IB/mlx4: fix sprintf format warning
[linux/fpc-iii.git] / net / sched / sch_qfq.c
blob6ddfd4991108ad9de057a22175d87f667c24f370
1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
23 /* Quick Fair Queueing Plus
24 ========================
26 Sources:
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
32 Sources for QFQ:
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
57 Virtual time computations.
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
66 The layout of the bits is as below:
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
73 where MIN_SLOT_SHIFT is derived by difference from the others.
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
97 #define QFQ_MAX_SLOTS 32
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
128 struct qfq_group;
130 struct qfq_aggregate;
132 struct qfq_class {
133 struct Qdisc_class_common common;
135 unsigned int filter_cnt;
137 struct gnet_stats_basic_packed bstats;
138 struct gnet_stats_queue qstats;
139 struct net_rate_estimator __rcu *rate_est;
140 struct Qdisc *qdisc;
141 struct list_head alist; /* Link for active-classes list. */
142 struct qfq_aggregate *agg; /* Parent aggregate. */
143 int deficit; /* DRR deficit counter. */
146 struct qfq_aggregate {
147 struct hlist_node next; /* Link for the slot list. */
148 u64 S, F; /* flow timestamps (exact) */
150 /* group we belong to. In principle we would need the index,
151 * which is log_2(lmax/weight), but we never reference it
152 * directly, only the group.
154 struct qfq_group *grp;
156 /* these are copied from the flowset. */
157 u32 class_weight; /* Weight of each class in this aggregate. */
158 /* Max pkt size for the classes in this aggregate, DRR quantum. */
159 int lmax;
161 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
162 u32 budgetmax; /* Max budget for this aggregate. */
163 u32 initial_budget, budget; /* Initial and current budget. */
165 int num_classes; /* Number of classes in this aggr. */
166 struct list_head active; /* DRR queue of active classes. */
168 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
171 struct qfq_group {
172 u64 S, F; /* group timestamps (approx). */
173 unsigned int slot_shift; /* Slot shift. */
174 unsigned int index; /* Group index. */
175 unsigned int front; /* Index of the front slot. */
176 unsigned long full_slots; /* non-empty slots */
178 /* Array of RR lists of active aggregates. */
179 struct hlist_head slots[QFQ_MAX_SLOTS];
182 struct qfq_sched {
183 struct tcf_proto __rcu *filter_list;
184 struct tcf_block *block;
185 struct Qdisc_class_hash clhash;
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
189 u32 wsum; /* weight sum */
190 u32 iwsum; /* inverse weight sum */
192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
196 u32 max_agg_classes; /* Max number of classes per aggr. */
197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
201 * Possible reasons why the timestamps of an aggregate are updated
202 * enqueue: the aggregate switches from idle to active and must scheduled
203 * for service
204 * requeue: the aggregate finishes its budget, so it stops being served and
205 * must be rescheduled for service
207 enum update_reason {enqueue, requeue};
209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 struct qfq_sched *q = qdisc_priv(sch);
212 struct Qdisc_class_common *clc;
214 clc = qdisc_class_find(&q->clhash, classid);
215 if (clc == NULL)
216 return NULL;
217 return container_of(clc, struct qfq_class, common);
220 static void qfq_purge_queue(struct qfq_class *cl)
222 unsigned int len = cl->qdisc->q.qlen;
223 unsigned int backlog = cl->qdisc->qstats.backlog;
225 qdisc_reset(cl->qdisc);
226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
245 size_map = slot_size >> min_slot_shift;
246 if (!size_map)
247 goto out;
249 index = __fls(size_map) + 1; /* basically a log_2 */
250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
252 if (index < 0)
253 index = 0;
254 out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
258 return index;
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
271 agg->lmax = lmax;
272 agg->class_weight = weight;
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
278 struct qfq_aggregate *agg;
280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
284 return NULL;
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
292 u32 new_agg_weight;
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
317 q->iwsum = ONE_FP / q->wsum;
319 agg->num_classes = new_num_classes;
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 struct qfq_aggregate *agg,
325 struct qfq_class *cl)
327 cl->agg = agg;
329 qfq_update_agg(q, agg, agg->num_classes+1);
330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 list_add_tail(&cl->alist, &agg->active);
332 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 cl && q->in_serv_agg != agg) /* agg was inactive */
