2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
61 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
64 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
68 .index
= HRTIMER_BASE_MONOTONIC
,
69 .clockid
= CLOCK_MONOTONIC
,
70 .get_time
= &ktime_get
,
71 .resolution
= KTIME_LOW_RES
,
74 .index
= HRTIMER_BASE_REALTIME
,
75 .clockid
= CLOCK_REALTIME
,
76 .get_time
= &ktime_get_real
,
77 .resolution
= KTIME_LOW_RES
,
80 .index
= HRTIMER_BASE_BOOTTIME
,
81 .clockid
= CLOCK_BOOTTIME
,
82 .get_time
= &ktime_get_boottime
,
83 .resolution
= KTIME_LOW_RES
,
88 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
89 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
90 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
91 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
94 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
96 return hrtimer_clock_to_base_table
[clock_id
];
101 * Get the coarse grained time at the softirq based on xtime and
104 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
106 ktime_t xtim
, mono
, boot
;
107 struct timespec xts
, tom
, slp
;
109 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
111 xtim
= timespec_to_ktime(xts
);
112 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
113 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
114 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
115 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
116 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
120 * Functions and macros which are different for UP/SMP systems are kept in a
126 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
127 * means that all timers which are tied to this base via timer->base are
128 * locked, and the base itself is locked too.
130 * So __run_timers/migrate_timers can safely modify all timers which could
131 * be found on the lists/queues.
133 * When the timer's base is locked, and the timer removed from list, it is
134 * possible to set timer->base = NULL and drop the lock: the timer remains
138 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
139 unsigned long *flags
)
141 struct hrtimer_clock_base
*base
;
145 if (likely(base
!= NULL
)) {
146 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
147 if (likely(base
== timer
->base
))
149 /* The timer has migrated to another CPU: */
150 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
158 * Get the preferred target CPU for NOHZ
160 static int hrtimer_get_target(int this_cpu
, int pinned
)
163 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
164 return get_nohz_timer_target();
170 * With HIGHRES=y we do not migrate the timer when it is expiring
171 * before the next event on the target cpu because we cannot reprogram
172 * the target cpu hardware and we would cause it to fire late.
174 * Called with cpu_base->lock of target cpu held.
177 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
179 #ifdef CONFIG_HIGH_RES_TIMERS
182 if (!new_base
->cpu_base
->hres_active
)
185 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
186 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
193 * Switch the timer base to the current CPU when possible.
195 static inline struct hrtimer_clock_base
*
196 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
199 struct hrtimer_clock_base
*new_base
;
200 struct hrtimer_cpu_base
*new_cpu_base
;
201 int this_cpu
= smp_processor_id();
202 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
203 int basenum
= base
->index
;
206 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
207 new_base
= &new_cpu_base
->clock_base
[basenum
];
209 if (base
!= new_base
) {
211 * We are trying to move timer to new_base.
212 * However we can't change timer's base while it is running,
213 * so we keep it on the same CPU. No hassle vs. reprogramming
214 * the event source in the high resolution case. The softirq
215 * code will take care of this when the timer function has
216 * completed. There is no conflict as we hold the lock until
217 * the timer is enqueued.
219 if (unlikely(hrtimer_callback_running(timer
)))
222 /* See the comment in lock_timer_base() */
224 raw_spin_unlock(&base
->cpu_base
->lock
);
225 raw_spin_lock(&new_base
->cpu_base
->lock
);
227 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
229 raw_spin_unlock(&new_base
->cpu_base
->lock
);
230 raw_spin_lock(&base
->cpu_base
->lock
);
234 timer
->base
= new_base
;
236 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
244 #else /* CONFIG_SMP */
246 static inline struct hrtimer_clock_base
*
247 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
249 struct hrtimer_clock_base
*base
= timer
->base
;
251 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
256 # define switch_hrtimer_base(t, b, p) (b)
258 #endif /* !CONFIG_SMP */
261 * Functions for the union type storage format of ktime_t which are
262 * too large for inlining:
264 #if BITS_PER_LONG < 64
265 # ifndef CONFIG_KTIME_SCALAR
267 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
269 * @nsec: the scalar nsec value to add
271 * Returns the sum of kt and nsec in ktime_t format
273 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
277 if (likely(nsec
< NSEC_PER_SEC
)) {
280 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
282 tmp
= ktime_set((long)nsec
, rem
);
285 return ktime_add(kt
, tmp
);
288 EXPORT_SYMBOL_GPL(ktime_add_ns
);
291 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
293 * @nsec: the scalar nsec value to subtract
295 * Returns the subtraction of @nsec from @kt in ktime_t format
297 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
301 if (likely(nsec
< NSEC_PER_SEC
)) {
304 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
306 /* Make sure nsec fits into long */
307 if (unlikely(nsec
> KTIME_SEC_MAX
))
308 return (ktime_t
){ .tv64
= KTIME_MAX
};
310 tmp
= ktime_set((long)nsec
, rem
);
313 return ktime_sub(kt
, tmp
);
316 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
317 # endif /* !CONFIG_KTIME_SCALAR */
320 * Divide a ktime value by a nanosecond value
322 u64
