2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/backing-dev.h>
26 #include <linux/buffer_head.h>
27 #include <linux/dax.h>
31 * Execute a iomap write on a segment of the mapping that spans a
32 * contiguous range of pages that have identical block mapping state.
34 * This avoids the need to map pages individually, do individual allocations
35 * for each page and most importantly avoid the need for filesystem specific
36 * locking per page. Instead, all the operations are amortised over the entire
37 * range of pages. It is assumed that the filesystems will lock whatever
38 * resources they require in the iomap_begin call, and release them in the
42 iomap_apply(struct inode
*inode
, loff_t pos
, loff_t length
, unsigned flags
,
43 struct iomap_ops
*ops
, void *data
, iomap_actor_t actor
)
45 struct iomap iomap
= { 0 };
46 loff_t written
= 0, ret
;
49 * Need to map a range from start position for length bytes. This can
50 * span multiple pages - it is only guaranteed to return a range of a
51 * single type of pages (e.g. all into a hole, all mapped or all
52 * unwritten). Failure at this point has nothing to undo.
54 * If allocation is required for this range, reserve the space now so
55 * that the allocation is guaranteed to succeed later on. Once we copy
56 * the data into the page cache pages, then we cannot fail otherwise we
57 * expose transient stale data. If the reserve fails, we can safely
58 * back out at this point as there is nothing to undo.
60 ret
= ops
->iomap_begin(inode
, pos
, length
, flags
, &iomap
);
63 if (WARN_ON(iomap
.offset
> pos
))
67 * Cut down the length to the one actually provided by the filesystem,
68 * as it might not be able to give us the whole size that we requested.
70 if (iomap
.offset
+ iomap
.length
< pos
+ length
)
71 length
= iomap
.offset
+ iomap
.length
- pos
;
74 * Now that we have guaranteed that the space allocation will succeed.
75 * we can do the copy-in page by page without having to worry about
76 * failures exposing transient data.
78 written
= actor(inode
, pos
, length
, data
, &iomap
);
81 * Now the data has been copied, commit the range we've copied. This
82 * should not fail unless the filesystem has had a fatal error.
85 ret
= ops
->iomap_end(inode
, pos
, length
,
86 written
> 0 ? written
: 0,
90 return written
? written
: ret
;
94 iomap_write_failed(struct inode
*inode
, loff_t pos
, unsigned len
)
96 loff_t i_size
= i_size_read(inode
);
99 * Only truncate newly allocated pages beyoned EOF, even if the
100 * write started inside the existing inode size.
102 if (pos
+ len
> i_size
)
103 truncate_pagecache_range(inode
, max(pos
, i_size
), pos
+ len
);
107 iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
, unsigned flags
,
108 struct page
**pagep
, struct iomap
*iomap
)
110 pgoff_t index
= pos
>> PAGE_SHIFT
;
114 BUG_ON(pos
+ len
> iomap
->offset
+ iomap
->length
);
116 if (fatal_signal_pending(current
))
119 page
= grab_cache_page_write_begin(inode
->i_mapping
, index
, flags
);
123 status
= __block_write_begin_int(page
, pos
, len
, NULL
, iomap
);
124 if (unlikely(status
)) {
129 iomap_write_failed(inode
, pos
, len
);
137 iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
138 unsigned copied
, struct page
*page
)
142 ret
= generic_write_end(NULL
, inode
->i_mapping
, pos
, len
,
145 iomap_write_failed(inode
, pos
, len
);
150 iomap_write_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
153 struct iov_iter
*i
= data
;
156 unsigned int flags
= AOP_FLAG_NOFS
;
159 * Copies from kernel address space cannot fail (NFSD is a big user).
161 if (!iter_is_iovec(i
))
162 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
166 unsigned long offset
; /* Offset into pagecache page */
167 unsigned long bytes
; /* Bytes to write to page */
168 size_t copied
; /* Bytes copied from user */
170 offset
= (pos
& (PAGE_SIZE
- 1));
171 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
178 * Bring in the user page that we will copy from _first_.
179 * Otherwise there's a nasty deadlock on copying from the
180 * same page as we're writing to, without it being marked
183 * Not only is this an optimisation, but it is also required
184 * to check that the address is actually valid, when atomic
185 * usercopies are used, below.
