2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
55 #include <trace/events/rcu.h>
59 /* Data structures. */
61 static struct lock_class_key rcu_node_class
[NUM_RCU_LVLS
];
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
72 .signaled = RCU_GP_IDLE, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
82 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched
);
83 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
85 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh
);
86 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
88 static struct rcu_state
*rcu_state
;
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
99 int rcu_scheduler_active __read_mostly
;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
114 static int rcu_scheduler_fully_active __read_mostly
;
116 #ifdef CONFIG_RCU_BOOST
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
122 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu
);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
128 #endif /* #ifdef CONFIG_RCU_BOOST */
130 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
143 unsigned long rcutorture_testseq
;
144 unsigned long rcutorture_vernum
;
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
151 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
153 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
162 void rcu_sched_qs(int cpu
)
164 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
166 rdp
->passed_quiesce_gpnum
= rdp
->gpnum
;
168 if (rdp
->passed_quiesce
== 0)
169 trace_rcu_grace_period("rcu_sched", rdp
->gpnum
, "cpuqs");
170 rdp
->passed_quiesce
= 1;
173 void rcu_bh_qs(int cpu
)
175 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
177 rdp
->passed_quiesce_gpnum
= rdp
->gpnum
;
179 if (rdp
->passed_quiesce
== 0)
180 trace_rcu_grace_period("rcu_bh", rdp
->gpnum
, "cpuqs");
181 rdp
->passed_quiesce
= 1;
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
189 void rcu_note_context_switch(int cpu
)
191 trace_rcu_utilization("Start context switch");
193 rcu_preempt_note_context_switch(cpu
);
194 trace_rcu_utilization("End context switch");
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
199 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
200 .dynticks_nesting
= 1,
201 .dynticks
= ATOMIC_INIT(1),
203 #endif /* #ifdef CONFIG_NO_HZ */
205 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
206 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
207 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
209 module_param(blimit
, long, 0);
210 module_param(qhimark
, long, 0);
211 module_param(qlowmark
, long, 0);
213 int rcu_cpu_stall_suppress __read_mostly
;
214 module_param(rcu_cpu_stall_suppress
, int, 0644);
216 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
217 static int rcu_pending(int cpu
);
220 * Return the number of RCU-sched batches processed thus far for debug & stats.
222 long rcu_batches_completed_sched(void)
224 return rcu_sched_state
.completed
;
226 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
229 * Return the number of RCU BH batches processed thus far for debug & stats.
231 long rcu_batches_completed_bh(void)
233 return rcu_bh_state
.completed
;
235 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
238 * Force a quiescent state for RCU BH.
240 void rcu_bh_force_quiescent_state(void)
242 force_quiescent_state(&rcu_bh_state
, 0);
244 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
247 * Record the number of times rcutorture tests have been initiated and
248 * terminated. This information allows the debugfs tracing stats to be
249 * correlated to the rcutorture messages, even when the rcutorture module
250 * is being repeatedly loaded and unloaded. In other words, we cannot
251 * store this state in rcutorture itself.
253 void rcutorture_record_test_transition(void)
255 rcutorture_testseq
++;
256 rcutorture_vernum
= 0;
258 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
261 * Record the number of writer passes through the current rcutorture test.
262 * This is also used to correlate debugfs tracing stats with the rcutorture
265 void rcutorture_record_progress(unsigned long vernum
)
269 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
272 * Force a quiescent state for RCU-sched.
274 void rcu_sched_force_quiescent_state(void)
276 force_quiescent_state(&rcu_sched_state
, 0);
278 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
281 * Does the CPU have callbacks ready to be invoked?
284 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
286 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
290 * Does the current CPU require a yet-as-unscheduled grace period?
293 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
295 return *rdp
->nxttail
[RCU_DONE_TAIL
+
296 ACCESS_ONCE(rsp
->completed
) != rdp
->completed
] &&
297 !rcu_gp_in_progress(rsp
);
301 * Return the root node of the specified rcu_state structure.
303 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
305 return &rsp
->node
[0];
311 * If the specified CPU is offline, tell the caller that it is in
312 * a quiescent state. Otherwise, whack it with a reschedule IPI.
313 * Grace periods can end up waiting on an offline CPU when that
314 * CPU is in the process of coming online -- it will be added to the
315 * rcu_node bitmasks before it actually makes it online. The same thing
316 * can happen while a CPU is in the process of coming online. Because this
317 * race is quite rare, we check for it after detecting that the grace
318 * period has been delayed rather than checking each and every CPU
319 * each and every time we start a new grace period.
321 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
324 * If the CPU is offline, it is in a quiescent state. We can
325 * trust its state not to change because interrupts are disabled.
327 if (cpu_is_offline(rdp
->cpu
)) {
328 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "ofl");
333 /* If preemptible RCU, no point in sending reschedule IPI. */
334 if (rdp
->preemptible
)
337 /* The CPU is online, so send it a reschedule IPI. */
338 if (rdp
->cpu
!= smp_processor_id())
339 smp_send_reschedule(rdp
->cpu
);
346 #endif /* #ifdef CONFIG_SMP */
351 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
353 * Enter nohz mode, in other words, -leave- the mode in which RCU
354 * read-side critical sections can occur. (Though RCU read-side
355 * critical sections can occur in irq handlers in nohz mode, a possibility
356 * handled by rcu_irq_enter() and rcu_irq_exit()).
358 void rcu_enter_nohz(void)
361 struct rcu_dynticks
*rdtp
;
363 local_irq_save(flags
);
364 rdtp
= &__get_cpu_var(rcu_dynticks
);
365 if (--rdtp
->dynticks_nesting
) {
366 local_irq_restore(flags
);
369 trace_rcu_dyntick("Start");
370 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
371 smp_mb__before_atomic_inc(); /* See above. */
372 atomic_inc(&rdtp
->dynticks
);
373 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
374 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
375 local_irq_restore(flags
);
379 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
381 * Exit nohz mode, in other words, -enter- the mode in which RCU
382 * read-side critical sections normally occur.
384 void rcu_exit_nohz(void)
387 struct rcu_dynticks
*rdtp
;
389 local_irq_save(flags
);
390 rdtp
= &__get_cpu_var(rcu_dynticks
);
391 if (rdtp
->dynticks_nesting
++) {
392 local_irq_restore(flags
);
395 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
396 atomic_inc(&rdtp
->dynticks
);
397 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
398 smp_mb__after_atomic_inc(); /* See above. */
399 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
400 trace_rcu_dyntick("End");
401 local_irq_restore(flags
);
405 * rcu_nmi_enter - inform RCU of entry to NMI context
407 * If the CPU was idle with dynamic ticks active, and there is no
408 * irq handler running, this updates rdtp->dynticks_nmi to let the
409 * RCU grace-period handling know that the CPU is active.
