staging/lustre: Get rid of cksum_type_t typedef
[linux/fpc-iii.git] / drivers / crypto / qce / common.c
blob1fb5fde7fc0349cb72ba272668b92ba35fee522a
1 /*
2 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/types.h>
17 #include <crypto/scatterwalk.h>
18 #include <crypto/sha.h>
20 #include "cipher.h"
21 #include "common.h"
22 #include "core.h"
23 #include "regs-v5.h"
24 #include "sha.h"
26 #define QCE_SECTOR_SIZE 512
28 static inline u32 qce_read(struct qce_device *qce, u32 offset)
30 return readl(qce->base + offset);
33 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
35 writel(val, qce->base + offset);
38 static inline void qce_write_array(struct qce_device *qce, u32 offset,
39 const u32 *val, unsigned int len)
41 int i;
43 for (i = 0; i < len; i++)
44 qce_write(qce, offset + i * sizeof(u32), val[i]);
47 static inline void
48 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
50 int i;
52 for (i = 0; i < len; i++)
53 qce_write(qce, offset + i * sizeof(u32), 0);
56 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
58 u32 cfg = 0;
60 if (IS_AES(flags)) {
61 if (aes_key_size == AES_KEYSIZE_128)
62 cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
63 else if (aes_key_size == AES_KEYSIZE_256)
64 cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
67 if (IS_AES(flags))
68 cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
69 else if (IS_DES(flags) || IS_3DES(flags))
70 cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
72 if (IS_DES(flags))
73 cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
75 if (IS_3DES(flags))
76 cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
78 switch (flags & QCE_MODE_MASK) {
79 case QCE_MODE_ECB:
80 cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
81 break;
82 case QCE_MODE_CBC:
83 cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
84 break;
85 case QCE_MODE_CTR:
86 cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
87 break;
88 case QCE_MODE_XTS:
89 cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
90 break;
91 case QCE_MODE_CCM:
92 cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
93 cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
94 break;
95 default:
96 return ~0;
99 return cfg;
102 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
104 u32 cfg = 0;
106 if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
107 cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
108 else
109 cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
111 if (IS_CCM(flags) || IS_CMAC(flags)) {
112 if (key_size == AES_KEYSIZE_128)
113 cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
114 else if (key_size == AES_KEYSIZE_256)
115 cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
118 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
119 cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
120 else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
121 cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
122 else if (IS_CMAC(flags))
123 cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
125 if (IS_SHA1(flags) || IS_SHA256(flags))
126 cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
127 else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
128 IS_CBC(flags) || IS_CTR(flags))
129 cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
130 else if (IS_AES(flags) && IS_CCM(flags))
131 cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
132 else if (IS_AES(flags) && IS_CMAC(flags))
133 cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
135 if (IS_SHA(flags) || IS_SHA_HMAC(flags))
136 cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
138 if (IS_CCM(flags))
139 cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
141 if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
142 IS_CMAC(flags))
143 cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
145 return cfg;
148 static u32 qce_config_reg(struct qce_device *qce, int little)
150 u32 beats = (qce->burst_size >> 3) - 1;
151 u32 pipe_pair = qce->pipe_pair_id;
152 u32 config;
154 config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
155 config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
156 BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
157 config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
158 config &= ~HIGH_SPD_EN_N_SHIFT;
160 if (little)
161 config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
163 return config;
166 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
168 __be32 *d = dst;
169 const u8 *s = src;
170 unsigned int n;
172 n = len / sizeof(u32);
173 for (; n > 0; n--) {
174 *d = cpu_to_be32p((const __u32 *) s);
175 s += sizeof(__u32);
176 d++;
180 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
182 u8 swap[QCE_AES_IV_LENGTH];
183 u32 i, j;
185 if (ivsize > QCE_AES_IV_LENGTH)
186 return;
188 memset(swap, 0, QCE_AES_IV_LENGTH);
190 for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
191 i < QCE_AES_IV_LENGTH; i++, j--)
192 swap[i] = src[j];
194 qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
197 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
198 unsigned int enckeylen, unsigned int cryptlen)
200 u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
201 unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
202 unsigned int xtsdusize;
204 qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
205 enckeylen / 2);
206 qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
208 /* xts du size 512B */
209 xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
210 qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
213 static void qce_setup_config(struct qce_device *qce)
215 u32 config;
217 /* get big endianness */
218 config = qce_config_reg(qce, 0);
220 /* clear status */
221 qce_write(qce, REG_STATUS, 0);
222 qce_write(qce, REG_CONFIG, config);
225 static inline void qce_crypto_go(struct qce_device *qce)
227 qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
230 static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
231 u32 totallen, u32 offset)
