2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
63 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
65 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
72 struct kvm_cpuid_entry2 __user
*entries
);
73 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
74 u32 function
, u32 index
);
76 struct kvm_x86_ops
*kvm_x86_ops
;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
79 struct kvm_stats_debugfs_item debugfs_entries
[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed
) },
81 { "pf_guest", VCPU_STAT(pf_guest
) },
82 { "tlb_flush", VCPU_STAT(tlb_flush
) },
83 { "invlpg", VCPU_STAT(invlpg
) },
84 { "exits", VCPU_STAT(exits
) },
85 { "io_exits", VCPU_STAT(io_exits
) },
86 { "mmio_exits", VCPU_STAT(mmio_exits
) },
87 { "signal_exits", VCPU_STAT(signal_exits
) },
88 { "irq_window", VCPU_STAT(irq_window_exits
) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
90 { "halt_exits", VCPU_STAT(halt_exits
) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
92 { "hypercalls", VCPU_STAT(hypercalls
) },
93 { "request_irq", VCPU_STAT(request_irq_exits
) },
94 { "irq_exits", VCPU_STAT(irq_exits
) },
95 { "host_state_reload", VCPU_STAT(host_state_reload
) },
96 { "efer_reload", VCPU_STAT(efer_reload
) },
97 { "fpu_reload", VCPU_STAT(fpu_reload
) },
98 { "insn_emulation", VCPU_STAT(insn_emulation
) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
100 { "irq_injections", VCPU_STAT(irq_injections
) },
101 { "nmi_injections", VCPU_STAT(nmi_injections
) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
106 { "mmu_flooded", VM_STAT(mmu_flooded
) },
107 { "mmu_recycled", VM_STAT(mmu_recycled
) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
109 { "mmu_unsync", VM_STAT(mmu_unsync
) },
110 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
111 { "largepages", VM_STAT(lpages
) },
115 unsigned long segment_base(u16 selector
)
117 struct descriptor_table gdt
;
118 struct desc_struct
*d
;
119 unsigned long table_base
;
125 asm("sgdt %0" : "=m"(gdt
));
126 table_base
= gdt
.base
;
128 if (selector
& 4) { /* from ldt */
131 asm("sldt %0" : "=g"(ldt_selector
));
132 table_base
= segment_base(ldt_selector
);
134 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
135 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
136 ((unsigned long)d
->base2
<< 24);
138 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
139 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
143 EXPORT_SYMBOL_GPL(segment_base
);
145 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
147 if (irqchip_in_kernel(vcpu
->kvm
))
148 return vcpu
->arch
.apic_base
;
150 return vcpu
->arch
.apic_base
;
152 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
154 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
156 /* TODO: reserve bits check */
157 if (irqchip_in_kernel(vcpu
->kvm
))
158 kvm_lapic_set_base(vcpu
, data
);
160 vcpu
->arch
.apic_base
= data
;
162 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
164 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
166 WARN_ON(vcpu
->arch
.exception
.pending
);
167 vcpu
->arch
.exception
.pending
= true;
168 vcpu
->arch
.exception
.has_error_code
= false;
169 vcpu
->arch
.exception
.nr
= nr
;
171 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
173 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
176 ++vcpu
->stat
.pf_guest
;
178 if (vcpu
->arch
.exception
.pending
) {
179 if (vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
180 printk(KERN_DEBUG
"kvm: inject_page_fault:"
181 " double fault 0x%lx\n", addr
);
182 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
183 vcpu
->arch
.exception
.error_code
= 0;
184 } else if (vcpu
->arch
.exception
.nr
== DF_VECTOR
) {
185 /* triple fault -> shutdown */
186 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
190 vcpu
->arch
.cr2
= addr
;
191 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
194 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
196 vcpu
->arch
.nmi_pending
= 1;
198 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
200 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
202 WARN_ON(vcpu
->arch
.exception
.pending
);
203 vcpu
->arch
.exception
.pending
= true;
204 vcpu
->arch
.exception
.has_error_code
= true;
205 vcpu
->arch
.exception
.nr
= nr
;
206 vcpu
->arch
.exception
.error_code
= error_code
;
208 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
210 static void __queue_exception(struct kvm_vcpu
*vcpu
)
212 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
213 vcpu
->arch
.exception
.has_error_code
,
214 vcpu
->arch
.exception
.error_code
);
218 * Load the pae pdptrs. Return true is they are all valid.
220 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
222 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
223 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
226 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
228 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
229 offset
* sizeof(u64
), sizeof(pdpte
));
234 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
235 if (is_present_pte(pdpte
[i
]) &&
236 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
243 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
248 EXPORT_SYMBOL_GPL(load_pdptrs
);
250 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
252 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
256 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
259 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
262 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
268 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
270 if (cr0
& CR0_RESERVED_BITS
) {
271 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0
, vcpu
->arch
.cr0
);
273 kvm_inject_gp(vcpu
, 0);
277 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
278 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu
, 0);
283 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
284 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu
, 0);
290 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
292 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
296 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu
, 0);
301 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
303 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu
, 0);
311 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
312 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
314 kvm_inject_gp(vcpu
, 0);
320 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
321 vcpu
->arch
.cr0
= cr0
;
323 kvm_mmu_reset_context(vcpu
);
326 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
328 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
330 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
331 KVMTRACE_1D(LMSW
, vcpu
,
332 (u32
)((vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f)),
335 EXPORT_SYMBOL_GPL(kvm_lmsw
);
337 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
339 unsigned long old_cr4
= vcpu
->arch
.cr4
;
340 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
342 if (cr4
& CR4_RESERVED_BITS
) {
343 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
344 kvm_inject_gp(vcpu
, 0);
348 if (is_long_mode(vcpu
)) {
349 if (!(cr4
& X86_CR4_PAE
)) {
350 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
352 kvm_inject_gp(vcpu
, 0);
355 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
356 && ((cr4
^ old_cr4
) & pdptr_bits
)
357 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
358 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
359 kvm_inject_gp(vcpu
, 0);
363 if (cr4
& X86_CR4_VMXE
) {
364 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
365 kvm_inject_gp(vcpu
, 0);
368 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
369 vcpu
->arch
.cr4
= cr4
;
370 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
371 kvm_mmu_reset_context(vcpu
);
373 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
375 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
377 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
378 kvm_mmu_sync_roots(vcpu
);
379 kvm_mmu_flush_tlb(vcpu
);
383 if (is_long_mode(vcpu
)) {
384 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
385 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
386 kvm_inject_gp(vcpu
, 0);
391 if (cr3
& CR3_PAE_RESERVED_BITS
) {
393 "set_cr3: #GP, reserved bits\n");
394 kvm_inject_gp(vcpu
, 0);
397 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
398 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
400 kvm_inject_gp(vcpu
, 0);
405 * We don't check reserved bits in nonpae mode, because
406 * this isn't enforced, and VMware depends on this.
411 * Does the new cr3 value map to physical memory? (Note, we
412 * catch an invalid cr3 even in real-mode, because it would
413 * cause trouble later on when we turn on paging anyway.)
415 * A real CPU would silently accept an invalid cr3 and would
416 * attempt to use it - with largely undefined (and often hard
417 * to debug) behavior on the guest side.
419 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
420 kvm_inject_gp(vcpu
, 0);
422 vcpu
->arch
.cr3
= cr3
;
423 vcpu
->arch
.mmu
.new_cr3(vcpu
);
426 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
428 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
430 if (cr8
& CR8_RESERVED_BITS
) {
431 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
432 kvm_inject_gp(vcpu
, 0);
435 if (irqchip_in_kernel(vcpu
->kvm
))
436 kvm_lapic_set_tpr(vcpu
, cr8
);
438 vcpu
->arch
.cr8
= cr8
;
440 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
442 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
444 if (irqchip_in_kernel(vcpu
->kvm
))
445 return kvm_lapic_get_cr8(vcpu
);
447 return vcpu
->arch
.cr8
;
449 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
451 static inline u32
bit(int bitno
)
453 return 1 << (bitno
& 31);
457 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
458 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
460 * This list is modified at module load time to reflect the
461 * capabilities of the host cpu.
463 static u32 msrs_to_save
[] = {
464 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
467 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
469 MSR_IA32_TIME_STAMP_COUNTER
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
470 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
473 static unsigned num_msrs_to_save
;
475 static u32 emulated_msrs
[] = {
476 MSR_IA32_MISC_ENABLE
,
479 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
481 if (efer
& efer_reserved_bits
) {
482 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
484 kvm_inject_gp(vcpu
, 0);
489 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
490 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
491 kvm_inject_gp(vcpu
, 0);
495 if (efer
& EFER_FFXSR
) {
496 struct kvm_cpuid_entry2
*feat
;
498 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
499 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
))) {
500 printk(KERN_DEBUG
"set_efer: #GP, enable FFXSR w/o CPUID capability\n");
501 kvm_inject_gp(vcpu
, 0);
506 if (efer
& EFER_SVME
) {
507 struct kvm_cpuid_entry2
*feat
;
509 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
510 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
511 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
512 kvm_inject_gp(vcpu
, 0);
517 kvm_x86_ops
->set_efer(vcpu
, efer
);
520 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
522 vcpu
->arch
.shadow_efer
= efer
;
524 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
525 kvm_mmu_reset_context(vcpu
);
528 void kvm_enable_efer_bits(u64 mask
)
530 efer_reserved_bits
&= ~mask
;
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
540 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
542 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
546 * Adapt set_msr() to msr_io()'s calling convention
548 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
550 return kvm_set_msr(vcpu
, index
, *data
);
553 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
556 struct pvclock_wall_clock wc
;
557 struct timespec now
, sys
, boot
;
564 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
572 now
= current_kernel_time();
574 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
576 wc
.sec
= boot
.tv_sec
;
577 wc
.nsec
= boot
.tv_nsec
;
578 wc
.version
= version
;
580 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
583 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
586 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
588 uint32_t quotient
, remainder
;
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
593 : "=a" (quotient
), "=d" (remainder
)
594 : "0" (0), "1" (dividend
), "r" (divisor
) );
598 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
600 uint64_t nsecs
= 1000000000LL;
605 tps64
= tsc_khz
* 1000LL;
606 while (tps64
> nsecs
*2) {
611 tps32
= (uint32_t)tps64
;
612 while (tps32
<= (uint32_t)nsecs
) {
617 hv_clock
->tsc_shift
= shift
;
618 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
622 hv_clock
->tsc_to_system_mul
);
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
627 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
631 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
633 unsigned long this_tsc_khz
;
635 if ((!vcpu
->time_page
))
638 this_tsc_khz
= get_cpu_var(cpu_tsc_khz
);
639 if (unlikely(vcpu
->hv_clock_tsc_khz
!= this_tsc_khz
)) {
640 kvm_set_time_scale(this_tsc_khz
, &vcpu
->hv_clock
);
641 vcpu
->hv_clock_tsc_khz
= this_tsc_khz
;
643 put_cpu_var(cpu_tsc_khz
);
645 /* Keep irq disabled to prevent changes to the clock */
646 local_irq_save(flags
);
647 kvm_get_msr(v
, MSR_IA32_TIME_STAMP_COUNTER
,
648 &vcpu
->hv_clock
.tsc_timestamp
);
650 local_irq_restore(flags
);
652 /* With all the info we got, fill in the values */
654 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
655 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
657 * The interface expects us to write an even number signaling that the
658 * update is finished. Since the guest won't see the intermediate
659 * state, we just increase by 2 at the end.