411 void rcu_nmi_enter(void)
413 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
415 if (rdtp
->dynticks_nmi_nesting
== 0 &&
416 (atomic_read(&rdtp
->dynticks
) & 0x1))
418 rdtp
->dynticks_nmi_nesting
++;
419 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
420 atomic_inc(&rdtp
->dynticks
);
421 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
422 smp_mb__after_atomic_inc(); /* See above. */
423 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
427 * rcu_nmi_exit - inform RCU of exit from NMI context
429 * If the CPU was idle with dynamic ticks active, and there is no
430 * irq handler running, this updates rdtp->dynticks_nmi to let the
431 * RCU grace-period handling know that the CPU is no longer active.
433 void rcu_nmi_exit(void)
435 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
437 if (rdtp
->dynticks_nmi_nesting
== 0 ||
438 --rdtp
->dynticks_nmi_nesting
!= 0)
440 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
441 smp_mb__before_atomic_inc(); /* See above. */
442 atomic_inc(&rdtp
->dynticks
);
443 smp_mb__after_atomic_inc(); /* Force delay to next write. */
444 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
448 * rcu_irq_enter - inform RCU of entry to hard irq context
450 * If the CPU was idle with dynamic ticks active, this updates the
451 * rdtp->dynticks to let the RCU handling know that the CPU is active.
453 void rcu_irq_enter(void)
459 * rcu_irq_exit - inform RCU of exit from hard irq context
461 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
462 * to put let the RCU handling be aware that the CPU is going back to idle
465 void rcu_irq_exit(void)
473 * Snapshot the specified CPU's dynticks counter so that we can later
474 * credit them with an implicit quiescent state. Return 1 if this CPU
475 * is in dynticks idle mode, which is an extended quiescent state.
477 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
479 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
484 * Return true if the specified CPU has passed through a quiescent
485 * state by virtue of being in or having passed through an dynticks
486 * idle state since the last call to dyntick_save_progress_counter()
489 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
494 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
495 snap
= (unsigned int)rdp
->dynticks_snap
;
498 * If the CPU passed through or entered a dynticks idle phase with
499 * no active irq/NMI handlers, then we can safely pretend that the CPU
500 * already acknowledged the request to pass through a quiescent
501 * state. Either way, that CPU cannot possibly be in an RCU
502 * read-side critical section that started before the beginning
503 * of the current RCU grace period.
505 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
506 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "dti");
511 /* Go check for the CPU being offline. */
512 return rcu_implicit_offline_qs(rdp
);
515 #endif /* #ifdef CONFIG_SMP */
517 #else /* #ifdef CONFIG_NO_HZ */
521 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
526 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
528 return rcu_implicit_offline_qs(rdp
);
531 #endif /* #ifdef CONFIG_SMP */
533 #endif /* #else #ifdef CONFIG_NO_HZ */
535 int rcu_cpu_stall_suppress __read_mostly
;
537 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
539 rsp
->gp_start
= jiffies
;
540 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
543 static void print_other_cpu_stall(struct rcu_state
*rsp
)
549 struct rcu_node
*rnp
= rcu_get_root(rsp
);
551 /* Only let one CPU complain about others per time interval. */
553 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
554 delta
= jiffies
- rsp
->jiffies_stall
;
555 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
556 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
559 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
562 * Now rat on any tasks that got kicked up to the root rcu_node
563 * due to CPU offlining.
565 ndetected
= rcu_print_task_stall(rnp
);
566 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
569 * OK, time to rat on our buddy...
570 * See Documentation/RCU/stallwarn.txt for info on how to debug
571 * RCU CPU stall warnings.
573 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks: {",
575 rcu_for_each_leaf_node(rsp
, rnp
) {
576 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
577 ndetected
+= rcu_print_task_stall(rnp
);
578 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
579 if (rnp
->qsmask
== 0)
581 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
582 if (rnp
->qsmask
& (1UL << cpu
)) {
583 printk(" %d", rnp
->grplo
+ cpu
);
587 printk("} (detected by %d, t=%ld jiffies)\n",
588 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
590 printk(KERN_ERR
"INFO: Stall ended before state dump start\n");
591 else if (!trigger_all_cpu_backtrace())
594 /* If so configured, complain about tasks blocking the grace period. */
596 rcu_print_detail_task_stall(rsp
);
598 force_quiescent_state(rsp
, 0); /* Kick them all. */
601 static void print_cpu_stall(struct rcu_state
*rsp
)
604 struct rcu_node
*rnp
= rcu_get_root(rsp
);
607 * OK, time to rat on ourselves...
608 * See Documentation/RCU/stallwarn.txt for info on how to debug
609 * RCU CPU stall warnings.
611 printk(KERN_ERR
"INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
612 rsp
->name
, smp_processor_id(), jiffies
- rsp
->gp_start
);
613 if (!trigger_all_cpu_backtrace())
616 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
617 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
619 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
620 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
622 set_need_resched(); /* kick ourselves to get things going. */
625 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
629 struct rcu_node
*rnp
;
631 if (rcu_cpu_stall_suppress
)
633 j
= ACCESS_ONCE(jiffies
);
634 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
636 if ((ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
638 /* We haven't checked in, so go dump stack. */
639 print_cpu_stall(rsp
);
641 } else if (rcu_gp_in_progress(rsp
) &&
642 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
644 /* They had a few time units to dump stack, so complain. */
645 print_other_cpu_stall(rsp
);
649 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
651 rcu_cpu_stall_suppress
= 1;
656 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
658 * Set the stall-warning timeout way off into the future, thus preventing
659 * any RCU CPU stall-warning messages from appearing in the current set of
662 * The caller must disable hard irqs.
664 void rcu_cpu_stall_reset(void)
666 rcu_sched_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
667 rcu_bh_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
668 rcu_preempt_stall_reset();
671 static struct notifier_block rcu_panic_block
= {
672 .notifier_call
= rcu_panic
,
675 static void __init
check_cpu_stall_init(void)
677 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
681 * Update CPU-local rcu_data state to record the newly noticed grace period.
