framebuffer: fix border color
[linux/fpc-iii.git] / kernel / hrtimer.c
blob20e88afba69bce669af257fd236332956a2e6681
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
54 * The timer bases:
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
61 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
64 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
65 .clock_base =
68 .index = HRTIMER_BASE_MONOTONIC,
69 .clockid = CLOCK_MONOTONIC,
70 .get_time = &ktime_get,
71 .resolution = KTIME_LOW_RES,
74 .index = HRTIMER_BASE_REALTIME,
75 .clockid = CLOCK_REALTIME,
76 .get_time = &ktime_get_real,
77 .resolution = KTIME_LOW_RES,
80 .index = HRTIMER_BASE_BOOTTIME,
81 .clockid = CLOCK_BOOTTIME,
82 .get_time = &ktime_get_boottime,
83 .resolution = KTIME_LOW_RES,
88 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
89 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
90 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
91 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
94 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
96 return hrtimer_clock_to_base_table[clock_id];
101 * Get the coarse grained time at the softirq based on xtime and
102 * wall_to_monotonic.
104 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
106 ktime_t xtim, mono, boot;
107 struct timespec xts, tom, slp;
109 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
111 xtim = timespec_to_ktime(xts);
112 mono = ktime_add(xtim, timespec_to_ktime(tom));
113 boot = ktime_add(mono, timespec_to_ktime(slp));
114 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
115 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
116 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
120 * Functions and macros which are different for UP/SMP systems are kept in a
121 * single place
123 #ifdef CONFIG_SMP
126 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
127 * means that all timers which are tied to this base via timer->base are
128 * locked, and the base itself is locked too.
130 * So __run_timers/migrate_timers can safely modify all timers which could
131 * be found on the lists/queues.
133 * When the timer's base is locked, and the timer removed from list, it is
134 * possible to set timer->base = NULL and drop the lock: the timer remains
135 * locked.
137 static
138 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
139 unsigned long *flags)
141 struct hrtimer_clock_base *base;
143 for (;;) {
144 base = timer->base;
145 if (likely(base != NULL)) {
146 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
147 if (likely(base == timer->base))
148 return base;
149 /* The timer has migrated to another CPU: */
150 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 cpu_relax();
158 * Get the preferred target CPU for NOHZ
160 static int hrtimer_get_target(int this_cpu, int pinned)
162 #ifdef CONFIG_NO_HZ
163 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
164 return get_nohz_timer_target();
165 #endif
166 return this_cpu;
170 * With HIGHRES=y we do not migrate the timer when it is expiring
171 * before the next event on the target cpu because we cannot reprogram
172 * the target cpu hardware and we would cause it to fire late.
174 * Called with cpu_base->lock of target cpu held.
176 static int
177 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179 #ifdef CONFIG_HIGH_RES_TIMERS
180 ktime_t expires;
182 if (!new_base->cpu_base->hres_active)
183 return 0;
185 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
186 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
187 #else
188 return 0;
189 #endif
193 * Switch the timer base to the current CPU when possible.
195 static inline struct hrtimer_clock_base *
196 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
197 int pinned)
199 struct hrtimer_clock_base *new_base;
200 struct hrtimer_cpu_base *new_cpu_base;
201 int this_cpu = smp_processor_id();
202 int cpu = hrtimer_get_target(this_cpu, pinned);
203 int basenum = base->index;
205 again:
206 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
207 new_base = &new_cpu_base->clock_base[basenum];
209 if (base != new_base) {
211 * We are trying to move timer to new_base.
212 * However we can't change timer's base while it is running,
213 * so we keep it on the same CPU. No hassle vs. reprogramming
214 * the event source in the high resolution case. The softirq
215 * code will take care of this when the timer function has
216 * completed. There is no conflict as we hold the lock until
217 * the timer is enqueued.
219 if (unlikely(hrtimer_callback_running(timer)))
220 return base;
222 /* See the comment in lock_timer_base() */
223 timer->base = NULL;
224 raw_spin_unlock(&base->cpu_base->lock);
225 raw_spin_lock(&new_base->cpu_base->lock);
227 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
228 cpu = this_cpu;
229 raw_spin_unlock(&new_base->cpu_base->lock);
230 raw_spin_lock(&base->cpu_base->lock);
231 timer->base = base;
232 goto again;
234 timer->base = new_base;
235 } else {
236 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
237 cpu = this_cpu;
238 goto again;
241 return new_base;
244 #else /* CONFIG_SMP */
246 static inline struct hrtimer_clock_base *
247 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249 struct hrtimer_clock_base *base = timer->base;
251 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253 return base;
256 # define switch_hrtimer_base(t, b, p) (b)
258 #endif /* !CONFIG_SMP */
261 * Functions for the union type storage format of ktime_t which are
262 * too large for inlining:
264 #if BITS_PER_LONG < 64
265 # ifndef CONFIG_KTIME_SCALAR
267 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
268 * @kt: addend
269 * @nsec: the scalar nsec value to add
271 * Returns the sum of kt and nsec in ktime_t format
273 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
275 ktime_t tmp;
277 if (likely(nsec < NSEC_PER_SEC)) {
278 tmp.tv64 = nsec;
279 } else {
280 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
282 tmp = ktime_set((long)nsec, rem);
285 return ktime_add(kt, tmp);
288 EXPORT_SYMBOL_GPL(ktime_add_ns);
291 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
292 * @kt: minuend
293 * @nsec: the scalar nsec value to subtract
295 * Returns the subtraction of @nsec from @kt in ktime_t format
297 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
299 ktime_t tmp;
301 if (likely(nsec < NSEC_PER_SEC)) {
302 tmp.tv64 = nsec;
303 } else {
304 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
