ASoC: Remove duplicate ADC/DAC widgets from wm_hubs.c
[linux/fpc-iii.git] / drivers / firewire / ohci.c
blobecddd11b797a366d105763656dd4eda2c2273add
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
40 #include <asm/atomic.h>
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
49 #include "core.h"
50 #include "ohci.h"
52 #define DESCRIPTOR_OUTPUT_MORE 0
53 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST (3 << 12)
56 #define DESCRIPTOR_STATUS (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
58 #define DESCRIPTOR_PING (1 << 7)
59 #define DESCRIPTOR_YY (1 << 6)
60 #define DESCRIPTOR_NO_IRQ (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
64 #define DESCRIPTOR_WAIT (3 << 0)
66 struct descriptor {
67 __le16 req_count;
68 __le16 control;
69 __le32 data_address;
70 __le32 branch_address;
71 __le16 res_count;
72 __le16 transfer_status;
73 } __attribute__((aligned(16)));
75 struct db_descriptor {
76 __le16 first_size;
77 __le16 control;
78 __le16 second_req_count;
79 __le16 first_req_count;
80 __le32 branch_address;
81 __le16 second_res_count;
82 __le16 first_res_count;
83 __le32 reserved0;
84 __le32 first_buffer;
85 __le32 second_buffer;
86 __le32 reserved1;
87 } __attribute__((aligned(16)));
89 #define CONTROL_SET(regs) (regs)
90 #define CONTROL_CLEAR(regs) ((regs) + 4)
91 #define COMMAND_PTR(regs) ((regs) + 12)
92 #define CONTEXT_MATCH(regs) ((regs) + 16)
94 struct ar_buffer {
95 struct descriptor descriptor;
96 struct ar_buffer *next;
97 __le32 data[0];
100 struct ar_context {
101 struct fw_ohci *ohci;
102 struct ar_buffer *current_buffer;
103 struct ar_buffer *last_buffer;
104 void *pointer;
105 u32 regs;
106 struct tasklet_struct tasklet;
109 struct context;
111 typedef int (*descriptor_callback_t)(struct context *ctx,
112 struct descriptor *d,
113 struct descriptor *last);
116 * A buffer that contains a block of DMA-able coherent memory used for
117 * storing a portion of a DMA descriptor program.
119 struct descriptor_buffer {
120 struct list_head list;
121 dma_addr_t buffer_bus;
122 size_t buffer_size;
123 size_t used;
124 struct descriptor buffer[0];
127 struct context {
128 struct fw_ohci *ohci;
129 u32 regs;
130 int total_allocation;
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
135 * free buffers.
137 struct list_head buffer_list;
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
143 struct descriptor_buffer *buffer_tail;
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
149 struct descriptor *last;
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
155 struct descriptor *prev;
157 descriptor_callback_t callback;
159 struct tasklet_struct tasklet;
162 #define IT_HEADER_SY(v) ((v) << 0)
163 #define IT_HEADER_TCODE(v) ((v) << 4)
164 #define IT_HEADER_CHANNEL(v) ((v) << 8)
165 #define IT_HEADER_TAG(v) ((v) << 14)
166 #define IT_HEADER_SPEED(v) ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 struct iso_context {
170 struct fw_iso_context base;
171 struct context context;
172 int excess_bytes;
173 void *header;
174 size_t header_length;
177 #define CONFIG_ROM_SIZE 1024
179 struct fw_ohci {
180 struct fw_card card;
182 __iomem char *registers;
183 dma_addr_t self_id_bus;
184 __le32 *self_id_cpu;
185 struct tasklet_struct bus_reset_tasklet;
186 int node_id;
187 int generation;
188 int request_generation; /* for timestamping incoming requests */
189 atomic_t bus_seconds;
191 bool use_dualbuffer;
192 bool old_uninorth;
193 bool bus_reset_packet_quirk;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
199 spinlock_t lock;
200 u32 self_id_buffer[512];
202 /* Config rom buffers */
203 __be32 *config_rom;
204 dma_addr_t config_rom_bus;
205 __be32 *next_config_rom;
206 dma_addr_t next_config_rom_bus;
207 u32 next_header;
209 struct ar_context ar_request_ctx;
210 struct ar_context ar_response_ctx;
211 struct context at_request_ctx;
212 struct context at_response_ctx;
214 u32 it_context_mask;
215 struct iso_context *it_context_list;
216 u64 ir_context_channels;
217 u32 ir_context_mask;
218 struct iso_context *ir_context_list;
221 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
223 return container_of(card, struct fw_ohci, card);
226 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
227 #define IR_CONTEXT_BUFFER_FILL 0x80000000