334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
342 hlist_del_init(&agg->nonfull_next);
343 q->wsum -= agg->class_weight;
344 if (q->wsum != 0)
345 q->iwsum = ONE_FP / q->wsum;
347 if (q->in_serv_agg == agg)
348 q->in_serv_agg = qfq_choose_next_agg(q);
349 kfree(agg);
352 /* Deschedule class from within its parent aggregate. */
353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
355 struct qfq_aggregate *agg = cl->agg;
358 list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 if (list_empty(&agg->active)) /* agg is now inactive */
360 qfq_deactivate_agg(q, agg);
363 /* Remove class from its parent aggregate. */
364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366 struct qfq_aggregate *agg = cl->agg;
368 cl->agg = NULL;
369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 qfq_destroy_agg(q, agg);
371 return;
373 qfq_update_agg(q, agg, agg->num_classes-1);
376 /* Deschedule class and remove it from its parent aggregate. */
377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
379 if (cl->qdisc->q.qlen > 0) /* class is active */
380 qfq_deactivate_class(q, cl);
382 qfq_rm_from_agg(q, cl);
385 /* Move class to a new aggregate, matching the new class weight and/or lmax */
386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 u32 lmax)
389 struct qfq_sched *q = qdisc_priv(sch);
390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
392 if (new_agg == NULL) { /* create new aggregate */
393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 if (new_agg == NULL)
395 return -ENOBUFS;
396 qfq_init_agg(q, new_agg, lmax, weight);
398 qfq_deact_rm_from_agg(q, cl);
399 qfq_add_to_agg(q, new_agg, cl);
401 return 0;
404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
405 struct nlattr **tca, unsigned long *arg)
407 struct qfq_sched *q = qdisc_priv(sch);
408 struct qfq_class *cl = (struct qfq_class *)*arg;
409 bool existing = false;
410 struct nlattr *tb[TCA_QFQ_MAX + 1];
411 struct qfq_aggregate *new_agg = NULL;
412 u32 weight, lmax, inv_w;
413 int err;
414 int delta_w;
416 if (tca[TCA_OPTIONS] == NULL) {
417 pr_notice("qfq: no options\n");
418 return -EINVAL;
421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy,
422 NULL);
423 if (err < 0)
424 return err;
426 if (tb[TCA_QFQ_WEIGHT]) {
427 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
428 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
429 pr_notice("qfq: invalid weight %u\n", weight);
430 return -EINVAL;
432 } else
433 weight = 1;
435 if (tb[TCA_QFQ_LMAX]) {
436 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
437 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
438 pr_notice("qfq: invalid max length %u\n", lmax);
439 return -EINVAL;
441 } else
442 lmax = psched_mtu(qdisc_dev(sch));
444 inv_w = ONE_FP / weight;
445 weight = ONE_FP / inv_w;
447 if (cl != NULL &&
448 lmax == cl->agg->lmax &&
449 weight == cl->agg->class_weight)
450 return 0; /* nothing to change */
452 delta_w = weight - (cl ? cl->agg->class_weight : 0);
454 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
455 pr_notice("qfq: total weight out of range (%d + %u)\n",
456 delta_w, q->wsum);
457 return -EINVAL;
460 if (cl != NULL) { /* modify existing class */
461 if (tca[TCA_RATE]) {
462 err = gen_replace_estimator(&cl->bstats, NULL,
463 &cl->rate_est,
464 NULL,
465 qdisc_root_sleeping_running(sch),
466 tca[TCA_RATE]);
467 if (err)
468 return err;
470 existing = true;
471 goto set_change_agg;
474 /* create and init new class */
475 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
476 if (cl == NULL)
477 return -ENOBUFS;
479 cl->common.classid = classid;
480 cl->deficit = lmax;
482 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
483 &pfifo_qdisc_ops, classid);
484 if (cl->qdisc == NULL)
485 cl->qdisc = &noop_qdisc;
487 if (tca[TCA_RATE]) {
488 err = gen_new_estimator(&cl->bstats, NULL,
489 &cl->rate_est,
490 NULL,
491 qdisc_root_sleeping_running(sch),
492 tca[TCA_RATE]);
493 if (err)
494 goto destroy_class;
497 if (cl->qdisc != &noop_qdisc)
498 qdisc_hash_add(cl->qdisc, true);
499 sch_tree_lock(sch);
500 qdisc_class_hash_insert(&q->clhash, &cl->common);
501 sch_tree_unlock(sch);
503 qdisc_class_hash_grow(sch, &q->clhash);
505 set_change_agg:
506 sch_tree_lock(sch);
507 new_agg = qfq_find_agg(q, lmax, weight);
508 if (new_agg == NULL) { /* create new aggregate */
509 sch_tree_unlock(sch);
510 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
511 if (new_agg == NULL) {
512 err = -ENOBUFS;
513 gen_kill_estimator(&cl->rate_est);
514 goto destroy_class;
516 sch_tree_lock(sch);
517 qfq_init_agg(q, new_agg, lmax, weight);
519 if (existing)
520 qfq_deact_rm_from_agg(q, cl);
521 qfq_add_to_agg(q, new_agg, cl);
522 sch_tree_unlock(sch);
524 *arg = (unsigned long)cl;
525 return 0;
527 destroy_class:
528 qdisc_destroy(cl->qdisc);
529 kfree(cl);
530 return err;
533 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
535 struct qfq_sched *q = qdisc_priv(sch);
