framebuffer: fix border color
[linux/fpc-iii.git] / kernel / rcutree.c
blob1aa52afdf4e1e98567b9d71925c100700ab781cc
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
57 #include "rcu.h"
59 /* Data structures. */
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .signaled = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
88 static struct rcu_state *rcu_state;
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
114 static int rcu_scheduler_fully_active __read_mostly;
116 #ifdef CONFIG_RCU_BOOST
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
128 #endif /* #ifdef CONFIG_RCU_BOOST */
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
162 void rcu_sched_qs(int cpu)
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
173 void rcu_bh_qs(int cpu)
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
189 void rcu_note_context_switch(int cpu)
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
198 #ifdef CONFIG_NO_HZ
199 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
200 .dynticks_nesting = 1,
201 .dynticks = ATOMIC_INIT(1),
203 #endif /* #ifdef CONFIG_NO_HZ */
205 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
206 static long qhimark = 10000; /* If this many pending, ignore blimit. */
207 static long qlowmark = 100; /* Once only this many pending, use blimit. */
209 module_param(blimit, long, 0);
210 module_param(qhimark, long, 0);
211 module_param(qlowmark, long, 0);
213 int rcu_cpu_stall_suppress __read_mostly;
214 module_param(rcu_cpu_stall_suppress, int, 0644);
216 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
217 static int rcu_pending(int cpu);
220 * Return the number of RCU-sched batches processed thus far for debug & stats.
222 long rcu_batches_completed_sched(void)
224 return rcu_sched_state.completed;
226 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
229 * Return the number of RCU BH batches processed thus far for debug & stats.
231 long rcu_batches_completed_bh(void)
233 return rcu_bh_state.completed;
235 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
238 * Force a quiescent state for RCU BH.
240 void rcu_bh_force_quiescent_state(void)
242 force_quiescent_state(&rcu_bh_state, 0);
244 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
247 * Record the number of times rcutorture tests have been initiated and
248 * terminated. This information allows the debugfs tracing stats to be
249 * correlated to the rcutorture messages, even when the rcutorture module
250 * is being repeatedly loaded and unloaded. In other words, we cannot
251 * store this state in rcutorture itself.
253 void rcutorture_record_test_transition(void)
255 rcutorture_testseq++;
256 rcutorture_vernum = 0;
258 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
261 * Record the number of writer passes through the current rcutorture test.
262 * This is also used to correlate debugfs tracing stats with the rcutorture
263 * messages.
265 void rcutorture_record_progress(unsigned long vernum)
267 rcutorture_vernum++;
269 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
272 * Force a quiescent state for RCU-sched.
274 void rcu_sched_force_quiescent_state(void)
276 force_quiescent_state(&rcu_sched_state, 0);
278 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
281 * Does the CPU have callbacks ready to be invoked?
283 static int
284 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
286 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
290 * Does the current CPU require a yet-as-unscheduled grace period?
292 static int
293 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
295 return *rdp->nxttail[RCU_DONE_TAIL +
296 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
297 !rcu_gp_in_progress(rsp);
301 * Return the root node of the specified rcu_state structure.
303 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
305 return &rsp->node[0];
308 #ifdef CONFIG_SMP
311 * If the specified CPU is offline, tell the caller that it is in
312 * a quiescent state. Otherwise, whack it with a reschedule IPI.
313 * Grace periods can end up waiting on an offline CPU when that
314 * CPU is in the process of coming online -- it will be added to the
315 * rcu_node bitmasks before it actually makes it online. The same thing
316 * can happen while a CPU is in the process of coming online. Because this
317 * race is quite rare, we check for it after detecting that the grace
318 * period has been delayed rather than checking each and every CPU
319 * each and every time we start a new grace period.
321 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
324 * If the CPU is offline, it is in a quiescent state. We can
325 * trust its state not to change because interrupts are disabled.
327 if (cpu_is_offline(rdp->cpu)) {
328 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
329 rdp->offline_fqs++;
330 return 1;
333 /* If preemptible RCU, no point in sending reschedule IPI. */
334 if (rdp->preemptible)
335 return 0;
337 /* The CPU is online, so send it a reschedule IPI. */
338 if (rdp->cpu != smp_processor_id())
339 smp_send_reschedule(rdp->cpu);
340 else
341 set_need_resched();
342 rdp->resched_ipi++;
343 return 0;
346 #endif /* #ifdef CONFIG_SMP */
348 #ifdef CONFIG_NO_HZ
351 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
353 * Enter nohz mode, in other words, -leave- the mode in which RCU
354 * read-side critical sections can occur. (Though RCU read-side
355 * critical sections can occur in irq handlers in nohz mode, a possibility
356 * handled by rcu_irq_enter() and rcu_irq_exit()).
358 void rcu_enter_nohz(void)
360 unsigned long flags;
361 struct rcu_dynticks *rdtp;
363 local_irq_save(flags);
364 rdtp = &__get_cpu_var(rcu_dynticks);
365 if (--rdtp->dynticks_nesting) {
366 local_irq_restore(flags);
367 return;
369 trace_rcu_dyntick("Start");
370 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
371 smp_mb__before_atomic_inc(); /* See above. */
372 atomic_inc(&rdtp->dynticks);
373 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
374 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
375 local_irq_restore(flags);
379 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
381 * Exit nohz mode, in other words, -enter- the mode in which RCU
382 * read-side critical sections normally occur.
384 void rcu_exit_nohz(void)
386 unsigned long flags;
387 struct rcu_dynticks *rdtp;
389 local_irq_save(flags);
390 rdtp = &__get_cpu_var(rcu_dynticks);
391 if (rdtp->dynticks_nesting++) {
392 local_irq_restore(flags);
393 return;
395 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
396 atomic_inc(&rdtp->dynticks);
397 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
398 smp_mb__after_atomic_inc(); /* See above. */
399 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
400 trace_rcu_dyntick("End");
401 local_irq_restore(flags);
405 * rcu_nmi_enter - inform RCU of entry to NMI context
407 * If the CPU was idle with dynamic ticks active, and there is no
408 * irq handler running, this updates rdtp->dynticks_nmi to let the
409 * RCU grace-period handling know that the CPU is active.
411 void rcu_nmi_enter(void)
413 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
415 if (rdtp->dynticks_nmi_nesting == 0 &&
416 (atomic_read(&rdtp->dynticks) & 0x1))
417 return;
418 rdtp->dynticks_nmi_nesting++;
419 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
420 atomic_inc(&rdtp->dynticks);
421 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
422 smp_mb__after_atomic_inc(); /* See above. */
423 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
427 * rcu_nmi_exit - inform RCU of exit from NMI context
429 * If the CPU was idle with dynamic ticks active, and there is no
430 * irq handler running, this updates rdtp->dynticks_nmi to let the
431 * RCU grace-period handling know that the CPU is no longer active.