228 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
229 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
230 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
231 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
233 #define CONTEXT_RUN 0x8000
234 #define CONTEXT_WAKE 0x1000
235 #define CONTEXT_DEAD 0x0800
236 #define CONTEXT_ACTIVE 0x0400
238 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
239 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
240 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
242 #define OHCI1394_REGISTER_SIZE 0x800
243 #define OHCI_LOOP_COUNT 500
244 #define OHCI1394_PCI_HCI_Control 0x40
245 #define SELF_ID_BUF_SIZE 0x800
246 #define OHCI_TCODE_PHY_PACKET 0x0e
247 #define OHCI_VERSION_1_1 0x010010
249 static char ohci_driver_name[] = KBUILD_MODNAME;
251 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
253 #define OHCI_PARAM_DEBUG_AT_AR 1
254 #define OHCI_PARAM_DEBUG_SELFIDS 2
255 #define OHCI_PARAM_DEBUG_IRQS 4
256 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
258 static int param_debug;
259 module_param_named(debug, param_debug, int, 0644);
260 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
261 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
262 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
263 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
264 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
265 ", or a combination, or all = -1)");
267 static void log_irqs(u32 evt)
269 if (likely(!(param_debug &
270 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
271 return;
273 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
274 !(evt & OHCI1394_busReset))
275 return;
277 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
278 evt & OHCI1394_selfIDComplete ? " selfID" : "",
279 evt & OHCI1394_RQPkt ? " AR_req" : "",
280 evt & OHCI1394_RSPkt ? " AR_resp" : "",
281 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
282 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
283 evt & OHCI1394_isochRx ? " IR" : "",
284 evt & OHCI1394_isochTx ? " IT" : "",
285 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
286 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
287 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
288 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
289 evt & OHCI1394_busReset ? " busReset" : "",
290 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
291 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
292 OHCI1394_respTxComplete | OHCI1394_isochRx |
293 OHCI1394_isochTx | OHCI1394_postedWriteErr |
294 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
295 OHCI1394_regAccessFail | OHCI1394_busReset)
296 ? " ?" : "");
299 static const char *speed[] = {
300 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
302 static const char *power[] = {
303 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
304 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
306 static const char port[] = { '.', '-', 'p', 'c', };
308 static char _p(u32 *s, int shift)
310 return port[*s >> shift & 3];
313 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
315 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
316 return;
318 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
319 self_id_count, generation, node_id);
321 for (; self_id_count--; ++s)
322 if ((*s & 1 << 23) == 0)
323 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
324 "%s gc=%d %s %s%s%s\n",
325 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
326 speed[*s >> 14 & 3], *s >> 16 & 63,
327 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
328 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
329 else
330 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
331 *s, *s >> 24 & 63,
332 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
333 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
336 static const char *evts[] = {
337 [0x00] = "evt_no_status", [0x01] = "-reserved-",
338 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
339 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
340 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
341 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
342 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