537 qfq_rm_from_agg(q, cl);
538 gen_kill_estimator(&cl->rate_est);
539 qdisc_destroy(cl->qdisc);
540 kfree(cl);
543 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
545 struct qfq_sched *q = qdisc_priv(sch);
546 struct qfq_class *cl = (struct qfq_class *)arg;
548 if (cl->filter_cnt > 0)
549 return -EBUSY;
551 sch_tree_lock(sch);
553 qfq_purge_queue(cl);
554 qdisc_class_hash_remove(&q->clhash, &cl->common);
556 sch_tree_unlock(sch);
558 qfq_destroy_class(sch, cl);
559 return 0;
562 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
564 return (unsigned long)qfq_find_class(sch, classid);
567 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl)
569 struct qfq_sched *q = qdisc_priv(sch);
571 if (cl)
572 return NULL;
574 return q->block;
577 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
578 u32 classid)
580 struct qfq_class *cl = qfq_find_class(sch, classid);
582 if (cl != NULL)
583 cl->filter_cnt++;
585 return (unsigned long)cl;
588 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
590 struct qfq_class *cl = (struct qfq_class *)arg;
592 cl->filter_cnt--;
595 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
596 struct Qdisc *new, struct Qdisc **old)
598 struct qfq_class *cl = (struct qfq_class *)arg;
600 if (new == NULL) {
601 new = qdisc_create_dflt(sch->dev_queue,
602 &pfifo_qdisc_ops, cl->common.classid);
603 if (new == NULL)
604 new = &noop_qdisc;
607 *old = qdisc_replace(sch, new, &cl->qdisc);
608 return 0;
611 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
613 struct qfq_class *cl = (struct qfq_class *)arg;
615 return cl->qdisc;
618 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
619 struct sk_buff *skb, struct tcmsg *tcm)
621 struct qfq_class *cl = (struct qfq_class *)arg;
622 struct nlattr *nest;
624 tcm->tcm_parent = TC_H_ROOT;
625 tcm->tcm_handle = cl->common.classid;
626 tcm->tcm_info = cl->qdisc->handle;
628 nest = nla_nest_start(skb, TCA_OPTIONS);
629 if (nest == NULL)
630 goto nla_put_failure;
631 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
632 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
633 goto nla_put_failure;
634 return nla_nest_end(skb, nest);
636 nla_put_failure:
637 nla_nest_cancel(skb, nest);
638 return -EMSGSIZE;
641 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
642 struct gnet_dump *d)
644 struct qfq_class *cl = (struct qfq_class *)arg;
645 struct tc_qfq_stats xstats;
647 memset(&xstats, 0, sizeof(xstats));
649 xstats.weight = cl->agg->class_weight;
650 xstats.lmax = cl->agg->lmax;
652 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
653 d, NULL, &cl->bstats) < 0 ||
654 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
655 gnet_stats_copy_queue(d, NULL,
656 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
657 return -1;
659 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
662 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
664 struct qfq_sched *q = qdisc_priv(sch);
665 struct qfq_class *cl;
666 unsigned int i;
668 if (arg->stop)
669 return;
671 for (i = 0; i < q->clhash.hashsize; i++) {
672 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
673 if (arg->count < arg->skip) {
674 arg->count++;
675 continue;
677 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
678 arg->stop = 1;
679 return;
681 arg->count++;
686 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
687 int *qerr)
689 struct qfq_sched *q = qdisc_priv(sch);
690 struct qfq_class *cl;
691 struct tcf_result res;
692 struct tcf_proto *fl;
693 int result;
695 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
696 pr_debug("qfq_classify: found %d\n", skb->priority);
697 cl = qfq_find_class(sch, skb->priority);
698 if (cl != NULL)
699 return cl;
702 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
703 fl = rcu_dereference_bh(q->filter_list);
704 result = tcf_classify(skb, fl, &res, false);
705 if (result >= 0) {
706 #ifdef CONFIG_NET_CLS_ACT
707 switch (result) {
708 case TC_ACT_QUEUED:
709 case TC_ACT_STOLEN:
710 case TC_ACT_TRAP:
711 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
712 case TC_ACT_SHOT:
713 return NULL;
715 #endif
716 cl = (struct qfq_class *)res.class;
717 if (cl == NULL)
718 cl = qfq_find_class(sch, res.classid);
719 return cl;
722 return NULL;
725 /* Generic comparison function, handling wraparound. */
726 static inline int qfq_gt(u64 a, u64 b)
728 return (s64)(a - b) > 0;
731 /* Round a precise timestamp to its slotted value. */
732 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
734 return ts & ~((1ULL << shift) - 1);
737 /* return the pointer to the group with lowest index in the bitmap */
738 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
739 unsigned long bitmap)
741 int index = __ffs(bitmap);
742 return &q->groups[index];
744 /* Calculate a mask to mimic what would be ffs_from(). */
745 static inline unsigned long mask_from(unsigned long bitmap, int from)