661 vcpu
->hv_clock
.version
+= 2;
663 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
665 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
666 sizeof(vcpu
->hv_clock
));
668 kunmap_atomic(shared_kaddr
, KM_USER0
);
670 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
673 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
675 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
677 if (!vcpu
->time_page
)
679 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
683 static bool msr_mtrr_valid(unsigned msr
)
686 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
687 case MSR_MTRRfix64K_00000
:
688 case MSR_MTRRfix16K_80000
:
689 case MSR_MTRRfix16K_A0000
:
690 case MSR_MTRRfix4K_C0000
:
691 case MSR_MTRRfix4K_C8000
:
692 case MSR_MTRRfix4K_D0000
:
693 case MSR_MTRRfix4K_D8000
:
694 case MSR_MTRRfix4K_E0000
:
695 case MSR_MTRRfix4K_E8000
:
696 case MSR_MTRRfix4K_F0000
:
697 case MSR_MTRRfix4K_F8000
:
698 case MSR_MTRRdefType
:
699 case MSR_IA32_CR_PAT
:
707 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
709 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
711 if (!msr_mtrr_valid(msr
))
714 if (msr
== MSR_MTRRdefType
) {
715 vcpu
->arch
.mtrr_state
.def_type
= data
;
716 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
717 } else if (msr
== MSR_MTRRfix64K_00000
)
719 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
720 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
721 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
722 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
723 else if (msr
== MSR_IA32_CR_PAT
)
724 vcpu
->arch
.pat
= data
;
725 else { /* Variable MTRRs */
726 int idx
, is_mtrr_mask
;
729 idx
= (msr
- 0x200) / 2;
730 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
733 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
736 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
740 kvm_mmu_reset_context(vcpu
);
744 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
748 set_efer(vcpu
, data
);
750 case MSR_IA32_MC0_STATUS
:
751 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
754 case MSR_IA32_MCG_STATUS
:
755 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
758 case MSR_IA32_MCG_CTL
:
759 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
762 case MSR_IA32_DEBUGCTLMSR
:
764 /* We support the non-activated case already */
766 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
767 /* Values other than LBR and BTF are vendor-specific,
768 thus reserved and should throw a #GP */
771 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
774 case MSR_IA32_UCODE_REV
:
775 case MSR_IA32_UCODE_WRITE
:
776 case MSR_VM_HSAVE_PA
:
778 case 0x200 ... 0x2ff:
779 return set_msr_mtrr(vcpu
, msr
, data
);
780 case MSR_IA32_APICBASE
:
781 kvm_set_apic_base(vcpu
, data
);
783 case MSR_IA32_MISC_ENABLE
:
784 vcpu
->arch
.ia32_misc_enable_msr
= data
;
786 case MSR_KVM_WALL_CLOCK
:
787 vcpu
->kvm
->arch
.wall_clock
= data
;
788 kvm_write_wall_clock(vcpu
->kvm
, data
);
790 case MSR_KVM_SYSTEM_TIME
: {
791 if (vcpu
->arch
.time_page
) {
792 kvm_release_page_dirty(vcpu
->arch
.time_page
);
793 vcpu
->arch
.time_page
= NULL
;
796 vcpu
->arch
.time
= data
;
798 /* we verify if the enable bit is set... */
802 /* ...but clean it before doing the actual write */
803 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
805 vcpu
->arch
.time_page
=
806 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
808 if (is_error_page(vcpu
->arch
.time_page
)) {
809 kvm_release_page_clean(vcpu
->arch
.time_page
);
810 vcpu
->arch
.time_page
= NULL
;
813 kvm_request_guest_time_update(vcpu
);
817 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
822 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
826 * Reads an msr value (of 'msr_index') into 'pdata'.
827 * Returns 0 on success, non-0 otherwise.
828 * Assumes vcpu_load() was already called.
830 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
832 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
835 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
837 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
839 if (!msr_mtrr_valid(msr
))
842 if (msr
== MSR_MTRRdefType
)
843 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
844 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
845 else if (msr
== MSR_MTRRfix64K_00000
)
847 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
848 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
849 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
850 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
851 else if (msr
== MSR_IA32_CR_PAT
)
852 *pdata
= vcpu
->arch
.pat
;
853 else { /* Variable MTRRs */
854 int idx
, is_mtrr_mask
;
857 idx
= (msr
- 0x200) / 2;
858 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
861 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
864 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
871 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
876 case 0xc0010010: /* SYSCFG */
877 case 0xc0010015: /* HWCR */
878 case MSR_IA32_PLATFORM_ID
:
879 case MSR_IA32_P5_MC_ADDR
:
880 case MSR_IA32_P5_MC_TYPE
:
881 case MSR_IA32_MC0_CTL
:
882 case MSR_IA32_MCG_STATUS
:
883 case MSR_IA32_MCG_CAP
:
884 case MSR_IA32_MCG_CTL
:
885 case MSR_IA32_MC0_MISC
:
886 case MSR_IA32_MC0_MISC
+4:
887 case MSR_IA32_MC0_MISC
+8:
888 case MSR_IA32_MC0_MISC
+12:
889 case MSR_IA32_MC0_MISC
+16:
890 case MSR_IA32_MC0_MISC
+20:
891 case MSR_IA32_UCODE_REV
:
892 case MSR_IA32_EBL_CR_POWERON
:
893 case MSR_IA32_DEBUGCTLMSR
:
894 case MSR_IA32_LASTBRANCHFROMIP
:
895 case MSR_IA32_LASTBRANCHTOIP
:
896 case MSR_IA32_LASTINTFROMIP
:
897 case MSR_IA32_LASTINTTOIP
:
898 case MSR_VM_HSAVE_PA
:
899 case MSR_P6_EVNTSEL0
:
900 case MSR_P6_EVNTSEL1
:
904 data
= 0x500 | KVM_NR_VAR_MTRR
;
906 case 0x200 ... 0x2ff:
907 return get_msr_mtrr(vcpu
, msr
, pdata
);
908 case 0xcd: /* fsb frequency */
911 case MSR_IA32_APICBASE
:
912 data
= kvm_get_apic_base(vcpu
);
914 case MSR_IA32_MISC_ENABLE
:
915 data
= vcpu
->arch
.ia32_misc_enable_msr
;
917 case MSR_IA32_PERF_STATUS
:
918 /* TSC increment by tick */
921 data
|= (((uint64_t)4ULL) << 40);
924 data
= vcpu
->arch
.shadow_efer
;
926 case MSR_KVM_WALL_CLOCK
:
927 data
= vcpu
->kvm
->arch
.wall_clock
;
929 case MSR_KVM_SYSTEM_TIME
:
930 data
= vcpu
->arch
.time
;
933 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
939 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
942 * Read or write a bunch of msrs. All parameters are kernel addresses.
944 * @return number of msrs set successfully.
946 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
947 struct kvm_msr_entry
*entries
,
948 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
949 unsigned index
, u64
*data
))
955 down_read(&vcpu
->kvm
->slots_lock
);
956 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
957 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
959 up_read(&vcpu
->kvm
->slots_lock
);
967 * Read or write a bunch of msrs. Parameters are user addresses.
969 * @return number of msrs set successfully.