306 /* Make sure nsec fits into long */
307 if (unlikely(nsec > KTIME_SEC_MAX))
308 return (ktime_t){ .tv64 = KTIME_MAX };
310 tmp = ktime_set((long)nsec, rem);
313 return ktime_sub(kt, tmp);
316 EXPORT_SYMBOL_GPL(ktime_sub_ns);
317 # endif /* !CONFIG_KTIME_SCALAR */
320 * Divide a ktime value by a nanosecond value
322 u64 ktime_divns(const ktime_t kt, s64 div)
324 u64 dclc;
325 int sft = 0;
327 dclc = ktime_to_ns(kt);
328 /* Make sure the divisor is less than 2^32: */
329 while (div >> 32) {
330 sft++;
331 div >>= 1;
333 dclc >>= sft;
334 do_div(dclc, (unsigned long) div);
336 return dclc;
338 #endif /* BITS_PER_LONG >= 64 */
341 * Add two ktime values and do a safety check for overflow:
343 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
345 ktime_t res = ktime_add(lhs, rhs);
348 * We use KTIME_SEC_MAX here, the maximum timeout which we can
349 * return to user space in a timespec:
351 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
352 res = ktime_set(KTIME_SEC_MAX, 0);
354 return res;
357 EXPORT_SYMBOL_GPL(ktime_add_safe);
359 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
361 static struct debug_obj_descr hrtimer_debug_descr;
363 static void *hrtimer_debug_hint(void *addr)
365 return ((struct hrtimer *) addr)->function;
369 * fixup_init is called when:
370 * - an active object is initialized
372 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
374 struct hrtimer *timer = addr;
376 switch (state) {
377 case ODEBUG_STATE_ACTIVE:
378 hrtimer_cancel(timer);
379 debug_object_init(timer, &hrtimer_debug_descr);
380 return 1;
381 default:
382 return 0;
387 * fixup_activate is called when:
388 * - an active object is activated
389 * - an unknown object is activated (might be a statically initialized object)
391 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
393 switch (state) {
395 case ODEBUG_STATE_NOTAVAILABLE:
396 WARN_ON_ONCE(1);
397 return 0;
399 case ODEBUG_STATE_ACTIVE:
400 WARN_ON(1);
402 default:
403 return 0;
408 * fixup_free is called when:
409 * - an active object is freed
411 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
413 struct hrtimer *timer = addr;
415 switch (state) {
416 case ODEBUG_STATE_ACTIVE:
417 hrtimer_cancel(timer);
418 debug_object_free(timer, &hrtimer_debug_descr);
419 return 1;
420 default:
421 return 0;
425 static struct debug_obj_descr hrtimer_debug_descr = {
426 .name = "hrtimer",
427 .debug_hint = hrtimer_debug_hint,
428 .fixup_init = hrtimer_fixup_init,
429 .fixup_activate = hrtimer_fixup_activate,
430 .fixup_free = hrtimer_fixup_free,
433 static inline void debug_hrtimer_init(struct hrtimer *timer)
435 debug_object_init(timer, &hrtimer_debug_descr);
438 static inline void debug_hrtimer_activate(struct hrtimer *timer)
440 debug_object_activate(timer, &hrtimer_debug_descr);
443 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
445 debug_object_deactivate(timer, &hrtimer_debug_descr);
448 static inline void debug_hrtimer_free(struct hrtimer *timer)
450 debug_object_free(timer, &hrtimer_debug_descr);
453 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
454 enum hrtimer_mode mode);
456 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
457 enum hrtimer_mode mode)
459 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
460 __hrtimer_init(timer, clock_id, mode);
462 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
464 void destroy_hrtimer_on_stack(struct hrtimer *timer)
466 debug_object_free(timer, &hrtimer_debug_descr);
469 #else
470 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
471 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
472 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
473 #endif
475 static inline void
476 debug_init(struct hrtimer *timer, clockid_t clockid,
477 enum hrtimer_mode mode)
479 debug_hrtimer_init(timer);
480 trace_hrtimer_init(timer, clockid, mode);
483 static inline void debug_activate(struct hrtimer *timer)
485 debug_hrtimer_activate(timer);
486 trace_hrtimer_start(timer);
489 static inline void debug_deactivate(struct hrtimer *timer)
491 debug_hrtimer_deactivate(timer);
492 trace_hrtimer_cancel(timer);
495 /* High resolution timer related functions */
496 #ifdef CONFIG_HIGH_RES_TIMERS
499 * High resolution timer enabled ?
501 static int hrtimer_hres_enabled __read_mostly = 1;
504 * Enable / Disable high resolution mode
506 static int __init setup_hrtimer_hres(char *str)
508 if (!strcmp(str, "off"))
509 hrtimer_hres_enabled = 0;
510 else if (!strcmp(str, "on"))
511 hrtimer_hres_enabled = 1;
512 else
513 return 0;
514 return 1;
517 __setup("highres=", setup_hrtimer_hres);
520 * hrtimer_high_res_enabled - query, if the highres mode is enabled
522 static inline int hrtimer_is_hres_enabled(void)
524 return hrtimer_hres_enabled;
528 * Is the high resolution mode active ?
530 static inline int hrtimer_hres_active(void)
532 return __this_cpu_read(hrtimer_bases.hres_active);
536 * Reprogram the event source with checking both queues for the
537 * next event
538 * Called with interrupts disabled and base->lock held
540 static void
541 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
543 int i;
544 struct hrtimer_clock_base *base = cpu_base->clock_base;
545 ktime_t expires, expires_next;
547 expires_next.tv64 = KTIME_MAX;
549 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
550 struct hrtimer *timer;
551 struct timerqueue_node *next;
553 next = timerqueue_getnext(&base->active);
554 if (!next)
555 continue;
556 timer = container_of(next, struct hrtimer, node);
558 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
560 * clock_was_set() has changed base->offset so the
561 * result might be negative. Fix it up to prevent a
562 * false positive in clockevents_program_event()
564 if (expires.tv64 < 0)
565 expires.tv64 = 0;
566 if (expires.tv64 < expires_next.tv64)
567 expires_next = expires;
570 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
571 return;
573 cpu_base->expires_next.tv64 = expires_next.tv64;
576 * If a hang was detected in the last timer interrupt then we
577 * leave the hang delay active in the hardware. We want the
578 * system to make progress. That also prevents the following
579 * scenario:
580 * T1 expires 50ms from now
581 * T2 expires 5s from now
583 * T1 is removed, so this code is called and would reprogram
584 * the hardware to 5s from now. Any hrtimer_start after that
585 * will not reprogram the hardware due to hang_detected being
586 * set. So we'd effectivly block all timers until the T2 event
587 * fires.