747 return bitmap & ~((1UL << from) - 1);
751 * The state computation relies on ER=0, IR=1, EB=2, IB=3
752 * First compute eligibility comparing grp->S, q->V,
753 * then check if someone is blocking us and possibly add EB
755 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
757 /* if S > V we are not eligible */
758 unsigned int state = qfq_gt(grp->S, q->V);
759 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
760 struct qfq_group *next;
762 if (mask) {
763 next = qfq_ffs(q, mask);
764 if (qfq_gt(grp->F, next->F))
765 state |= EB;
768 return state;
773 * In principle
774 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
775 * q->bitmaps[src] &= ~mask;
776 * but we should make sure that src != dst
778 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
779 int src, int dst)
781 q->bitmaps[dst] |= q->bitmaps[src] & mask;
782 q->bitmaps[src] &= ~mask;
785 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
787 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
788 struct qfq_group *next;
790 if (mask) {
791 next = qfq_ffs(q, mask);
792 if (!qfq_gt(next->F, old_F))
793 return;
796 mask = (1UL << index) - 1;
797 qfq_move_groups(q, mask, EB, ER);
798 qfq_move_groups(q, mask, IB, IR);
802 * perhaps
804 old_V ^= q->V;
805 old_V >>= q->min_slot_shift;
806 if (old_V) {
811 static void qfq_make_eligible(struct qfq_sched *q)
813 unsigned long vslot = q->V >> q->min_slot_shift;
814 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
816 if (vslot != old_vslot) {
817 unsigned long mask;
818 int last_flip_pos = fls(vslot ^ old_vslot);
820 if (last_flip_pos > 31) /* higher than the number of groups */
821 mask = ~0UL; /* make all groups eligible */
822 else
823 mask = (1UL << last_flip_pos) - 1;
825 qfq_move_groups(q, mask, IR, ER);
826 qfq_move_groups(q, mask, IB, EB);
831 * The index of the slot in which the input aggregate agg is to be
832 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
833 * and not a '-1' because the start time of the group may be moved
834 * backward by one slot after the aggregate has been inserted, and
835 * this would cause non-empty slots to be right-shifted by one
836 * position.
838 * QFQ+ fully satisfies this bound to the slot index if the parameters
839 * of the classes are not changed dynamically, and if QFQ+ never
840 * happens to postpone the service of agg unjustly, i.e., it never
841 * happens that the aggregate becomes backlogged and eligible, or just
842 * eligible, while an aggregate with a higher approximated finish time
843 * is being served. In particular, in this case QFQ+ guarantees that
844 * the timestamps of agg are low enough that the slot index is never
845 * higher than 2. Unfortunately, QFQ+ cannot provide the same
846 * guarantee if it happens to unjustly postpone the service of agg, or
847 * if the parameters of some class are changed.
849 * As for the first event, i.e., an out-of-order service, the
850 * upper bound to the slot index guaranteed by QFQ+ grows to
851 * 2 +
852 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
853 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
855 * The following function deals with this problem by backward-shifting
856 * the timestamps of agg, if needed, so as to guarantee that the slot
857 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
858 * cause the service of other aggregates to be postponed, yet the
859 * worst-case guarantees of these aggregates are not violated. In
860 * fact, in case of no out-of-order service, the timestamps of agg
861 * would have been even lower than they are after the backward shift,
862 * because QFQ+ would have guaranteed a maximum value equal to 2 for
863 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
864 * service is postponed because of the backward-shift would have
865 * however waited for the service of agg before being served.
867 * The other event that may cause the slot index to be higher than 2
868 * for agg is a recent change of the parameters of some class. If the
869 * weight of a class is increased or the lmax (max_pkt_size) of the
870 * class is decreased, then a new aggregate with smaller slot size
871 * than the original parent aggregate of the class may happen to be
872 * activated. The activation of this aggregate should be properly
873 * delayed to when the service of the class has finished in the ideal
874 * system tracked by QFQ+. If the activation of the aggregate is not
875 * delayed to this reference time instant, then this aggregate may be
876 * unjustly served before other aggregates waiting for service. This
877 * may cause the above bound to the slot index to be violated for some
878 * of these unlucky aggregates.
880 * Instead of delaying the activation of the new aggregate, which is
881 * quite complex, the above-discussed capping of the slot index is
882 * used to handle also the consequences of a change of the parameters
883 * of a class.