ktime_divns(const ktime_t kt
, s64 div
)
327 dclc
= ktime_to_ns(kt
);
328 /* Make sure the divisor is less than 2^32: */
334 do_div(dclc
, (unsigned long) div
);
338 #endif /* BITS_PER_LONG >= 64 */
341 * Add two ktime values and do a safety check for overflow:
343 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
345 ktime_t res
= ktime_add(lhs
, rhs
);
348 * We use KTIME_SEC_MAX here, the maximum timeout which we can
349 * return to user space in a timespec:
351 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
352 res
= ktime_set(KTIME_SEC_MAX
, 0);
357 EXPORT_SYMBOL_GPL(ktime_add_safe
);
359 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
361 static struct debug_obj_descr hrtimer_debug_descr
;
363 static void *hrtimer_debug_hint(void *addr
)
365 return ((struct hrtimer
*) addr
)->function
;
369 * fixup_init is called when:
370 * - an active object is initialized
372 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
374 struct hrtimer
*timer
= addr
;
377 case ODEBUG_STATE_ACTIVE
:
378 hrtimer_cancel(timer
);
379 debug_object_init(timer
, &hrtimer_debug_descr
);
387 * fixup_activate is called when:
388 * - an active object is activated
389 * - an unknown object is activated (might be a statically initialized object)
391 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
395 case ODEBUG_STATE_NOTAVAILABLE
:
399 case ODEBUG_STATE_ACTIVE
:
408 * fixup_free is called when:
409 * - an active object is freed
411 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
413 struct hrtimer
*timer
= addr
;
416 case ODEBUG_STATE_ACTIVE
:
417 hrtimer_cancel(timer
);
418 debug_object_free(timer
, &hrtimer_debug_descr
);
425 static struct debug_obj_descr hrtimer_debug_descr
= {
427 .debug_hint
= hrtimer_debug_hint
,
428 .fixup_init
= hrtimer_fixup_init
,
429 .fixup_activate
= hrtimer_fixup_activate
,
430 .fixup_free
= hrtimer_fixup_free
,
433 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
435 debug_object_init(timer
, &hrtimer_debug_descr
);
438 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
440 debug_object_activate(timer
, &hrtimer_debug_descr
);
443 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
445 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
448 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
450 debug_object_free(timer
, &hrtimer_debug_descr
);
453 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
454 enum hrtimer_mode mode
);
456 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
457 enum hrtimer_mode mode
)
459 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
460 __hrtimer_init(timer
, clock_id
, mode
);
462 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
464 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
466 debug_object_free(timer
, &hrtimer_debug_descr
);
470 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
471 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
472 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
476 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
477 enum hrtimer_mode mode
)
479 debug_hrtimer_init(timer
);
480 trace_hrtimer_init(timer
, clockid
, mode
);
483 static inline void debug_activate(struct hrtimer
*timer
)
485 debug_hrtimer_activate(timer
);
486 trace_hrtimer_start(timer
);
489 static inline void debug_deactivate(struct hrtimer
*timer
)
491 debug_hrtimer_deactivate(timer
);
492 trace_hrtimer_cancel(timer
);
495 /* High resolution timer related functions */
496 #ifdef CONFIG_HIGH_RES_TIMERS
499 * High resolution timer enabled ?
501 static int hrtimer_hres_enabled __read_mostly
= 1;
504 * Enable / Disable high resolution mode
506 static int __init
setup_hrtimer_hres(char *str
)
508 if (!strcmp(str
, "off"))
509 hrtimer_hres_enabled
= 0;
510 else if (!strcmp(str
, "on"))
511 hrtimer_hres_enabled
= 1;
517 __setup("highres=", setup_hrtimer_hres
);
520 * hrtimer_high_res_enabled - query, if the highres mode is enabled
522 static inline int hrtimer_is_hres_enabled(void)
524 return hrtimer_hres_enabled
;
528 * Is the high resolution mode active ?
530 static inline int hrtimer_hres_active(void)
532 return __this_cpu_read(hrtimer_bases
.hres_active
);
536 * Reprogram the event source with checking both queues for the
538 * Called with interrupts disabled and base->lock held
541 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
544 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
545 ktime_t expires
, expires_next
;
547 expires_next
.tv64
= KTIME_MAX
;
549 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
550 struct hrtimer
*timer
;
551 struct timerqueue_node
*next
;
553 next
= timerqueue_getnext(&base
->active
);
556 timer
= container_of(next
, struct hrtimer
, node
);
558 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
560 * clock_was_set() has changed base->offset so the
561 * result might be negative. Fix it up to prevent a
562 * false positive in clockevents_program_event()
564 if (expires
.tv64
< 0)
566 if (expires
.tv64
< expires_next
.tv64
)
567 expires_next
= expires
;
570 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
573 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
576 * If a hang was detected in the last timer interrupt then we
577 * leave the hang delay active in the hardware. We want the
578 * system to make progress. That also prevents the following
580 * T1 expires 50ms from now
581 * T2 expires 5s from now
583 * T1 is removed, so this code is called and would reprogram
584 * the hardware to 5s from now. Any hrtimer_start after that
585 * will not reprogram the hardware due to hang_detected being
586 * set. So we'd effectivly block all timers until the T2 event
589 if (cpu_base
->hang_detected
)
592 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
593 tick_program_event(cpu_base
->expires_next
, 1);
597 * Shared reprogramming for clock_realtime and clock_monotonic
599 * When a timer is enqueued and expires earlier than the already enqueued
600 * timers, we have to check, whether it expires earlier than the timer for
601 * which the clock event device was armed.