682 * This is used both when we started the grace period and when we notice
683 * that someone else started the grace period. The caller must hold the
684 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
685 * and must have irqs disabled.
687 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
689 if (rdp
->gpnum
!= rnp
->gpnum
) {
691 * If the current grace period is waiting for this CPU,
692 * set up to detect a quiescent state, otherwise don't
693 * go looking for one.
695 rdp
->gpnum
= rnp
->gpnum
;
696 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpustart");
697 if (rnp
->qsmask
& rdp
->grpmask
) {
699 rdp
->passed_quiesce
= 0;
705 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
708 struct rcu_node
*rnp
;
710 local_irq_save(flags
);
712 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
713 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
714 local_irq_restore(flags
);
717 __note_new_gpnum(rsp
, rnp
, rdp
);
718 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
722 * Did someone else start a new RCU grace period start since we last
723 * checked? Update local state appropriately if so. Must be called
724 * on the CPU corresponding to rdp.
727 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
732 local_irq_save(flags
);
733 if (rdp
->gpnum
!= rsp
->gpnum
) {
734 note_new_gpnum(rsp
, rdp
);
737 local_irq_restore(flags
);
742 * Advance this CPU's callbacks, but only if the current grace period
743 * has ended. This may be called only from the CPU to whom the rdp
744 * belongs. In addition, the corresponding leaf rcu_node structure's
745 * ->lock must be held by the caller, with irqs disabled.
748 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
750 /* Did another grace period end? */
751 if (rdp
->completed
!= rnp
->completed
) {
753 /* Advance callbacks. No harm if list empty. */
754 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
755 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
756 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
758 /* Remember that we saw this grace-period completion. */
759 rdp
->completed
= rnp
->completed
;
760 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuend");
763 * If we were in an extended quiescent state, we may have
764 * missed some grace periods that others CPUs handled on
765 * our behalf. Catch up with this state to avoid noting
766 * spurious new grace periods. If another grace period
767 * has started, then rnp->gpnum will have advanced, so
768 * we will detect this later on.
770 if (ULONG_CMP_LT(rdp
->gpnum
, rdp
->completed
))
771 rdp
->gpnum
= rdp
->completed
;
774 * If RCU does not need a quiescent state from this CPU,
775 * then make sure that this CPU doesn't go looking for one.
777 if ((rnp
->qsmask
& rdp
->grpmask
) == 0)
783 * Advance this CPU's callbacks, but only if the current grace period
784 * has ended. This may be called only from the CPU to whom the rdp
788 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
791 struct rcu_node
*rnp
;
793 local_irq_save(flags
);
795 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
796 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
797 local_irq_restore(flags
);
800 __rcu_process_gp_end(rsp
, rnp
, rdp
);
801 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
805 * Do per-CPU grace-period initialization for running CPU. The caller
806 * must hold the lock of the leaf rcu_node structure corresponding to
810 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
812 /* Prior grace period ended, so advance callbacks for current CPU. */
813 __rcu_process_gp_end(rsp
, rnp
, rdp
);
816 * Because this CPU just now started the new grace period, we know
817 * that all of its callbacks will be covered by this upcoming grace
818 * period, even the ones that were registered arbitrarily recently.
819 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
821 * Other CPUs cannot be sure exactly when the grace period started.
822 * Therefore, their recently registered callbacks must pass through
823 * an additional RCU_NEXT_READY stage, so that they will be handled
824 * by the next RCU grace period.
826 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
827 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
829 /* Set state so that this CPU will detect the next quiescent state. */
830 __note_new_gpnum(rsp
, rnp
, rdp
);
834 * Start a new RCU grace period if warranted, re-initializing the hierarchy
835 * in preparation for detecting the next grace period. The caller must hold
836 * the root node's ->lock, which is released before return. Hard irqs must
840 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
841 __releases(rcu_get_root(rsp
)->lock
)
843 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
844 struct rcu_node
*rnp
= rcu_get_root(rsp
);
846 if (!rcu_scheduler_fully_active
||
847 !cpu_needs_another_gp(rsp
, rdp
)) {
849 * Either the scheduler hasn't yet spawned the first
850 * non-idle task or this CPU does not need another
851 * grace period. Either way, don't start a new grace
854 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
858 if (rsp
->fqs_active
) {
860 * This CPU needs a grace period, but force_quiescent_state()
861 * is running. Tell it to start one on this CPU's behalf.
863 rsp
->fqs_need_gp
= 1;
864 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
868 /* Advance to a new grace period and initialize state. */
870 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, "start");
871 WARN_ON_ONCE(rsp
->signaled
== RCU_GP_INIT
);
872 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
873 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
874 record_gp_stall_check_time(rsp
);
876 /* Special-case the common single-level case. */
877 if (NUM_RCU_NODES
== 1) {
878 rcu_preempt_check_blocked_tasks(rnp
);
879 rnp
->qsmask
= rnp
->qsmaskinit
;
880 rnp
->gpnum
= rsp
->gpnum
;
881 rnp
->completed
= rsp
->completed
;
882 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
883 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
884 rcu_preempt_boost_start_gp(rnp
);
885 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
886 rnp
->level
, rnp
->grplo
,
887 rnp
->grphi
, rnp
->qsmask
);
888 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
892 raw_spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
895 /* Exclude any concurrent CPU-hotplug operations. */
896 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
899 * Set the quiescent-state-needed bits in all the rcu_node
900 * structures for all currently online CPUs in breadth-first
901 * order, starting from the root rcu_node structure. This
902 * operation relies on the layout of the hierarchy within the
903 * rsp->node[] array. Note that other CPUs will access only
904 * the leaves of the hierarchy, which still indicate that no
905 * grace period is in progress, at least until the corresponding
906 * leaf node has been initialized. In addition, we have excluded
907 * CPU-hotplug operations.
909 * Note that the grace period cannot complete until we finish
910 * the initialization process, as there will be at least one
911 * qsmask bit set in the root node until that time, namely the
912 * one corresponding to this CPU, due to the fact that we have
915 rcu_for_each_node_breadth_first(rsp
, rnp
) {
916 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
917 rcu_preempt_check_blocked_tasks(rnp
);
918 rnp
->qsmask
= rnp
->qsmaskinit
;
919 rnp
->gpnum
= rsp
->gpnum
;
920 rnp
->completed
= rsp
->completed
;
921 if (rnp
== rdp
->mynode
)
922 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
923 rcu_preempt_boost_start_gp(rnp
);
924 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
925 rnp
->level
, rnp
->grplo
,
926 rnp
->grphi
, rnp
->qsmask
);
927 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
930 rnp
= rcu_get_root(rsp
);
931 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
932 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
933 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
934 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
938 * Report a full set of quiescent states to the specified rcu_state
939 * data structure. This involves cleaning up after the prior grace
940 * period and letting rcu_start_gp() start up the next grace period
941 * if one is needed. Note that the caller must hold rnp->lock, as
942 * required by rcu_start_gp(), which will release it.