589 if (cpu_base->hang_detected)
590 return;
592 if (cpu_base->expires_next.tv64 != KTIME_MAX)
593 tick_program_event(cpu_base->expires_next, 1);
597 * Shared reprogramming for clock_realtime and clock_monotonic
599 * When a timer is enqueued and expires earlier than the already enqueued
600 * timers, we have to check, whether it expires earlier than the timer for
601 * which the clock event device was armed.
603 * Called with interrupts disabled and base->cpu_base.lock held
605 static int hrtimer_reprogram(struct hrtimer *timer,
606 struct hrtimer_clock_base *base)
608 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
609 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
610 int res;
612 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
615 * When the callback is running, we do not reprogram the clock event
616 * device. The timer callback is either running on a different CPU or
617 * the callback is executed in the hrtimer_interrupt context. The
618 * reprogramming is handled either by the softirq, which called the
619 * callback or at the end of the hrtimer_interrupt.
621 if (hrtimer_callback_running(timer))
622 return 0;
625 * CLOCK_REALTIME timer might be requested with an absolute
626 * expiry time which is less than base->offset. Nothing wrong
627 * about that, just avoid to call into the tick code, which
628 * has now objections against negative expiry values.
630 if (expires.tv64 < 0)
631 return -ETIME;
633 if (expires.tv64 >= cpu_base->expires_next.tv64)
634 return 0;
637 * If a hang was detected in the last timer interrupt then we
638 * do not schedule a timer which is earlier than the expiry
639 * which we enforced in the hang detection. We want the system
640 * to make progress.
642 if (cpu_base->hang_detected)
643 return 0;
646 * Clockevents returns -ETIME, when the event was in the past.
648 res = tick_program_event(expires, 0);
649 if (!IS_ERR_VALUE(res))
650 cpu_base->expires_next = expires;
651 return res;
655 * Initialize the high resolution related parts of cpu_base
657 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
659 base->expires_next.tv64 = KTIME_MAX;
660 base->hres_active = 0;
664 * When High resolution timers are active, try to reprogram. Note, that in case
665 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
666 * check happens. The timer gets enqueued into the rbtree. The reprogramming
667 * and expiry check is done in the hrtimer_interrupt or in the softirq.
669 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
670 struct hrtimer_clock_base *base)
672 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
675 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
677 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
678 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
680 return ktime_get_update_offsets(offs_real, offs_boot);
684 * Retrigger next event is called after clock was set
686 * Called with interrupts disabled via on_each_cpu()
688 static void retrigger_next_event(void *arg)
690 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
692 if (!hrtimer_hres_active())
693 return;
695 raw_spin_lock(&base->lock);
696 hrtimer_update_base(base);
697 hrtimer_force_reprogram(base, 0);
698 raw_spin_unlock(&base->lock);
702 * Switch to high resolution mode
704 static int hrtimer_switch_to_hres(void)
706 int i, cpu = smp_processor_id();
707 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
708 unsigned long flags;
710 if (base->hres_active)
711 return 1;
713 local_irq_save(flags);
715 if (tick_init_highres()) {
716 local_irq_restore(flags);
717 printk(KERN_WARNING "Could not switch to high resolution "
718 "mode on CPU %d\n", cpu);
719 return 0;
721 base->hres_active = 1;
722 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
723 base->clock_base[i].resolution = KTIME_HIGH_RES;
725 tick_setup_sched_timer();
726 /* "Retrigger" the interrupt to get things going */
727 retrigger_next_event(NULL);
728 local_irq_restore(flags);
729 return 1;
733 * Called from timekeeping code to reprogramm the hrtimer interrupt
734 * device. If called from the timer interrupt context we defer it to
735 * softirq context.
737 void clock_was_set_delayed(void)
739 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
741 cpu_base->clock_was_set = 1;
742 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
745 #else
747 static inline int hrtimer_hres_active(void) { return 0; }
748 static inline int hrtimer_is_hres_enabled(void) { return 0; }
749 static inline int hrtimer_switch_to_hres(void) { return 0; }
750 static inline void
751 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
752 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
753 struct hrtimer_clock_base *base)
755 return 0;
757 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
758 static inline void retrigger_next_event(void *arg) { }
760 #endif /* CONFIG_HIGH_RES_TIMERS */
763 * Clock realtime was set
765 * Change the offset of the realtime clock vs. the monotonic
766 * clock.
768 * We might have to reprogram the high resolution timer interrupt. On
769 * SMP we call the architecture specific code to retrigger _all_ high
770 * resolution timer interrupts. On UP we just disable interrupts and
771 * call the high resolution interrupt code.
