+= info
->thread_status_size
;
2092 static int write_note_info(struct elf_note_info
*info
,
2093 struct coredump_params
*cprm
)
2095 struct elf_thread_status
*ets
;
2098 for (i
= 0; i
< info
->numnote
; i
++)
2099 if (!writenote(info
->notes
+ i
, cprm
))
2102 /* write out the thread status notes section */
2103 list_for_each_entry(ets
, &info
->thread_list
, list
) {
2104 for (i
= 0; i
< ets
->num_notes
; i
++)
2105 if (!writenote(&ets
->notes
[i
], cprm
))
2112 static void free_note_info(struct elf_note_info
*info
)
2114 while (!list_empty(&info
->thread_list
)) {
2115 struct list_head
*tmp
= info
->thread_list
.next
;
2117 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
2120 /* Free data possibly allocated by fill_files_note(): */
2121 if (info
->notes_files
)
2122 kvfree(info
->notes_files
->data
);
2124 kfree(info
->prstatus
);
2125 kfree(info
->psinfo
);
2128 #ifdef ELF_CORE_COPY_XFPREGS
2135 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
2136 struct vm_area_struct
*gate_vma
)
2138 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
2145 * Helper function for iterating across a vma list. It ensures that the caller
2146 * will visit `gate_vma' prior to terminating the search.
2148 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
2149 struct vm_area_struct
*gate_vma
)
2151 struct vm_area_struct
*ret
;
2153 ret
= this_vma
->vm_next
;
2156 if (this_vma
== gate_vma
)
2161 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
2162 elf_addr_t e_shoff
, int segs
)
2164 elf
->e_shoff
= e_shoff
;
2165 elf
->e_shentsize
= sizeof(*shdr4extnum
);
2167 elf
->e_shstrndx
= SHN_UNDEF
;
2169 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2171 shdr4extnum
->sh_type
= SHT_NULL
;
2172 shdr4extnum
->sh_size
= elf
->e_shnum
;
2173 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2174 shdr4extnum
->sh_info
= segs
;
2180 * This is a two-pass process; first we find the offsets of the bits,
2181 * and then they are actually written out. If we run out of core limit
2184 static int elf_core_dump(struct coredump_params
*cprm
)
2189 size_t vma_data_size
= 0;
2190 struct vm_area_struct
*vma
, *gate_vma
;
2191 struct elfhdr
*elf
= NULL
;
2192 loff_t offset
= 0, dataoff
;
2193 struct elf_note_info info
= { };
2194 struct elf_phdr
*phdr4note
= NULL
;
2195 struct elf_shdr
*shdr4extnum
= NULL
;
2198 elf_addr_t
*vma_filesz
= NULL
;
2201 * We no longer stop all VM operations.
2203 * This is because those proceses that could possibly change map_count
2204 * or the mmap / vma pages are now blocked in do_exit on current
2205 * finishing this core dump.
2207 * Only ptrace can touch these memory addresses, but it doesn't change
2208 * the map_count or the pages allocated. So no possibility of crashing
2209 * exists while dumping the mm->vm_next areas to the core file.
2212 /* alloc memory for large data structures: too large to be on stack */
2213 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2217 * The number of segs are recored into ELF header as 16bit value.
2218 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2220 segs
= current
->mm
->map_count
;
2221 segs
+= elf_core_extra_phdrs();
2223 gate_vma
= get_gate_vma(current
->mm
);
2224 if (gate_vma
!= NULL
)
2227 /* for notes section */
2230 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2231 * this, kernel supports extended numbering. Have a look at
2232 * include/linux/elf.h for further information. */
2233 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2236 * Collect all the non-memory information about the process for the
2237 * notes. This also sets up the file header.
2239 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2247 offset
+= sizeof(*elf
); /* Elf header */
2248 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2250 /* Write notes phdr entry */
2252 size_t sz
= get_note_info_size(&info
);
2254 sz
+= elf_coredump_extra_notes_size();
2256 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2260 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2264 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2266 if (segs
- 1 > ULONG_MAX
/ sizeof(*vma_filesz
))
2268 vma_filesz
= kvmalloc(array_size(sizeof(*vma_filesz
), (segs
- 1)),
2270 if (ZERO_OR_NULL_PTR(vma_filesz
))
2273 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2274 vma
= next_vma(vma
, gate_vma
)) {
2275 unsigned long dump_size
;
2277 dump_size
= vma_dump_size(vma
, cprm
->mm_flags
);
2278 vma_filesz
[i
++] = dump_size
;
2279 vma_data_size
+= dump_size
;
2282 offset
+= vma_data_size
;
2283 offset
+= elf_core_extra_data_size();
2286 if (e_phnum
== PN_XNUM
) {
2287 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2290 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2295 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2298 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2301 /* Write program headers for segments dump */
2302 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2303 vma
= next_vma(vma
, gate_vma
)) {
2304 struct elf_phdr phdr
;
2306 phdr
.p_type
= PT_LOAD
;
2307 phdr
.p_offset
= offset
;
2308 phdr
.p_vaddr
= vma
->vm_start
;
2310 phdr
.p_filesz
= vma_filesz
[i
++];
2311 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2312 offset
+= phdr
.p_filesz
;
2313 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2314 if (vma
->vm_flags
& VM_WRITE
)
2315 phdr
.p_flags
|= PF_W
;
2316 if (vma
->vm_flags
& VM_EXEC
)
2317 phdr
.p_flags
|= PF_X
;
2318 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2320 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2324 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2327 /* write out the notes section */
2328 if (!write_note_info(&info
, cprm
))
2331 if (elf_coredump_extra_notes_write(cprm
))
2335 if (!dump_skip(cprm
, dataoff
- cprm
->pos
))
2338 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2339 vma
= next_vma(vma
, gate_vma
)) {
2343 end
= vma
->vm_start
+ vma_filesz
[i
++];
2345 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2349 page
= get_dump_page(addr
);
2351 void *kaddr
= kmap(page
);
2352 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2356 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2361 dump_truncate(cprm
);
2363 if (!elf_core_write_extra_data(cprm
))
2366 if (e_phnum
== PN_XNUM
) {
2367 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2375 free_note_info(&info
);
2384 #endif /* CONFIG_ELF_CORE */
2386 static int __init
init_elf_binfmt(void)
2388 register_binfmt(&elf_format
);
2392 static void __exit
exit_elf_binfmt(void)
2394 /* Remove the COFF and ELF loaders. */
2395 unregister_binfmt(&elf_format
);
2398 core_initcall(init_elf_binfmt
);
2399 module_exit(exit_elf_binfmt
);
2400 MODULE_LICENSE("GPL");