433 void rcu_nmi_exit(void)
435 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
437 if (rdtp->dynticks_nmi_nesting == 0 ||
438 --rdtp->dynticks_nmi_nesting != 0)
439 return;
440 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
441 smp_mb__before_atomic_inc(); /* See above. */
442 atomic_inc(&rdtp->dynticks);
443 smp_mb__after_atomic_inc(); /* Force delay to next write. */
444 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
448 * rcu_irq_enter - inform RCU of entry to hard irq context
450 * If the CPU was idle with dynamic ticks active, this updates the
451 * rdtp->dynticks to let the RCU handling know that the CPU is active.
453 void rcu_irq_enter(void)
455 rcu_exit_nohz();
459 * rcu_irq_exit - inform RCU of exit from hard irq context
461 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
462 * to put let the RCU handling be aware that the CPU is going back to idle
463 * with no ticks.
465 void rcu_irq_exit(void)
467 rcu_enter_nohz();
470 #ifdef CONFIG_SMP
473 * Snapshot the specified CPU's dynticks counter so that we can later
474 * credit them with an implicit quiescent state. Return 1 if this CPU
475 * is in dynticks idle mode, which is an extended quiescent state.
477 static int dyntick_save_progress_counter(struct rcu_data *rdp)
479 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
480 return 0;
484 * Return true if the specified CPU has passed through a quiescent
485 * state by virtue of being in or having passed through an dynticks
486 * idle state since the last call to dyntick_save_progress_counter()
487 * for this same CPU.
489 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
491 unsigned int curr;
492 unsigned int snap;
494 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
495 snap = (unsigned int)rdp->dynticks_snap;
498 * If the CPU passed through or entered a dynticks idle phase with
499 * no active irq/NMI handlers, then we can safely pretend that the CPU
500 * already acknowledged the request to pass through a quiescent
501 * state. Either way, that CPU cannot possibly be in an RCU
502 * read-side critical section that started before the beginning
503 * of the current RCU grace period.
505 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
506 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
507 rdp->dynticks_fqs++;
508 return 1;
511 /* Go check for the CPU being offline. */
512 return rcu_implicit_offline_qs(rdp);
515 #endif /* #ifdef CONFIG_SMP */
517 #else /* #ifdef CONFIG_NO_HZ */
519 #ifdef CONFIG_SMP
521 static int dyntick_save_progress_counter(struct rcu_data *rdp)
523 return 0;
526 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
528 return rcu_implicit_offline_qs(rdp);
531 #endif /* #ifdef CONFIG_SMP */
533 #endif /* #else #ifdef CONFIG_NO_HZ */
535 int rcu_cpu_stall_suppress __read_mostly;
537 static void record_gp_stall_check_time(struct rcu_state *rsp)
539 rsp->gp_start = jiffies;
540 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
543 static void print_other_cpu_stall(struct rcu_state *rsp)
545 int cpu;
546 long delta;
547 unsigned long flags;
548 int ndetected;
549 struct rcu_node *rnp = rcu_get_root(rsp);
551 /* Only let one CPU complain about others per time interval. */
553 raw_spin_lock_irqsave(&rnp->lock, flags);
554 delta = jiffies - rsp->jiffies_stall;
555 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
556 raw_spin_unlock_irqrestore(&rnp->lock, flags);
557 return;
559 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
562 * Now rat on any tasks that got kicked up to the root rcu_node
563 * due to CPU offlining.
565 ndetected = rcu_print_task_stall(rnp);
566 raw_spin_unlock_irqrestore(&rnp->lock, flags);
569 * OK, time to rat on our buddy...
570 * See Documentation/RCU/stallwarn.txt for info on how to debug
571 * RCU CPU stall warnings.
573 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
574 rsp->name);
575 rcu_for_each_leaf_node(rsp, rnp) {
576 raw_spin_lock_irqsave(&rnp->lock, flags);
577 ndetected += rcu_print_task_stall(rnp);
578 raw_spin_unlock_irqrestore(&rnp->lock, flags);
579 if (rnp->qsmask == 0)
580 continue;
581 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
582 if (rnp->qsmask & (1UL << cpu)) {
583 printk(" %d", rnp->grplo + cpu);
584 ndetected++;
587 printk("} (detected by %d, t=%ld jiffies)\n",
588 smp_processor_id(), (long)(jiffies - rsp->gp_start));
589 if (ndetected == 0)
590 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
591 else if (!trigger_all_cpu_backtrace())
592 dump_stack();
594 /* If so configured, complain about tasks blocking the grace period. */
596 rcu_print_detail_task_stall(rsp);
598 force_quiescent_state(rsp, 0); /* Kick them all. */
601 static void print_cpu_stall(struct rcu_state *rsp)
603 unsigned long flags;
604 struct rcu_node *rnp = rcu_get_root(rsp);
607 * OK, time to rat on ourselves...
608 * See Documentation/RCU/stallwarn.txt for info on how to debug
609 * RCU CPU stall warnings.
611 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
612 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
613 if (!trigger_all_cpu_backtrace())
614 dump_stack();
616 raw_spin_lock_irqsave(&rnp->lock, flags);
617 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
618 rsp->jiffies_stall =
619 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
620 raw_spin_unlock_irqrestore(&rnp->lock, flags);
622 set_need_resched(); /* kick ourselves to get things going. */
625 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
627 unsigned long j;
628 unsigned long js;
629 struct rcu_node *rnp;
631 if (rcu_cpu_stall_suppress)
632 return;
633 j = ACCESS_ONCE(jiffies);
634 js = ACCESS_ONCE(rsp->jiffies_stall);
635 rnp = rdp->mynode;
636 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
638 /* We haven't checked in, so go dump stack. */
639 print_cpu_stall(rsp);
641 } else if (rcu_gp_in_progress(rsp) &&
642 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
644 /* They had a few time units to dump stack, so complain. */
645 print_other_cpu_stall(rsp);
649 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
651 rcu_cpu_stall_suppress = 1;
652 return NOTIFY_DONE;
656 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
658 * Set the stall-warning timeout way off into the future, thus preventing
659 * any RCU CPU stall-warning messages from appearing in the current set of
660 * RCU grace periods.
662 * The caller must disable hard irqs.
664 void rcu_cpu_stall_reset(void)
666 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
667 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
668 rcu_preempt_stall_reset();
671 static struct notifier_block rcu_panic_block = {
672 .notifier_call = rcu_panic,
675 static void __init check_cpu_stall_init(void)
677 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
681 * Update CPU-local rcu_data state to record the newly noticed grace period.
682 * This is used both when we started the grace period and when we notice
683 * that someone else started the grace period. The caller must hold the
684 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
685 * and must have irqs disabled.
687 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
689 if (rdp->gpnum != rnp->gpnum) {
691 * If the current grace period is waiting for this CPU,
692 * set up to detect a quiescent state, otherwise don't
693 * go looking for one.