343 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
344 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
345 [0x10] = "-reserved-", [0x11] = "ack_complete",
346 [0x12] = "ack_pending ", [0x13] = "-reserved-",
347 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
348 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
349 [0x18] = "-reserved-", [0x19] = "-reserved-",
350 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
351 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
352 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
353 [0x20] = "pending/cancelled",
355 static const char *tcodes[] = {
356 [0x0] = "QW req", [0x1] = "BW req",
357 [0x2] = "W resp", [0x3] = "-reserved-",
358 [0x4] = "QR req", [0x5] = "BR req",
359 [0x6] = "QR resp", [0x7] = "BR resp",
360 [0x8] = "cycle start", [0x9] = "Lk req",
361 [0xa] = "async stream packet", [0xb] = "Lk resp",
362 [0xc] = "-reserved-", [0xd] = "-reserved-",
363 [0xe] = "link internal", [0xf] = "-reserved-",
365 static const char *phys[] = {
366 [0x0] = "phy config packet", [0x1] = "link-on packet",
367 [0x2] = "self-id packet", [0x3] = "-reserved-",
370 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
372 int tcode = header[0] >> 4 & 0xf;
373 char specific[12];
375 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
376 return;
378 if (unlikely(evt >= ARRAY_SIZE(evts)))
379 evt = 0x1f;
381 if (evt == OHCI1394_evt_bus_reset) {
382 fw_notify("A%c evt_bus_reset, generation %d\n",
383 dir, (header[2] >> 16) & 0xff);
384 return;
387 if (header[0] == ~header[1]) {
388 fw_notify("A%c %s, %s, %08x\n",
389 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
390 return;
393 switch (tcode) {
394 case 0x0: case 0x6: case 0x8:
395 snprintf(specific, sizeof(specific), " = %08x",
396 be32_to_cpu((__force __be32)header[3]));
397 break;
398 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
399 snprintf(specific, sizeof(specific), " %x,%x",
400 header[3] >> 16, header[3] & 0xffff);
401 break;
402 default:
403 specific[0] = '\0';
406 switch (tcode) {
407 case 0xe: case 0xa:
408 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
409 break;
410 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
411 fw_notify("A%c spd %x tl %02x, "
412 "%04x -> %04x, %s, "
413 "%s, %04x%08x%s\n",
414 dir, speed, header[0] >> 10 & 0x3f,
415 header[1] >> 16, header[0] >> 16, evts[evt],
416 tcodes[tcode], header[1] & 0xffff, header[2], specific);
417 break;
418 default:
419 fw_notify("A%c spd %x tl %02x, "
420 "%04x -> %04x, %s, "
421 "%s%s\n",
422 dir, speed, header[0] >> 10 & 0x3f,
423 header[1] >> 16, header[0] >> 16, evts[evt],
424 tcodes[tcode], specific);
428 #else
430 #define log_irqs(evt)
431 #define log_selfids(node_id, generation, self_id_count, sid)
432 #define log_ar_at_event(dir, speed, header, evt)
434 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
436 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
438 writel(data, ohci->registers + offset);
441 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
443 return readl(ohci->registers + offset);
446 static inline void flush_writes(const struct fw_ohci *ohci)
448 /* Do a dummy read to flush writes. */
449 reg_read(ohci, OHCI1394_Version);
452 static int ohci_update_phy_reg(struct fw_card *card, int addr,
453 int clear_bits, int set_bits)
455 struct fw_ohci *ohci = fw_ohci(card);
456 u32 val, old;
458 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
459 flush_writes(ohci);
460 msleep(2);
461 val = reg_read(ohci, OHCI1394_PhyControl);
462 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
463 fw_error("failed to set phy reg bits.\n");
464 return -EBUSY;
467 old = OHCI1394_PhyControl_ReadData(val);
468 old = (old & ~clear_bits) | set_bits;
469 reg_write(ohci, OHCI1394_PhyControl,
470 OHCI1394_PhyControl_Write(addr, old));
472 return 0;
475 static int ar_context_add_page(struct ar_context *ctx)
477 struct device *dev = ctx->ohci->card.device;
478 struct ar_buffer *ab;
479 dma_addr_t uninitialized_var(ab_bus);
480 size_t offset;
482 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
483 if (ab == NULL)
484 return -ENOMEM;
486 ab->next = NULL;
487 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
488 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