944 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
945 __releases(rcu_get_root(rsp
)->lock
)
947 unsigned long gp_duration
;
948 struct rcu_node
*rnp
= rcu_get_root(rsp
);
949 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
951 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
954 * Ensure that all grace-period and pre-grace-period activity
955 * is seen before the assignment to rsp->completed.
957 smp_mb(); /* See above block comment. */
958 gp_duration
= jiffies
- rsp
->gp_start
;
959 if (gp_duration
> rsp
->gp_max
)
960 rsp
->gp_max
= gp_duration
;
963 * We know the grace period is complete, but to everyone else
964 * it appears to still be ongoing. But it is also the case
965 * that to everyone else it looks like there is nothing that
966 * they can do to advance the grace period. It is therefore
967 * safe for us to drop the lock in order to mark the grace
968 * period as completed in all of the rcu_node structures.
970 * But if this CPU needs another grace period, it will take
971 * care of this while initializing the next grace period.
972 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
973 * because the callbacks have not yet been advanced: Those
974 * callbacks are waiting on the grace period that just now
977 if (*rdp
->nxttail
[RCU_WAIT_TAIL
] == NULL
) {
978 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
981 * Propagate new ->completed value to rcu_node structures
982 * so that other CPUs don't have to wait until the start
983 * of the next grace period to process their callbacks.
985 rcu_for_each_node_breadth_first(rsp
, rnp
) {
986 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
987 rnp
->completed
= rsp
->gpnum
;
988 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
990 rnp
= rcu_get_root(rsp
);
991 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
994 rsp
->completed
= rsp
->gpnum
; /* Declare the grace period complete. */
995 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, "end");
996 rsp
->signaled
= RCU_GP_IDLE
;
997 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
1001 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1002 * Allows quiescent states for a group of CPUs to be reported at one go
1003 * to the specified rcu_node structure, though all the CPUs in the group
1004 * must be represented by the same rcu_node structure (which need not be
1005 * a leaf rcu_node structure, though it often will be). That structure's
1006 * lock must be held upon entry, and it is released before return.
1009 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
1010 struct rcu_node
*rnp
, unsigned long flags
)
1011 __releases(rnp
->lock
)
1013 struct rcu_node
*rnp_c
;
1015 /* Walk up the rcu_node hierarchy. */
1017 if (!(rnp
->qsmask
& mask
)) {
1019 /* Our bit has already been cleared, so done. */
1020 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1023 rnp
->qsmask
&= ~mask
;
1024 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
1025 mask
, rnp
->qsmask
, rnp
->level
,
1026 rnp
->grplo
, rnp
->grphi
,
1028 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
1030 /* Other bits still set at this level, so done. */
1031 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1034 mask
= rnp
->grpmask
;
1035 if (rnp
->parent
== NULL
) {
1037 /* No more levels. Exit loop holding root lock. */
1041 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1044 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1045 WARN_ON_ONCE(rnp_c
->qsmask
);
1049 * Get here if we are the last CPU to pass through a quiescent
1050 * state for this grace period. Invoke rcu_report_qs_rsp()
1051 * to clean up and start the next grace period if one is needed.
1053 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
1057 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1058 * structure. This must be either called from the specified CPU, or
1059 * called when the specified CPU is known to be offline (and when it is
1060 * also known that no other CPU is concurrently trying to help the offline
1061 * CPU). The lastcomp argument is used to make sure we are still in the
1062 * grace period of interest. We don't want to end the current grace period
1063 * based on quiescent states detected in an earlier grace period!
1066 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastgp
)
1068 unsigned long flags
;
1070 struct rcu_node
*rnp
;
1073 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1074 if (lastgp
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
) {
1077 * The grace period in which this quiescent state was
1078 * recorded has ended, so don't report it upwards.
1079 * We will instead need a new quiescent state that lies
1080 * within the current grace period.
1082 rdp
->passed_quiesce
= 0; /* need qs for new gp. */
1083 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1086 mask
= rdp
->grpmask
;
1087 if ((rnp
->qsmask
& mask
) == 0) {
1088 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1090 rdp
->qs_pending
= 0;
1093 * This GP can't end until cpu checks in, so all of our
1094 * callbacks can be processed during the next GP.
1096 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1098 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1103 * Check to see if there is a new grace period of which this CPU
1104 * is not yet aware, and if so, set up local rcu_data state for it.
1105 * Otherwise, see if this CPU has just passed through its first
1106 * quiescent state for this grace period, and record that fact if so.
1109 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1111 /* If there is now a new grace period, record and return. */
1112 if (check_for_new_grace_period(rsp
, rdp
))
1116 * Does this CPU still need to do its part for current grace period?
1117 * If no, return and let the other CPUs do their part as well.
1119 if (!rdp
->qs_pending
)
1123 * Was there a quiescent state since the beginning of the grace
1124 * period? If no, then exit and wait for the next call.
1126 if (!rdp
->passed_quiesce
)
1130 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1133 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesce_gpnum
);
1136 #ifdef CONFIG_HOTPLUG_CPU
1139 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1140 * Synchronization is not required because this function executes
1141 * in stop_machine() context.
1143 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1146 /* current DYING CPU is cleared in the cpu_online_mask */
1147 int receive_cpu
= cpumask_any(cpu_online_mask
);
1148 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1149 struct rcu_data
*receive_rdp
= per_cpu_ptr(rsp
->rda
, receive_cpu
);
1151 if (rdp
->nxtlist
== NULL
)
1152 return; /* irqs disabled, so comparison is stable. */
1154 *receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
1155 receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1156 receive_rdp
->qlen
+= rdp
->qlen
;
1157 receive_rdp
->n_cbs_adopted
+= rdp
->qlen
;
1158 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1160 rdp
->nxtlist
= NULL
;
1161 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1162 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1167 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1168 * and move all callbacks from the outgoing CPU to the current one.
1169 * There can only be one CPU hotplug operation at a time, so no other
1170 * CPU can be attempting to update rcu_cpu_kthread_task.