695 rdp->gpnum = rnp->gpnum;
696 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
697 if (rnp->qsmask & rdp->grpmask) {
698 rdp->qs_pending = 1;
699 rdp->passed_quiesce = 0;
700 } else
701 rdp->qs_pending = 0;
705 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
707 unsigned long flags;
708 struct rcu_node *rnp;
710 local_irq_save(flags);
711 rnp = rdp->mynode;
712 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
713 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
714 local_irq_restore(flags);
715 return;
717 __note_new_gpnum(rsp, rnp, rdp);
718 raw_spin_unlock_irqrestore(&rnp->lock, flags);
722 * Did someone else start a new RCU grace period start since we last
723 * checked? Update local state appropriately if so. Must be called
724 * on the CPU corresponding to rdp.
726 static int
727 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
729 unsigned long flags;
730 int ret = 0;
732 local_irq_save(flags);
733 if (rdp->gpnum != rsp->gpnum) {
734 note_new_gpnum(rsp, rdp);
735 ret = 1;
737 local_irq_restore(flags);
738 return ret;
742 * Advance this CPU's callbacks, but only if the current grace period
743 * has ended. This may be called only from the CPU to whom the rdp
744 * belongs. In addition, the corresponding leaf rcu_node structure's
745 * ->lock must be held by the caller, with irqs disabled.
747 static void
748 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
750 /* Did another grace period end? */
751 if (rdp->completed != rnp->completed) {
753 /* Advance callbacks. No harm if list empty. */
754 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
755 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
756 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
758 /* Remember that we saw this grace-period completion. */
759 rdp->completed = rnp->completed;
760 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
763 * If we were in an extended quiescent state, we may have
764 * missed some grace periods that others CPUs handled on
765 * our behalf. Catch up with this state to avoid noting
766 * spurious new grace periods. If another grace period
767 * has started, then rnp->gpnum will have advanced, so
768 * we will detect this later on.
770 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
771 rdp->gpnum = rdp->completed;
774 * If RCU does not need a quiescent state from this CPU,
775 * then make sure that this CPU doesn't go looking for one.
777 if ((rnp->qsmask & rdp->grpmask) == 0)
778 rdp->qs_pending = 0;
783 * Advance this CPU's callbacks, but only if the current grace period
784 * has ended. This may be called only from the CPU to whom the rdp
785 * belongs.
787 static void
788 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
790 unsigned long flags;
791 struct rcu_node *rnp;
793 local_irq_save(flags);
794 rnp = rdp->mynode;
795 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
796 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
797 local_irq_restore(flags);
798 return;
800 __rcu_process_gp_end(rsp, rnp, rdp);
801 raw_spin_unlock_irqrestore(&rnp->lock, flags);
805 * Do per-CPU grace-period initialization for running CPU. The caller
806 * must hold the lock of the leaf rcu_node structure corresponding to
807 * this CPU.
809 static void
810 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
812 /* Prior grace period ended, so advance callbacks for current CPU. */
813 __rcu_process_gp_end(rsp, rnp, rdp);
816 * Because this CPU just now started the new grace period, we know
817 * that all of its callbacks will be covered by this upcoming grace
818 * period, even the ones that were registered arbitrarily recently.
819 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
821 * Other CPUs cannot be sure exactly when the grace period started.
822 * Therefore, their recently registered callbacks must pass through
823 * an additional RCU_NEXT_READY stage, so that they will be handled
824 * by the next RCU grace period.
826 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
827 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
829 /* Set state so that this CPU will detect the next quiescent state. */
830 __note_new_gpnum(rsp, rnp, rdp);
834 * Start a new RCU grace period if warranted, re-initializing the hierarchy
835 * in preparation for detecting the next grace period. The caller must hold
836 * the root node's ->lock, which is released before return. Hard irqs must
837 * be disabled.
839 static void
840 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
841 __releases(rcu_get_root(rsp)->lock)
843 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
844 struct rcu_node *rnp = rcu_get_root(rsp);
846 if (!rcu_scheduler_fully_active ||
847 !cpu_needs_another_gp(rsp, rdp)) {
849 * Either the scheduler hasn't yet spawned the first
850 * non-idle task or this CPU does not need another
851 * grace period. Either way, don't start a new grace
852 * period.
854 raw_spin_unlock_irqrestore(&rnp->lock, flags);
855 return;
858 if (rsp->fqs_active) {
860 * This CPU needs a grace period, but force_quiescent_state()
861 * is running. Tell it to start one on this CPU's behalf.
863 rsp->fqs_need_gp = 1;
864 raw_spin_unlock_irqrestore(&rnp->lock, flags);
865 return;
868 /* Advance to a new grace period and initialize state. */
869 rsp->gpnum++;
870 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
871 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
872 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
873 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
874 record_gp_stall_check_time(rsp);
876 /* Special-case the common single-level case. */
877 if (NUM_RCU_NODES == 1) {
878 rcu_preempt_check_blocked_tasks(rnp);
879 rnp->qsmask = rnp->qsmaskinit;
880 rnp->gpnum = rsp->gpnum;
881 rnp->completed = rsp->completed;
882 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
883 rcu_start_gp_per_cpu(rsp, rnp, rdp);
884 rcu_preempt_boost_start_gp(rnp);
885 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
886 rnp->level, rnp->grplo,
887 rnp->grphi, rnp->qsmask);
888 raw_spin_unlock_irqrestore(&rnp->lock, flags);
889 return;
892 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
895 /* Exclude any concurrent CPU-hotplug operations. */
896 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
899 * Set the quiescent-state-needed bits in all the rcu_node
900 * structures for all currently online CPUs in breadth-first
901 * order, starting from the root rcu_node structure. This
902 * operation relies on the layout of the hierarchy within the
903 * rsp->node[] array. Note that other CPUs will access only
904 * the leaves of the hierarchy, which still indicate that no
905 * grace period is in progress, at least until the corresponding
906 * leaf node has been initialized. In addition, we have excluded
907 * CPU-hotplug operations.
909 * Note that the grace period cannot complete until we finish
910 * the initialization process, as there will be at least one
911 * qsmask bit set in the root node until that time, namely the
912 * one corresponding to this CPU, due to the fact that we have
913 * irqs disabled.
915 rcu_for_each_node_breadth_first(rsp, rnp) {
916 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
917 rcu_preempt_check_blocked_tasks(rnp);
918 rnp->qsmask = rnp->qsmaskinit;
919 rnp->gpnum = rsp->gpnum;
920 rnp->completed = rsp->completed;
921 if (rnp == rdp->mynode)
922 rcu_start_gp_per_cpu(rsp, rnp, rdp);
923 rcu_preempt_boost_start_gp(rnp);
924 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
925 rnp->level, rnp->grplo,
926 rnp->grphi, rnp->qsmask);
927 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
930 rnp = rcu_get_root(rsp);
931 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
932 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
933 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
934 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
938 * Report a full set of quiescent states to the specified rcu_state
939 * data structure. This involves cleaning up after the prior grace
940 * period and letting rcu_start_gp() start up the next grace period
941 * if one is needed. Note that the caller must hold rnp->lock, as
942 * required by rcu_start_gp(), which will release it.