971 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
972 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
973 unsigned index
, u64
*data
),
976 struct kvm_msrs msrs
;
977 struct kvm_msr_entry
*entries
;
982 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
986 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
990 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
991 entries
= vmalloc(size
);
996 if (copy_from_user(entries
, user_msrs
->entries
, size
))
999 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1004 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1015 int kvm_dev_ioctl_check_extension(long ext
)
1020 case KVM_CAP_IRQCHIP
:
1022 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1023 case KVM_CAP_SET_TSS_ADDR
:
1024 case KVM_CAP_EXT_CPUID
:
1025 case KVM_CAP_CLOCKSOURCE
:
1027 case KVM_CAP_NOP_IO_DELAY
:
1028 case KVM_CAP_MP_STATE
:
1029 case KVM_CAP_SYNC_MMU
:
1030 case KVM_CAP_REINJECT_CONTROL
:
1031 case KVM_CAP_IRQ_INJECT_STATUS
:
1032 case KVM_CAP_ASSIGN_DEV_IRQ
:
1035 case KVM_CAP_COALESCED_MMIO
:
1036 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1039 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1041 case KVM_CAP_NR_VCPUS
:
1044 case KVM_CAP_NR_MEMSLOTS
:
1045 r
= KVM_MEMORY_SLOTS
;
1047 case KVM_CAP_PV_MMU
:
1061 long kvm_arch_dev_ioctl(struct file
*filp
,
1062 unsigned int ioctl
, unsigned long arg
)
1064 void __user
*argp
= (void __user
*)arg
;
1068 case KVM_GET_MSR_INDEX_LIST
: {
1069 struct kvm_msr_list __user
*user_msr_list
= argp
;
1070 struct kvm_msr_list msr_list
;
1074 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1077 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1078 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1081 if (n
< num_msrs_to_save
)
1084 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1085 num_msrs_to_save
* sizeof(u32
)))
1087 if (copy_to_user(user_msr_list
->indices
1088 + num_msrs_to_save
* sizeof(u32
),
1090 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1095 case KVM_GET_SUPPORTED_CPUID
: {
1096 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1097 struct kvm_cpuid2 cpuid
;
1100 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1102 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1103 cpuid_arg
->entries
);
1108 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1120 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1122 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1123 kvm_request_guest_time_update(vcpu
);
1126 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1128 kvm_x86_ops
->vcpu_put(vcpu
);
1129 kvm_put_guest_fpu(vcpu
);
1132 static int is_efer_nx(void)
1134 unsigned long long efer
= 0;
1136 rdmsrl_safe(MSR_EFER
, &efer
);
1137 return efer
& EFER_NX
;
1140 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1143 struct kvm_cpuid_entry2
*e
, *entry
;
1146 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1147 e
= &vcpu
->arch
.cpuid_entries
[i
];
1148 if (e
->function
== 0x80000001) {
1153 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1154 entry
->edx
&= ~(1 << 20);
1155 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1159 /* when an old userspace process fills a new kernel module */
1160 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1161 struct kvm_cpuid
*cpuid
,
1162 struct kvm_cpuid_entry __user
*entries
)
1165 struct kvm_cpuid_entry
*cpuid_entries
;
1168 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1171 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1175 if (copy_from_user(cpuid_entries
, entries
,
1176 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1178 for (i
= 0; i
< cpuid
->nent
; i
++) {
1179 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1180 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1181 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1182 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1183 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1184 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1185 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1186 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1187 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1188 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1190 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1191 cpuid_fix_nx_cap(vcpu
);
1195 vfree(cpuid_entries
);
1200 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1201 struct kvm_cpuid2
*cpuid
,
1202 struct kvm_cpuid_entry2 __user
*entries
)
1207 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1210 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1211 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1213 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1220 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1221 struct kvm_cpuid2
*cpuid
,
1222 struct kvm_cpuid_entry2 __user
*entries
)
1227 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1230 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1231 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1236 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1240 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1243 entry
->function
= function
;
1244 entry
->index
= index
;
1245 cpuid_count(entry
->function
, entry
->index
,
1246 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1250 #define F(x) bit(X86_FEATURE_##x)
1252 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1253 u32 index
, int *nent
, int maxnent
)
1255 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
1256 #ifdef CONFIG_X86_64
1257 unsigned f_lm
= F(LM
);
1263 const u32 kvm_supported_word0_x86_features
=
1264 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1265 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1266 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
1267 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1268 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
1269 0 /* Reserved, DS, ACPI */ | F(MMX
) |
1270 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
1271 0 /* HTT, TM, Reserved, PBE */;
1272 /* cpuid 0x80000001.edx */
1273 const u32 kvm_supported_word1_x86_features
=
1274 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1275 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1276 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
1277 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1278 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
1279 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
1280 F(FXSR
) | F(FXSR_OPT
) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1281 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
1283 const u32 kvm_supported_word4_x86_features
=
1284 F(XMM3
) | 0 /* Reserved, DTES64, MONITOR */ |
1285 0 /* DS-CPL, VMX, SMX, EST */ |
1286 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1287 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
1288 0 /* Reserved, DCA */ | F(XMM4_1
) |
1289 F(XMM4_2
) | 0 /* x2APIC */ | F(MOVBE
) | F(POPCNT
) |
1290 0 /* Reserved, XSAVE, OSXSAVE */;
1291 /* cpuid 0x80000001.ecx */
1292 const u32 kvm_supported_word6_x86_features
=
1293 F(LAHF_LM
) | F(CMP_LEGACY
) | F(SVM
) | 0 /* ExtApicSpace */ |
1294 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
1295 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5
) |
1296 0 /* SKINIT */ | 0 /* WDT */;
1298 /* all calls to cpuid_count() should be made on the same cpu */
1300 do_cpuid_1_ent(entry
, function
, index
);
1305 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1308 entry
->edx
&= kvm_supported_word0_x86_features
;
1309 entry
->ecx
&= kvm_supported_word4_x86_features
;
1311 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1312 * may return different values. This forces us to get_cpu() before
1313 * issuing the first command, and also to emulate this annoying behavior
1314 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1316 int t
, times
= entry
->eax
& 0xff;
1318 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1319 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1320 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1321 do_cpuid_1_ent(&entry
[t
], function
, 0);
1322 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1327 /* function 4 and 0xb have additional index. */
1331 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1332 /* read more entries until cache_type is zero */
1333 for (i
= 1; *nent
< maxnent
; ++i
) {
1334 cache_type
= entry
[i
- 1].eax
& 0x1f;
1337 do_cpuid_1_ent(&entry
[i
], function
, i
);
1339 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1347 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1348 /* read more entries until level_type is zero */
1349 for (i
= 1; *nent
< maxnent
; ++i
) {
1350 level_type
= entry
[i
- 1].ecx
& 0xff00;
1353 do_cpuid_1_ent(&entry
[i
], function
, i
);
1355 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1361 entry
->eax
= min(entry
->eax
, 0x8000001a);
1364 entry
->edx
&= kvm_supported_word1_x86_features
;
1365 entry
->ecx
&= kvm_supported_word6_x86_features
;
1373 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1374 struct kvm_cpuid_entry2 __user
*entries
)
1376 struct kvm_cpuid_entry2
*cpuid_entries
;
1377 int limit
, nent
= 0, r
= -E2BIG
;
1380 if (cpuid
->nent
< 1)
1383 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1387 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1388 limit
= cpuid_entries
[0].eax
;
1389 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1390 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1391 &nent
, cpuid
->nent
);
1393 if (nent
>= cpuid
->nent
)
1396 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1397 limit
= cpuid_entries
[nent
- 1].eax
;
1398 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1399 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1400 &nent
, cpuid
->nent
);
1402 if (copy_to_user(entries
, cpuid_entries
,
1403 nent
* sizeof(struct kvm_cpuid_entry2
)))
1409 vfree(cpuid_entries
);
1414 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1415 struct kvm_lapic_state
*s
)
1418 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1424 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1425 struct kvm_lapic_state
*s
)
1428 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1429 kvm_apic_post_state_restore(vcpu
);
1435 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1436 struct kvm_interrupt
*irq
)
1438 if (irq
->irq
< 0 || irq
->irq
>= 256)
1440 if (irqchip_in_kernel(vcpu
->kvm
))
1444 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
1451 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1454 kvm_inject_nmi(vcpu
);
1460 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1461 struct kvm_tpr_access_ctl
*tac
)
1465 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1469 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1470 unsigned int ioctl
, unsigned long arg
)
1472 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1473 void __user
*argp
= (void __user
*)arg
;
1475 struct kvm_lapic_state
*lapic
= NULL
;
1478 case KVM_GET_LAPIC
: {
1479 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1484 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1488 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1493 case KVM_SET_LAPIC
: {
1494 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1499 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1501 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1507 case KVM_INTERRUPT
: {
1508 struct kvm_interrupt irq
;
1511 if (copy_from_user(&irq
, argp
, sizeof irq
))
1513 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1520 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1526 case KVM_SET_CPUID
: {
1527 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1528 struct kvm_cpuid cpuid
;
1531 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1533 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1538 case KVM_SET_CPUID2
: {
1539 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1540 struct kvm_cpuid2 cpuid
;
1543 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1545 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1546 cpuid_arg
->entries
);
1551 case KVM_GET_CPUID2
: {
1552 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1553 struct kvm_cpuid2 cpuid
;
1556 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1558 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1559 cpuid_arg
->entries
);
1563 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1569 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1572 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1574 case KVM_TPR_ACCESS_REPORTING
: {
1575 struct kvm_tpr_access_ctl tac
;
1578 if (copy_from_user(&tac
, argp
, sizeof tac
))
1580 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1584 if (copy_to_user(argp
, &tac
, sizeof tac
))
1589 case KVM_SET_VAPIC_ADDR
: {
1590 struct kvm_vapic_addr va
;
1593 if (!irqchip_in_kernel(vcpu
->kvm
))
1596 if (copy_from_user(&va
, argp
, sizeof va
))
1599 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1610 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1614 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1616 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1620 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1621 u32 kvm_nr_mmu_pages
)
1623 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1626 down_write(&kvm
->slots_lock
);
1627 spin_lock(&kvm
->mmu_lock
);
1629 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1630 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1632 spin_unlock(&kvm
->mmu_lock
);
1633 up_write(&kvm
->slots_lock
);
1637 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1639 return kvm
->arch
.n_alloc_mmu_pages
;
1642 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1645 struct kvm_mem_alias
*alias
;
1647 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1648 alias
= &kvm
->arch
.aliases
[i
];
1649 if (gfn
>= alias
->base_gfn
1650 && gfn
< alias
->base_gfn
+ alias
->npages
)
1651 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1657 * Set a new alias region. Aliases map a portion of physical memory into
1658 * another portion. This is useful for memory windows, for example the PC
1661 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1662 struct kvm_memory_alias
*alias
)
1665 struct kvm_mem_alias
*p
;
1668 /* General sanity checks */
1669 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1671 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1673 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1675 if (alias
->guest_phys_addr
+ alias
->memory_size
1676 < alias
->guest_phys_addr
)
1678 if (alias
->target_phys_addr
+ alias
->memory_size
1679 < alias
->target_phys_addr
)
1682 down_write(&kvm
->slots_lock
);
1683 spin_lock(&kvm
->mmu_lock
);
1685 p
= &kvm
->arch
.aliases
[alias
->slot
];
1686 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1687 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1688 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1690 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1691 if (kvm
->arch
.aliases
[n
- 1].npages
)
1693 kvm
->arch
.naliases
= n
;
1695 spin_unlock(&kvm
->mmu_lock
);
1696 kvm_mmu_zap_all(kvm
);
1698 up_write(&kvm
->slots_lock
);
1706 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1711 switch (chip
->chip_id
) {
1712 case KVM_IRQCHIP_PIC_MASTER
:
1713 memcpy(&chip
->chip
.pic
,
1714 &pic_irqchip(kvm
)->pics
[0],
1715 sizeof(struct kvm_pic_state
));
1717 case KVM_IRQCHIP_PIC_SLAVE
:
1718 memcpy(&chip
->chip
.pic
,
1719 &pic_irqchip(kvm
)->pics
[1],
1720 sizeof(struct kvm_pic_state
));
1722 case KVM_IRQCHIP_IOAPIC
:
1723 memcpy(&chip
->chip
.ioapic
,
1724 ioapic_irqchip(kvm
),
1725 sizeof(struct kvm_ioapic_state
));
1734 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1739 switch (chip
->chip_id
) {
1740 case KVM_IRQCHIP_PIC_MASTER
:
1741 memcpy(&pic_irqchip(kvm
)->pics
[0],
1743 sizeof(struct kvm_pic_state
));
1745 case KVM_IRQCHIP_PIC_SLAVE
:
1746 memcpy(&pic_irqchip(kvm
)->pics
[1],
1748 sizeof(struct kvm_pic_state
));
1750 case KVM_IRQCHIP_IOAPIC
:
1751 memcpy(ioapic_irqchip(kvm
),
1753 sizeof(struct kvm_ioapic_state
));
1759 kvm_pic_update_irq(pic_irqchip(kvm
));
1763 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1767 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
1771 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1775 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
1776 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
1780 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
1781 struct kvm_reinject_control
*control
)
1783 if (!kvm
->arch
.vpit
)
1785 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
1790 * Get (and clear) the dirty memory log for a memory slot.