773 void clock_was_set(void)
775 #ifdef CONFIG_HIGH_RES_TIMERS
776 /* Retrigger the CPU local events everywhere */
777 on_each_cpu(retrigger_next_event, NULL, 1);
778 #endif
779 timerfd_clock_was_set();
783 * During resume we might have to reprogram the high resolution timer
784 * interrupt (on the local CPU):
786 void hrtimers_resume(void)
788 WARN_ONCE(!irqs_disabled(),
789 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
791 retrigger_next_event(NULL);
792 timerfd_clock_was_set();
795 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
797 #ifdef CONFIG_TIMER_STATS
798 if (timer->start_site)
799 return;
800 timer->start_site = __builtin_return_address(0);
801 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
802 timer->start_pid = current->pid;
803 #endif
806 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
808 #ifdef CONFIG_TIMER_STATS
809 timer->start_site = NULL;
810 #endif
813 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
815 #ifdef CONFIG_TIMER_STATS
816 if (likely(!timer_stats_active))
817 return;
818 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
819 timer->function, timer->start_comm, 0);
820 #endif
824 * Counterpart to lock_hrtimer_base above:
826 static inline
827 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
829 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
833 * hrtimer_forward - forward the timer expiry
834 * @timer: hrtimer to forward
835 * @now: forward past this time
836 * @interval: the interval to forward
838 * Forward the timer expiry so it will expire in the future.
839 * Returns the number of overruns.
841 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
843 u64 orun = 1;
844 ktime_t delta;
846 delta = ktime_sub(now, hrtimer_get_expires(timer));
848 if (delta.tv64 < 0)
849 return 0;
851 if (interval.tv64 < timer->base->resolution.tv64)
852 interval.tv64 = timer->base->resolution.tv64;
854 if (unlikely(delta.tv64 >= interval.tv64)) {
855 s64 incr = ktime_to_ns(interval);
857 orun = ktime_divns(delta, incr);
858 hrtimer_add_expires_ns(timer, incr * orun);
859 if (hrtimer_get_expires_tv64(timer) > now.tv64)
860 return orun;
862 * This (and the ktime_add() below) is the
863 * correction for exact:
865 orun++;
867 hrtimer_add_expires(timer, interval);
869 return orun;
871 EXPORT_SYMBOL_GPL(hrtimer_forward);
874 * enqueue_hrtimer - internal function to (re)start a timer
876 * The timer is inserted in expiry order. Insertion into the
877 * red black tree is O(log(n)). Must hold the base lock.
879 * Returns 1 when the new timer is the leftmost timer in the tree.
881 static int enqueue_hrtimer(struct hrtimer *timer,
882 struct hrtimer_clock_base *base)
884 debug_activate(timer);
886 timerqueue_add(&base->active, &timer->node);
887 base->cpu_base->active_bases |= 1 << base->index;
890 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
891 * state of a possibly running callback.
893 timer->state |= HRTIMER_STATE_ENQUEUED;
895 return (&timer->node == base->active.next);
899 * __remove_hrtimer - internal function to remove a timer
901 * Caller must hold the base lock.
903 * High resolution timer mode reprograms the clock event device when the
904 * timer is the one which expires next. The caller can disable this by setting
905 * reprogram to zero. This is useful, when the context does a reprogramming
906 * anyway (e.g. timer interrupt)
908 static void __remove_hrtimer(struct hrtimer *timer,
909 struct hrtimer_clock_base *base,
910 unsigned long newstate, int reprogram)
912 struct timerqueue_node *next_timer;
913 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
914 goto out;
916 next_timer = timerqueue_getnext(&base->active);
917 timerqueue_del(&base->active, &timer->node);
918 if (&timer->node == next_timer) {
919 #ifdef CONFIG_HIGH_RES_TIMERS
920 /* Reprogram the clock event device. if enabled */
921 if (reprogram && hrtimer_hres_active()) {
922 ktime_t expires;
924 expires = ktime_sub(hrtimer_get_expires(timer),
925 base->offset);
926 if (base->cpu_base->expires_next.tv64 == expires.tv64)
927 hrtimer_force_reprogram(base->cpu_base, 1);
929 #endif
931 if (!timerqueue_getnext(&base->active))
932 base->cpu_base->active_bases &= ~(1 << base->index);
933 out:
934 timer->state = newstate;
938 * remove hrtimer, called with base lock held
940 static inline int
941 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
943 if (hrtimer_is_queued(timer)) {
944 unsigned long state;
945 int reprogram;
948 * Remove the timer and force reprogramming when high
949 * resolution mode is active and the timer is on the current
950 * CPU. If we remove a timer on another CPU, reprogramming is
951 * skipped. The interrupt event on this CPU is fired and
952 * reprogramming happens in the interrupt handler. This is a
953 * rare case and less expensive than a smp call.
955 debug_deactivate(timer);
956 timer_stats_hrtimer_clear_start_info(timer);
957 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
959 * We must preserve the CALLBACK state flag here,
960 * otherwise we could move the timer base in
961 * switch_hrtimer_base.
963 state = timer->state & HRTIMER_STATE_CALLBACK;
964 __remove_hrtimer(timer, base, state, reprogram);
965 return 1;
967 return 0;
970 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
971 unsigned long delta_ns, const enum hrtimer_mode mode,
972 int wakeup)
974 struct hrtimer_clock_base *base, *new_base;
975 unsigned long flags;
976 int ret, leftmost;
978 base = lock_hrtimer_base(timer, &flags);
980 /* Remove an active timer from the queue: */
981 ret = remove_hrtimer(timer, base);
983 if (mode & HRTIMER_MODE_REL) {
984 tim = ktime_add_safe(tim, base->get_time());
986 * CONFIG_TIME_LOW_RES is a temporary way for architectures
987 * to signal that they simply return xtime in
988 * do_gettimeoffset(). In this case we want to round up by
989 * resolution when starting a relative timer, to avoid short
990 * timeouts. This will go away with the GTOD framework.
992 #ifdef CONFIG_TIME_LOW_RES
993 tim = ktime_add_safe(tim, base->resolution);
994 #endif
997 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
999 /* Switch the timer base, if necessary: */
1000 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1002 timer_stats_hrtimer_set_start_info(timer);
1004 leftmost = enqueue_hrtimer(timer, new_base);
1007 * Only allow reprogramming if the new base is on this CPU.
1008 * (it might still be on another CPU if the timer was pending)
1010 * XXX send_remote_softirq() ?