603 * Called with interrupts disabled and base->cpu_base.lock held
605 static int hrtimer_reprogram(struct hrtimer
*timer
,
606 struct hrtimer_clock_base
*base
)
608 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
609 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
612 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
615 * When the callback is running, we do not reprogram the clock event
616 * device. The timer callback is either running on a different CPU or
617 * the callback is executed in the hrtimer_interrupt context. The
618 * reprogramming is handled either by the softirq, which called the
619 * callback or at the end of the hrtimer_interrupt.
621 if (hrtimer_callback_running(timer
))
625 * CLOCK_REALTIME timer might be requested with an absolute
626 * expiry time which is less than base->offset. Nothing wrong
627 * about that, just avoid to call into the tick code, which
628 * has now objections against negative expiry values.
630 if (expires
.tv64
< 0)
633 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
637 * If a hang was detected in the last timer interrupt then we
638 * do not schedule a timer which is earlier than the expiry
639 * which we enforced in the hang detection. We want the system
642 if (cpu_base
->hang_detected
)
646 * Clockevents returns -ETIME, when the event was in the past.
648 res
= tick_program_event(expires
, 0);
649 if (!IS_ERR_VALUE(res
))
650 cpu_base
->expires_next
= expires
;
655 * Initialize the high resolution related parts of cpu_base
657 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
659 base
->expires_next
.tv64
= KTIME_MAX
;
660 base
->hres_active
= 0;
664 * When High resolution timers are active, try to reprogram. Note, that in case
665 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
666 * check happens. The timer gets enqueued into the rbtree. The reprogramming
667 * and expiry check is done in the hrtimer_interrupt or in the softirq.
669 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
670 struct hrtimer_clock_base
*base
)
672 return base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
);
675 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
677 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
678 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
680 return ktime_get_update_offsets(offs_real
, offs_boot
);
684 * Retrigger next event is called after clock was set
686 * Called with interrupts disabled via on_each_cpu()
688 static void retrigger_next_event(void *arg
)
690 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
692 if (!hrtimer_hres_active())
695 raw_spin_lock(&base
->lock
);
696 hrtimer_update_base(base
);
697 hrtimer_force_reprogram(base
, 0);
698 raw_spin_unlock(&base
->lock
);
702 * Switch to high resolution mode
704 static int hrtimer_switch_to_hres(void)
706 int i
, cpu
= smp_processor_id();
707 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
710 if (base
->hres_active
)
713 local_irq_save(flags
);
715 if (tick_init_highres()) {
716 local_irq_restore(flags
);
717 printk(KERN_WARNING
"Could not switch to high resolution "
718 "mode on CPU %d\n", cpu
);
721 base
->hres_active
= 1;
722 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
723 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
725 tick_setup_sched_timer();
726 /* "Retrigger" the interrupt to get things going */
727 retrigger_next_event(NULL
);
728 local_irq_restore(flags
);
733 * Called from timekeeping code to reprogramm the hrtimer interrupt
734 * device. If called from the timer interrupt context we defer it to
737 void clock_was_set_delayed(void)
739 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
741 cpu_base
->clock_was_set
= 1;
742 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
747 static inline int hrtimer_hres_active(void) { return 0; }
748 static inline int hrtimer_is_hres_enabled(void) { return 0; }
749 static inline int hrtimer_switch_to_hres(void) { return 0; }
751 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
752 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
753 struct hrtimer_clock_base
*base
)
757 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
758 static inline void retrigger_next_event(void *arg
) { }
760 #endif /* CONFIG_HIGH_RES_TIMERS */
763 * Clock realtime was set
765 * Change the offset of the realtime clock vs. the monotonic
768 * We might have to reprogram the high resolution timer interrupt. On
769 * SMP we call the architecture specific code to retrigger _all_ high
770 * resolution timer interrupts. On UP we just disable interrupts and
771 * call the high resolution interrupt code.
773 void clock_was_set(void)
775 #ifdef CONFIG_HIGH_RES_TIMERS
776 /* Retrigger the CPU local events everywhere */
777 on_each_cpu(retrigger_next_event
, NULL
, 1);
779 timerfd_clock_was_set();
783 * During resume we might have to reprogram the high resolution timer
784 * interrupt (on the local CPU):
786 void hrtimers_resume(void)
788 WARN_ONCE(!irqs_disabled(),
789 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
791 retrigger_next_event(NULL
);
792 timerfd_clock_was_set();
795 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
797 #ifdef CONFIG_TIMER_STATS
798 if (timer
->start_site
)
800 timer
->start_site
= __builtin_return_address(0);
801 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
802 timer
->start_pid
= current
->pid
;
806 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
808 #ifdef CONFIG_TIMER_STATS
809 timer
->start_site
= NULL
;
813 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
815 #ifdef CONFIG_TIMER_STATS
816 if (likely(!timer_stats_active
))
818 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
819 timer
->function
, timer
->start_comm
, 0);
824 * Counterpart to lock_hrtimer_base above:
827 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
829 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
833 * hrtimer_forward - forward the timer expiry
834 * @timer: hrtimer to forward
835 * @now: forward past this time
836 * @interval: the interval to forward
838 * Forward the timer expiry so it will expire in the future.