944 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
945 __releases(rcu_get_root(rsp)->lock)
947 unsigned long gp_duration;
948 struct rcu_node *rnp = rcu_get_root(rsp);
949 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
951 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
954 * Ensure that all grace-period and pre-grace-period activity
955 * is seen before the assignment to rsp->completed.
957 smp_mb(); /* See above block comment. */
958 gp_duration = jiffies - rsp->gp_start;
959 if (gp_duration > rsp->gp_max)
960 rsp->gp_max = gp_duration;
963 * We know the grace period is complete, but to everyone else
964 * it appears to still be ongoing. But it is also the case
965 * that to everyone else it looks like there is nothing that
966 * they can do to advance the grace period. It is therefore
967 * safe for us to drop the lock in order to mark the grace
968 * period as completed in all of the rcu_node structures.
970 * But if this CPU needs another grace period, it will take
971 * care of this while initializing the next grace period.
972 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
973 * because the callbacks have not yet been advanced: Those
974 * callbacks are waiting on the grace period that just now
975 * completed.
977 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
978 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
981 * Propagate new ->completed value to rcu_node structures
982 * so that other CPUs don't have to wait until the start
983 * of the next grace period to process their callbacks.
985 rcu_for_each_node_breadth_first(rsp, rnp) {
986 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
987 rnp->completed = rsp->gpnum;
988 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
990 rnp = rcu_get_root(rsp);
991 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
994 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
995 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
996 rsp->signaled = RCU_GP_IDLE;
997 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1001 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1002 * Allows quiescent states for a group of CPUs to be reported at one go
1003 * to the specified rcu_node structure, though all the CPUs in the group
1004 * must be represented by the same rcu_node structure (which need not be
1005 * a leaf rcu_node structure, though it often will be). That structure's
1006 * lock must be held upon entry, and it is released before return.
1008 static void
1009 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1010 struct rcu_node *rnp, unsigned long flags)
1011 __releases(rnp->lock)
1013 struct rcu_node *rnp_c;
1015 /* Walk up the rcu_node hierarchy. */
1016 for (;;) {
1017 if (!(rnp->qsmask & mask)) {
1019 /* Our bit has already been cleared, so done. */
1020 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1021 return;
1023 rnp->qsmask &= ~mask;
1024 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1025 mask, rnp->qsmask, rnp->level,
1026 rnp->grplo, rnp->grphi,
1027 !!rnp->gp_tasks);
1028 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1030 /* Other bits still set at this level, so done. */
1031 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1032 return;
1034 mask = rnp->grpmask;
1035 if (rnp->parent == NULL) {
1037 /* No more levels. Exit loop holding root lock. */
1039 break;
1041 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1042 rnp_c = rnp;
1043 rnp = rnp->parent;
1044 raw_spin_lock_irqsave(&rnp->lock, flags);
1045 WARN_ON_ONCE(rnp_c->qsmask);
1049 * Get here if we are the last CPU to pass through a quiescent
1050 * state for this grace period. Invoke rcu_report_qs_rsp()
1051 * to clean up and start the next grace period if one is needed.
1053 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1057 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1058 * structure. This must be either called from the specified CPU, or
1059 * called when the specified CPU is known to be offline (and when it is
1060 * also known that no other CPU is concurrently trying to help the offline
1061 * CPU). The lastcomp argument is used to make sure we are still in the
1062 * grace period of interest. We don't want to end the current grace period
1063 * based on quiescent states detected in an earlier grace period!
1065 static void
1066 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1068 unsigned long flags;
1069 unsigned long mask;
1070 struct rcu_node *rnp;
1072 rnp = rdp->mynode;
1073 raw_spin_lock_irqsave(&rnp->lock, flags);
1074 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1077 * The grace period in which this quiescent state was
1078 * recorded has ended, so don't report it upwards.
1079 * We will instead need a new quiescent state that lies
1080 * within the current grace period.
1082 rdp->passed_quiesce = 0; /* need qs for new gp. */
1083 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1084 return;
1086 mask = rdp->grpmask;
1087 if ((rnp->qsmask & mask) == 0) {
1088 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1089 } else {
1090 rdp->qs_pending = 0;
1093 * This GP can't end until cpu checks in, so all of our
1094 * callbacks can be processed during the next GP.
1096 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1098 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1103 * Check to see if there is a new grace period of which this CPU
1104 * is not yet aware, and if so, set up local rcu_data state for it.
1105 * Otherwise, see if this CPU has just passed through its first
1106 * quiescent state for this grace period, and record that fact if so.
1108 static void
1109 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1111 /* If there is now a new grace period, record and return. */
1112 if (check_for_new_grace_period(rsp, rdp))
1113 return;
1116 * Does this CPU still need to do its part for current grace period?
1117 * If no, return and let the other CPUs do their part as well.
1119 if (!rdp->qs_pending)
1120 return;
1123 * Was there a quiescent state since the beginning of the grace
1124 * period? If no, then exit and wait for the next call.
1126 if (!rdp->passed_quiesce)
1127 return;
1130 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1131 * judge of that).
1133 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1136 #ifdef CONFIG_HOTPLUG_CPU
1139 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1140 * Synchronization is not required because this function executes
1141 * in stop_machine() context.
1143 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1145 int i;
1146 /* current DYING CPU is cleared in the cpu_online_mask */
1147 int receive_cpu = cpumask_any(cpu_online_mask);
1148 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1149 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1151 if (rdp->nxtlist == NULL)
1152 return; /* irqs disabled, so comparison is stable. */
1154 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1155 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1156 receive_rdp->qlen += rdp->qlen;
1157 receive_rdp->n_cbs_adopted += rdp->qlen;
1158 rdp->n_cbs_orphaned += rdp->qlen;
1160 rdp->nxtlist = NULL;
1161 for (i = 0; i < RCU_NEXT_SIZE; i++)
1162 rdp->nxttail[i] = &rdp->nxtlist;
1163 rdp->qlen = 0;
1167 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1168 * and move all callbacks from the outgoing CPU to the current one.
1169 * There can only be one CPU hotplug operation at a time, so no other
1170 * CPU can be attempting to update rcu_cpu_kthread_task.
1172 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1174 unsigned long flags;
1175 unsigned long mask;
1176 int need_report = 0;
1177 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1178 struct rcu_node *rnp;
1180 rcu_stop_cpu_kthread(cpu);
1182 /* Exclude any attempts to start a new grace period. */
1183 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1185 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1186 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1187 mask = rdp->grpmask; /* rnp->grplo is constant. */
1188 do {
1189 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1190 rnp->qsmaskinit &= ~mask;
1191 if (rnp->qsmaskinit != 0) {
1192 if (rnp != rdp->mynode)
1193 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1194 else
1195 trace_rcu_grace_period(rsp->name,
1196 rnp->gpnum + 1 -
1197 !!(rnp->qsmask & mask),
1198 "cpuofl");
1199 break;
1201 if (rnp == rdp->mynode) {
1202 trace_rcu_grace_period(rsp->name,
1203 rnp->gpnum + 1 -
1204 !!(rnp->qsmask & mask),
1205 "cpuofl");
1206 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1207 } else
1208 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1209 mask = rnp->grpmask;
1210 rnp = rnp->parent;
1211 } while (rnp != NULL);
1214 * We still hold the leaf rcu_node structure lock here, and
1215 * irqs are still disabled. The reason for this subterfuge is
1216 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1217 * held leads to deadlock.