1792 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1793 struct kvm_dirty_log
*log
)
1797 struct kvm_memory_slot
*memslot
;
1800 down_write(&kvm
->slots_lock
);
1802 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1806 /* If nothing is dirty, don't bother messing with page tables. */
1808 spin_lock(&kvm
->mmu_lock
);
1809 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1810 spin_unlock(&kvm
->mmu_lock
);
1811 kvm_flush_remote_tlbs(kvm
);
1812 memslot
= &kvm
->memslots
[log
->slot
];
1813 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1814 memset(memslot
->dirty_bitmap
, 0, n
);
1818 up_write(&kvm
->slots_lock
);
1822 long kvm_arch_vm_ioctl(struct file
*filp
,
1823 unsigned int ioctl
, unsigned long arg
)
1825 struct kvm
*kvm
= filp
->private_data
;
1826 void __user
*argp
= (void __user
*)arg
;
1829 * This union makes it completely explicit to gcc-3.x
1830 * that these two variables' stack usage should be
1831 * combined, not added together.
1834 struct kvm_pit_state ps
;
1835 struct kvm_memory_alias alias
;
1839 case KVM_SET_TSS_ADDR
:
1840 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1844 case KVM_SET_MEMORY_REGION
: {
1845 struct kvm_memory_region kvm_mem
;
1846 struct kvm_userspace_memory_region kvm_userspace_mem
;
1849 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1851 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1852 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1853 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1854 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1855 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1860 case KVM_SET_NR_MMU_PAGES
:
1861 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1865 case KVM_GET_NR_MMU_PAGES
:
1866 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1868 case KVM_SET_MEMORY_ALIAS
:
1870 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
1872 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
1876 case KVM_CREATE_IRQCHIP
:
1878 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1879 if (kvm
->arch
.vpic
) {
1880 r
= kvm_ioapic_init(kvm
);
1882 kfree(kvm
->arch
.vpic
);
1883 kvm
->arch
.vpic
= NULL
;
1888 r
= kvm_setup_default_irq_routing(kvm
);
1890 kfree(kvm
->arch
.vpic
);
1891 kfree(kvm
->arch
.vioapic
);
1895 case KVM_CREATE_PIT
:
1896 mutex_lock(&kvm
->lock
);
1899 goto create_pit_unlock
;
1901 kvm
->arch
.vpit
= kvm_create_pit(kvm
);
1905 mutex_unlock(&kvm
->lock
);
1907 case KVM_IRQ_LINE_STATUS
:
1908 case KVM_IRQ_LINE
: {
1909 struct kvm_irq_level irq_event
;
1912 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1914 if (irqchip_in_kernel(kvm
)) {
1916 mutex_lock(&kvm
->lock
);
1917 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
1918 irq_event
.irq
, irq_event
.level
);
1919 mutex_unlock(&kvm
->lock
);
1920 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
1921 irq_event
.status
= status
;
1922 if (copy_to_user(argp
, &irq_event
,
1930 case KVM_GET_IRQCHIP
: {
1931 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1932 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1938 if (copy_from_user(chip
, argp
, sizeof *chip
))
1939 goto get_irqchip_out
;
1941 if (!irqchip_in_kernel(kvm
))
1942 goto get_irqchip_out
;
1943 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
1945 goto get_irqchip_out
;
1947 if (copy_to_user(argp
, chip
, sizeof *chip
))
1948 goto get_irqchip_out
;
1956 case KVM_SET_IRQCHIP
: {
1957 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1958 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1964 if (copy_from_user(chip
, argp
, sizeof *chip
))
1965 goto set_irqchip_out
;
1967 if (!irqchip_in_kernel(kvm
))
1968 goto set_irqchip_out
;
1969 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
1971 goto set_irqchip_out
;
1981 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
1984 if (!kvm
->arch
.vpit
)
1986 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
1990 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
1997 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
2000 if (!kvm
->arch
.vpit
)
2002 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
2008 case KVM_REINJECT_CONTROL
: {
2009 struct kvm_reinject_control control
;
2011 if (copy_from_user(&control
, argp
, sizeof(control
)))
2013 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2026 static void kvm_init_msr_list(void)
2031 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2032 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2035 msrs_to_save
[j
] = msrs_to_save
[i
];
2038 num_msrs_to_save
= j
;
2042 * Only apic need an MMIO device hook, so shortcut now..
2044 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
2045 gpa_t addr
, int len
,
2048 struct kvm_io_device
*dev
;
2050 if (vcpu
->arch
.apic
) {
2051 dev
= &vcpu
->arch
.apic
->dev
;
2052 if (dev
->in_range(dev
, addr
, len
, is_write
))
2059 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
2060 gpa_t addr
, int len
,
2063 struct kvm_io_device
*dev
;
2065 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
, len
, is_write
);
2067 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
, len
,
2072 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2073 struct kvm_vcpu
*vcpu
)
2076 int r
= X86EMUL_CONTINUE
;
2079 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2080 unsigned offset
= addr
& (PAGE_SIZE
-1);
2081 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2084 if (gpa
== UNMAPPED_GVA
) {
2085 r
= X86EMUL_PROPAGATE_FAULT
;
2088 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2090 r
= X86EMUL_UNHANDLEABLE
;
2102 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2103 struct kvm_vcpu
*vcpu
)
2106 int r
= X86EMUL_CONTINUE
;
2109 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2110 unsigned offset
= addr
& (PAGE_SIZE
-1);
2111 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2114 if (gpa
== UNMAPPED_GVA
) {
2115 r
= X86EMUL_PROPAGATE_FAULT
;
2118 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2120 r
= X86EMUL_UNHANDLEABLE
;
2133 static int emulator_read_emulated(unsigned long addr
,
2136 struct kvm_vcpu
*vcpu
)
2138 struct kvm_io_device
*mmio_dev
;
2141 if (vcpu
->mmio_read_completed
) {
2142 memcpy(val
, vcpu
->mmio_data
, bytes
);
2143 vcpu
->mmio_read_completed
= 0;
2144 return X86EMUL_CONTINUE
;
2147 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2149 /* For APIC access vmexit */
2150 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2153 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2154 == X86EMUL_CONTINUE
)
2155 return X86EMUL_CONTINUE
;
2156 if (gpa
== UNMAPPED_GVA
)
2157 return X86EMUL_PROPAGATE_FAULT
;
2161 * Is this MMIO handled locally?
2163 mutex_lock(&vcpu
->kvm
->lock
);
2164 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 0);
2166 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
2167 mutex_unlock(&vcpu
->kvm
->lock
);
2168 return X86EMUL_CONTINUE
;
2170 mutex_unlock(&vcpu
->kvm
->lock
);
2172 vcpu
->mmio_needed
= 1;
2173 vcpu
->mmio_phys_addr
= gpa
;
2174 vcpu
->mmio_size
= bytes
;
2175 vcpu
->mmio_is_write
= 0;
2177 return X86EMUL_UNHANDLEABLE
;
2180 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2181 const void *val
, int bytes
)
2185 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2188 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2192 static int emulator_write_emulated_onepage(unsigned long addr
,
2195 struct kvm_vcpu
*vcpu
)
2197 struct kvm_io_device
*mmio_dev
;
2200 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2202 if (gpa
== UNMAPPED_GVA
) {
2203 kvm_inject_page_fault(vcpu
, addr
, 2);
2204 return X86EMUL_PROPAGATE_FAULT
;
2207 /* For APIC access vmexit */
2208 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2211 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2212 return X86EMUL_CONTINUE
;
2216 * Is this MMIO handled locally?