187 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
192 status
= iomap_write_begin(inode
, pos
, bytes
, flags
, &page
,
194 if (unlikely(status
))
197 if (mapping_writably_mapped(inode
->i_mapping
))
198 flush_dcache_page(page
);
200 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
202 flush_dcache_page(page
);
204 status
= iomap_write_end(inode
, pos
, bytes
, copied
, page
);
205 if (unlikely(status
< 0))
211 iov_iter_advance(i
, copied
);
212 if (unlikely(copied
== 0)) {
214 * If we were unable to copy any data at all, we must
215 * fall back to a single segment length write.
217 * If we didn't fallback here, we could livelock
218 * because not all segments in the iov can be copied at
219 * once without a pagefault.
221 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
222 iov_iter_single_seg_count(i
));
229 balance_dirty_pages_ratelimited(inode
->i_mapping
);
230 } while (iov_iter_count(i
) && length
);
232 return written
? written
: status
;
236 iomap_file_buffered_write(struct kiocb
*iocb
, struct iov_iter
*iter
,
237 struct iomap_ops
*ops
)
239 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
240 loff_t pos
= iocb
->ki_pos
, ret
= 0, written
= 0;
242 while (iov_iter_count(iter
)) {
243 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
),
244 IOMAP_WRITE
, ops
, iter
, iomap_write_actor
);
251 return written
? written
: ret
;
253 EXPORT_SYMBOL_GPL(iomap_file_buffered_write
);
256 __iomap_read_page(struct inode
*inode
, loff_t offset
)
258 struct address_space
*mapping
= inode
->i_mapping
;
261 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, NULL
);
264 if (!PageUptodate(page
)) {
266 return ERR_PTR(-EIO
);
272 iomap_dirty_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
279 struct page
*page
, *rpage
;
280 unsigned long offset
; /* Offset into pagecache page */
281 unsigned long bytes
; /* Bytes to write to page */
283 offset
= (pos
& (PAGE_SIZE
- 1));
284 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
, length
);
286 rpage
= __iomap_read_page(inode
, pos
);
288 return PTR_ERR(rpage
);
290 status
= iomap_write_begin(inode
, pos
, bytes
,
291 AOP_FLAG_NOFS
| AOP_FLAG_UNINTERRUPTIBLE
,
294 if (unlikely(status
))
297 WARN_ON_ONCE(!PageUptodate(page
));
299 status
= iomap_write_end(inode
, pos
, bytes
, bytes
, page
);
300 if (unlikely(status
<= 0)) {
301 if (WARN_ON_ONCE(status
== 0))
312 balance_dirty_pages_ratelimited(inode
->i_mapping
);
319 iomap_file_dirty(struct inode
*inode
, loff_t pos
, loff_t len
,
320 struct iomap_ops
*ops
)
325 ret
= iomap_apply(inode
, pos
, len
, IOMAP_WRITE
, ops
, NULL
,
335 EXPORT_SYMBOL_GPL(iomap_file_dirty
);
337 static int iomap_zero(struct inode
*inode
, loff_t pos
, unsigned offset
,
338 unsigned bytes
, struct iomap
*iomap
)
343 status
= iomap_write_begin(inode
, pos
, bytes
,
344 AOP_FLAG_UNINTERRUPTIBLE
| AOP_FLAG_NOFS
, &page
, iomap
);
348 zero_user(page
, offset
, bytes
);
349 mark_page_accessed(page
);
351 return iomap_write_end(inode
, pos
, bytes
, bytes
, page
);
354 static int iomap_dax_zero(loff_t pos
, unsigned offset
, unsigned bytes
,
357 sector_t sector
= iomap
->blkno
+
358 (((pos
& ~(PAGE_SIZE
- 1)) - iomap
->offset
) >> 9);
360 return __dax_zero_page_range(iomap
->bdev
, sector
, offset
, bytes
);
364 iomap_zero_range_actor(struct inode
*inode
, loff_t pos
, loff_t count
,
365 void *data
, struct iomap
*iomap
)
367 bool *did_zero
= data
;
371 /* already zeroed? we're done. */
372 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