1219 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1220 rnp = rdp->mynode;
1221 if (need_report & RCU_OFL_TASKS_NORM_GP)
1222 rcu_report_unblock_qs_rnp(rnp, flags);
1223 else
1224 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1225 if (need_report & RCU_OFL_TASKS_EXP_GP)
1226 rcu_report_exp_rnp(rsp, rnp);
1227 rcu_node_kthread_setaffinity(rnp, -1);
1231 * Remove the specified CPU from the RCU hierarchy and move any pending
1232 * callbacks that it might have to the current CPU. This code assumes
1233 * that at least one CPU in the system will remain running at all times.
1234 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1236 static void rcu_offline_cpu(int cpu)
1238 __rcu_offline_cpu(cpu, &rcu_sched_state);
1239 __rcu_offline_cpu(cpu, &rcu_bh_state);
1240 rcu_preempt_offline_cpu(cpu);
1243 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1245 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1249 static void rcu_offline_cpu(int cpu)
1253 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1256 * Invoke any RCU callbacks that have made it to the end of their grace
1257 * period. Thottle as specified by rdp->blimit.
1259 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1261 unsigned long flags;
1262 struct rcu_head *next, *list, **tail;
1263 long bl, count;
1265 /* If no callbacks are ready, just return.*/
1266 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1267 trace_rcu_batch_start(rsp->name, 0, 0);
1268 trace_rcu_batch_end(rsp->name, 0);
1269 return;
1273 * Extract the list of ready callbacks, disabling to prevent
1274 * races with call_rcu() from interrupt handlers.
1276 local_irq_save(flags);
1277 bl = rdp->blimit;
1278 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1279 list = rdp->nxtlist;
1280 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1281 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1282 tail = rdp->nxttail[RCU_DONE_TAIL];
1283 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1284 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1285 rdp->nxttail[count] = &rdp->nxtlist;
1286 local_irq_restore(flags);
1288 /* Invoke callbacks. */
1289 count = 0;
1290 while (list) {
1291 next = list->next;
1292 prefetch(next);
1293 debug_rcu_head_unqueue(list);
1294 __rcu_reclaim(rsp->name, list);
1295 list = next;
1296 if (++count >= bl)
1297 break;
1300 local_irq_save(flags);
1301 trace_rcu_batch_end(rsp->name, count);
1303 /* Update count, and requeue any remaining callbacks. */
1304 rdp->qlen -= count;
1305 rdp->n_cbs_invoked += count;
1306 if (list != NULL) {
1307 *tail = rdp->nxtlist;
1308 rdp->nxtlist = list;
1309 for (count = 0; count < RCU_NEXT_SIZE; count++)
1310 if (&rdp->nxtlist == rdp->nxttail[count])
1311 rdp->nxttail[count] = tail;
1312 else
1313 break;
1316 /* Reinstate batch limit if we have worked down the excess. */
1317 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1318 rdp->blimit = blimit;
1320 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1321 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1322 rdp->qlen_last_fqs_check = 0;
1323 rdp->n_force_qs_snap = rsp->n_force_qs;
1324 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1325 rdp->qlen_last_fqs_check = rdp->qlen;
1327 local_irq_restore(flags);
1329 /* Re-invoke RCU core processing if there are callbacks remaining. */
1330 if (cpu_has_callbacks_ready_to_invoke(rdp))
1331 invoke_rcu_core();
1335 * Check to see if this CPU is in a non-context-switch quiescent state
1336 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1337 * Also schedule RCU core processing.
1339 * This function must be called with hardirqs disabled. It is normally
1340 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1341 * false, there is no point in invoking rcu_check_callbacks().
1343 void rcu_check_callbacks(int cpu, int user)
1345 trace_rcu_utilization("Start scheduler-tick");
1346 if (user ||
1347 (idle_cpu(cpu) && rcu_scheduler_active &&
1348 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1351 * Get here if this CPU took its interrupt from user
1352 * mode or from the idle loop, and if this is not a
1353 * nested interrupt. In this case, the CPU is in
1354 * a quiescent state, so note it.
1356 * No memory barrier is required here because both
1357 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1358 * variables that other CPUs neither access nor modify,
1359 * at least not while the corresponding CPU is online.
1362 rcu_sched_qs(cpu);
1363 rcu_bh_qs(cpu);
1365 } else if (!in_softirq()) {
1368 * Get here if this CPU did not take its interrupt from
1369 * softirq, in other words, if it is not interrupting
1370 * a rcu_bh read-side critical section. This is an _bh
1371 * critical section, so note it.
1374 rcu_bh_qs(cpu);
1376 rcu_preempt_check_callbacks(cpu);
1377 if (rcu_pending(cpu))
1378 invoke_rcu_core();
1379 trace_rcu_utilization("End scheduler-tick");
1382 #ifdef CONFIG_SMP
1385 * Scan the leaf rcu_node structures, processing dyntick state for any that
1386 * have not yet encountered a quiescent state, using the function specified.
1387 * Also initiate boosting for any threads blocked on the root rcu_node.
1389 * The caller must have suppressed start of new grace periods.
1391 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1393 unsigned long bit;
1394 int cpu;
1395 unsigned long flags;
1396 unsigned long mask;
1397 struct rcu_node *rnp;
1399 rcu_for_each_leaf_node(rsp, rnp) {
1400 mask = 0;
1401 raw_spin_lock_irqsave(&rnp->lock, flags);
1402 if (!rcu_gp_in_progress(rsp)) {
1403 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1404 return;
1406 if (rnp->qsmask == 0) {
1407 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1408 continue;
1410 cpu = rnp->grplo;
1411 bit = 1;
1412 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1413 if ((rnp->qsmask & bit) != 0 &&
1414 f(per_cpu_ptr(rsp->rda, cpu)))
1415 mask |= bit;
1417 if (mask != 0) {
1419 /* rcu_report_qs_rnp() releases rnp->lock. */
1420 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1421 continue;
1423 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1425 rnp = rcu_get_root(rsp);
1426 if (rnp->qsmask == 0) {
1427 raw_spin_lock_irqsave(&rnp->lock, flags);
1428 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1433 * Force quiescent states on reluctant CPUs, and also detect which
1434 * CPUs are in dyntick-idle mode.