2218 mutex_lock(&vcpu
->kvm
->lock
);
2219 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 1);
2221 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
2222 mutex_unlock(&vcpu
->kvm
->lock
);
2223 return X86EMUL_CONTINUE
;
2225 mutex_unlock(&vcpu
->kvm
->lock
);
2227 vcpu
->mmio_needed
= 1;
2228 vcpu
->mmio_phys_addr
= gpa
;
2229 vcpu
->mmio_size
= bytes
;
2230 vcpu
->mmio_is_write
= 1;
2231 memcpy(vcpu
->mmio_data
, val
, bytes
);
2233 return X86EMUL_CONTINUE
;
2236 int emulator_write_emulated(unsigned long addr
,
2239 struct kvm_vcpu
*vcpu
)
2241 /* Crossing a page boundary? */
2242 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2245 now
= -addr
& ~PAGE_MASK
;
2246 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2247 if (rc
!= X86EMUL_CONTINUE
)
2253 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2255 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2257 static int emulator_cmpxchg_emulated(unsigned long addr
,
2261 struct kvm_vcpu
*vcpu
)
2263 static int reported
;
2267 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2269 #ifndef CONFIG_X86_64
2270 /* guests cmpxchg8b have to be emulated atomically */
2277 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2279 if (gpa
== UNMAPPED_GVA
||
2280 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2283 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2288 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2290 kaddr
= kmap_atomic(page
, KM_USER0
);
2291 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2292 kunmap_atomic(kaddr
, KM_USER0
);
2293 kvm_release_page_dirty(page
);
2298 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2301 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2303 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2306 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2308 kvm_mmu_invlpg(vcpu
, address
);
2309 return X86EMUL_CONTINUE
;
2312 int emulate_clts(struct kvm_vcpu
*vcpu
)
2314 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2315 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2316 return X86EMUL_CONTINUE
;
2319 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2321 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2325 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2326 return X86EMUL_CONTINUE
;
2328 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2329 return X86EMUL_UNHANDLEABLE
;
2333 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2335 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2338 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2340 /* FIXME: better handling */
2341 return X86EMUL_UNHANDLEABLE
;
2343 return X86EMUL_CONTINUE
;
2346 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2349 unsigned long rip
= kvm_rip_read(vcpu
);
2350 unsigned long rip_linear
;
2352 if (!printk_ratelimit())
2355 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2357 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2359 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2360 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2362 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2364 static struct x86_emulate_ops emulate_ops
= {
2365 .read_std
= kvm_read_guest_virt
,
2366 .read_emulated
= emulator_read_emulated
,
2367 .write_emulated
= emulator_write_emulated
,
2368 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2371 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2373 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2374 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2375 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2376 vcpu
->arch
.regs_dirty
= ~0;
2379 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2380 struct kvm_run
*run
,
2386 struct decode_cache
*c
;
2388 kvm_clear_exception_queue(vcpu
);
2389 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2391 * TODO: fix x86_emulate.c to use guest_read/write_register
2392 * instead of direct ->regs accesses, can save hundred cycles
2393 * on Intel for instructions that don't read/change RSP, for
2396 cache_all_regs(vcpu
);
2398 vcpu
->mmio_is_write
= 0;
2399 vcpu
->arch
.pio
.string
= 0;
2401 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2403 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2405 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2406 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2407 vcpu
->arch
.emulate_ctxt
.mode
=
2408 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2409 ? X86EMUL_MODE_REAL
: cs_l
2410 ? X86EMUL_MODE_PROT64
: cs_db
2411 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2413 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2415 /* Reject the instructions other than VMCALL/VMMCALL when
2416 * try to emulate invalid opcode */
2417 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2418 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
2419 (!(c
->twobyte
&& c
->b
== 0x01 &&
2420 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
2421 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
2422 return EMULATE_FAIL
;
2424 ++vcpu
->stat
.insn_emulation
;
2426 ++vcpu
->stat
.insn_emulation_fail
;
2427 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2428 return EMULATE_DONE
;
2429 return EMULATE_FAIL
;
2433 if (emulation_type
& EMULTYPE_SKIP
) {
2434 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
2435 return EMULATE_DONE
;
2438 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2439 shadow_mask
= vcpu
->arch
.emulate_ctxt
.interruptibility
;
2442 kvm_x86_ops
->set_interrupt_shadow(vcpu
, shadow_mask
);
2444 if (vcpu
->arch
.pio
.string
)
2445 return EMULATE_DO_MMIO
;
2447 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2448 run
->exit_reason
= KVM_EXIT_MMIO
;
2449 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2450 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2451 run
->mmio
.len
= vcpu
->mmio_size
;
2452 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2456 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2457 return EMULATE_DONE
;
2458 if (!vcpu
->mmio_needed
) {
2459 kvm_report_emulation_failure(vcpu
, "mmio");
2460 return EMULATE_FAIL
;
2462 return EMULATE_DO_MMIO
;
2465 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2467 if (vcpu
->mmio_is_write
) {
2468 vcpu
->mmio_needed
= 0;
2469 return EMULATE_DO_MMIO
;
2472 return EMULATE_DONE
;
2474 EXPORT_SYMBOL_GPL(emulate_instruction
);
2476 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2478 void *p
= vcpu
->arch
.pio_data
;
2479 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2483 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2484 if (vcpu
->arch
.pio
.in
)
2485 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2487 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2491 int complete_pio(struct kvm_vcpu
*vcpu
)
2493 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2500 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2501 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2502 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2506 r
= pio_copy_data(vcpu
);
2513 delta
*= io
->cur_count
;
2515 * The size of the register should really depend on
2516 * current address size.
2518 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2520 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2526 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2528 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2530 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2532 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2536 io
->count
-= io
->cur_count
;
2542 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2543 struct kvm_vcpu
*vcpu
,
2546 /* TODO: String I/O for in kernel device */
2548 mutex_lock(&vcpu
->kvm
->lock
);
2549 if (vcpu
->arch
.pio
.in
)
2550 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2551 vcpu
->arch
.pio
.size
,
2554 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2555 vcpu
->arch
.pio
.size
,
2557 mutex_unlock(&vcpu
->kvm
->lock
);
2560 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2561 struct kvm_vcpu
*vcpu
)
2563 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2564 void *pd
= vcpu
->arch
.pio_data
;
2567 mutex_lock(&vcpu
->kvm
->lock
);
2568 for (i
= 0; i
< io
->cur_count
; i
++) {
2569 kvm_iodevice_write(pio_dev
, io
->port
,
2574 mutex_unlock(&vcpu
->kvm
->lock
);
2577 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2578 gpa_t addr
, int len
,
2581 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
, len
, is_write
);
2584 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2585 int size
, unsigned port
)
2587 struct kvm_io_device
*pio_dev
;
2590 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2591 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2592 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2593 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2594 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2595 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2596 vcpu
->arch
.pio
.in
= in
;
2597 vcpu
->arch
.pio
.string
= 0;
2598 vcpu
->arch
.pio
.down
= 0;
2599 vcpu
->arch
.pio
.rep
= 0;
2601 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2602 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2605 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2608 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2609 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2611 pio_dev
= vcpu_find_pio_dev(vcpu
, port
, size
, !in
);
2613 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2619 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2621 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2622 int size
, unsigned long count
, int down
,
2623 gva_t address
, int rep
, unsigned port
)
2625 unsigned now
, in_page
;
2627 struct kvm_io_device
*pio_dev
;
2629 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2630 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2631 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2632 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2633 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2634 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2635 vcpu
->arch
.pio
.in
= in
;
2636 vcpu
->arch
.pio
.string
= 1;
2637 vcpu
->arch
.pio
.down
= down
;
2638 vcpu
->arch
.pio
.rep
= rep
;
2640 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2641 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2644 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2648 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2653 in_page
= PAGE_SIZE
- offset_in_page(address
);
2655 in_page
= offset_in_page(address
) + size
;
2656 now
= min(count
, (unsigned long)in_page
/ size
);
2661 * String I/O in reverse. Yuck. Kill the guest, fix later.
2663 pr_unimpl(vcpu
, "guest string pio down\n");
2664 kvm_inject_gp(vcpu
, 0);
2667 vcpu
->run
->io
.count
= now
;
2668 vcpu
->arch
.pio
.cur_count
= now
;
2670 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2671 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2673 vcpu
->arch
.pio
.guest_gva
= address
;
2675 pio_dev
= vcpu_find_pio_dev(vcpu
, port
,
2676 vcpu
->arch
.pio
.cur_count
,
2677 !vcpu
->arch
.pio
.in
);
2678 if (!vcpu
->arch
.pio
.in
) {
2679 /* string PIO write */
2680 ret
= pio_copy_data(vcpu
);
2681 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
2682 kvm_inject_gp(vcpu
, 0);
2685 if (ret
== 0 && pio_dev
) {
2686 pio_string_write(pio_dev
, vcpu
);
2688 if (vcpu
->arch
.pio
.count
== 0)
2692 pr_unimpl(vcpu
, "no string pio read support yet, "
2693 "port %x size %d count %ld\n",
2698 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2700 static void bounce_off(void *info
)
2705 static unsigned int ref_freq
;
2706 static unsigned long tsc_khz_ref
;
2708 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
2711 struct cpufreq_freqs
*freq
= data
;
2713 struct kvm_vcpu
*vcpu
;
2714 int i
, send_ipi
= 0;
2717 ref_freq
= freq
->old
;
2719 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
2721 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
2723 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
2725 spin_lock(&kvm_lock
);
2726 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2727 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
2728 vcpu
= kvm
->vcpus
[i
];
2731 if (vcpu
->cpu
!= freq
->cpu
)
2733 if (!kvm_request_guest_time_update(vcpu
))
2735 if (vcpu
->cpu
!= smp_processor_id())
2739 spin_unlock(&kvm_lock
);
2741 if (freq
->old
< freq
->new && send_ipi
) {
2743 * We upscale the frequency. Must make the guest
2744 * doesn't see old kvmclock values while running with
2745 * the new frequency, otherwise we risk the guest sees
2746 * time go backwards.
2748 * In case we update the frequency for another cpu
2749 * (which might be in guest context) send an interrupt
2750 * to kick the cpu out of guest context. Next time
2751 * guest context is entered kvmclock will be updated,
2752 * so the guest will not see stale values.