839 * Returns the number of overruns.
841 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
846 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
851 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
852 interval
.tv64
= timer
->base
->resolution
.tv64
;
854 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
855 s64 incr
= ktime_to_ns(interval
);
857 orun
= ktime_divns(delta
, incr
);
858 hrtimer_add_expires_ns(timer
, incr
* orun
);
859 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
862 * This (and the ktime_add() below) is the
863 * correction for exact:
867 hrtimer_add_expires(timer
, interval
);
871 EXPORT_SYMBOL_GPL(hrtimer_forward
);
874 * enqueue_hrtimer - internal function to (re)start a timer
876 * The timer is inserted in expiry order. Insertion into the
877 * red black tree is O(log(n)). Must hold the base lock.
879 * Returns 1 when the new timer is the leftmost timer in the tree.
881 static int enqueue_hrtimer(struct hrtimer
*timer
,
882 struct hrtimer_clock_base
*base
)
884 debug_activate(timer
);
886 timerqueue_add(&base
->active
, &timer
->node
);
887 base
->cpu_base
->active_bases
|= 1 << base
->index
;
890 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
891 * state of a possibly running callback.
893 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
895 return (&timer
->node
== base
->active
.next
);
899 * __remove_hrtimer - internal function to remove a timer
901 * Caller must hold the base lock.
903 * High resolution timer mode reprograms the clock event device when the
904 * timer is the one which expires next. The caller can disable this by setting
905 * reprogram to zero. This is useful, when the context does a reprogramming
906 * anyway (e.g. timer interrupt)
908 static void __remove_hrtimer(struct hrtimer
*timer
,
909 struct hrtimer_clock_base
*base
,
910 unsigned long newstate
, int reprogram
)
912 struct timerqueue_node
*next_timer
;
913 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
916 next_timer
= timerqueue_getnext(&base
->active
);
917 timerqueue_del(&base
->active
, &timer
->node
);
918 if (&timer
->node
== next_timer
) {
919 #ifdef CONFIG_HIGH_RES_TIMERS
920 /* Reprogram the clock event device. if enabled */
921 if (reprogram
&& hrtimer_hres_active()) {
924 expires
= ktime_sub(hrtimer_get_expires(timer
),
926 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
927 hrtimer_force_reprogram(base
->cpu_base
, 1);
931 if (!timerqueue_getnext(&base
->active
))
932 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
934 timer
->state
= newstate
;
938 * remove hrtimer, called with base lock held
941 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
943 if (hrtimer_is_queued(timer
)) {
948 * Remove the timer and force reprogramming when high
949 * resolution mode is active and the timer is on the current
950 * CPU. If we remove a timer on another CPU, reprogramming is
951 * skipped. The interrupt event on this CPU is fired and
952 * reprogramming happens in the interrupt handler. This is a
953 * rare case and less expensive than a smp call.
955 debug_deactivate(timer
);
956 timer_stats_hrtimer_clear_start_info(timer
);
957 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
959 * We must preserve the CALLBACK state flag here,
960 * otherwise we could move the timer base in
961 * switch_hrtimer_base.
963 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
964 __remove_hrtimer(timer
, base
, state
, reprogram
);
970 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
971 unsigned long delta_ns
, const enum hrtimer_mode mode
,
974 struct hrtimer_clock_base
*base
, *new_base
;
978 base
= lock_hrtimer_base(timer
, &flags
);
980 /* Remove an active timer from the queue: */
981 ret
= remove_hrtimer(timer
, base
);
983 if (mode
& HRTIMER_MODE_REL
) {
984 tim
= ktime_add_safe(tim
, base
->get_time());
986 * CONFIG_TIME_LOW_RES is a temporary way for architectures
987 * to signal that they simply return xtime in
988 * do_gettimeoffset(). In this case we want to round up by
989 * resolution when starting a relative timer, to avoid short
990 * timeouts. This will go away with the GTOD framework.
992 #ifdef CONFIG_TIME_LOW_RES
993 tim
= ktime_add_safe(tim
, base
->resolution
);
997 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
999 /* Switch the timer base, if necessary: */
1000 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
1002 timer_stats_hrtimer_set_start_info(timer
);
1004 leftmost
= enqueue_hrtimer(timer
, new_base
);
1007 * Only allow reprogramming if the new base is on this CPU.
1008 * (it might still be on another CPU if the timer was pending)
1010 * XXX send_remote_softirq() ?