376 unsigned offset
, bytes
;
378 offset
= pos
& (PAGE_SIZE
- 1); /* Within page */
379 bytes
= min_t(unsigned, PAGE_SIZE
- offset
, count
);
382 status
= iomap_dax_zero(pos
, offset
, bytes
, iomap
);
384 status
= iomap_zero(inode
, pos
, offset
, bytes
, iomap
);
399 iomap_zero_range(struct inode
*inode
, loff_t pos
, loff_t len
, bool *did_zero
,
400 struct iomap_ops
*ops
)
405 ret
= iomap_apply(inode
, pos
, len
, IOMAP_ZERO
,
406 ops
, did_zero
, iomap_zero_range_actor
);
416 EXPORT_SYMBOL_GPL(iomap_zero_range
);
419 iomap_truncate_page(struct inode
*inode
, loff_t pos
, bool *did_zero
,
420 struct iomap_ops
*ops
)
422 unsigned blocksize
= (1 << inode
->i_blkbits
);
423 unsigned off
= pos
& (blocksize
- 1);
425 /* Block boundary? Nothing to do */
428 return iomap_zero_range(inode
, pos
, blocksize
- off
, did_zero
, ops
);
430 EXPORT_SYMBOL_GPL(iomap_truncate_page
);
433 iomap_page_mkwrite_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
434 void *data
, struct iomap
*iomap
)
436 struct page
*page
= data
;
439 ret
= __block_write_begin_int(page
, pos
, length
, NULL
, iomap
);
443 block_commit_write(page
, 0, length
);
447 int iomap_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
448 struct iomap_ops
*ops
)
450 struct page
*page
= vmf
->page
;
451 struct inode
*inode
= file_inode(vma
->vm_file
);
452 unsigned long length
;
457 size
= i_size_read(inode
);
458 if ((page
->mapping
!= inode
->i_mapping
) ||
459 (page_offset(page
) > size
)) {
460 /* We overload EFAULT to mean page got truncated */
465 /* page is wholly or partially inside EOF */
466 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
467 length
= size
& ~PAGE_MASK
;
471 offset
= page_offset(page
);
473 ret
= iomap_apply(inode
, offset
, length
, IOMAP_WRITE
,
474 ops
, page
, iomap_page_mkwrite_actor
);
475 if (unlikely(ret
<= 0))
481 set_page_dirty(page
);
482 wait_for_stable_page(page
);
488 EXPORT_SYMBOL_GPL(iomap_page_mkwrite
);
491 struct fiemap_extent_info
*fi
;
495 static int iomap_to_fiemap(struct fiemap_extent_info
*fi
,
496 struct iomap
*iomap
, u32 flags
)
498 switch (iomap
->type
) {
503 flags
|= FIEMAP_EXTENT_DELALLOC
| FIEMAP_EXTENT_UNKNOWN
;
505 case IOMAP_UNWRITTEN
:
506 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
512 if (iomap
->flags
& IOMAP_F_MERGED
)
513 flags
|= FIEMAP_EXTENT_MERGED
;
514 if (iomap
->flags
& IOMAP_F_SHARED
)
515 flags
|= FIEMAP_EXTENT_SHARED
;
517 return fiemap_fill_next_extent(fi
, iomap
->offset
,
518 iomap
->blkno
!= IOMAP_NULL_BLOCK
? iomap
->blkno
<< 9: 0,
519 iomap
->length
, flags
);
524 iomap_fiemap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
527 struct fiemap_ctx
*ctx
= data
;
530 if (iomap
->type
== IOMAP_HOLE
)
533 ret
= iomap_to_fiemap(ctx
->fi
, &ctx
->prev
, 0);
536 case 0: /* success */
538 case 1: /* extent array full */
545 int iomap_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fi
,
546 loff_t start
, loff_t len
, struct iomap_ops
*ops
)
548 struct fiemap_ctx ctx
;
551 memset(&ctx
, 0, sizeof(ctx
));
553 ctx
.prev
.type
= IOMAP_HOLE
;
555 ret
= fiemap_check_flags(fi
, FIEMAP_FLAG_SYNC
);
559 if (fi
->fi_flags
& FIEMAP_FLAG_SYNC
) {
560 ret
= filemap_write_and_wait(inode
->i_mapping
);
566 ret
= iomap_apply(inode
, start
, len
, IOMAP_REPORT
, ops
, &ctx
,
568 /* inode with no (attribute) mapping will give ENOENT */
580 if (ctx
.prev
.type
!= IOMAP_HOLE
) {
581 ret
= iomap_to_fiemap(fi
, &ctx
.prev
, FIEMAP_EXTENT_LAST
);
588 EXPORT_SYMBOL_GPL(iomap_fiemap
);