1012 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1013 && hrtimer_enqueue_reprogram(timer, new_base)) {
1014 if (wakeup) {
1016 * We need to drop cpu_base->lock to avoid a
1017 * lock ordering issue vs. rq->lock.
1019 raw_spin_unlock(&new_base->cpu_base->lock);
1020 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1021 local_irq_restore(flags);
1022 return ret;
1023 } else {
1024 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1028 unlock_hrtimer_base(timer, &flags);
1030 return ret;
1034 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1035 * @timer: the timer to be added
1036 * @tim: expiry time
1037 * @delta_ns: "slack" range for the timer
1038 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1040 * Returns:
1041 * 0 on success
1042 * 1 when the timer was active
1044 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1045 unsigned long delta_ns, const enum hrtimer_mode mode)
1047 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1049 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1052 * hrtimer_start - (re)start an hrtimer on the current CPU
1053 * @timer: the timer to be added
1054 * @tim: expiry time
1055 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1057 * Returns:
1058 * 0 on success
1059 * 1 when the timer was active
1062 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1064 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1066 EXPORT_SYMBOL_GPL(hrtimer_start);
1070 * hrtimer_try_to_cancel - try to deactivate a timer
1071 * @timer: hrtimer to stop
1073 * Returns:
1074 * 0 when the timer was not active
1075 * 1 when the timer was active
1076 * -1 when the timer is currently excuting the callback function and
1077 * cannot be stopped
1079 int hrtimer_try_to_cancel(struct hrtimer *timer)
1081 struct hrtimer_clock_base *base;
1082 unsigned long flags;
1083 int ret = -1;
1085 base = lock_hrtimer_base(timer, &flags);
1087 if (!hrtimer_callback_running(timer))
1088 ret = remove_hrtimer(timer, base);
1090 unlock_hrtimer_base(timer, &flags);
1092 return ret;
1095 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1098 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1099 * @timer: the timer to be cancelled
1101 * Returns:
1102 * 0 when the timer was not active
1103 * 1 when the timer was active
1105 int hrtimer_cancel(struct hrtimer *timer)
1107 for (;;) {
1108 int ret = hrtimer_try_to_cancel(timer);
1110 if (ret >= 0)
1111 return ret;
1112 cpu_relax();
1115 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1118 * hrtimer_get_remaining - get remaining time for the timer
1119 * @timer: the timer to read
1121 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1123 unsigned long flags;
1124 ktime_t rem;
1126 lock_hrtimer_base(timer, &flags);
1127 rem = hrtimer_expires_remaining(timer);
1128 unlock_hrtimer_base(timer, &flags);
1130 return rem;
1132 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1134 #ifdef CONFIG_NO_HZ
1136 * hrtimer_get_next_event - get the time until next expiry event
1138 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1139 * is pending.
1141 ktime_t hrtimer_get_next_event(void)
1143 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1144 struct hrtimer_clock_base *base = cpu_base->clock_base;
1145 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1146 unsigned long flags;
1147 int i;
1149 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1151 if (!hrtimer_hres_active()) {
1152 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1153 struct hrtimer *timer;
1154 struct timerqueue_node *next;
1156 next = timerqueue_getnext(&base->active);
1157 if (!next)
1158 continue;
1160 timer = container_of(next, struct hrtimer, node);
1161 delta.tv64 = hrtimer_get_expires_tv64(timer);
1162 delta = ktime_sub(delta, base->get_time());
1163 if (delta.tv64 < mindelta.tv64)
1164 mindelta.tv64 = delta.tv64;
1168 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1170 if (mindelta.tv64 < 0)
1171 mindelta.tv64 = 0;
1172 return mindelta;
1174 #endif
1176 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1177 enum hrtimer_mode mode)
1179 struct hrtimer_cpu_base *cpu_base;
1180 int base;
1182 memset(timer, 0, sizeof(struct hrtimer));
1184 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1186 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1187 clock_id = CLOCK_MONOTONIC;
1189 base = hrtimer_clockid_to_base(clock_id);
1190 timer->base = &cpu_base->clock_base[base];
1191 timerqueue_init(&timer->node);
1193 #ifdef CONFIG_TIMER_STATS
1194 timer->start_site = NULL;
1195 timer->start_pid = -1;
1196 memset(timer->start_comm, 0, TASK_COMM_LEN);
1197 #endif
1201 * hrtimer_init - initialize a timer to the given clock
1202 * @timer: the timer to be initialized
1203 * @clock_id: the clock to be used
1204 * @mode: timer mode abs/rel
1206 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1207 enum hrtimer_mode mode)
1209 debug_init(timer, clock_id, mode);
1210 __hrtimer_init(timer, clock_id, mode);
1212 EXPORT_SYMBOL_GPL(hrtimer_init);
1215 * hrtimer_get_res - get the timer resolution for a clock
1216 * @which_clock: which clock to query
1217 * @tp: pointer to timespec variable to store the resolution
1219 * Store the resolution of the clock selected by @which_clock in the
1220 * variable pointed to by @tp.
1222 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1224 struct hrtimer_cpu_base *cpu_base;
1225 int base = hrtimer_clockid_to_base(which_clock);
1227 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1228 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1230 return 0;
1232 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1234 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1236 struct hrtimer_clock_base *base = timer->base;
1237 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1238 enum hrtimer_restart (*fn)(struct hrtimer *);
1239 int restart;
1241 WARN_ON(!irqs_disabled());
1243 debug_deactivate(timer);
1244 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1245 timer_stats_account_hrtimer(timer);
1246 fn = timer->function;
1249 * Because we run timers from hardirq context, there is no chance
1250 * they get migrated to another cpu, therefore its safe to unlock
1251 * the timer base.