885 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
886 u64 roundedS)
888 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
889 unsigned int i; /* slot index in the bucket list */
891 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
892 u64 deltaS = roundedS - grp->S -
893 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
894 agg->S -= deltaS;
895 agg->F -= deltaS;
896 slot = QFQ_MAX_SLOTS - 2;
899 i = (grp->front + slot) % QFQ_MAX_SLOTS;
901 hlist_add_head(&agg->next, &grp->slots[i]);
902 __set_bit(slot, &grp->full_slots);
905 /* Maybe introduce hlist_first_entry?? */
906 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
908 return hlist_entry(grp->slots[grp->front].first,
909 struct qfq_aggregate, next);
913 * remove the entry from the slot
915 static void qfq_front_slot_remove(struct qfq_group *grp)
917 struct qfq_aggregate *agg = qfq_slot_head(grp);
919 BUG_ON(!agg);
920 hlist_del(&agg->next);
921 if (hlist_empty(&grp->slots[grp->front]))
922 __clear_bit(0, &grp->full_slots);
926 * Returns the first aggregate in the first non-empty bucket of the
927 * group. As a side effect, adjusts the bucket list so the first
928 * non-empty bucket is at position 0 in full_slots.
930 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
932 unsigned int i;
934 pr_debug("qfq slot_scan: grp %u full %#lx\n",
935 grp->index, grp->full_slots);
937 if (grp->full_slots == 0)
938 return NULL;
940 i = __ffs(grp->full_slots); /* zero based */
941 if (i > 0) {
942 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
943 grp->full_slots >>= i;
946 return qfq_slot_head(grp);
950 * adjust the bucket list. When the start time of a group decreases,
951 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
952 * move the objects. The mask of occupied slots must be shifted
953 * because we use ffs() to find the first non-empty slot.
954 * This covers decreases in the group's start time, but what about
955 * increases of the start time ?
956 * Here too we should make sure that i is less than 32
958 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
960 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
962 grp->full_slots <<= i;
963 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
966 static void qfq_update_eligible(struct qfq_sched *q)
968 struct qfq_group *grp;
969 unsigned long ineligible;
971 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
972 if (ineligible) {
973 if (!q->bitmaps[ER]) {
974 grp = qfq_ffs(q, ineligible);
975 if (qfq_gt(grp->S, q->V))
976 q->V = grp->S;
978 qfq_make_eligible(q);
982 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
983 static void agg_dequeue(struct qfq_aggregate *agg,
984 struct qfq_class *cl, unsigned int len)
986 qdisc_dequeue_peeked(cl->qdisc);
988 cl->deficit -= (int) len;
990 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
991 list_del(&cl->alist);
992 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
993 cl->deficit += agg->lmax;
994 list_move_tail(&cl->alist, &agg->active);
998 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
999 struct qfq_class **cl,
1000 unsigned int *len)
1002 struct sk_buff *skb;
1004 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1005 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1006 if (skb == NULL)
1007 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1008 else
1009 *len = qdisc_pkt_len(skb);
1011 return skb;
1014 /* Update F according to the actual service received by the aggregate. */
1015 static inline void charge_actual_service(struct qfq_aggregate *agg)
1017 /* Compute the service received by the aggregate, taking into
1018 * account that, after decreasing the number of classes in
1019 * agg, it may happen that
1020 * agg->initial_budget - agg->budget > agg->bugdetmax
1022 u32 service_received = min(agg->budgetmax,
1023 agg->initial_budget - agg->budget);
1025 agg->F = agg->S + (u64)service_received * agg->inv_w;
1028 /* Assign a reasonable start time for a new aggregate in group i.
1029 * Admissible values for \hat(F) are multiples of \sigma_i
1030 * no greater than V+\sigma_i . Larger values mean that
1031 * we had a wraparound so we consider the timestamp to be stale.
1033 * If F is not stale and F >= V then we set S = F.
1034 * Otherwise we should assign S = V, but this may violate
1035 * the ordering in EB (see [2]). So, if we have groups in ER,
1036 * set S to the F_j of the first group j which would be blocking us.
1037 * We are guaranteed not to move S backward because
1038 * otherwise our group i would still be blocked.
1040 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1042 unsigned long mask;
1043 u64 limit, roundedF;
1044 int slot_shift = agg->grp->slot_shift;
1046 roundedF = qfq_round_down(agg->F, slot_shift);
1047 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1049 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1050 /* timestamp was stale */
1051 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1052 if (mask) {
1053 struct qfq_group *next = qfq_ffs(q, mask);
1054 if (qfq_gt(roundedF, next->F)) {
1055 if (qfq_gt(limit, next->F))
1056 agg->S = next->F;
1057 else /* preserve timestamp correctness */
1058 agg->S = limit;
1059 return;
1062 agg->S = q->V;
1063 } else /* timestamp is not stale */
1064 agg->S = agg->F;
1067 /* Update the timestamps of agg before scheduling/rescheduling it for
1068 * service. In particular, assign to agg->F its maximum possible
1069 * value, i.e., the virtual finish time with which the aggregate
1070 * should be labeled if it used all its budget once in service.