2754 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
2759 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
2760 .notifier_call
= kvmclock_cpufreq_notifier
2763 int kvm_arch_init(void *opaque
)
2766 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2769 printk(KERN_ERR
"kvm: already loaded the other module\n");
2774 if (!ops
->cpu_has_kvm_support()) {
2775 printk(KERN_ERR
"kvm: no hardware support\n");
2779 if (ops
->disabled_by_bios()) {
2780 printk(KERN_ERR
"kvm: disabled by bios\n");
2785 r
= kvm_mmu_module_init();
2789 kvm_init_msr_list();
2792 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2793 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
2794 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
2795 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
2797 for_each_possible_cpu(cpu
)
2798 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
2799 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
2800 tsc_khz_ref
= tsc_khz
;
2801 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
2802 CPUFREQ_TRANSITION_NOTIFIER
);
2811 void kvm_arch_exit(void)
2813 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
2814 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
2815 CPUFREQ_TRANSITION_NOTIFIER
);
2817 kvm_mmu_module_exit();
2820 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2822 ++vcpu
->stat
.halt_exits
;
2823 KVMTRACE_0D(HLT
, vcpu
, handler
);
2824 if (irqchip_in_kernel(vcpu
->kvm
)) {
2825 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
2828 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2832 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2834 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
2837 if (is_long_mode(vcpu
))
2840 return a0
| ((gpa_t
)a1
<< 32);
2843 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2845 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2848 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2849 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
2850 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2851 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
2852 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2854 KVMTRACE_1D(VMMCALL
, vcpu
, (u32
)nr
, handler
);
2856 if (!is_long_mode(vcpu
)) {
2865 case KVM_HC_VAPIC_POLL_IRQ
:
2869 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
2875 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
2876 ++vcpu
->stat
.hypercalls
;
2879 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2881 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2883 char instruction
[3];
2885 unsigned long rip
= kvm_rip_read(vcpu
);
2889 * Blow out the MMU to ensure that no other VCPU has an active mapping
2890 * to ensure that the updated hypercall appears atomically across all
2893 kvm_mmu_zap_all(vcpu
->kvm
);
2895 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2896 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
2897 != X86EMUL_CONTINUE
)
2903 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2905 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2908 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2910 struct descriptor_table dt
= { limit
, base
};
2912 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2915 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2917 struct descriptor_table dt
= { limit
, base
};
2919 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2922 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2923 unsigned long *rflags
)
2925 kvm_lmsw(vcpu
, msw
);
2926 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2929 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2931 unsigned long value
;
2933 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2936 value
= vcpu
->arch
.cr0
;
2939 value
= vcpu
->arch
.cr2
;
2942 value
= vcpu
->arch
.cr3
;
2945 value
= vcpu
->arch
.cr4
;
2948 value
= kvm_get_cr8(vcpu
);
2951 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2954 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
, (u32
)value
,
2955 (u32
)((u64
)value
>> 32), handler
);
2960 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2961 unsigned long *rflags
)
2963 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
, (u32
)val
,
2964 (u32
)((u64
)val
>> 32), handler
);
2968 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2969 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2972 vcpu
->arch
.cr2
= val
;
2975 kvm_set_cr3(vcpu
, val
);
2978 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2981 kvm_set_cr8(vcpu
, val
& 0xfUL
);
2984 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2988 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2990 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2991 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2993 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2994 /* when no next entry is found, the current entry[i] is reselected */
2995 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
2996 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2997 if (ej
->function
== e
->function
) {
2998 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
3002 return 0; /* silence gcc, even though control never reaches here */
3005 /* find an entry with matching function, matching index (if needed), and that
3006 * should be read next (if it's stateful) */
3007 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
3008 u32 function
, u32 index
)
3010 if (e
->function
!= function
)
3012 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
3014 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
3015 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
3020 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
3021 u32 function
, u32 index
)
3024 struct kvm_cpuid_entry2
*best
= NULL
;
3026 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
3027 struct kvm_cpuid_entry2
*e
;
3029 e
= &vcpu
->arch
.cpuid_entries
[i
];
3030 if (is_matching_cpuid_entry(e
, function
, index
)) {
3031 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3032 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3037 * Both basic or both extended?
3039 if (((e
->function
^ function
) & 0x80000000) == 0)
3040 if (!best
|| e
->function
> best
->function
)
3046 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
3048 struct kvm_cpuid_entry2
*best
;
3050 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
3052 return best
->eax
& 0xff;
3056 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3058 u32 function
, index
;
3059 struct kvm_cpuid_entry2
*best
;
3061 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3062 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3063 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3064 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3065 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3066 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3067 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3069 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3070 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3071 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3072 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3074 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3075 KVMTRACE_5D(CPUID
, vcpu
, function
,
3076 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3077 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3078 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3079 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RDX
), handler
);
3081 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3084 * Check if userspace requested an interrupt window, and that the
3085 * interrupt window is open.
3087 * No need to exit to userspace if we already have an interrupt queued.
3089 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3090 struct kvm_run
*kvm_run
)
3092 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
3093 kvm_run
->request_interrupt_window
&&
3094 kvm_arch_interrupt_allowed(vcpu
));
3097 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3098 struct kvm_run
*kvm_run
)
3100 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3101 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3102 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3103 if (irqchip_in_kernel(vcpu
->kvm
))
3104 kvm_run
->ready_for_interrupt_injection
= 1;
3106 kvm_run
->ready_for_interrupt_injection
=
3107 kvm_arch_interrupt_allowed(vcpu
) &&
3108 !kvm_cpu_has_interrupt(vcpu
) &&
3109 !kvm_event_needs_reinjection(vcpu
);
3112 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3114 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3117 if (!apic
|| !apic
->vapic_addr
)
3120 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3122 vcpu
->arch
.apic
->vapic_page
= page
;
3125 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3127 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3129 if (!apic
|| !apic
->vapic_addr
)
3132 down_read(&vcpu
->kvm
->slots_lock
);
3133 kvm_release_page_dirty(apic
->vapic_page
);
3134 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3135 up_read(&vcpu
->kvm
->slots_lock
);
3138 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
3142 if (!kvm_x86_ops
->update_cr8_intercept
)
3145 if (!vcpu
->arch
.apic
->vapic_addr
)
3146 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
3153 tpr
= kvm_lapic_get_cr8(vcpu
);
3155 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
3158 static void inject_pending_irq(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3160 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3161 kvm_x86_ops
->set_interrupt_shadow(vcpu
, 0);
3163 /* try to reinject previous events if any */
3164 if (vcpu
->arch
.nmi_injected
) {
3165 kvm_x86_ops
->set_nmi(vcpu
);
3169 if (vcpu
->arch
.interrupt
.pending
) {
3170 kvm_x86_ops
->set_irq(vcpu
);
3174 /* try to inject new event if pending */
3175 if (vcpu
->arch
.nmi_pending
) {
3176 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
3177 vcpu
->arch
.nmi_pending
= false;
3178 vcpu
->arch
.nmi_injected
= true;
3179 kvm_x86_ops
->set_nmi(vcpu
);
3181 } else if (kvm_cpu_has_interrupt(vcpu
)) {
3182 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
3183 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
3185 kvm_x86_ops
->set_irq(vcpu
);
3190 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3193 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
3194 kvm_run
->request_interrupt_window
;
3197 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3198 kvm_mmu_unload(vcpu
);
3200 r
= kvm_mmu_reload(vcpu
);
3204 if (vcpu
->requests
) {
3205 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3206 __kvm_migrate_timers(vcpu
);
3207 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3208 kvm_write_guest_time(vcpu
);
3209 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3210 kvm_mmu_sync_roots(vcpu
);
3211 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3212 kvm_x86_ops
->tlb_flush(vcpu
);
3213 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3215 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3219 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3220 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3228 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3229 kvm_load_guest_fpu(vcpu
);
3231 local_irq_disable();
3233 clear_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3234 smp_mb__after_clear_bit();
3236 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3243 if (vcpu
->arch
.exception
.pending
)
3244 __queue_exception(vcpu
);
3246 inject_pending_irq(vcpu
, kvm_run
);
3248 /* enable NMI/IRQ window open exits if needed */
3249 if (vcpu
->arch
.nmi_pending
)
3250 kvm_x86_ops
->enable_nmi_window(vcpu
);
3251 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
3252 kvm_x86_ops
->enable_irq_window(vcpu
);
3254 if (kvm_lapic_enabled(vcpu
)) {
3255 update_cr8_intercept(vcpu
);
3256 kvm_lapic_sync_to_vapic(vcpu
);
3259 up_read(&vcpu
->kvm
->slots_lock
);
3263 get_debugreg(vcpu
->arch
.host_dr6
, 6);
3264 get_debugreg(vcpu
->arch
.host_dr7
, 7);
3265 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3266 get_debugreg(vcpu
->arch
.host_db
[0], 0);
3267 get_debugreg(vcpu
->arch
.host_db
[1], 1);
3268 get_debugreg(vcpu
->arch
.host_db
[2], 2);
3269 get_debugreg(vcpu
->arch
.host_db
[3], 3);
3272 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3273 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3274 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3275 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3278 KVMTRACE_0D(VMENTRY
, vcpu
, entryexit
);
3279 kvm_x86_ops
->run(vcpu
, kvm_run
);
3281 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3283 set_debugreg(vcpu
->arch
.host_db
[0], 0);
3284 set_debugreg(vcpu
->arch
.host_db
[1], 1);
3285 set_debugreg(vcpu
->arch
.host_db
[2], 2);
3286 set_debugreg(vcpu
->arch
.host_db
[3], 3);
3288 set_debugreg(vcpu
->arch
.host_dr6
, 6);
3289 set_debugreg(vcpu
->arch
.host_dr7
, 7);
3291 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3297 * We must have an instruction between local_irq_enable() and
3298 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3299 * the interrupt shadow. The stat.exits increment will do nicely.
3300 * But we need to prevent reordering, hence this barrier():
3308 down_read(&vcpu
->kvm
->slots_lock
);
3311 * Profile KVM exit RIPs:
3313 if (unlikely(prof_on
== KVM_PROFILING
)) {
3314 unsigned long rip
= kvm_rip_read(vcpu
);
3315 profile_hit(KVM_PROFILING
, (void *)rip
);
3319 kvm_lapic_sync_from_vapic(vcpu
);
3321 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3327 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3331 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3332 pr_debug("vcpu %d received sipi with vector # %x\n",
3333 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3334 kvm_lapic_reset(vcpu
);
3335 r
= kvm_arch_vcpu_reset(vcpu
);
3338 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3341 down_read(&vcpu
->kvm
->slots_lock
);
3346 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3347 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3349 up_read(&vcpu
->kvm
->slots_lock
);
3350 kvm_vcpu_block(vcpu
);
3351 down_read(&vcpu
->kvm
->slots_lock
);
3352 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3354 switch(vcpu
->arch
.mp_state
) {
3355 case KVM_MP_STATE_HALTED
:
3356 vcpu
->arch
.mp_state
=
3357 KVM_MP_STATE_RUNNABLE
;
3358 case KVM_MP_STATE_RUNNABLE
:
3360 case KVM_MP_STATE_SIPI_RECEIVED
:
3371 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3372 if (kvm_cpu_has_pending_timer(vcpu
))
3373 kvm_inject_pending_timer_irqs(vcpu
);
3375 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3377 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3378 ++vcpu
->stat
.request_irq_exits
;
3380 if (signal_pending(current
)) {
3382 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3383 ++vcpu
->stat
.signal_exits
;
3385 if (need_resched()) {
3386 up_read(&vcpu
->kvm
->slots_lock
);
3388 down_read(&vcpu
->kvm
->slots_lock
);
3392 up_read(&vcpu
->kvm
->slots_lock
);
3393 post_kvm_run_save(vcpu
, kvm_run
);
3400 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3407 if (vcpu
->sigset_active
)
3408 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3410 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3411 kvm_vcpu_block(vcpu
);
3412 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3417 /* re-sync apic's tpr */
3418 if (!irqchip_in_kernel(vcpu
->kvm
))
3419 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3421 if (vcpu
->arch
.pio
.cur_count
) {
3422 r
= complete_pio(vcpu
);
3426 #if CONFIG_HAS_IOMEM
3427 if (vcpu
->mmio_needed
) {
3428 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3429 vcpu
->mmio_read_completed
= 1;
3430 vcpu
->mmio_needed
= 0;
3432 down_read(&vcpu
->kvm
->slots_lock
);
3433 r
= emulate_instruction(vcpu
, kvm_run
,
3434 vcpu
->arch
.mmio_fault_cr2
, 0,
3435 EMULTYPE_NO_DECODE
);
3436 up_read(&vcpu
->kvm
->slots_lock
);
3437 if (r
== EMULATE_DO_MMIO
) {
3439 * Read-modify-write. Back to userspace.