1172 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
1174 unsigned long flags
;
1176 int need_report
= 0;
1177 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1178 struct rcu_node
*rnp
;
1180 rcu_stop_cpu_kthread(cpu
);
1182 /* Exclude any attempts to start a new grace period. */
1183 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
1185 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1186 rnp
= rdp
->mynode
; /* this is the outgoing CPU's rnp. */
1187 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1189 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1190 rnp
->qsmaskinit
&= ~mask
;
1191 if (rnp
->qsmaskinit
!= 0) {
1192 if (rnp
!= rdp
->mynode
)
1193 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1195 trace_rcu_grace_period(rsp
->name
,
1197 !!(rnp
->qsmask
& mask
),
1201 if (rnp
== rdp
->mynode
) {
1202 trace_rcu_grace_period(rsp
->name
,
1204 !!(rnp
->qsmask
& mask
),
1206 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1208 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1209 mask
= rnp
->grpmask
;
1211 } while (rnp
!= NULL
);
1214 * We still hold the leaf rcu_node structure lock here, and
1215 * irqs are still disabled. The reason for this subterfuge is
1216 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1217 * held leads to deadlock.
1219 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1221 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1222 rcu_report_unblock_qs_rnp(rnp
, flags
);
1224 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1225 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1226 rcu_report_exp_rnp(rsp
, rnp
);
1227 rcu_node_kthread_setaffinity(rnp
, -1);
1231 * Remove the specified CPU from the RCU hierarchy and move any pending
1232 * callbacks that it might have to the current CPU. This code assumes
1233 * that at least one CPU in the system will remain running at all times.
1234 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1236 static void rcu_offline_cpu(int cpu
)
1238 __rcu_offline_cpu(cpu
, &rcu_sched_state
);
1239 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
1240 rcu_preempt_offline_cpu(cpu
);
1243 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1245 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1249 static void rcu_offline_cpu(int cpu
)
1253 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1256 * Invoke any RCU callbacks that have made it to the end of their grace
1257 * period. Thottle as specified by rdp->blimit.
1259 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1261 unsigned long flags
;
1262 struct rcu_head
*next
, *list
, **tail
;
1265 /* If no callbacks are ready, just return.*/
1266 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
1267 trace_rcu_batch_start(rsp
->name
, 0, 0);
1268 trace_rcu_batch_end(rsp
->name
, 0);
1273 * Extract the list of ready callbacks, disabling to prevent
1274 * races with call_rcu() from interrupt handlers.
1276 local_irq_save(flags
);
1278 trace_rcu_batch_start(rsp
->name
, rdp
->qlen
, bl
);
1279 list
= rdp
->nxtlist
;
1280 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1281 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1282 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1283 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1284 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1285 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1286 local_irq_restore(flags
);
1288 /* Invoke callbacks. */
1293 debug_rcu_head_unqueue(list
);
1294 __rcu_reclaim(rsp
->name
, list
);
1300 local_irq_save(flags
);
1301 trace_rcu_batch_end(rsp
->name
, count
);
1303 /* Update count, and requeue any remaining callbacks. */
1305 rdp
->n_cbs_invoked
+= count
;
1307 *tail
= rdp
->nxtlist
;
1308 rdp
->nxtlist
= list
;
1309 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1310 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1311 rdp
->nxttail
[count
] = tail
;
1316 /* Reinstate batch limit if we have worked down the excess. */
1317 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1318 rdp
->blimit
= blimit
;
1320 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1321 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1322 rdp
->qlen_last_fqs_check
= 0;
1323 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1324 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1325 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1327 local_irq_restore(flags
);
1329 /* Re-invoke RCU core processing if there are callbacks remaining. */
1330 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1335 * Check to see if this CPU is in a non-context-switch quiescent state
1336 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1337 * Also schedule RCU core processing.
1339 * This function must be called with hardirqs disabled. It is normally
1340 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1341 * false, there is no point in invoking rcu_check_callbacks().
1343 void rcu_check_callbacks(int cpu
, int user
)
1345 trace_rcu_utilization("Start scheduler-tick");
1347 (idle_cpu(cpu
) && rcu_scheduler_active
&&
1348 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
1351 * Get here if this CPU took its interrupt from user
1352 * mode or from the idle loop, and if this is not a
1353 * nested interrupt. In this case, the CPU is in
1354 * a quiescent state, so note it.
1356 * No memory barrier is required here because both
1357 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1358 * variables that other CPUs neither access nor modify,
1359 * at least not while the corresponding CPU is online.
1365 } else if (!in_softirq()) {
1368 * Get here if this CPU did not take its interrupt from
1369 * softirq, in other words, if it is not interrupting
1370 * a rcu_bh read-side critical section. This is an _bh
1371 * critical section, so note it.
1376 rcu_preempt_check_callbacks(cpu
);
1377 if (rcu_pending(cpu
))
1379 trace_rcu_utilization("End scheduler-tick");
1385 * Scan the leaf rcu_node structures, processing dyntick state for any that
1386 * have not yet encountered a quiescent state, using the function specified.
1387 * Also initiate boosting for any threads blocked on the root rcu_node.
1389 * The caller must have suppressed start of new grace periods.
1391 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
1395 unsigned long flags
;
1397 struct rcu_node
*rnp
;
1399 rcu_for_each_leaf_node(rsp
, rnp
) {
1401 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1402 if (!rcu_gp_in_progress(rsp
)) {
1403 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1406 if (rnp
->qsmask
== 0) {
1407 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
1412 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1413 if ((rnp
->qsmask
& bit
) != 0 &&
1414 f(per_cpu_ptr(rsp
->rda
, cpu
)))
1419 /* rcu_report_qs_rnp() releases rnp->lock. */
1420 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
1423 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1425 rnp
= rcu_get_root(rsp
);
1426 if (rnp
->qsmask
== 0) {
1427 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1428 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1433 * Force quiescent states on reluctant CPUs, and also detect which
1434 * CPUs are in dyntick-idle mode.