1072 static inline void
1073 qfq_update_agg_ts(struct qfq_sched *q,
1074 struct qfq_aggregate *agg, enum update_reason reason)
1076 if (reason != requeue)
1077 qfq_update_start(q, agg);
1078 else /* just charge agg for the service received */
1079 agg->S = agg->F;
1081 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1084 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1086 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1088 struct qfq_sched *q = qdisc_priv(sch);
1089 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1090 struct qfq_class *cl;
1091 struct sk_buff *skb = NULL;
1092 /* next-packet len, 0 means no more active classes in in-service agg */
1093 unsigned int len = 0;
1095 if (in_serv_agg == NULL)
1096 return NULL;
1098 if (!list_empty(&in_serv_agg->active))
1099 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1102 * If there are no active classes in the in-service aggregate,
1103 * or if the aggregate has not enough budget to serve its next
1104 * class, then choose the next aggregate to serve.
1106 if (len == 0 || in_serv_agg->budget < len) {
1107 charge_actual_service(in_serv_agg);
1109 /* recharge the budget of the aggregate */
1110 in_serv_agg->initial_budget = in_serv_agg->budget =
1111 in_serv_agg->budgetmax;
1113 if (!list_empty(&in_serv_agg->active)) {
1115 * Still active: reschedule for
1116 * service. Possible optimization: if no other
1117 * aggregate is active, then there is no point
1118 * in rescheduling this aggregate, and we can
1119 * just keep it as the in-service one. This
1120 * should be however a corner case, and to
1121 * handle it, we would need to maintain an
1122 * extra num_active_aggs field.
1124 qfq_update_agg_ts(q, in_serv_agg, requeue);
1125 qfq_schedule_agg(q, in_serv_agg);
1126 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1127 q->in_serv_agg = NULL;
1128 return NULL;
1132 * If we get here, there are other aggregates queued:
1133 * choose the new aggregate to serve.
1135 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1136 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1138 if (!skb)
1139 return NULL;
1141 qdisc_qstats_backlog_dec(sch, skb);
1142 sch->q.qlen--;
1143 qdisc_bstats_update(sch, skb);
1145 agg_dequeue(in_serv_agg, cl, len);
1146 /* If lmax is lowered, through qfq_change_class, for a class
1147 * owning pending packets with larger size than the new value
1148 * of lmax, then the following condition may hold.
1150 if (unlikely(in_serv_agg->budget < len))
1151 in_serv_agg->budget = 0;
1152 else
1153 in_serv_agg->budget -= len;
1155 q->V += (u64)len * q->iwsum;
1156 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1157 len, (unsigned long long) in_serv_agg->F,
1158 (unsigned long long) q->V);
1160 return skb;
1163 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1165 struct qfq_group *grp;
1166 struct qfq_aggregate *agg, *new_front_agg;
1167 u64 old_F;
1169 qfq_update_eligible(q);
1170 q->oldV = q->V;
1172 if (!q->bitmaps[ER])
1173 return NULL;
1175 grp = qfq_ffs(q, q->bitmaps[ER]);
1176 old_F = grp->F;
1178 agg = qfq_slot_head(grp);
1180 /* agg starts to be served, remove it from schedule */
1181 qfq_front_slot_remove(grp);
1183 new_front_agg = qfq_slot_scan(grp);
1185 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1186 __clear_bit(grp->index, &q->bitmaps[ER]);
1187 else {
1188 u64 roundedS = qfq_round_down(new_front_agg->S,
1189 grp->slot_shift);
1190 unsigned int s;
1192 if (grp->S == roundedS)
1193 return agg;
1194 grp->S = roundedS;
1195 grp->F = roundedS + (2ULL << grp->slot_shift);
1196 __clear_bit(grp->index, &q->bitmaps[ER]);
1197 s = qfq_calc_state(q, grp);
1198 __set_bit(grp->index, &q->bitmaps[s]);
1201 qfq_unblock_groups(q, grp->index, old_F);
1203 return agg;
1206 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1207 struct sk_buff **to_free)
1209 struct qfq_sched *q = qdisc_priv(sch);
1210 struct qfq_class *cl;
1211 struct qfq_aggregate *agg;
1212 int err = 0;
1214 cl = qfq_classify(skb, sch, &err);
1215 if (cl == NULL) {
1216 if (err & __NET_XMIT_BYPASS)
1217 qdisc_qstats_drop(sch);
1218 __qdisc_drop(skb, to_free);