1253 raw_spin_unlock(&cpu_base->lock);
1254 trace_hrtimer_expire_entry(timer, now);
1255 restart = fn(timer);
1256 trace_hrtimer_expire_exit(timer);
1257 raw_spin_lock(&cpu_base->lock);
1260 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1261 * we do not reprogramm the event hardware. Happens either in
1262 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1264 if (restart != HRTIMER_NORESTART) {
1265 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1266 enqueue_hrtimer(timer, base);
1269 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1271 timer->state &= ~HRTIMER_STATE_CALLBACK;
1274 #ifdef CONFIG_HIGH_RES_TIMERS
1277 * High resolution timer interrupt
1278 * Called with interrupts disabled
1280 void hrtimer_interrupt(struct clock_event_device *dev)
1282 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1283 ktime_t expires_next, now, entry_time, delta;
1284 int i, retries = 0;
1286 BUG_ON(!cpu_base->hres_active);
1287 cpu_base->nr_events++;
1288 dev->next_event.tv64 = KTIME_MAX;
1290 raw_spin_lock(&cpu_base->lock);
1291 entry_time = now = hrtimer_update_base(cpu_base);
1292 retry:
1293 expires_next.tv64 = KTIME_MAX;
1295 * We set expires_next to KTIME_MAX here with cpu_base->lock
1296 * held to prevent that a timer is enqueued in our queue via
1297 * the migration code. This does not affect enqueueing of
1298 * timers which run their callback and need to be requeued on
1299 * this CPU.
1301 cpu_base->expires_next.tv64 = KTIME_MAX;
1303 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1304 struct hrtimer_clock_base *base;
1305 struct timerqueue_node *node;
1306 ktime_t basenow;
1308 if (!(cpu_base->active_bases & (1 << i)))
1309 continue;
1311 base = cpu_base->clock_base + i;
1312 basenow = ktime_add(now, base->offset);
1314 while ((node = timerqueue_getnext(&base->active))) {
1315 struct hrtimer *timer;
1317 timer = container_of(node, struct hrtimer, node);
1320 * The immediate goal for using the softexpires is
1321 * minimizing wakeups, not running timers at the
1322 * earliest interrupt after their soft expiration.
1323 * This allows us to avoid using a Priority Search
1324 * Tree, which can answer a stabbing querry for
1325 * overlapping intervals and instead use the simple
1326 * BST we already have.
1327 * We don't add extra wakeups by delaying timers that
1328 * are right-of a not yet expired timer, because that
1329 * timer will have to trigger a wakeup anyway.
1332 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1333 ktime_t expires;
1335 expires = ktime_sub(hrtimer_get_expires(timer),
1336 base->offset);
1337 if (expires.tv64 < 0)
1338 expires.tv64 = KTIME_MAX;
1339 if (expires.tv64 < expires_next.tv64)
1340 expires_next = expires;
1341 break;
1344 __run_hrtimer(timer, &basenow);
1349 * Store the new expiry value so the migration code can verify
1350 * against it.
1352 cpu_base->expires_next = expires_next;
1353 raw_spin_unlock(&cpu_base->lock);
1355 /* Reprogramming necessary ? */
1356 if (expires_next.tv64 == KTIME_MAX ||
1357 !tick_program_event(expires_next, 0)) {
1358 cpu_base->hang_detected = 0;
1359 return;
1363 * The next timer was already expired due to:
1364 * - tracing
1365 * - long lasting callbacks
1366 * - being scheduled away when running in a VM
1368 * We need to prevent that we loop forever in the hrtimer
1369 * interrupt routine. We give it 3 attempts to avoid
1370 * overreacting on some spurious event.
1372 * Acquire base lock for updating the offsets and retrieving
1373 * the current time.
1375 raw_spin_lock(&cpu_base->lock);
1376 now = hrtimer_update_base(cpu_base);
1377 cpu_base->nr_retries++;
1378 if (++retries < 3)
1379 goto retry;
1381 * Give the system a chance to do something else than looping
1382 * here. We stored the entry time, so we know exactly how long
1383 * we spent here. We schedule the next event this amount of
1384 * time away.
1386 cpu_base->nr_hangs++;
1387 cpu_base->hang_detected = 1;
1388 raw_spin_unlock(&cpu_base->lock);
1389 delta = ktime_sub(now, entry_time);
1390 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1391 cpu_base->max_hang_time = delta;
1393 * Limit it to a sensible value as we enforce a longer
1394 * delay. Give the CPU at least 100ms to catch up.
1396 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1397 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1398 else
1399 expires_next = ktime_add(now, delta);
1400 tick_program_event(expires_next, 1);
1401 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1402 ktime_to_ns(delta));
1406 * local version of hrtimer_peek_ahead_timers() called with interrupts
1407 * disabled.
1409 static void __hrtimer_peek_ahead_timers(void)
1411 struct tick_device *td;
1413 if (!hrtimer_hres_active())
1414 return;
1416 td = &__get_cpu_var(tick_cpu_device);
1417 if (td && td->evtdev)
1418 hrtimer_interrupt(td->evtdev);
1422 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1424 * hrtimer_peek_ahead_timers will peek at the timer queue of
1425 * the current cpu and check if there are any timers for which
1426 * the soft expires time has passed. If any such timers exist,
1427 * they are run immediately and then removed from the timer queue.
1430 void hrtimer_peek_ahead_timers(void)
1432 unsigned long flags;
1434 local_irq_save(flags);
1435 __hrtimer_peek_ahead_timers();
1436 local_irq_restore(flags);
1439 static void run_hrtimer_softirq(struct softirq_action *h)
1441 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1443 if (cpu_base->clock_was_set) {
1444 cpu_base->clock_was_set = 0;
1445 clock_was_set();
1448 hrtimer_peek_ahead_timers();
1451 #else /* CONFIG_HIGH_RES_TIMERS */
1453 static inline void __hrtimer_peek_ahead_timers(void) { }
1455 #endif /* !CONFIG_HIGH_RES_TIMERS */
1458 * Called from timer softirq every jiffy, expire hrtimers:
1460 * For HRT its the fall back code to run the softirq in the timer
1461 * softirq context in case the hrtimer initialization failed or has
1462 * not been done yet.