1436 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1438 unsigned long flags
;
1439 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1441 trace_rcu_utilization("Start fqs");
1442 if (!rcu_gp_in_progress(rsp
)) {
1443 trace_rcu_utilization("End fqs");
1444 return; /* No grace period in progress, nothing to force. */
1446 if (!raw_spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1447 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1448 trace_rcu_utilization("End fqs");
1449 return; /* Someone else is already on the job. */
1451 if (relaxed
&& ULONG_CMP_GE(rsp
->jiffies_force_qs
, jiffies
))
1452 goto unlock_fqs_ret
; /* no emergency and done recently. */
1454 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1455 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1456 if(!rcu_gp_in_progress(rsp
)) {
1457 rsp
->n_force_qs_ngp
++;
1458 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1459 goto unlock_fqs_ret
; /* no GP in progress, time updated. */
1461 rsp
->fqs_active
= 1;
1462 switch (rsp
->signaled
) {
1466 break; /* grace period idle or initializing, ignore. */
1468 case RCU_SAVE_DYNTICK
:
1469 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1470 break; /* So gcc recognizes the dead code. */
1472 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1474 /* Record dyntick-idle state. */
1475 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1476 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1477 if (rcu_gp_in_progress(rsp
))
1478 rsp
->signaled
= RCU_FORCE_QS
;
1483 /* Check dyntick-idle state, send IPI to laggarts. */
1484 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1485 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1487 /* Leave state in case more forcing is required. */
1489 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1492 rsp
->fqs_active
= 0;
1493 if (rsp
->fqs_need_gp
) {
1494 raw_spin_unlock(&rsp
->fqslock
); /* irqs remain disabled */
1495 rsp
->fqs_need_gp
= 0;
1496 rcu_start_gp(rsp
, flags
); /* releases rnp->lock */
1497 trace_rcu_utilization("End fqs");
1500 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1502 raw_spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1503 trace_rcu_utilization("End fqs");
1506 #else /* #ifdef CONFIG_SMP */
1508 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1513 #endif /* #else #ifdef CONFIG_SMP */
1516 * This does the RCU core processing work for the specified rcu_state
1517 * and rcu_data structures. This may be called only from the CPU to
1518 * whom the rdp belongs.
1521 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1523 unsigned long flags
;
1525 WARN_ON_ONCE(rdp
->beenonline
== 0);
1528 * If an RCU GP has gone long enough, go check for dyntick
1529 * idle CPUs and, if needed, send resched IPIs.
1531 if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1532 force_quiescent_state(rsp
, 1);
1535 * Advance callbacks in response to end of earlier grace
1536 * period that some other CPU ended.
1538 rcu_process_gp_end(rsp
, rdp
);
1540 /* Update RCU state based on any recent quiescent states. */
1541 rcu_check_quiescent_state(rsp
, rdp
);
1543 /* Does this CPU require a not-yet-started grace period? */
1544 if (cpu_needs_another_gp(rsp
, rdp
)) {
1545 raw_spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1546 rcu_start_gp(rsp
, flags
); /* releases above lock */
1549 /* If there are callbacks ready, invoke them. */
1550 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1551 invoke_rcu_callbacks(rsp
, rdp
);
1555 * Do RCU core processing for the current CPU.
1557 static void rcu_process_callbacks(struct softirq_action
*unused
)
1559 trace_rcu_utilization("Start RCU core");
1560 __rcu_process_callbacks(&rcu_sched_state
,
1561 &__get_cpu_var(rcu_sched_data
));
1562 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1563 rcu_preempt_process_callbacks();
1564 trace_rcu_utilization("End RCU core");
1568 * Schedule RCU callback invocation. If the specified type of RCU
1569 * does not support RCU priority boosting, just do a direct call,
1570 * otherwise wake up the per-CPU kernel kthread. Note that because we
1571 * are running on the current CPU with interrupts disabled, the
1572 * rcu_cpu_kthread_task cannot disappear out from under us.
1574 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1576 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active
)))
1578 if (likely(!rsp
->boost
)) {
1579 rcu_do_batch(rsp
, rdp
);
1582 invoke_rcu_callbacks_kthread();
1585 static void invoke_rcu_core(void)
1587 raise_softirq(RCU_SOFTIRQ
);
1591 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1592 struct rcu_state
*rsp
)
1594 unsigned long flags
;
1595 struct rcu_data
*rdp
;
1597 debug_rcu_head_queue(head
);
1601 smp_mb(); /* Ensure RCU update seen before callback registry. */
1604 * Opportunistically note grace-period endings and beginnings.
1605 * Note that we might see a beginning right after we see an
1606 * end, but never vice versa, since this CPU has to pass through
1607 * a quiescent state betweentimes.
1609 local_irq_save(flags
);
1610 rdp
= this_cpu_ptr(rsp
->rda
);
1612 /* Add the callback to our list. */
1613 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1614 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1617 if (__is_kfree_rcu_offset((unsigned long)func
))
1618 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
1621 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen
);
1623 /* If interrupts were disabled, don't dive into RCU core. */
1624 if (irqs_disabled_flags(flags
)) {
1625 local_irq_restore(flags
);
1630 * Force the grace period if too many callbacks or too long waiting.
1631 * Enforce hysteresis, and don't invoke force_quiescent_state()
1632 * if some other CPU has recently done so. Also, don't bother
1633 * invoking force_quiescent_state() if the newly enqueued callback
1634 * is the only one waiting for a grace period to complete.
1636 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1638 /* Are we ignoring a completed grace period? */
1639 rcu_process_gp_end(rsp
, rdp
);
1640 check_for_new_grace_period(rsp
, rdp
);
1642 /* Start a new grace period if one not already started. */
1643 if (!rcu_gp_in_progress(rsp
)) {
1644 unsigned long nestflag
;
1645 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1647 raw_spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1648 rcu_start_gp(rsp
, nestflag
); /* rlses rnp_root->lock */
1650 /* Give the grace period a kick. */
1651 rdp
->blimit
= LONG_MAX
;
1652 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1653 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1654 force_quiescent_state(rsp
, 0);
1655 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1656 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1658 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1659 force_quiescent_state(rsp
, 1);
1660 local_irq_restore(flags
);
1664 * Queue an RCU-sched callback for invocation after a grace period.
1666 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1668 __call_rcu(head
, func
, &rcu_sched_state
);
1670 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1673 * Queue an RCU for invocation after a quicker grace period.
1675 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1677 __call_rcu(head
, func
, &rcu_bh_state
);
1679 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1682 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1684 * Control will return to the caller some time after a full rcu-sched
1685 * grace period has elapsed, in other words after all currently executing
1686 * rcu-sched read-side critical sections have completed. These read-side
1687 * critical sections are delimited by rcu_read_lock_sched() and
1688 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1689 * local_irq_disable(), and so on may be used in place of
1690 * rcu_read_lock_sched().