1436 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1438 unsigned long flags;
1439 struct rcu_node *rnp = rcu_get_root(rsp);
1441 trace_rcu_utilization("Start fqs");
1442 if (!rcu_gp_in_progress(rsp)) {
1443 trace_rcu_utilization("End fqs");
1444 return; /* No grace period in progress, nothing to force. */
1446 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1447 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1448 trace_rcu_utilization("End fqs");
1449 return; /* Someone else is already on the job. */
1451 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1452 goto unlock_fqs_ret; /* no emergency and done recently. */
1453 rsp->n_force_qs++;
1454 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1455 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1456 if(!rcu_gp_in_progress(rsp)) {
1457 rsp->n_force_qs_ngp++;
1458 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1459 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1461 rsp->fqs_active = 1;
1462 switch (rsp->signaled) {
1463 case RCU_GP_IDLE:
1464 case RCU_GP_INIT:
1466 break; /* grace period idle or initializing, ignore. */
1468 case RCU_SAVE_DYNTICK:
1469 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1470 break; /* So gcc recognizes the dead code. */
1472 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1474 /* Record dyntick-idle state. */
1475 force_qs_rnp(rsp, dyntick_save_progress_counter);
1476 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1477 if (rcu_gp_in_progress(rsp))
1478 rsp->signaled = RCU_FORCE_QS;
1479 break;
1481 case RCU_FORCE_QS:
1483 /* Check dyntick-idle state, send IPI to laggarts. */
1484 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1485 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1487 /* Leave state in case more forcing is required. */
1489 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1490 break;
1492 rsp->fqs_active = 0;
1493 if (rsp->fqs_need_gp) {
1494 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1495 rsp->fqs_need_gp = 0;
1496 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1497 trace_rcu_utilization("End fqs");
1498 return;
1500 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1501 unlock_fqs_ret:
1502 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1503 trace_rcu_utilization("End fqs");
1506 #else /* #ifdef CONFIG_SMP */
1508 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1510 set_need_resched();
1513 #endif /* #else #ifdef CONFIG_SMP */
1516 * This does the RCU core processing work for the specified rcu_state
1517 * and rcu_data structures. This may be called only from the CPU to
1518 * whom the rdp belongs.
1520 static void
1521 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1523 unsigned long flags;
1525 WARN_ON_ONCE(rdp->beenonline == 0);
1528 * If an RCU GP has gone long enough, go check for dyntick
1529 * idle CPUs and, if needed, send resched IPIs.
1531 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1532 force_quiescent_state(rsp, 1);
1535 * Advance callbacks in response to end of earlier grace
1536 * period that some other CPU ended.
1538 rcu_process_gp_end(rsp, rdp);
1540 /* Update RCU state based on any recent quiescent states. */
1541 rcu_check_quiescent_state(rsp, rdp);
1543 /* Does this CPU require a not-yet-started grace period? */
1544 if (cpu_needs_another_gp(rsp, rdp)) {
1545 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1546 rcu_start_gp(rsp, flags); /* releases above lock */
1549 /* If there are callbacks ready, invoke them. */
1550 if (cpu_has_callbacks_ready_to_invoke(rdp))
1551 invoke_rcu_callbacks(rsp, rdp);
1555 * Do RCU core processing for the current CPU.
1557 static void rcu_process_callbacks(struct softirq_action *unused)
1559 trace_rcu_utilization("Start RCU core");
1560 __rcu_process_callbacks(&rcu_sched_state,
1561 &__get_cpu_var(rcu_sched_data));
1562 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1563 rcu_preempt_process_callbacks();
1564 trace_rcu_utilization("End RCU core");
1568 * Schedule RCU callback invocation. If the specified type of RCU
1569 * does not support RCU priority boosting, just do a direct call,
1570 * otherwise wake up the per-CPU kernel kthread. Note that because we
1571 * are running on the current CPU with interrupts disabled, the
1572 * rcu_cpu_kthread_task cannot disappear out from under us.
1574 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1576 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1577 return;
1578 if (likely(!rsp->boost)) {
1579 rcu_do_batch(rsp, rdp);
1580 return;
1582 invoke_rcu_callbacks_kthread();
1585 static void invoke_rcu_core(void)
1587 raise_softirq(RCU_SOFTIRQ);
1590 static void
1591 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1592 struct rcu_state *rsp)
1594 unsigned long flags;
1595 struct rcu_data *rdp;
1597 debug_rcu_head_queue(head);
1598 head->func = func;
1599 head->next = NULL;
1601 smp_mb(); /* Ensure RCU update seen before callback registry. */
1604 * Opportunistically note grace-period endings and beginnings.
1605 * Note that we might see a beginning right after we see an
1606 * end, but never vice versa, since this CPU has to pass through
1607 * a quiescent state betweentimes.
1609 local_irq_save(flags);
1610 rdp = this_cpu_ptr(rsp->rda);
1612 /* Add the callback to our list. */
1613 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1614 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1615 rdp->qlen++;
1617 if (__is_kfree_rcu_offset((unsigned long)func))
1618 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1619 rdp->qlen);
1620 else
1621 trace_rcu_callback(rsp->name, head, rdp->qlen);
1623 /* If interrupts were disabled, don't dive into RCU core. */
1624 if (irqs_disabled_flags(flags)) {
1625 local_irq_restore(flags);
1626 return;
1630 * Force the grace period if too many callbacks or too long waiting.
1631 * Enforce hysteresis, and don't invoke force_quiescent_state()
1632 * if some other CPU has recently done so. Also, don't bother
1633 * invoking force_quiescent_state() if the newly enqueued callback
1634 * is the only one waiting for a grace period to complete.
1636 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1638 /* Are we ignoring a completed grace period? */
1639 rcu_process_gp_end(rsp, rdp);
1640 check_for_new_grace_period(rsp, rdp);
1642 /* Start a new grace period if one not already started. */
1643 if (!rcu_gp_in_progress(rsp)) {
1644 unsigned long nestflag;
1645 struct rcu_node *rnp_root = rcu_get_root(rsp);
1647 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1648 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1649 } else {
1650 /* Give the grace period a kick. */
1651 rdp->blimit = LONG_MAX;
1652 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1653 *rdp->nxttail[RCU_DONE_TAIL] != head)
1654 force_quiescent_state(rsp, 0);
1655 rdp->n_force_qs_snap = rsp->n_force_qs;
1656 rdp->qlen_last_fqs_check = rdp->qlen;
1658 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1659 force_quiescent_state(rsp, 1);
1660 local_irq_restore(flags);
1664 * Queue an RCU-sched callback for invocation after a grace period.
1666 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1668 __call_rcu(head, func, &rcu_sched_state);
1670 EXPORT_SYMBOL_GPL(call_rcu_sched);
1673 * Queue an RCU for invocation after a quicker grace period.
1675 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1677 __call_rcu(head, func, &rcu_bh_state);
1679 EXPORT_SYMBOL_GPL(call_rcu_bh);
1682 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1684 * Control will return to the caller some time after a full rcu-sched
1685 * grace period has elapsed, in other words after all currently executing
1686 * rcu-sched read-side critical sections have completed. These read-side
1687 * critical sections are delimited by rcu_read_lock_sched() and
1688 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1689 * local_irq_disable(), and so on may be used in place of
1690 * rcu_read_lock_sched().