1464 void hrtimer_run_pending(void)
1466 if (hrtimer_hres_active())
1467 return;
1470 * This _is_ ugly: We have to check in the softirq context,
1471 * whether we can switch to highres and / or nohz mode. The
1472 * clocksource switch happens in the timer interrupt with
1473 * xtime_lock held. Notification from there only sets the
1474 * check bit in the tick_oneshot code, otherwise we might
1475 * deadlock vs. xtime_lock.
1477 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1478 hrtimer_switch_to_hres();
1482 * Called from hardirq context every jiffy
1484 void hrtimer_run_queues(void)
1486 struct timerqueue_node *node;
1487 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1488 struct hrtimer_clock_base *base;
1489 int index, gettime = 1;
1491 if (hrtimer_hres_active())
1492 return;
1494 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1495 base = &cpu_base->clock_base[index];
1496 if (!timerqueue_getnext(&base->active))
1497 continue;
1499 if (gettime) {
1500 hrtimer_get_softirq_time(cpu_base);
1501 gettime = 0;
1504 raw_spin_lock(&cpu_base->lock);
1506 while ((node = timerqueue_getnext(&base->active))) {
1507 struct hrtimer *timer;
1509 timer = container_of(node, struct hrtimer, node);
1510 if (base->softirq_time.tv64 <=
1511 hrtimer_get_expires_tv64(timer))
1512 break;
1514 __run_hrtimer(timer, &base->softirq_time);
1516 raw_spin_unlock(&cpu_base->lock);
1521 * Sleep related functions:
1523 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1525 struct hrtimer_sleeper *t =
1526 container_of(timer, struct hrtimer_sleeper, timer);
1527 struct task_struct *task = t->task;
1529 t->task = NULL;
1530 if (task)
1531 wake_up_process(task);
1533 return HRTIMER_NORESTART;
1536 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1538 sl->timer.function = hrtimer_wakeup;
1539 sl->task = task;
1541 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1543 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1545 hrtimer_init_sleeper(t, current);
1547 do {
1548 set_current_state(TASK_INTERRUPTIBLE);
1549 hrtimer_start_expires(&t->timer, mode);
1550 if (!hrtimer_active(&t->timer))
1551 t->task = NULL;
1553 if (likely(t->task))
1554 schedule();
1556 hrtimer_cancel(&t->timer);
1557 mode = HRTIMER_MODE_ABS;
1559 } while (t->task && !signal_pending(current));
1561 __set_current_state(TASK_RUNNING);
1563 return t->task == NULL;
1566 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1568 struct timespec rmt;
1569 ktime_t rem;
1571 rem = hrtimer_expires_remaining(timer);
1572 if (rem.tv64 <= 0)
1573 return 0;
1574 rmt = ktime_to_timespec(rem);
1576 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1577 return -EFAULT;
1579 return 1;
1582 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1584 struct hrtimer_sleeper t;
1585 struct timespec __user *rmtp;
1586 int ret = 0;
1588 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1589 HRTIMER_MODE_ABS);
1590 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1592 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1593 goto out;
1595 rmtp = restart->nanosleep.rmtp;
1596 if (rmtp) {
1597 ret = update_rmtp(&t.timer, rmtp);
1598 if (ret <= 0)
1599 goto out;
1602 /* The other values in restart are already filled in */
1603 ret = -ERESTART_RESTARTBLOCK;
1604 out:
1605 destroy_hrtimer_on_stack(&t.timer);
1606 return ret;
1609 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1610 const enum hrtimer_mode mode, const clockid_t clockid)
1612 struct restart_block *restart;
1613 struct hrtimer_sleeper t;
1614 int ret = 0;
1615 unsigned long slack;
1617 slack = current->timer_slack_ns;
1618 if (rt_task(current))
1619 slack = 0;
1621 hrtimer_init_on_stack(&t.timer, clockid, mode);
1622 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1623 if (do_nanosleep(&t, mode))
1624 goto out;
1626 /* Absolute timers do not update the rmtp value and restart: */
1627 if (mode == HRTIMER_MODE_ABS) {
1628 ret = -ERESTARTNOHAND;
1629 goto out;
1632 if (rmtp) {
1633 ret = update_rmtp(&t.timer, rmtp);
1634 if (ret <= 0)
1635 goto out;
1638 restart = &current_thread_info()->restart_block;
1639 restart->fn = hrtimer_nanosleep_restart;
1640 restart->nanosleep.clockid = t.timer.base->clockid;
1641 restart->nanosleep.rmtp = rmtp;
1642 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1644 ret = -ERESTART_RESTARTBLOCK;
1645 out:
1646 destroy_hrtimer_on_stack(&t.timer);
1647 return ret;
1650 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1651 struct timespec __user *, rmtp)
1653 struct timespec tu;
1655 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1656 return -EFAULT;
1658 if (!timespec_valid(&tu))
1659 return -EINVAL;
1661 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1665 * Functions related to boot-time initialization:
1667 static void __cpuinit init_hrtimers_cpu(int cpu)
1669 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1670 int i;
1672 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1673 cpu_base->clock_base[i].cpu_base = cpu_base;
1674 timerqueue_init_head(&cpu_base->clock_base[i].active);
1677 hrtimer_init_hres(cpu_base);
1680 #ifdef CONFIG_HOTPLUG_CPU
1682 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1683 struct hrtimer_clock_base *new_base)
1685 struct hrtimer *timer;
1686 struct timerqueue_node *node;
1688 while ((node = timerqueue_getnext(&old_base->active))) {
1689 timer = container_of(node, struct hrtimer, node);
1690 BUG_ON(hrtimer_callback_running(timer));
1691 debug_deactivate(timer);
1694 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1695 * timer could be seen as !active and just vanish away
1696 * under us on another CPU
1698 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1699 timer->base = new_base;
1701 * Enqueue the timers on the new cpu. This does not
1702 * reprogram the event device in case the timer
1703 * expires before the earliest on this CPU, but we run
1704 * hrtimer_interrupt after we migrated everything to
1705 * sort out already expired timers and reprogram the
1706 * event device.