1692 * This means that all preempt_disable code sequences, including NMI and
1693 * hardware-interrupt handlers, in progress on entry will have completed
1694 * before this primitive returns. However, this does not guarantee that
1695 * softirq handlers will have completed, since in some kernels, these
1696 * handlers can run in process context, and can block.
1698 * This primitive provides the guarantees made by the (now removed)
1699 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1700 * guarantees that rcu_read_lock() sections will have completed.
1701 * In "classic RCU", these two guarantees happen to be one and
1702 * the same, but can differ in realtime RCU implementations.
1704 void synchronize_sched(void)
1706 if (rcu_blocking_is_gp())
1708 wait_rcu_gp(call_rcu_sched
);
1710 EXPORT_SYMBOL_GPL(synchronize_sched
);
1713 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1715 * Control will return to the caller some time after a full rcu_bh grace
1716 * period has elapsed, in other words after all currently executing rcu_bh
1717 * read-side critical sections have completed. RCU read-side critical
1718 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1719 * and may be nested.
1721 void synchronize_rcu_bh(void)
1723 if (rcu_blocking_is_gp())
1725 wait_rcu_gp(call_rcu_bh
);
1727 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
1730 * Check to see if there is any immediate RCU-related work to be done
1731 * by the current CPU, for the specified type of RCU, returning 1 if so.
1732 * The checks are in order of increasing expense: checks that can be
1733 * carried out against CPU-local state are performed first. However,
1734 * we must check for CPU stalls first, else we might not get a chance.
1736 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1738 struct rcu_node
*rnp
= rdp
->mynode
;
1740 rdp
->n_rcu_pending
++;
1742 /* Check for CPU stalls, if enabled. */
1743 check_cpu_stall(rsp
, rdp
);
1745 /* Is the RCU core waiting for a quiescent state from this CPU? */
1746 if (rcu_scheduler_fully_active
&&
1747 rdp
->qs_pending
&& !rdp
->passed_quiesce
) {
1750 * If force_quiescent_state() coming soon and this CPU
1751 * needs a quiescent state, and this is either RCU-sched
1752 * or RCU-bh, force a local reschedule.
1754 rdp
->n_rp_qs_pending
++;
1755 if (!rdp
->preemptible
&&
1756 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
) - 1,
1759 } else if (rdp
->qs_pending
&& rdp
->passed_quiesce
) {
1760 rdp
->n_rp_report_qs
++;
1764 /* Does this CPU have callbacks ready to invoke? */
1765 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
1766 rdp
->n_rp_cb_ready
++;
1770 /* Has RCU gone idle with this CPU needing another grace period? */
1771 if (cpu_needs_another_gp(rsp
, rdp
)) {
1772 rdp
->n_rp_cpu_needs_gp
++;
1776 /* Has another RCU grace period completed? */
1777 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
1778 rdp
->n_rp_gp_completed
++;
1782 /* Has a new RCU grace period started? */
1783 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
1784 rdp
->n_rp_gp_started
++;
1788 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1789 if (rcu_gp_in_progress(rsp
) &&
1790 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
)) {
1791 rdp
->n_rp_need_fqs
++;
1796 rdp
->n_rp_need_nothing
++;
1801 * Check to see if there is any immediate RCU-related work to be done
1802 * by the current CPU, returning 1 if so. This function is part of the
1803 * RCU implementation; it is -not- an exported member of the RCU API.
1805 static int rcu_pending(int cpu
)
1807 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
1808 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
1809 rcu_preempt_pending(cpu
);
1813 * Check to see if any future RCU-related work will need to be done
1814 * by the current CPU, even if none need be done immediately, returning
1817 static int rcu_needs_cpu_quick_check(int cpu
)
1819 /* RCU callbacks either ready or pending? */
1820 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
1821 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
1822 rcu_preempt_needs_cpu(cpu
);
1825 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
1826 static atomic_t rcu_barrier_cpu_count
;
1827 static DEFINE_MUTEX(rcu_barrier_mutex
);
1828 static struct completion rcu_barrier_completion
;
1830 static void rcu_barrier_callback(struct rcu_head
*notused
)
1832 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1833 complete(&rcu_barrier_completion
);
1837 * Called with preemption disabled, and from cross-cpu IRQ context.
1839 static void rcu_barrier_func(void *type
)
1841 int cpu
= smp_processor_id();
1842 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
1843 void (*call_rcu_func
)(struct rcu_head
*head
,
1844 void (*func
)(struct rcu_head
*head
));
1846 atomic_inc(&rcu_barrier_cpu_count
);
1847 call_rcu_func
= type
;
1848 call_rcu_func(head
, rcu_barrier_callback
);
1852 * Orchestrate the specified type of RCU barrier, waiting for all
1853 * RCU callbacks of the specified type to complete.
1855 static void _rcu_barrier(struct rcu_state
*rsp
,
1856 void (*call_rcu_func
)(struct rcu_head
*head
,
1857 void (*func
)(struct rcu_head
*head
)))
1859 BUG_ON(in_interrupt());
1860 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1861 mutex_lock(&rcu_barrier_mutex
);
1862 init_completion(&rcu_barrier_completion
);
1864 * Initialize rcu_barrier_cpu_count to 1, then invoke
1865 * rcu_barrier_func() on each CPU, so that each CPU also has
1866 * incremented rcu_barrier_cpu_count. Only then is it safe to
1867 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1868 * might complete its grace period before all of the other CPUs
1869 * did their increment, causing this function to return too
1870 * early. Note that on_each_cpu() disables irqs, which prevents
1871 * any CPUs from coming online or going offline until each online
1872 * CPU has queued its RCU-barrier callback.
1874 atomic_set(&rcu_barrier_cpu_count
, 1);
1875 on_each_cpu(rcu_barrier_func
, (void *)call_rcu_func
, 1);
1876 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1877 complete(&rcu_barrier_completion
);
1878 wait_for_completion(&rcu_barrier_completion
);
1879 mutex_unlock(&rcu_barrier_mutex
);
1883 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1885 void rcu_barrier_bh(void)
1887 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
1889 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
1892 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1894 void rcu_barrier_sched(void)
1896 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
1898 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
1901 * Do boot-time initialization of a CPU's per-CPU RCU data.