1692 * This means that all preempt_disable code sequences, including NMI and
1693 * hardware-interrupt handlers, in progress on entry will have completed
1694 * before this primitive returns. However, this does not guarantee that
1695 * softirq handlers will have completed, since in some kernels, these
1696 * handlers can run in process context, and can block.
1698 * This primitive provides the guarantees made by the (now removed)
1699 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1700 * guarantees that rcu_read_lock() sections will have completed.
1701 * In "classic RCU", these two guarantees happen to be one and
1702 * the same, but can differ in realtime RCU implementations.
1704 void synchronize_sched(void)
1706 if (rcu_blocking_is_gp())
1707 return;
1708 wait_rcu_gp(call_rcu_sched);
1710 EXPORT_SYMBOL_GPL(synchronize_sched);
1713 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1715 * Control will return to the caller some time after a full rcu_bh grace
1716 * period has elapsed, in other words after all currently executing rcu_bh
1717 * read-side critical sections have completed. RCU read-side critical
1718 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1719 * and may be nested.
1721 void synchronize_rcu_bh(void)
1723 if (rcu_blocking_is_gp())
1724 return;
1725 wait_rcu_gp(call_rcu_bh);
1727 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1730 * Check to see if there is any immediate RCU-related work to be done
1731 * by the current CPU, for the specified type of RCU, returning 1 if so.
1732 * The checks are in order of increasing expense: checks that can be
1733 * carried out against CPU-local state are performed first. However,
1734 * we must check for CPU stalls first, else we might not get a chance.
1736 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1738 struct rcu_node *rnp = rdp->mynode;
1740 rdp->n_rcu_pending++;
1742 /* Check for CPU stalls, if enabled. */
1743 check_cpu_stall(rsp, rdp);
1745 /* Is the RCU core waiting for a quiescent state from this CPU? */
1746 if (rcu_scheduler_fully_active &&
1747 rdp->qs_pending && !rdp->passed_quiesce) {
1750 * If force_quiescent_state() coming soon and this CPU
1751 * needs a quiescent state, and this is either RCU-sched
1752 * or RCU-bh, force a local reschedule.
1754 rdp->n_rp_qs_pending++;
1755 if (!rdp->preemptible &&
1756 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1757 jiffies))
1758 set_need_resched();
1759 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1760 rdp->n_rp_report_qs++;
1761 return 1;
1764 /* Does this CPU have callbacks ready to invoke? */
1765 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1766 rdp->n_rp_cb_ready++;
1767 return 1;
1770 /* Has RCU gone idle with this CPU needing another grace period? */
1771 if (cpu_needs_another_gp(rsp, rdp)) {
1772 rdp->n_rp_cpu_needs_gp++;
1773 return 1;
1776 /* Has another RCU grace period completed? */
1777 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1778 rdp->n_rp_gp_completed++;
1779 return 1;
1782 /* Has a new RCU grace period started? */
1783 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1784 rdp->n_rp_gp_started++;
1785 return 1;
1788 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1789 if (rcu_gp_in_progress(rsp) &&
1790 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1791 rdp->n_rp_need_fqs++;
1792 return 1;
1795 /* nothing to do */
1796 rdp->n_rp_need_nothing++;
1797 return 0;
1801 * Check to see if there is any immediate RCU-related work to be done
1802 * by the current CPU, returning 1 if so. This function is part of the
1803 * RCU implementation; it is -not- an exported member of the RCU API.
1805 static int rcu_pending(int cpu)
1807 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1808 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1809 rcu_preempt_pending(cpu);
1813 * Check to see if any future RCU-related work will need to be done
1814 * by the current CPU, even if none need be done immediately, returning
1815 * 1 if so.
1817 static int rcu_needs_cpu_quick_check(int cpu)
1819 /* RCU callbacks either ready or pending? */
1820 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1821 per_cpu(rcu_bh_data, cpu).nxtlist ||
1822 rcu_preempt_needs_cpu(cpu);
1825 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1826 static atomic_t rcu_barrier_cpu_count;
1827 static DEFINE_MUTEX(rcu_barrier_mutex);
1828 static struct completion rcu_barrier_completion;
1830 static void rcu_barrier_callback(struct rcu_head *notused)
1832 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1833 complete(&rcu_barrier_completion);
1837 * Called with preemption disabled, and from cross-cpu IRQ context.
1839 static void rcu_barrier_func(void *type)
1841 int cpu = smp_processor_id();
1842 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1843 void (*call_rcu_func)(struct rcu_head *head,
1844 void (*func)(struct rcu_head *head));
1846 atomic_inc(&rcu_barrier_cpu_count);
1847 call_rcu_func = type;
1848 call_rcu_func(head, rcu_barrier_callback);
1852 * Orchestrate the specified type of RCU barrier, waiting for all
1853 * RCU callbacks of the specified type to complete.
1855 static void _rcu_barrier(struct rcu_state *rsp,
1856 void (*call_rcu_func)(struct rcu_head *head,
1857 void (*func)(struct rcu_head *head)))
1859 BUG_ON(in_interrupt());
1860 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1861 mutex_lock(&rcu_barrier_mutex);
1862 init_completion(&rcu_barrier_completion);
1864 * Initialize rcu_barrier_cpu_count to 1, then invoke
1865 * rcu_barrier_func() on each CPU, so that each CPU also has
1866 * incremented rcu_barrier_cpu_count. Only then is it safe to
1867 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1868 * might complete its grace period before all of the other CPUs
1869 * did their increment, causing this function to return too
1870 * early. Note that on_each_cpu() disables irqs, which prevents
1871 * any CPUs from coming online or going offline until each online
1872 * CPU has queued its RCU-barrier callback.
1874 atomic_set(&rcu_barrier_cpu_count, 1);
1875 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1876 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1877 complete(&rcu_barrier_completion);
1878 wait_for_completion(&rcu_barrier_completion);
1879 mutex_unlock(&rcu_barrier_mutex);
1883 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1885 void rcu_barrier_bh(void)
1887 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1889 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1892 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1894 void rcu_barrier_sched(void)
1896 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1898 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1901 * Do boot-time initialization of a CPU's per-CPU RCU data.
1903 static void __init
1904 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1906 unsigned long flags;
1907 int i;
1908 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1909 struct rcu_node *rnp = rcu_get_root(rsp);
1911 /* Set up local state, ensuring consistent view of global state. */
1912 raw_spin_lock_irqsave(&rnp->lock, flags);
1913 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1914 rdp->nxtlist = NULL;
1915 for (i = 0; i < RCU_NEXT_SIZE; i++)
1916 rdp->nxttail[i] = &rdp->nxtlist;
1917 rdp->qlen = 0;
1918 #ifdef CONFIG_NO_HZ
1919 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1920 #endif /* #ifdef CONFIG_NO_HZ */
1921 rdp->cpu = cpu;
1922 rdp->rsp = rsp;
1923 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1927 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1928 * offline event can be happening at a given time. Note also that we
1929 * can accept some slop in the rsp->completed access due to the fact
1930 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1932 static void __cpuinit
1933 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1935 unsigned long flags;
1936 unsigned long mask;
1937 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1938 struct rcu_node *rnp = rcu_get_root(rsp);
1940 /* Set up local state, ensuring consistent view of global state. */
1941 raw_spin_lock_irqsave(&rnp->lock, flags);
1942 rdp->beenonline = 1; /* We have now been online. */
1943 rdp->preemptible = preemptible;
1944 rdp->qlen_last_fqs_check = 0;
1945 rdp->n_force_qs_snap = rsp->n_force_qs;
1946 rdp->blimit = blimit;
1947 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1950 * A new grace period might start here. If so, we won't be part
1951 * of it, but that is OK, as we are currently in a quiescent state.