1012 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
)
1013 && hrtimer_enqueue_reprogram(timer
, new_base
)) {
1016 * We need to drop cpu_base->lock to avoid a
1017 * lock ordering issue vs. rq->lock.
1019 raw_spin_unlock(&new_base
->cpu_base
->lock
);
1020 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1021 local_irq_restore(flags
);
1024 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1028 unlock_hrtimer_base(timer
, &flags
);
1034 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1035 * @timer: the timer to be added
1037 * @delta_ns: "slack" range for the timer
1038 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1042 * 1 when the timer was active
1044 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1045 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1047 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1049 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1052 * hrtimer_start - (re)start an hrtimer on the current CPU
1053 * @timer: the timer to be added
1055 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1059 * 1 when the timer was active
1062 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1064 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1066 EXPORT_SYMBOL_GPL(hrtimer_start
);
1070 * hrtimer_try_to_cancel - try to deactivate a timer
1071 * @timer: hrtimer to stop
1074 * 0 when the timer was not active
1075 * 1 when the timer was active
1076 * -1 when the timer is currently excuting the callback function and
1079 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1081 struct hrtimer_clock_base
*base
;
1082 unsigned long flags
;
1085 base
= lock_hrtimer_base(timer
, &flags
);
1087 if (!hrtimer_callback_running(timer
))
1088 ret
= remove_hrtimer(timer
, base
);
1090 unlock_hrtimer_base(timer
, &flags
);
1095 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1098 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1099 * @timer: the timer to be cancelled
1102 * 0 when the timer was not active
1103 * 1 when the timer was active
1105 int hrtimer_cancel(struct hrtimer
*timer
)
1108 int ret
= hrtimer_try_to_cancel(timer
);
1115 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1118 * hrtimer_get_remaining - get remaining time for the timer
1119 * @timer: the timer to read
1121 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1123 unsigned long flags
;
1126 lock_hrtimer_base(timer
, &flags
);
1127 rem
= hrtimer_expires_remaining(timer
);
1128 unlock_hrtimer_base(timer
, &flags
);
1132 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1136 * hrtimer_get_next_event - get the time until next expiry event
1138 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1141 ktime_t
hrtimer_get_next_event(void)
1143 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1144 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1145 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1146 unsigned long flags
;
1149 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1151 if (!hrtimer_hres_active()) {
1152 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1153 struct hrtimer
*timer
;
1154 struct timerqueue_node
*next
;
1156 next
= timerqueue_getnext(&base
->active
);
1160 timer
= container_of(next
, struct hrtimer
, node
);
1161 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1162 delta
= ktime_sub(delta
, base
->get_time());
1163 if (delta
.tv64
< mindelta
.tv64
)
1164 mindelta
.tv64
= delta
.tv64
;
1168 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1170 if (mindelta
.tv64
< 0)
1176 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1177 enum hrtimer_mode mode
)
1179 struct hrtimer_cpu_base
*cpu_base
;
1182 memset(timer
, 0, sizeof(struct hrtimer
));
1184 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1186 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1187 clock_id
= CLOCK_MONOTONIC
;
1189 base
= hrtimer_clockid_to_base(clock_id
);
1190 timer
->base
= &cpu_base
->clock_base
[base
];
1191 timerqueue_init(&timer
->node
);
1193 #ifdef CONFIG_TIMER_STATS
1194 timer
->start_site
= NULL
;
1195 timer
->start_pid
= -1;
1196 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1201 * hrtimer_init - initialize a timer to the given clock
1202 * @timer: the timer to be initialized
1203 * @clock_id: the clock to be used
1204 * @mode: timer mode abs/rel
1206 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1207 enum hrtimer_mode mode
)
1209 debug_init(timer
, clock_id
, mode
);
1210 __hrtimer_init(timer
, clock_id
, mode
);
1212 EXPORT_SYMBOL_GPL(hrtimer_init
);
1215 * hrtimer_get_res - get the timer resolution for a clock
1216 * @which_clock: which clock to query
1217 * @tp: pointer to timespec variable to store the resolution
1219 * Store the resolution of the clock selected by @which_clock in the
1220 * variable pointed to by @tp.