1904 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
1906 unsigned long flags
;
1908 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1909 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1911 /* Set up local state, ensuring consistent view of global state. */
1912 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1913 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
1914 rdp
->nxtlist
= NULL
;
1915 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1916 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1919 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
1920 #endif /* #ifdef CONFIG_NO_HZ */
1923 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1927 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1928 * offline event can be happening at a given time. Note also that we
1929 * can accept some slop in the rsp->completed access due to the fact
1930 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1932 static void __cpuinit
1933 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
1935 unsigned long flags
;
1937 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1938 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1940 /* Set up local state, ensuring consistent view of global state. */
1941 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1942 rdp
->beenonline
= 1; /* We have now been online. */
1943 rdp
->preemptible
= preemptible
;
1944 rdp
->qlen_last_fqs_check
= 0;
1945 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1946 rdp
->blimit
= blimit
;
1947 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1950 * A new grace period might start here. If so, we won't be part
1951 * of it, but that is OK, as we are currently in a quiescent state.
1954 /* Exclude any attempts to start a new GP on large systems. */
1955 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1957 /* Add CPU to rcu_node bitmasks. */
1959 mask
= rdp
->grpmask
;
1961 /* Exclude any attempts to start a new GP on small systems. */
1962 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1963 rnp
->qsmaskinit
|= mask
;
1964 mask
= rnp
->grpmask
;
1965 if (rnp
== rdp
->mynode
) {
1967 * If there is a grace period in progress, we will
1968 * set up to wait for it next time we run the
1971 rdp
->gpnum
= rnp
->completed
;
1972 rdp
->completed
= rnp
->completed
;
1973 rdp
->passed_quiesce
= 0;
1974 rdp
->qs_pending
= 0;
1975 rdp
->passed_quiesce_gpnum
= rnp
->gpnum
- 1;
1976 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuonl");
1978 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
1980 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
1982 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
1985 static void __cpuinit
rcu_prepare_cpu(int cpu
)
1987 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
1988 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
1989 rcu_preempt_init_percpu_data(cpu
);
1993 * Handle CPU online/offline notification events.
1995 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1996 unsigned long action
, void *hcpu
)
1998 long cpu
= (long)hcpu
;
1999 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
2000 struct rcu_node
*rnp
= rdp
->mynode
;
2002 trace_rcu_utilization("Start CPU hotplug");
2004 case CPU_UP_PREPARE
:
2005 case CPU_UP_PREPARE_FROZEN
:
2006 rcu_prepare_cpu(cpu
);
2007 rcu_prepare_kthreads(cpu
);
2010 case CPU_DOWN_FAILED
:
2011 rcu_node_kthread_setaffinity(rnp
, -1);
2012 rcu_cpu_kthread_setrt(cpu
, 1);
2014 case CPU_DOWN_PREPARE
:
2015 rcu_node_kthread_setaffinity(rnp
, cpu
);
2016 rcu_cpu_kthread_setrt(cpu
, 0);
2019 case CPU_DYING_FROZEN
:
2021 * The whole machine is "stopped" except this CPU, so we can
2022 * touch any data without introducing corruption. We send the
2023 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2025 rcu_send_cbs_to_online(&rcu_bh_state
);
2026 rcu_send_cbs_to_online(&rcu_sched_state
);
2027 rcu_preempt_send_cbs_to_online();
2030 case CPU_DEAD_FROZEN
:
2031 case CPU_UP_CANCELED
:
2032 case CPU_UP_CANCELED_FROZEN
:
2033 rcu_offline_cpu(cpu
);
2038 trace_rcu_utilization("End CPU hotplug");
2043 * This function is invoked towards the end of the scheduler's initialization
2044 * process. Before this is called, the idle task might contain
2045 * RCU read-side critical sections (during which time, this idle
2046 * task is booting the system). After this function is called, the
2047 * idle tasks are prohibited from containing RCU read-side critical
2048 * sections. This function also enables RCU lockdep checking.
2050 void rcu_scheduler_starting(void)
2052 WARN_ON(num_online_cpus() != 1);
2053 WARN_ON(nr_context_switches() > 0);
2054 rcu_scheduler_active
= 1;
2058 * Compute the per-level fanout, either using the exact fanout specified
2059 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2061 #ifdef CONFIG_RCU_FANOUT_EXACT
2062 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2066 for (i
= NUM_RCU_LVLS
- 1; i
> 0; i
--)
2067 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
2068 rsp
->levelspread
[0] = RCU_FANOUT_LEAF
;
2070 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2071 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2078 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2079 ccur
= rsp
->levelcnt
[i
];
2080 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
2084 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2087 * Helper function for rcu_init() that initializes one rcu_state structure.
2089 static void __init
rcu_init_one(struct rcu_state
*rsp
,
2090 struct rcu_data __percpu
*rda
)
2092 static char *buf
[] = { "rcu_node_level_0",
2095 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2099 struct rcu_node
*rnp
;
2101 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
2103 /* Initialize the level-tracking arrays. */
2105 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
2106 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
2107 rcu_init_levelspread(rsp
);
2109 /* Initialize the elements themselves, starting from the leaves. */
2111 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2112 cpustride
*= rsp
->levelspread
[i
];
2113 rnp
= rsp
->level
[i
];
2114 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
2115 raw_spin_lock_init(&rnp
->lock
);
2116 lockdep_set_class_and_name(&rnp
->lock
,
2117 &rcu_node_class
[i
], buf
[i
]);
2120 rnp
->qsmaskinit
= 0;
2121 rnp
->grplo
= j
* cpustride
;
2122 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
2123 if (rnp
->grphi
>= NR_CPUS
)
2124 rnp
->grphi
= NR_CPUS
- 1;
2130 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
2131 rnp
->grpmask
= 1UL << rnp
->grpnum
;
2132 rnp
->parent
= rsp
->level
[i
- 1] +
2133 j
/ rsp
->levelspread
[i
- 1];
2136 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
2141 rnp
= rsp
->level
[NUM_RCU_LVLS
- 1];
2142 for_each_possible_cpu(i
) {
2143 while (i
> rnp
->grphi
)
2145 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
2146 rcu_boot_init_percpu_data(i
, rsp
);
2150 void __init
rcu_init(void)
2154 rcu_bootup_announce();
2155 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
2156 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
2157 __rcu_init_preempt();
2158 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
2161 * We don't need protection against CPU-hotplug here because
2162 * this is called early in boot, before either interrupts
2163 * or the scheduler are operational.
2165 cpu_notifier(rcu_cpu_notify
, 0);
2166 for_each_online_cpu(cpu
)
2167 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
2168 check_cpu_stall_init();
2171 #include "rcutree_plugin.h"