1219 return err;
1221 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1223 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1224 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1225 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1226 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1227 qdisc_pkt_len(skb));
1228 if (err) {
1229 cl->qstats.drops++;
1230 return qdisc_drop(skb, sch, to_free);
1234 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1235 if (unlikely(err != NET_XMIT_SUCCESS)) {
1236 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1237 if (net_xmit_drop_count(err)) {
1238 cl->qstats.drops++;
1239 qdisc_qstats_drop(sch);
1241 return err;
1244 bstats_update(&cl->bstats, skb);
1245 qdisc_qstats_backlog_inc(sch, skb);
1246 ++sch->q.qlen;
1248 agg = cl->agg;
1249 /* if the queue was not empty, then done here */
1250 if (cl->qdisc->q.qlen != 1) {
1251 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1252 list_first_entry(&agg->active, struct qfq_class, alist)
1253 == cl && cl->deficit < qdisc_pkt_len(skb))
1254 list_move_tail(&cl->alist, &agg->active);
1256 return err;
1259 /* schedule class for service within the aggregate */
1260 cl->deficit = agg->lmax;
1261 list_add_tail(&cl->alist, &agg->active);
1263 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1264 q->in_serv_agg == agg)
1265 return err; /* non-empty or in service, nothing else to do */
1267 qfq_activate_agg(q, agg, enqueue);
1269 return err;
1273 * Schedule aggregate according to its timestamps.
1275 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1277 struct qfq_group *grp = agg->grp;
1278 u64 roundedS;
1279 int s;
1281 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1284 * Insert agg in the correct bucket.
1285 * If agg->S >= grp->S we don't need to adjust the
1286 * bucket list and simply go to the insertion phase.
1287 * Otherwise grp->S is decreasing, we must make room
1288 * in the bucket list, and also recompute the group state.
1289 * Finally, if there were no flows in this group and nobody
1290 * was in ER make sure to adjust V.
1292 if (grp->full_slots) {
1293 if (!qfq_gt(grp->S, agg->S))
1294 goto skip_update;
1296 /* create a slot for this agg->S */
1297 qfq_slot_rotate(grp, roundedS);
1298 /* group was surely ineligible, remove */
1299 __clear_bit(grp->index, &q->bitmaps[IR]);
1300 __clear_bit(grp->index, &q->bitmaps[IB]);
1301 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1302 q->in_serv_agg == NULL)
1303 q->V = roundedS;
1305 grp->S = roundedS;
1306 grp->F = roundedS + (2ULL << grp->slot_shift);
1307 s = qfq_calc_state(q, grp);
1308 __set_bit(grp->index, &q->bitmaps[s]);
1310 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1311 s, q->bitmaps[s],
1312 (unsigned long long) agg->S,
1313 (unsigned long long) agg->F,
1314 (unsigned long long) q->V);
1316 skip_update:
1317 qfq_slot_insert(grp, agg, roundedS);
1321 /* Update agg ts and schedule agg for service */
1322 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1323 enum update_reason reason)
1325 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1327 qfq_update_agg_ts(q, agg, reason);
1328 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1329 q->in_serv_agg = agg; /* start serving this aggregate */
1330 /* update V: to be in service, agg must be eligible */
1331 q->oldV = q->V = agg->S;
1332 } else if (agg != q->in_serv_agg)
1333 qfq_schedule_agg(q, agg);
1336 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1337 struct qfq_aggregate *agg)
1339 unsigned int i, offset;
1340 u64 roundedS;
1342 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1343 offset = (roundedS - grp->S) >> grp->slot_shift;
1345 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1347 hlist_del(&agg->next);
1348 if (hlist_empty(&grp->slots[i]))
1349 __clear_bit(offset, &grp->full_slots);
1353 * Called to forcibly deschedule an aggregate. If the aggregate is
1354 * not in the front bucket, or if the latter has other aggregates in
1355 * the front bucket, we can simply remove the aggregate with no other
1356 * side effects.
1357 * Otherwise we must propagate the event up.