1222 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1224 struct hrtimer_cpu_base
*cpu_base
;
1225 int base
= hrtimer_clockid_to_base(which_clock
);
1227 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1228 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1232 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1234 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1236 struct hrtimer_clock_base
*base
= timer
->base
;
1237 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1238 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1241 WARN_ON(!irqs_disabled());
1243 debug_deactivate(timer
);
1244 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1245 timer_stats_account_hrtimer(timer
);
1246 fn
= timer
->function
;
1249 * Because we run timers from hardirq context, there is no chance
1250 * they get migrated to another cpu, therefore its safe to unlock
1253 raw_spin_unlock(&cpu_base
->lock
);
1254 trace_hrtimer_expire_entry(timer
, now
);
1255 restart
= fn(timer
);
1256 trace_hrtimer_expire_exit(timer
);
1257 raw_spin_lock(&cpu_base
->lock
);
1260 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1261 * we do not reprogramm the event hardware. Happens either in
1262 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1264 if (restart
!= HRTIMER_NORESTART
) {
1265 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1266 enqueue_hrtimer(timer
, base
);
1269 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1271 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1274 #ifdef CONFIG_HIGH_RES_TIMERS
1277 * High resolution timer interrupt
1278 * Called with interrupts disabled
1280 void hrtimer_interrupt(struct clock_event_device
*dev
)
1282 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1283 ktime_t expires_next
, now
, entry_time
, delta
;
1286 BUG_ON(!cpu_base
->hres_active
);
1287 cpu_base
->nr_events
++;
1288 dev
->next_event
.tv64
= KTIME_MAX
;
1290 raw_spin_lock(&cpu_base
->lock
);
1291 entry_time
= now
= hrtimer_update_base(cpu_base
);
1293 expires_next
.tv64
= KTIME_MAX
;
1295 * We set expires_next to KTIME_MAX here with cpu_base->lock
1296 * held to prevent that a timer is enqueued in our queue via
1297 * the migration code. This does not affect enqueueing of
1298 * timers which run their callback and need to be requeued on
1301 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1303 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1304 struct hrtimer_clock_base
*base
;
1305 struct timerqueue_node
*node
;
1308 if (!(cpu_base
->active_bases
& (1 << i
)))
1311 base
= cpu_base
->clock_base
+ i
;
1312 basenow
= ktime_add(now
, base
->offset
);
1314 while ((node
= timerqueue_getnext(&base
->active
))) {
1315 struct hrtimer
*timer
;
1317 timer
= container_of(node
, struct hrtimer
, node
);
1320 * The immediate goal for using the softexpires is
1321 * minimizing wakeups, not running timers at the
1322 * earliest interrupt after their soft expiration.
1323 * This allows us to avoid using a Priority Search
1324 * Tree, which can answer a stabbing querry for
1325 * overlapping intervals and instead use the simple
1326 * BST we already have.
1327 * We don't add extra wakeups by delaying timers that
1328 * are right-of a not yet expired timer, because that
1329 * timer will have to trigger a wakeup anyway.
1332 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1335 expires
= ktime_sub(hrtimer_get_expires(timer
),
1337 if (expires
.tv64
< 0)
1338 expires
.tv64
= KTIME_MAX
;
1339 if (expires
.tv64
< expires_next
.tv64
)
1340 expires_next
= expires
;
1344 __run_hrtimer(timer
, &basenow
);
1349 * Store the new expiry value so the migration code can verify
1352 cpu_base
->expires_next
= expires_next
;
1353 raw_spin_unlock(&cpu_base
->lock
);
1355 /* Reprogramming necessary ? */
1356 if (expires_next
.tv64
== KTIME_MAX
||
1357 !tick_program_event(expires_next
, 0)) {
1358 cpu_base
->hang_detected
= 0;
1363 * The next timer was already expired due to:
1365 * - long lasting callbacks
1366 * - being scheduled away when running in a VM
1368 * We need to prevent that we loop forever in the hrtimer
1369 * interrupt routine. We give it 3 attempts to avoid
1370 * overreacting on some spurious event.
1372 * Acquire base lock for updating the offsets and retrieving
1375 raw_spin_lock(&cpu_base
->lock
);
1376 now
= hrtimer_update_base(cpu_base
);
1377 cpu_base
->nr_retries
++;
1381 * Give the system a chance to do something else than looping
1382 * here. We stored the entry time, so we know exactly how long
1383 * we spent here. We schedule the next event this amount of
1386 cpu_base
->nr_hangs
++;
1387 cpu_base
->hang_detected
= 1;
1388 raw_spin_unlock(&cpu_base
->lock
);
1389 delta
= ktime_sub(now
, entry_time
);
1390 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1391 cpu_base
->max_hang_time
= delta
;
1393 * Limit it to a sensible value as we enforce a longer
1394 * delay. Give the CPU at least 100ms to catch up.
1396 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1397 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1399 expires_next
= ktime_add(now
, delta
);
1400 tick_program_event(expires_next
, 1);
1401 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1402 ktime_to_ns(delta
));
1406 * local version of hrtimer_peek_ahead_timers() called with interrupts
1409 static void __hrtimer_peek_ahead_timers(void)
1411 struct tick_device
*td
;
1413 if (!hrtimer_hres_active())
1416 td
= &__get_cpu_var(tick_cpu_device
);
1417 if (td
&& td
->evtdev
)
1418 hrtimer_interrupt(td
->evtdev
);
1422 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1424 * hrtimer_peek_ahead_timers will peek at the timer queue of
1425 * the current cpu and check if there are any timers for which
1426 * the soft expires time has passed. If any such timers exist,
1427 * they are run immediately and then removed from the timer queue.