3446 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3447 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3448 kvm_run
->hypercall
.ret
);
3450 r
= __vcpu_run(vcpu
, kvm_run
);
3453 if (vcpu
->sigset_active
)
3454 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3460 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3464 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3465 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3466 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3467 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3468 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3469 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3470 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3471 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3472 #ifdef CONFIG_X86_64
3473 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3474 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3475 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3476 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3477 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3478 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3479 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3480 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3483 regs
->rip
= kvm_rip_read(vcpu
);
3484 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3487 * Don't leak debug flags in case they were set for guest debugging
3489 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3490 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3497 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3501 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3502 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3503 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3504 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3505 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3506 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3507 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3508 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3509 #ifdef CONFIG_X86_64
3510 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3511 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3512 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3513 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3514 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3515 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3516 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3517 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3521 kvm_rip_write(vcpu
, regs
->rip
);
3522 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3525 vcpu
->arch
.exception
.pending
= false;
3532 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3533 struct kvm_segment
*var
, int seg
)
3535 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3538 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3540 struct kvm_segment cs
;
3542 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3546 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3548 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3549 struct kvm_sregs
*sregs
)
3551 struct descriptor_table dt
;
3555 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3556 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3557 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3558 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3559 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3560 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3562 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3563 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3565 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3566 sregs
->idt
.limit
= dt
.limit
;
3567 sregs
->idt
.base
= dt
.base
;
3568 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3569 sregs
->gdt
.limit
= dt
.limit
;
3570 sregs
->gdt
.base
= dt
.base
;
3572 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3573 sregs
->cr0
= vcpu
->arch
.cr0
;
3574 sregs
->cr2
= vcpu
->arch
.cr2
;
3575 sregs
->cr3
= vcpu
->arch
.cr3
;
3576 sregs
->cr4
= vcpu
->arch
.cr4
;
3577 sregs
->cr8
= kvm_get_cr8(vcpu
);
3578 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3579 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3581 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
3583 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
3584 set_bit(vcpu
->arch
.interrupt
.nr
,
3585 (unsigned long *)sregs
->interrupt_bitmap
);
3592 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3593 struct kvm_mp_state
*mp_state
)
3596 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3601 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3602 struct kvm_mp_state
*mp_state
)
3605 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3610 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3611 struct kvm_segment
*var
, int seg
)
3613 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3616 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3617 struct kvm_segment
*kvm_desct
)
3619 kvm_desct
->base
= seg_desc
->base0
;
3620 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3621 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3622 kvm_desct
->limit
= seg_desc
->limit0
;
3623 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3625 kvm_desct
->limit
<<= 12;
3626 kvm_desct
->limit
|= 0xfff;
3628 kvm_desct
->selector
= selector
;
3629 kvm_desct
->type
= seg_desc
->type
;
3630 kvm_desct
->present
= seg_desc
->p
;
3631 kvm_desct
->dpl
= seg_desc
->dpl
;
3632 kvm_desct
->db
= seg_desc
->d
;
3633 kvm_desct
->s
= seg_desc
->s
;
3634 kvm_desct
->l
= seg_desc
->l
;
3635 kvm_desct
->g
= seg_desc
->g
;
3636 kvm_desct
->avl
= seg_desc
->avl
;
3638 kvm_desct
->unusable
= 1;
3640 kvm_desct
->unusable
= 0;
3641 kvm_desct
->padding
= 0;
3644 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
3646 struct descriptor_table
*dtable
)
3648 if (selector
& 1 << 2) {
3649 struct kvm_segment kvm_seg
;
3651 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3653 if (kvm_seg
.unusable
)
3656 dtable
->limit
= kvm_seg
.limit
;
3657 dtable
->base
= kvm_seg
.base
;
3660 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3663 /* allowed just for 8 bytes segments */
3664 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3665 struct desc_struct
*seg_desc
)
3668 struct descriptor_table dtable
;
3669 u16 index
= selector
>> 3;
3671 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3673 if (dtable
.limit
< index
* 8 + 7) {
3674 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3677 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3679 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3682 /* allowed just for 8 bytes segments */
3683 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3684 struct desc_struct
*seg_desc
)
3687 struct descriptor_table dtable
;
3688 u16 index
= selector
>> 3;
3690 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3692 if (dtable
.limit
< index
* 8 + 7)
3694 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3696 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3699 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3700 struct desc_struct
*seg_desc
)
3704 base_addr
= seg_desc
->base0
;
3705 base_addr
|= (seg_desc
->base1
<< 16);
3706 base_addr
|= (seg_desc
->base2
<< 24);
3708 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
3711 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3713 struct kvm_segment kvm_seg
;
3715 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3716 return kvm_seg
.selector
;
3719 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3721 struct kvm_segment
*kvm_seg
)
3723 struct desc_struct seg_desc
;
3725 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3727 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3731 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
3733 struct kvm_segment segvar
= {
3734 .base
= selector
<< 4,
3736 .selector
= selector
,
3747 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
3751 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3752 int type_bits
, int seg
)
3754 struct kvm_segment kvm_seg
;
3756 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
))
3757 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
3758 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
3760 kvm_seg
.type
|= type_bits
;
3762 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
3763 seg
!= VCPU_SREG_LDTR
)
3765 kvm_seg
.unusable
= 1;
3767 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
3771 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
3772 struct tss_segment_32
*tss
)
3774 tss
->cr3
= vcpu
->arch
.cr3
;
3775 tss
->eip
= kvm_rip_read(vcpu
);
3776 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3777 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3778 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3779 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3780 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3781 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3782 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3783 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3784 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3785 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3786 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3787 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3788 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3789 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
3790 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
3791 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3794 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
3795 struct tss_segment_32
*tss
)
3797 kvm_set_cr3(vcpu
, tss
->cr3
);
3799 kvm_rip_write(vcpu
, tss
->eip
);
3800 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
3802 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
3803 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
3804 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
3805 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
3806 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
3807 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
3808 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
3809 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
3811 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
3814 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3817 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3820 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3823 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3826 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
3829 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
3834 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
3835 struct tss_segment_16
*tss
)
3837 tss
->ip
= kvm_rip_read(vcpu
);
3838 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
3839 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3840 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3841 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3842 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3843 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3844 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3845 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3846 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3848 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3849 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3850 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3851 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3852 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3853 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3856 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
3857 struct tss_segment_16
*tss
)
3859 kvm_rip_write(vcpu
, tss
->ip
);
3860 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
3861 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
3862 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
3863 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
3864 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
3865 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
3866 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
3867 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
3868 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
3870 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
3873 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3876 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3879 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3882 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3887 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3888 u16 old_tss_sel
, u32 old_tss_base
,
3889 struct desc_struct
*nseg_desc
)
3891 struct tss_segment_16 tss_segment_16
;
3894 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3895 sizeof tss_segment_16
))
3898 save_state_to_tss16(vcpu
, &tss_segment_16
);
3900 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3901 sizeof tss_segment_16
))
3904 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3905 &tss_segment_16
, sizeof tss_segment_16
))
3908 if (old_tss_sel
!= 0xffff) {
3909 tss_segment_16
.prev_task_link
= old_tss_sel
;
3911 if (kvm_write_guest(vcpu
->kvm
,
3912 get_tss_base_addr(vcpu
, nseg_desc
),
3913 &tss_segment_16
.prev_task_link
,
3914 sizeof tss_segment_16
.prev_task_link
))
3918 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
3926 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3927 u16 old_tss_sel
, u32 old_tss_base
,
3928 struct desc_struct
*nseg_desc
)
3930 struct tss_segment_32 tss_segment_32
;
3933 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3934 sizeof tss_segment_32
))
3937 save_state_to_tss32(vcpu
, &tss_segment_32
);
3939 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3940 sizeof tss_segment_32
))
3943 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3944 &tss_segment_32
, sizeof tss_segment_32
))
3947 if (old_tss_sel
!= 0xffff) {
3948 tss_segment_32
.prev_task_link
= old_tss_sel
;
3950 if (kvm_write_guest(vcpu
->kvm
,
3951 get_tss_base_addr(vcpu
, nseg_desc
),
3952 &tss_segment_32
.prev_task_link
,
3953 sizeof tss_segment_32
.prev_task_link
))
3957 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
3965 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
3967 struct kvm_segment tr_seg
;
3968 struct desc_struct cseg_desc
;
3969 struct desc_struct nseg_desc
;
3971 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
3972 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3974 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
3976 /* FIXME: Handle errors. Failure to read either TSS or their
3977 * descriptors should generate a pagefault.