489 DESCRIPTOR_STATUS |
490 DESCRIPTOR_BRANCH_ALWAYS);
491 offset = offsetof(struct ar_buffer, data);
492 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
493 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
494 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
495 ab->descriptor.branch_address = 0;
497 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
498 ctx->last_buffer->next = ab;
499 ctx->last_buffer = ab;
501 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
502 flush_writes(ctx->ohci);
504 return 0;
507 static void ar_context_release(struct ar_context *ctx)
509 struct ar_buffer *ab, *ab_next;
510 size_t offset;
511 dma_addr_t ab_bus;
513 for (ab = ctx->current_buffer; ab; ab = ab_next) {
514 ab_next = ab->next;
515 offset = offsetof(struct ar_buffer, data);
516 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
517 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
518 ab, ab_bus);
522 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
523 #define cond_le32_to_cpu(v) \
524 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
525 #else
526 #define cond_le32_to_cpu(v) le32_to_cpu(v)
527 #endif
529 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
531 struct fw_ohci *ohci = ctx->ohci;
532 struct fw_packet p;
533 u32 status, length, tcode;
534 int evt;
536 p.header[0] = cond_le32_to_cpu(buffer[0]);
537 p.header[1] = cond_le32_to_cpu(buffer[1]);
538 p.header[2] = cond_le32_to_cpu(buffer[2]);
540 tcode = (p.header[0] >> 4) & 0x0f;
541 switch (tcode) {
542 case TCODE_WRITE_QUADLET_REQUEST:
543 case TCODE_READ_QUADLET_RESPONSE:
544 p.header[3] = (__force __u32) buffer[3];
545 p.header_length = 16;
546 p.payload_length = 0;
547 break;
549 case TCODE_READ_BLOCK_REQUEST :
550 p.header[3] = cond_le32_to_cpu(buffer[3]);
551 p.header_length = 16;
552 p.payload_length = 0;
553 break;
555 case TCODE_WRITE_BLOCK_REQUEST:
556 case TCODE_READ_BLOCK_RESPONSE:
557 case TCODE_LOCK_REQUEST:
558 case TCODE_LOCK_RESPONSE:
559 p.header[3] = cond_le32_to_cpu(buffer[3]);
560 p.header_length = 16;
561 p.payload_length = p.header[3] >> 16;
562 break;
564 case TCODE_WRITE_RESPONSE:
565 case TCODE_READ_QUADLET_REQUEST:
566 case OHCI_TCODE_PHY_PACKET:
567 p.header_length = 12;
568 p.payload_length = 0;
569 break;
571 default:
572 /* FIXME: Stop context, discard everything, and restart? */
573 p.header_length = 0;
574 p.payload_length = 0;
577 p.payload = (void *) buffer + p.header_length;
579 /* FIXME: What to do about evt_* errors? */
580 length = (p.header_length + p.payload_length + 3) / 4;
581 status = cond_le32_to_cpu(buffer[length]);
582 evt = (status >> 16) & 0x1f;
584 p.ack = evt - 16;
585 p.speed = (status >> 21) & 0x7;
586 p.timestamp = status & 0xffff;
587 p.generation = ohci->request_generation;
589 log_ar_at_event('R', p.speed, p.header, evt);
592 * The OHCI bus reset handler synthesizes a phy packet with
593 * the new generation number when a bus reset happens (see
594 * section 8.4.2.3). This helps us determine when a request
595 * was received and make sure we send the response in the same
596 * generation. We only need this for requests; for responses
597 * we use the unique tlabel for finding the matching
598 * request.
600 * Alas some chips sometimes emit bus reset packets with a
601 * wrong generation. We set the correct generation for these
602 * at a slightly incorrect time (in bus_reset_tasklet).
604 if (evt == OHCI1394_evt_bus_reset) {
605 if (!ohci->bus_reset_packet_quirk)
606 ohci->request_generation = (p.header[2] >> 16) & 0xff;
607 } else if (ctx == &ohci->ar_request_ctx) {
608 fw_core_handle_request(&ohci->card, &p);
609 } else {
610 fw_core_handle_response(&ohci->card, &p);
613 return buffer + length + 1;
616 static void ar_context_tasklet(unsigned long data)
618 struct ar_context *ctx = (struct ar_context *)data;
619 struct fw_ohci *ohci = ctx->ohci;
620 struct ar_buffer *ab;
621 struct descriptor *d;
622 void *buffer, *end;
624 ab = ctx->current_buffer;
625 d = &ab->descriptor;
627 if (d->res_count == 0) {
628 size_t size, rest, offset;
629 dma_addr_t start_bus;
630 void *start;
633 * This descriptor is finished and we may have a
634 * packet split across this and the next buffer. We
635 * reuse the page for reassembling the split packet.