1359 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1361 struct qfq_group *grp = agg->grp;
1362 unsigned long mask;
1363 u64 roundedS;
1364 int s;
1366 if (agg == q->in_serv_agg) {
1367 charge_actual_service(agg);
1368 q->in_serv_agg = qfq_choose_next_agg(q);
1369 return;
1372 agg->F = agg->S;
1373 qfq_slot_remove(q, grp, agg);
1375 if (!grp->full_slots) {
1376 __clear_bit(grp->index, &q->bitmaps[IR]);
1377 __clear_bit(grp->index, &q->bitmaps[EB]);
1378 __clear_bit(grp->index, &q->bitmaps[IB]);
1380 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1381 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1382 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1383 if (mask)
1384 mask = ~((1UL << __fls(mask)) - 1);
1385 else
1386 mask = ~0UL;
1387 qfq_move_groups(q, mask, EB, ER);
1388 qfq_move_groups(q, mask, IB, IR);
1390 __clear_bit(grp->index, &q->bitmaps[ER]);
1391 } else if (hlist_empty(&grp->slots[grp->front])) {
1392 agg = qfq_slot_scan(grp);
1393 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1394 if (grp->S != roundedS) {
1395 __clear_bit(grp->index, &q->bitmaps[ER]);
1396 __clear_bit(grp->index, &q->bitmaps[IR]);
1397 __clear_bit(grp->index, &q->bitmaps[EB]);
1398 __clear_bit(grp->index, &q->bitmaps[IB]);
1399 grp->S = roundedS;
1400 grp->F = roundedS + (2ULL << grp->slot_shift);
1401 s = qfq_calc_state(q, grp);
1402 __set_bit(grp->index, &q->bitmaps[s]);
1407 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1409 struct qfq_sched *q = qdisc_priv(sch);
1410 struct qfq_class *cl = (struct qfq_class *)arg;
1412 qfq_deactivate_class(q, cl);
1415 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1417 struct qfq_sched *q = qdisc_priv(sch);
1418 struct qfq_group *grp;
1419 int i, j, err;
1420 u32 max_cl_shift, maxbudg_shift, max_classes;
1422 err = tcf_block_get(&q->block, &q->filter_list);
1423 if (err)
1424 return err;
1426 err = qdisc_class_hash_init(&q->clhash);
1427 if (err < 0)
1428 return err;
1430 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1431 max_classes = QFQ_MAX_AGG_CLASSES;
1432 else
1433 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1434 /* max_cl_shift = floor(log_2(max_classes)) */
1435 max_cl_shift = __fls(max_classes);
1436 q->max_agg_classes = 1<<max_cl_shift;
1438 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1439 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1440 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1442 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1443 grp = &q->groups[i];
1444 grp->index = i;
1445 grp->slot_shift = q->min_slot_shift + i;
1446 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1447 INIT_HLIST_HEAD(&grp->slots[j]);
1450 INIT_HLIST_HEAD(&q->nonfull_aggs);
1452 return 0;
1455 static void qfq_reset_qdisc(struct Qdisc *sch)
1457 struct qfq_sched *q = qdisc_priv(sch);
1458 struct qfq_class *cl;
1459 unsigned int i;
1461 for (i = 0; i < q->clhash.hashsize; i++) {
1462 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1463 if (cl->qdisc->q.qlen > 0)
1464 qfq_deactivate_class(q, cl);
1466 qdisc_reset(cl->qdisc);
1469 sch->qstats.backlog = 0;
1470 sch->q.qlen = 0;
1473 static void qfq_destroy_qdisc(struct Qdisc *sch)
1475 struct qfq_sched *q = qdisc_priv(sch);
1476 struct qfq_class *cl;
1477 struct hlist_node *next;
1478 unsigned int i;
1480 tcf_block_put(q->block);
1482 for (i = 0; i < q->clhash.hashsize; i++) {
1483 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1484 common.hnode) {
1485 qfq_destroy_class(sch, cl);
1488 qdisc_class_hash_destroy(&q->clhash);
1491 static const struct Qdisc_class_ops qfq_class_ops = {
1492 .change = qfq_change_class,
1493 .delete = qfq_delete_class,
1494 .find = qfq_search_class,
1495 .tcf_block = qfq_tcf_block,
1496 .bind_tcf = qfq_bind_tcf,
1497 .unbind_tcf = qfq_unbind_tcf,
1498 .graft = qfq_graft_class,
1499 .leaf = qfq_class_leaf,
1500 .qlen_notify = qfq_qlen_notify,
1501 .dump = qfq_dump_class,
1502 .dump_stats = qfq_dump_class_stats,
1503 .walk = qfq_walk,
1506 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1507 .cl_ops = &qfq_class_ops,
1508 .id = "qfq",
1509 .priv_size = sizeof(struct qfq_sched),
1510 .enqueue = qfq_enqueue,
1511 .dequeue = qfq_dequeue,
1512 .peek = qdisc_peek_dequeued,
1513 .init = qfq_init_qdisc,
1514 .reset = qfq_reset_qdisc,
1515 .destroy = qfq_destroy_qdisc,
1516 .owner = THIS_MODULE,
1519 static int __init qfq_init(void)
1521 return register_qdisc(&qfq_qdisc_ops);
1524 static void __exit qfq_exit(void)
1526 unregister_qdisc(&qfq_qdisc_ops);
1529 module_init(qfq_init);
1530 module_exit(qfq_exit);
1531 MODULE_LICENSE("GPL");