3979 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
3982 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
3985 if (reason
!= TASK_SWITCH_IRET
) {
3988 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
3989 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
3990 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
3995 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
3996 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
4000 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
4001 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
4002 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
4005 if (reason
== TASK_SWITCH_IRET
) {
4006 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4007 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
4010 /* set back link to prev task only if NT bit is set in eflags
4011 note that old_tss_sel is not used afetr this point */
4012 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4013 old_tss_sel
= 0xffff;
4015 /* set back link to prev task only if NT bit is set in eflags
4016 note that old_tss_sel is not used afetr this point */
4017 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4018 old_tss_sel
= 0xffff;
4020 if (nseg_desc
.type
& 8)
4021 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_sel
,
4022 old_tss_base
, &nseg_desc
);
4024 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_sel
,
4025 old_tss_base
, &nseg_desc
);
4027 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
4028 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4029 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
4032 if (reason
!= TASK_SWITCH_IRET
) {
4033 nseg_desc
.type
|= (1 << 1);
4034 save_guest_segment_descriptor(vcpu
, tss_selector
,
4038 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
4039 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
4041 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
4045 EXPORT_SYMBOL_GPL(kvm_task_switch
);
4047 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
4048 struct kvm_sregs
*sregs
)
4050 int mmu_reset_needed
= 0;
4051 int pending_vec
, max_bits
;
4052 struct descriptor_table dt
;
4056 dt
.limit
= sregs
->idt
.limit
;
4057 dt
.base
= sregs
->idt
.base
;
4058 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4059 dt
.limit
= sregs
->gdt
.limit
;
4060 dt
.base
= sregs
->gdt
.base
;
4061 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4063 vcpu
->arch
.cr2
= sregs
->cr2
;
4064 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
4066 down_read(&vcpu
->kvm
->slots_lock
);
4067 if (gfn_to_memslot(vcpu
->kvm
, sregs
->cr3
>> PAGE_SHIFT
))
4068 vcpu
->arch
.cr3
= sregs
->cr3
;
4070 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
4071 up_read(&vcpu
->kvm
->slots_lock
);
4073 kvm_set_cr8(vcpu
, sregs
->cr8
);
4075 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
4076 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
4077 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
4079 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4081 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
4082 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
4083 vcpu
->arch
.cr0
= sregs
->cr0
;
4085 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
4086 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
4087 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
4088 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
4090 if (mmu_reset_needed
)
4091 kvm_mmu_reset_context(vcpu
);
4093 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
4094 pending_vec
= find_first_bit(
4095 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
4096 if (pending_vec
< max_bits
) {
4097 kvm_queue_interrupt(vcpu
, pending_vec
, false);
4098 pr_debug("Set back pending irq %d\n", pending_vec
);
4099 if (irqchip_in_kernel(vcpu
->kvm
))
4100 kvm_pic_clear_isr_ack(vcpu
->kvm
);
4103 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4104 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4105 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4106 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4107 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4108 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4110 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4111 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4113 /* Older userspace won't unhalt the vcpu on reset. */
4114 if (vcpu
->vcpu_id
== 0 && kvm_rip_read(vcpu
) == 0xfff0 &&
4115 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
4116 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4117 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4124 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4125 struct kvm_guest_debug
*dbg
)
4131 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4132 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4133 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4134 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4135 vcpu
->arch
.switch_db_regs
=
4136 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4138 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4139 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4140 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4143 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4145 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4146 kvm_queue_exception(vcpu
, DB_VECTOR
);
4147 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4148 kvm_queue_exception(vcpu
, BP_VECTOR
);
4156 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4157 * we have asm/x86/processor.h
4168 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4169 #ifdef CONFIG_X86_64
4170 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4172 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4177 * Translate a guest virtual address to a guest physical address.
4179 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4180 struct kvm_translation
*tr
)
4182 unsigned long vaddr
= tr
->linear_address
;
4186 down_read(&vcpu
->kvm
->slots_lock
);
4187 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
4188 up_read(&vcpu
->kvm
->slots_lock
);
4189 tr
->physical_address
= gpa
;
4190 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4198 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4200 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4204 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4205 fpu
->fcw
= fxsave
->cwd
;
4206 fpu
->fsw
= fxsave
->swd
;
4207 fpu
->ftwx
= fxsave
->twd
;
4208 fpu
->last_opcode
= fxsave
->fop
;
4209 fpu
->last_ip
= fxsave
->rip
;
4210 fpu
->last_dp
= fxsave
->rdp
;
4211 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4218 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4220 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4224 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4225 fxsave
->cwd
= fpu
->fcw
;
4226 fxsave
->swd
= fpu
->fsw
;
4227 fxsave
->twd
= fpu
->ftwx
;
4228 fxsave
->fop
= fpu
->last_opcode
;
4229 fxsave
->rip
= fpu
->last_ip
;
4230 fxsave
->rdp
= fpu
->last_dp
;
4231 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4238 void fx_init(struct kvm_vcpu
*vcpu
)
4240 unsigned after_mxcsr_mask
;
4243 * Touch the fpu the first time in non atomic context as if
4244 * this is the first fpu instruction the exception handler
4245 * will fire before the instruction returns and it'll have to
4246 * allocate ram with GFP_KERNEL.
4249 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4251 /* Initialize guest FPU by resetting ours and saving into guest's */
4253 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4255 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4256 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4259 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4260 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4261 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4262 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4263 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4265 EXPORT_SYMBOL_GPL(fx_init
);
4267 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4269 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4272 vcpu
->guest_fpu_loaded
= 1;
4273 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4274 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4276 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4278 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4280 if (!vcpu
->guest_fpu_loaded
)
4283 vcpu
->guest_fpu_loaded
= 0;
4284 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4285 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4286 ++vcpu
->stat
.fpu_reload
;
4288 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4290 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4292 if (vcpu
->arch
.time_page
) {
4293 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4294 vcpu
->arch
.time_page
= NULL
;
4297 kvm_x86_ops
->vcpu_free(vcpu
);
4300 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4303 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4306 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4310 /* We do fxsave: this must be aligned. */
4311 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4313 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4315 r
= kvm_arch_vcpu_reset(vcpu
);
4317 r
= kvm_mmu_setup(vcpu
);
4324 kvm_x86_ops
->vcpu_free(vcpu
);
4328 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4331 kvm_mmu_unload(vcpu
);
4334 kvm_x86_ops
->vcpu_free(vcpu
);
4337 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4339 vcpu
->arch
.nmi_pending
= false;
4340 vcpu
->arch
.nmi_injected
= false;
4342 vcpu
->arch
.switch_db_regs
= 0;
4343 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4344 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4345 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4347 return kvm_x86_ops
->vcpu_reset(vcpu
);
4350 void kvm_arch_hardware_enable(void *garbage
)
4352 kvm_x86_ops
->hardware_enable(garbage
);
4355 void kvm_arch_hardware_disable(void *garbage
)
4357 kvm_x86_ops
->hardware_disable(garbage
);
4360 int kvm_arch_hardware_setup(void)
4362 return kvm_x86_ops
->hardware_setup();
4365 void kvm_arch_hardware_unsetup(void)
4367 kvm_x86_ops
->hardware_unsetup();
4370 void kvm_arch_check_processor_compat(void *rtn
)
4372 kvm_x86_ops
->check_processor_compatibility(rtn
);
4375 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4381 BUG_ON(vcpu
->kvm
== NULL
);
4384 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4385 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
4386 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4388 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4390 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4395 vcpu
->arch
.pio_data
= page_address(page
);
4397 r
= kvm_mmu_create(vcpu
);
4399 goto fail_free_pio_data
;
4401 if (irqchip_in_kernel(kvm
)) {
4402 r
= kvm_create_lapic(vcpu
);
4404 goto fail_mmu_destroy
;
4410 kvm_mmu_destroy(vcpu
);
4412 free_page((unsigned long)vcpu
->arch
.pio_data
);
4417 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4419 kvm_free_lapic(vcpu
);
4420 down_read(&vcpu
->kvm
->slots_lock
);
4421 kvm_mmu_destroy(vcpu
);
4422 up_read(&vcpu
->kvm
->slots_lock
);
4423 free_page((unsigned long)vcpu
->arch
.pio_data
);
4426 struct kvm
*kvm_arch_create_vm(void)
4428 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4431 return ERR_PTR(-ENOMEM
);
4433 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4434 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4436 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4437 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4439 rdtscll(kvm
->arch
.vm_init_tsc
);
4444 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4447 kvm_mmu_unload(vcpu
);
4451 static void kvm_free_vcpus(struct kvm
*kvm
)
4456 * Unpin any mmu pages first.
4458 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
4460 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
4461 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
4462 if (kvm
->vcpus
[i
]) {
4463 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
4464 kvm
->vcpus
[i
] = NULL
;
4470 void kvm_arch_sync_events(struct kvm
*kvm
)
4472 kvm_free_all_assigned_devices(kvm
);
4475 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4477 kvm_iommu_unmap_guest(kvm
);
4479 kfree(kvm
->arch
.vpic
);
4480 kfree(kvm
->arch
.vioapic
);
4481 kvm_free_vcpus(kvm
);
4482 kvm_free_physmem(kvm
);
4483 if (kvm
->arch
.apic_access_page
)
4484 put_page(kvm
->arch
.apic_access_page
);
4485 if (kvm
->arch
.ept_identity_pagetable
)
4486 put_page(kvm
->arch
.ept_identity_pagetable
);
4490 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4491 struct kvm_userspace_memory_region
*mem
,
4492 struct kvm_memory_slot old
,
4495 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4496 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4498 /*To keep backward compatibility with older userspace,
4499 *x86 needs to hanlde !user_alloc case.
4502 if (npages
&& !old
.rmap
) {
4503 unsigned long userspace_addr
;
4505 down_write(¤t
->mm
->mmap_sem
);
4506 userspace_addr
= do_mmap(NULL
, 0,
4508 PROT_READ
| PROT_WRITE
,
4509 MAP_PRIVATE
| MAP_ANONYMOUS
,
4511 up_write(¤t
->mm
->mmap_sem
);
4513 if (IS_ERR((void *)userspace_addr
))
4514 return PTR_ERR((void *)userspace_addr
);
4516 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4517 spin_lock(&kvm
->mmu_lock
);
4518 memslot
->userspace_addr
= userspace_addr
;
4519 spin_unlock(&kvm
->mmu_lock
);
4521 if (!old
.user_alloc
&& old
.rmap
) {
4524 down_write(¤t
->mm
->mmap_sem
);
4525 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4526 old
.npages
* PAGE_SIZE
);
4527 up_write(¤t
->mm
->mmap_sem
);
4530 "kvm_vm_ioctl_set_memory_region: "
4531 "failed to munmap memory\n");
4536 spin_lock(&kvm
->mmu_lock
);
4537 if (!kvm
->arch
.n_requested_mmu_pages
) {
4538 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4539 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4542 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4543 spin_unlock(&kvm
->mmu_lock
);
4544 kvm_flush_remote_tlbs(kvm
);
4549 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4551 kvm_mmu_zap_all(kvm
);
4552 kvm_reload_remote_mmus(kvm
);
4555 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4557 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4558 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4559 || vcpu
->arch
.nmi_pending
;
4562 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4565 int cpu
= vcpu
->cpu
;
4567 if (waitqueue_active(&vcpu
->wq
)) {
4568 wake_up_interruptible(&vcpu
->wq
);
4569 ++vcpu
->stat
.halt_wakeup
;
4573 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
4574 if (!test_and_set_bit(KVM_REQ_KICK
, &vcpu
->requests
))
4575 smp_send_reschedule(cpu
);
4579 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4581 return kvm_x86_ops
->interrupt_allowed(vcpu
);