1954 /* Exclude any attempts to start a new GP on large systems. */
1955 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1957 /* Add CPU to rcu_node bitmasks. */
1958 rnp = rdp->mynode;
1959 mask = rdp->grpmask;
1960 do {
1961 /* Exclude any attempts to start a new GP on small systems. */
1962 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1963 rnp->qsmaskinit |= mask;
1964 mask = rnp->grpmask;
1965 if (rnp == rdp->mynode) {
1967 * If there is a grace period in progress, we will
1968 * set up to wait for it next time we run the
1969 * RCU core code.
1971 rdp->gpnum = rnp->completed;
1972 rdp->completed = rnp->completed;
1973 rdp->passed_quiesce = 0;
1974 rdp->qs_pending = 0;
1975 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
1976 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
1978 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1979 rnp = rnp->parent;
1980 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1982 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1985 static void __cpuinit rcu_prepare_cpu(int cpu)
1987 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1988 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1989 rcu_preempt_init_percpu_data(cpu);
1993 * Handle CPU online/offline notification events.
1995 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1996 unsigned long action, void *hcpu)
1998 long cpu = (long)hcpu;
1999 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2000 struct rcu_node *rnp = rdp->mynode;
2002 trace_rcu_utilization("Start CPU hotplug");
2003 switch (action) {
2004 case CPU_UP_PREPARE:
2005 case CPU_UP_PREPARE_FROZEN:
2006 rcu_prepare_cpu(cpu);
2007 rcu_prepare_kthreads(cpu);
2008 break;
2009 case CPU_ONLINE:
2010 case CPU_DOWN_FAILED:
2011 rcu_node_kthread_setaffinity(rnp, -1);
2012 rcu_cpu_kthread_setrt(cpu, 1);
2013 break;
2014 case CPU_DOWN_PREPARE:
2015 rcu_node_kthread_setaffinity(rnp, cpu);
2016 rcu_cpu_kthread_setrt(cpu, 0);
2017 break;
2018 case CPU_DYING:
2019 case CPU_DYING_FROZEN:
2021 * The whole machine is "stopped" except this CPU, so we can
2022 * touch any data without introducing corruption. We send the
2023 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2025 rcu_send_cbs_to_online(&rcu_bh_state);
2026 rcu_send_cbs_to_online(&rcu_sched_state);
2027 rcu_preempt_send_cbs_to_online();
2028 break;
2029 case CPU_DEAD:
2030 case CPU_DEAD_FROZEN:
2031 case CPU_UP_CANCELED:
2032 case CPU_UP_CANCELED_FROZEN:
2033 rcu_offline_cpu(cpu);
2034 break;
2035 default:
2036 break;
2038 trace_rcu_utilization("End CPU hotplug");
2039 return NOTIFY_OK;
2043 * This function is invoked towards the end of the scheduler's initialization
2044 * process. Before this is called, the idle task might contain
2045 * RCU read-side critical sections (during which time, this idle
2046 * task is booting the system). After this function is called, the
2047 * idle tasks are prohibited from containing RCU read-side critical
2048 * sections. This function also enables RCU lockdep checking.
2050 void rcu_scheduler_starting(void)
2052 WARN_ON(num_online_cpus() != 1);
2053 WARN_ON(nr_context_switches() > 0);
2054 rcu_scheduler_active = 1;
2058 * Compute the per-level fanout, either using the exact fanout specified
2059 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2061 #ifdef CONFIG_RCU_FANOUT_EXACT
2062 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2064 int i;
2066 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2067 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2068 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2070 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2071 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2073 int ccur;
2074 int cprv;
2075 int i;
2077 cprv = NR_CPUS;
2078 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2079 ccur = rsp->levelcnt[i];
2080 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2081 cprv = ccur;
2084 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2087 * Helper function for rcu_init() that initializes one rcu_state structure.
2089 static void __init rcu_init_one(struct rcu_state *rsp,
2090 struct rcu_data __percpu *rda)
2092 static char *buf[] = { "rcu_node_level_0",
2093 "rcu_node_level_1",
2094 "rcu_node_level_2",
2095 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2096 int cpustride = 1;
2097 int i;
2098 int j;
2099 struct rcu_node *rnp;
2101 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2103 /* Initialize the level-tracking arrays. */
2105 for (i = 1; i < NUM_RCU_LVLS; i++)
2106 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2107 rcu_init_levelspread(rsp);
2109 /* Initialize the elements themselves, starting from the leaves. */
2111 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2112 cpustride *= rsp->levelspread[i];
2113 rnp = rsp->level[i];
2114 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2115 raw_spin_lock_init(&rnp->lock);
2116 lockdep_set_class_and_name(&rnp->lock,
2117 &rcu_node_class[i], buf[i]);
2118 rnp->gpnum = 0;
2119 rnp->qsmask = 0;
2120 rnp->qsmaskinit = 0;
2121 rnp->grplo = j * cpustride;
2122 rnp->grphi = (j + 1) * cpustride - 1;
2123 if (rnp->grphi >= NR_CPUS)
2124 rnp->grphi = NR_CPUS - 1;
2125 if (i == 0) {
2126 rnp->grpnum = 0;
2127 rnp->grpmask = 0;
2128 rnp->parent = NULL;
2129 } else {
2130 rnp->grpnum = j % rsp->levelspread[i - 1];
2131 rnp->grpmask = 1UL << rnp->grpnum;
2132 rnp->parent = rsp->level[i - 1] +
2133 j / rsp->levelspread[i - 1];
2135 rnp->level = i;
2136 INIT_LIST_HEAD(&rnp->blkd_tasks);
2140 rsp->rda = rda;
2141 rnp = rsp->level[NUM_RCU_LVLS - 1];
2142 for_each_possible_cpu(i) {
2143 while (i > rnp->grphi)
2144 rnp++;
2145 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2146 rcu_boot_init_percpu_data(i, rsp);
2150 void __init rcu_init(void)
2152 int cpu;
2154 rcu_bootup_announce();
2155 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2156 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2157 __rcu_init_preempt();
2158 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2161 * We don't need protection against CPU-hotplug here because
2162 * this is called early in boot, before either interrupts
2163 * or the scheduler are operational.
2165 cpu_notifier(rcu_cpu_notify, 0);
2166 for_each_online_cpu(cpu)
2167 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2168 check_cpu_stall_init();
2171 #include "rcutree_plugin.h"