1430 void hrtimer_peek_ahead_timers(void)
1432 unsigned long flags
;
1434 local_irq_save(flags
);
1435 __hrtimer_peek_ahead_timers();
1436 local_irq_restore(flags
);
1439 static void run_hrtimer_softirq(struct softirq_action
*h
)
1441 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1443 if (cpu_base
->clock_was_set
) {
1444 cpu_base
->clock_was_set
= 0;
1448 hrtimer_peek_ahead_timers();
1451 #else /* CONFIG_HIGH_RES_TIMERS */
1453 static inline void __hrtimer_peek_ahead_timers(void) { }
1455 #endif /* !CONFIG_HIGH_RES_TIMERS */
1458 * Called from timer softirq every jiffy, expire hrtimers:
1460 * For HRT its the fall back code to run the softirq in the timer
1461 * softirq context in case the hrtimer initialization failed or has
1462 * not been done yet.
1464 void hrtimer_run_pending(void)
1466 if (hrtimer_hres_active())
1470 * This _is_ ugly: We have to check in the softirq context,
1471 * whether we can switch to highres and / or nohz mode. The
1472 * clocksource switch happens in the timer interrupt with
1473 * xtime_lock held. Notification from there only sets the
1474 * check bit in the tick_oneshot code, otherwise we might
1475 * deadlock vs. xtime_lock.
1477 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1478 hrtimer_switch_to_hres();
1482 * Called from hardirq context every jiffy
1484 void hrtimer_run_queues(void)
1486 struct timerqueue_node
*node
;
1487 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1488 struct hrtimer_clock_base
*base
;
1489 int index
, gettime
= 1;
1491 if (hrtimer_hres_active())
1494 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1495 base
= &cpu_base
->clock_base
[index
];
1496 if (!timerqueue_getnext(&base
->active
))
1500 hrtimer_get_softirq_time(cpu_base
);
1504 raw_spin_lock(&cpu_base
->lock
);
1506 while ((node
= timerqueue_getnext(&base
->active
))) {
1507 struct hrtimer
*timer
;
1509 timer
= container_of(node
, struct hrtimer
, node
);
1510 if (base
->softirq_time
.tv64
<=
1511 hrtimer_get_expires_tv64(timer
))
1514 __run_hrtimer(timer
, &base
->softirq_time
);
1516 raw_spin_unlock(&cpu_base
->lock
);
1521 * Sleep related functions:
1523 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1525 struct hrtimer_sleeper
*t
=
1526 container_of(timer
, struct hrtimer_sleeper
, timer
);
1527 struct task_struct
*task
= t
->task
;
1531 wake_up_process(task
);
1533 return HRTIMER_NORESTART
;
1536 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1538 sl
->timer
.function
= hrtimer_wakeup
;
1541 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1543 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1545 hrtimer_init_sleeper(t
, current
);
1548 set_current_state(TASK_INTERRUPTIBLE
);
1549 hrtimer_start_expires(&t
->timer
, mode
);
1550 if (!hrtimer_active(&t
->timer
))
1553 if (likely(t
->task
))
1556 hrtimer_cancel(&t
->timer
);
1557 mode
= HRTIMER_MODE_ABS
;
1559 } while (t
->task
&& !signal_pending(current
));
1561 __set_current_state(TASK_RUNNING
);
1563 return t
->task
== NULL
;
1566 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1568 struct timespec rmt
;
1571 rem
= hrtimer_expires_remaining(timer
);
1574 rmt
= ktime_to_timespec(rem
);
1576 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1582 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1584 struct hrtimer_sleeper t
;
1585 struct timespec __user
*rmtp
;
1588 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1590 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1592 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1595 rmtp
= restart
->nanosleep
.rmtp
;
1597 ret
= update_rmtp(&t
.timer
, rmtp
);
1602 /* The other values in restart are already filled in */
1603 ret
= -ERESTART_RESTARTBLOCK
;
1605 destroy_hrtimer_on_stack(&t
.timer
);
1609 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1610 const enum hrtimer_mode mode
, const clockid_t clockid
)
1612 struct restart_block
*restart
;
1613 struct hrtimer_sleeper t
;
1615 unsigned long slack
;
1617 slack
= current
->timer_slack_ns
;
1618 if (rt_task(current
))
1621 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1622 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1623 if (do_nanosleep(&t
, mode
))
1626 /* Absolute timers do not update the rmtp value and restart: */
1627 if (mode
== HRTIMER_MODE_ABS
) {
1628 ret
= -ERESTARTNOHAND
;
1633 ret
= update_rmtp(&t
.timer
, rmtp
);
1638 restart
= ¤t_thread_info()->restart_block
;
1639 restart
->fn
= hrtimer_nanosleep_restart
;
1640 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1641 restart
->nanosleep
.rmtp
= rmtp
;
1642 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1644 ret
= -ERESTART_RESTARTBLOCK
;
1646 destroy_hrtimer_on_stack(&t
.timer
);
1650 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1651 struct timespec __user
*, rmtp
)
1655 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1658 if (!timespec_valid(&tu
))
1661 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1665 * Functions related to boot-time initialization:
1667 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1669 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1672 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1673 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1674 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1677 hrtimer_init_hres(cpu_base
);
1680 #ifdef CONFIG_HOTPLUG_CPU
1682 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1683 struct hrtimer_clock_base
*new_base
)
1685 struct hrtimer
*timer
;
1686 struct timerqueue_node
*node
;
1688 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1689 timer
= container_of(node
, struct hrtimer
, node
);
1690 BUG_ON(hrtimer_callback_running(timer
));
1691 debug_deactivate(timer
);
1694 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1695 * timer could be seen as !active and just vanish away
1696 * under us on another CPU
1698 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1699 timer
->base
= new_base
;
1701 * Enqueue the timers on the new cpu. This does not
1702 * reprogram the event device in case the timer
1703 * expires before the earliest on this CPU, but we run
1704 * hrtimer_interrupt after we migrated everything to
1705 * sort out already expired timers and reprogram the
1708 enqueue_hrtimer(timer
, new_base
);
1710 /* Clear the migration state bit */
1711 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1715 static void migrate_hrtimers(int scpu
)
1717 struct hrtimer_cpu_base
*old_base
, *new_base
;
1720 BUG_ON(cpu_online(scpu
));
1721 tick_cancel_sched_timer(scpu
);
1723 local_irq_disable();
1724 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1725 new_base
= &__get_cpu_var(hrtimer_bases
);
1727 * The caller is globally serialized and nobody else
1728 * takes two locks at once, deadlock is not possible.