638 offset = offsetof(struct ar_buffer, data);
639 start = buffer = ab;
640 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
642 ab = ab->next;
643 d = &ab->descriptor;
644 size = buffer + PAGE_SIZE - ctx->pointer;
645 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
646 memmove(buffer, ctx->pointer, size);
647 memcpy(buffer + size, ab->data, rest);
648 ctx->current_buffer = ab;
649 ctx->pointer = (void *) ab->data + rest;
650 end = buffer + size + rest;
652 while (buffer < end)
653 buffer = handle_ar_packet(ctx, buffer);
655 dma_free_coherent(ohci->card.device, PAGE_SIZE,
656 start, start_bus);
657 ar_context_add_page(ctx);
658 } else {
659 buffer = ctx->pointer;
660 ctx->pointer = end =
661 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
663 while (buffer < end)
664 buffer = handle_ar_packet(ctx, buffer);
668 static int ar_context_init(struct ar_context *ctx,
669 struct fw_ohci *ohci, u32 regs)
671 struct ar_buffer ab;
673 ctx->regs = regs;
674 ctx->ohci = ohci;
675 ctx->last_buffer = &ab;
676 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
678 ar_context_add_page(ctx);
679 ar_context_add_page(ctx);
680 ctx->current_buffer = ab.next;
681 ctx->pointer = ctx->current_buffer->data;
683 return 0;
686 static void ar_context_run(struct ar_context *ctx)
688 struct ar_buffer *ab = ctx->current_buffer;
689 dma_addr_t ab_bus;
690 size_t offset;
692 offset = offsetof(struct ar_buffer, data);
693 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
695 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
696 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
697 flush_writes(ctx->ohci);
700 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
702 int b, key;
704 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
705 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
707 /* figure out which descriptor the branch address goes in */
708 if (z == 2 && (b == 3 || key == 2))
709 return d;
710 else
711 return d + z - 1;
714 static void context_tasklet(unsigned long data)
716 struct context *ctx = (struct context *) data;
717 struct descriptor *d, *last;
718 u32 address;
719 int z;
720 struct descriptor_buffer *desc;
722 desc = list_entry(ctx->buffer_list.next,
723 struct descriptor_buffer, list);
724 last = ctx->last;
725 while (last->branch_address != 0) {
726 struct descriptor_buffer *old_desc = desc;
727 address = le32_to_cpu(last->branch_address);
728 z = address & 0xf;
729 address &= ~0xf;
731 /* If the branch address points to a buffer outside of the
732 * current buffer, advance to the next buffer. */
733 if (address < desc->buffer_bus ||
734 address >= desc->buffer_bus + desc->used)
735 desc = list_entry(desc->list.next,
736 struct descriptor_buffer, list);
737 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
738 last = find_branch_descriptor(d, z);
740 if (!ctx->callback(ctx, d, last))
741 break;
743 if (old_desc != desc) {
744 /* If we've advanced to the next buffer, move the
745 * previous buffer to the free list. */
746 unsigned long flags;
747 old_desc->used = 0;
748 spin_lock_irqsave(&ctx->ohci->lock, flags);
749 list_move_tail(&old_desc->list, &ctx->buffer_list);
750 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
752 ctx->last = last;
757 * Allocate a new buffer and add it to the list of free buffers for this
758 * context. Must be called with ohci->lock held.
760 static int context_add_buffer(struct context *ctx)
762 struct descriptor_buffer *desc;
763 dma_addr_t uninitialized_var(bus_addr);
764 int offset;
767 * 16MB of descriptors should be far more than enough for any DMA
768 * program. This will catch run-away userspace or DoS attacks.
770 if (ctx->total_allocation >= 16*1024*1024)
771 return -ENOMEM;
773 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
774 &bus_addr, GFP_ATOMIC);
775 if (!desc)
776 return -ENOMEM;
778 offset = (void *)&desc->buffer - (void *)desc;
779 desc->buffer_size = PAGE_SIZE - offset;
780 desc->buffer_bus = bus_addr + offset;
781 desc->used = 0;
783 list_add_tail(&desc->list, &ctx->buffer_list);
784 ctx->total_allocation += PAGE_SIZE;
786 return 0;
789 static int context_init(struct context *ctx, struct fw_ohci *ohci,
790 u32 regs, descriptor_callback_t callback)
792 ctx->ohci = ohci;
793 ctx->regs = regs;
794 ctx->total_allocation = 0;
796 INIT_LIST_HEAD(&ctx->buffer_list);
797 if (context_add_buffer(ctx) < 0)
798 return -ENOMEM;
800 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
801 struct descriptor_buffer, list);
803 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
804 ctx->callback = callback;
807 * We put a dummy descriptor in the buffer that has a NULL
808 * branch address and looks like it's been sent. That way we
809 * have a descriptor to append DMA programs to.