1708 enqueue_hrtimer(timer, new_base);
1710 /* Clear the migration state bit */
1711 timer->state &= ~HRTIMER_STATE_MIGRATE;
1715 static void migrate_hrtimers(int scpu)
1717 struct hrtimer_cpu_base *old_base, *new_base;
1718 int i;
1720 BUG_ON(cpu_online(scpu));
1721 tick_cancel_sched_timer(scpu);
1723 local_irq_disable();
1724 old_base = &per_cpu(hrtimer_bases, scpu);
1725 new_base = &__get_cpu_var(hrtimer_bases);
1727 * The caller is globally serialized and nobody else
1728 * takes two locks at once, deadlock is not possible.
1730 raw_spin_lock(&new_base->lock);
1731 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1733 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1734 migrate_hrtimer_list(&old_base->clock_base[i],
1735 &new_base->clock_base[i]);
1738 raw_spin_unlock(&old_base->lock);
1739 raw_spin_unlock(&new_base->lock);
1741 /* Check, if we got expired work to do */
1742 __hrtimer_peek_ahead_timers();
1743 local_irq_enable();
1746 #endif /* CONFIG_HOTPLUG_CPU */
1748 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1749 unsigned long action, void *hcpu)
1751 int scpu = (long)hcpu;
1753 switch (action) {
1755 case CPU_UP_PREPARE:
1756 case CPU_UP_PREPARE_FROZEN:
1757 init_hrtimers_cpu(scpu);
1758 break;
1760 #ifdef CONFIG_HOTPLUG_CPU
1761 case CPU_DYING:
1762 case CPU_DYING_FROZEN:
1763 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1764 break;
1765 case CPU_DEAD:
1766 case CPU_DEAD_FROZEN:
1768 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1769 migrate_hrtimers(scpu);
1770 break;
1772 #endif
1774 default:
1775 break;
1778 return NOTIFY_OK;
1781 static struct notifier_block __cpuinitdata hrtimers_nb = {
1782 .notifier_call = hrtimer_cpu_notify,
1785 void __init hrtimers_init(void)
1787 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1788 (void *)(long)smp_processor_id());
1789 register_cpu_notifier(&hrtimers_nb);
1790 #ifdef CONFIG_HIGH_RES_TIMERS
1791 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1792 #endif
1796 * schedule_hrtimeout_range_clock - sleep until timeout
1797 * @expires: timeout value (ktime_t)
1798 * @delta: slack in expires timeout (ktime_t)
1799 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1800 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1802 int __sched
1803 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1804 const enum hrtimer_mode mode, int clock)
1806 struct hrtimer_sleeper t;
1809 * Optimize when a zero timeout value is given. It does not
1810 * matter whether this is an absolute or a relative time.
1812 if (expires && !expires->tv64) {
1813 __set_current_state(TASK_RUNNING);
1814 return 0;
1818 * A NULL parameter means "infinite"
1820 if (!expires) {
1821 schedule();
1822 __set_current_state(TASK_RUNNING);
1823 return -EINTR;
1826 hrtimer_init_on_stack(&t.timer, clock, mode);
1827 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1829 hrtimer_init_sleeper(&t, current);
1831 hrtimer_start_expires(&t.timer, mode);
1832 if (!hrtimer_active(&t.timer))
1833 t.task = NULL;
1835 if (likely(t.task))
1836 schedule();
1838 hrtimer_cancel(&t.timer);
1839 destroy_hrtimer_on_stack(&t.timer);
1841 __set_current_state(TASK_RUNNING);
1843 return !t.task ? 0 : -EINTR;
1847 * schedule_hrtimeout_range - sleep until timeout
1848 * @expires: timeout value (ktime_t)
1849 * @delta: slack in expires timeout (ktime_t)
1850 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1852 * Make the current task sleep until the given expiry time has
1853 * elapsed. The routine will return immediately unless
1854 * the current task state has been set (see set_current_state()).
1856 * The @delta argument gives the kernel the freedom to schedule the
1857 * actual wakeup to a time that is both power and performance friendly.
1858 * The kernel give the normal best effort behavior for "@expires+@delta",
1859 * but may decide to fire the timer earlier, but no earlier than @expires.
1861 * You can set the task state as follows -
1863 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1864 * pass before the routine returns.
1866 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1867 * delivered to the current task.
1869 * The current task state is guaranteed to be TASK_RUNNING when this
1870 * routine returns.
1872 * Returns 0 when the timer has expired otherwise -EINTR
1874 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1875 const enum hrtimer_mode mode)
1877 return schedule_hrtimeout_range_clock(expires, delta, mode,
1878 CLOCK_MONOTONIC);
1880 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1883 * schedule_hrtimeout - sleep until timeout
1884 * @expires: timeout value (ktime_t)
1885 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1887 * Make the current task sleep until the given expiry time has
1888 * elapsed. The routine will return immediately unless
1889 * the current task state has been set (see set_current_state()).
1891 * You can set the task state as follows -
1893 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1894 * pass before the routine returns.
1896 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1897 * delivered to the current task.
1899 * The current task state is guaranteed to be TASK_RUNNING when this
1900 * routine returns.
1902 * Returns 0 when the timer has expired otherwise -EINTR
1904 int __sched schedule_hrtimeout(ktime_t *expires,
1905 const enum hrtimer_mode mode)
1907 return schedule_hrtimeout_range(expires, 0, mode);
1909 EXPORT_SYMBOL_GPL(schedule_hrtimeout);