1730 raw_spin_lock(&new_base
->lock
);
1731 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1733 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1734 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1735 &new_base
->clock_base
[i
]);
1738 raw_spin_unlock(&old_base
->lock
);
1739 raw_spin_unlock(&new_base
->lock
);
1741 /* Check, if we got expired work to do */
1742 __hrtimer_peek_ahead_timers();
1746 #endif /* CONFIG_HOTPLUG_CPU */
1748 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1749 unsigned long action
, void *hcpu
)
1751 int scpu
= (long)hcpu
;
1755 case CPU_UP_PREPARE
:
1756 case CPU_UP_PREPARE_FROZEN
:
1757 init_hrtimers_cpu(scpu
);
1760 #ifdef CONFIG_HOTPLUG_CPU
1762 case CPU_DYING_FROZEN
:
1763 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1766 case CPU_DEAD_FROZEN
:
1768 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1769 migrate_hrtimers(scpu
);
1781 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1782 .notifier_call
= hrtimer_cpu_notify
,
1785 void __init
hrtimers_init(void)
1787 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1788 (void *)(long)smp_processor_id());
1789 register_cpu_notifier(&hrtimers_nb
);
1790 #ifdef CONFIG_HIGH_RES_TIMERS
1791 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1796 * schedule_hrtimeout_range_clock - sleep until timeout
1797 * @expires: timeout value (ktime_t)
1798 * @delta: slack in expires timeout (ktime_t)
1799 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1800 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1803 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1804 const enum hrtimer_mode mode
, int clock
)
1806 struct hrtimer_sleeper t
;
1809 * Optimize when a zero timeout value is given. It does not
1810 * matter whether this is an absolute or a relative time.
1812 if (expires
&& !expires
->tv64
) {
1813 __set_current_state(TASK_RUNNING
);
1818 * A NULL parameter means "infinite"
1822 __set_current_state(TASK_RUNNING
);
1826 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1827 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1829 hrtimer_init_sleeper(&t
, current
);
1831 hrtimer_start_expires(&t
.timer
, mode
);
1832 if (!hrtimer_active(&t
.timer
))
1838 hrtimer_cancel(&t
.timer
);
1839 destroy_hrtimer_on_stack(&t
.timer
);
1841 __set_current_state(TASK_RUNNING
);
1843 return !t
.task
? 0 : -EINTR
;
1847 * schedule_hrtimeout_range - sleep until timeout
1848 * @expires: timeout value (ktime_t)
1849 * @delta: slack in expires timeout (ktime_t)
1850 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1852 * Make the current task sleep until the given expiry time has
1853 * elapsed. The routine will return immediately unless
1854 * the current task state has been set (see set_current_state()).
1856 * The @delta argument gives the kernel the freedom to schedule the
1857 * actual wakeup to a time that is both power and performance friendly.
1858 * The kernel give the normal best effort behavior for "@expires+@delta",
1859 * but may decide to fire the timer earlier, but no earlier than @expires.
1861 * You can set the task state as follows -
1863 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1864 * pass before the routine returns.
1866 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1867 * delivered to the current task.
1869 * The current task state is guaranteed to be TASK_RUNNING when this
1872 * Returns 0 when the timer has expired otherwise -EINTR
1874 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1875 const enum hrtimer_mode mode
)
1877 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1880 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1883 * schedule_hrtimeout - sleep until timeout
1884 * @expires: timeout value (ktime_t)
1885 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1887 * Make the current task sleep until the given expiry time has
1888 * elapsed. The routine will return immediately unless
1889 * the current task state has been set (see set_current_state()).
1891 * You can set the task state as follows -
1893 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1894 * pass before the routine returns.
1896 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1897 * delivered to the current task.
1899 * The current task state is guaranteed to be TASK_RUNNING when this
1902 * Returns 0 when the timer has expired otherwise -EINTR
1904 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1905 const enum hrtimer_mode mode
)
1907 return schedule_hrtimeout_range(expires
, 0, mode
);
1909 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);