233 struct ahash_request *req = ahash_request_cast(async_req);
234 struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
235 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
236 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
237 struct qce_device *qce = tmpl->qce;
238 unsigned int digestsize = crypto_ahash_digestsize(ahash);
239 unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
240 __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
241 __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
242 u32 auth_cfg = 0, config;
243 unsigned int iv_words;
245 /* if not the last, the size has to be on the block boundary */
246 if (!rctx->last_blk && req->nbytes % blocksize)
247 return -EINVAL;
249 qce_setup_config(qce);
251 if (IS_CMAC(rctx->flags)) {
252 qce_write(qce, REG_AUTH_SEG_CFG, 0);
253 qce_write(qce, REG_ENCR_SEG_CFG, 0);
254 qce_write(qce, REG_ENCR_SEG_SIZE, 0);
255 qce_clear_array(qce, REG_AUTH_IV0, 16);
256 qce_clear_array(qce, REG_AUTH_KEY0, 16);
257 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
259 auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
262 if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
263 u32 authkey_words = rctx->authklen / sizeof(u32);
265 qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
266 qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
267 authkey_words);
270 if (IS_CMAC(rctx->flags))
271 goto go_proc;
273 if (rctx->first_blk)
274 memcpy(auth, rctx->digest, digestsize);
275 else
276 qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
278 iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
279 qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
281 if (rctx->first_blk)
282 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
283 else
284 qce_write_array(qce, REG_AUTH_BYTECNT0,
285 (u32 *)rctx->byte_count, 2);
287 auth_cfg = qce_auth_cfg(rctx->flags, 0);
289 if (rctx->last_blk)
290 auth_cfg |= BIT(AUTH_LAST_SHIFT);
291 else
292 auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
294 if (rctx->first_blk)
295 auth_cfg |= BIT(AUTH_FIRST_SHIFT);
296 else
297 auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
299 go_proc:
300 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
301 qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
302 qce_write(qce, REG_AUTH_SEG_START, 0);
303 qce_write(qce, REG_ENCR_SEG_CFG, 0);
304 qce_write(qce, REG_SEG_SIZE, req->nbytes);
306 /* get little endianness */
307 config = qce_config_reg(qce, 1);
308 qce_write(qce, REG_CONFIG, config);
310 qce_crypto_go(qce);
312 return 0;
315 static int qce_setup_regs_ablkcipher(struct crypto_async_request *async_req,
316 u32 totallen, u32 offset)
318 struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
319 struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
320 struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
321 struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
322 struct qce_device *qce = tmpl->qce;
323 __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
324 __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
325 unsigned int enckey_words, enciv_words;
326 unsigned int keylen;
327 u32 encr_cfg = 0, auth_cfg = 0, config;
328 unsigned int ivsize = rctx->ivsize;
329 unsigned long flags = rctx->flags;
331 qce_setup_config(qce);
333 if (IS_XTS(flags))
334 keylen = ctx->enc_keylen / 2;
335 else
336 keylen = ctx->enc_keylen;
338 qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
339 enckey_words = keylen / sizeof(u32);
341 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
343 encr_cfg = qce_encr_cfg(flags, keylen);
345 if (IS_DES(flags)) {
346 enciv_words = 2;
347 enckey_words = 2;
348 } else if (IS_3DES(flags)) {
349 enciv_words = 2;
350 enckey_words = 6;
351 } else if (IS_AES(flags)) {
352 if (IS_XTS(flags))
353 qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
354 rctx->cryptlen);
355 enciv_words = 4;
356 } else {
357 return -EINVAL;
360 qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
362 if (!IS_ECB(flags)) {
363 if (IS_XTS(flags))
364 qce_xts_swapiv(enciv, rctx->iv, ivsize);
365 else
366 qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
368 qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
371 if (IS_ENCRYPT(flags))
372 encr_cfg |= BIT(ENCODE_SHIFT);
374 qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
375 qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
376 qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
378 if (IS_CTR(flags)) {
379 qce_write(qce, REG_CNTR_MASK, ~0);
380 qce_write(qce, REG_CNTR_MASK0, ~0);
381 qce_write(qce, REG_CNTR_MASK1, ~0);
382 qce_write(qce, REG_CNTR_MASK2, ~0);
385 qce_write(qce, REG_SEG_SIZE, totallen);
387 /* get little endianness */
388 config = qce_config_reg(qce, 1);
389 qce_write(qce, REG_CONFIG, config);
391 qce_crypto_go(qce);
393 return 0;
396 int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
397 u32 offset)
399 switch (type) {
400 case CRYPTO_ALG_TYPE_ABLKCIPHER:
401 return qce_setup_regs_ablkcipher(async_req, totallen, offset);
402 case CRYPTO_ALG_TYPE_AHASH:
403 return qce_setup_regs_ahash(async_req, totallen, offset);
404 default:
405 return -EINVAL;
409 #define STATUS_ERRORS \
410 (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
412 int qce_check_status(struct qce_device *qce, u32 *status)
414 int ret = 0;
416 *status = qce_read(qce, REG_STATUS);
419 * Don't use result dump status. The operation may not be complete.
420 * Instead, use the status we just read from device. In case, we need to
421 * use result_status from result dump the result_status needs to be byte
422 * swapped, since we set the device to little endian.
424 if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
425 ret = -ENXIO;
427 return ret;
430 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
432 u32 val;
434 val = qce_read(qce, REG_VERSION);
435 *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
436 *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
437 *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;