811 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
812 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
813 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
814 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
815 ctx->last = ctx->buffer_tail->buffer;
816 ctx->prev = ctx->buffer_tail->buffer;
818 return 0;
821 static void context_release(struct context *ctx)
823 struct fw_card *card = &ctx->ohci->card;
824 struct descriptor_buffer *desc, *tmp;
826 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
827 dma_free_coherent(card->device, PAGE_SIZE, desc,
828 desc->buffer_bus -
829 ((void *)&desc->buffer - (void *)desc));
832 /* Must be called with ohci->lock held */
833 static struct descriptor *context_get_descriptors(struct context *ctx,
834 int z, dma_addr_t *d_bus)
836 struct descriptor *d = NULL;
837 struct descriptor_buffer *desc = ctx->buffer_tail;
839 if (z * sizeof(*d) > desc->buffer_size)
840 return NULL;
842 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
843 /* No room for the descriptor in this buffer, so advance to the
844 * next one. */
846 if (desc->list.next == &ctx->buffer_list) {
847 /* If there is no free buffer next in the list,
848 * allocate one. */
849 if (context_add_buffer(ctx) < 0)
850 return NULL;
852 desc = list_entry(desc->list.next,
853 struct descriptor_buffer, list);
854 ctx->buffer_tail = desc;
857 d = desc->buffer + desc->used / sizeof(*d);
858 memset(d, 0, z * sizeof(*d));
859 *d_bus = desc->buffer_bus + desc->used;
861 return d;
864 static void context_run(struct context *ctx, u32 extra)
866 struct fw_ohci *ohci = ctx->ohci;
868 reg_write(ohci, COMMAND_PTR(ctx->regs),
869 le32_to_cpu(ctx->last->branch_address));
870 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
871 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
872 flush_writes(ohci);
875 static void context_append(struct context *ctx,
876 struct descriptor *d, int z, int extra)
878 dma_addr_t d_bus;
879 struct descriptor_buffer *desc = ctx->buffer_tail;
881 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
883 desc->used += (z + extra) * sizeof(*d);
884 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
885 ctx->prev = find_branch_descriptor(d, z);
887 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
888 flush_writes(ctx->ohci);
891 static void context_stop(struct context *ctx)
893 u32 reg;
894 int i;
896 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
897 flush_writes(ctx->ohci);
899 for (i = 0; i < 10; i++) {
900 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
901 if ((reg & CONTEXT_ACTIVE) == 0)
902 return;
904 mdelay(1);
906 fw_error("Error: DMA context still active (0x%08x)\n", reg);
909 struct driver_data {
910 struct fw_packet *packet;
914 * This function apppends a packet to the DMA queue for transmission.
915 * Must always be called with the ochi->lock held to ensure proper
916 * generation handling and locking around packet queue manipulation.
918 static int at_context_queue_packet(struct context *ctx,
919 struct fw_packet *packet)
921 struct fw_ohci *ohci = ctx->ohci;
922 dma_addr_t d_bus, uninitialized_var(payload_bus);
923 struct driver_data *driver_data;
924 struct descriptor *d, *last;
925 __le32 *header;
926 int z, tcode;
927 u32 reg;
929 d = context_get_descriptors(ctx, 4, &d_bus);
930 if (d == NULL) {
931 packet->ack = RCODE_SEND_ERROR;
932 return -1;
935 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
936 d[0].res_count = cpu_to_le16(packet->timestamp);
939 * The DMA format for asyncronous link packets is different
940 * from the IEEE1394 layout, so shift the fields around
941 * accordingly. If header_length is 8, it's a PHY packet, to
942 * which we need to prepend an extra quadlet.
945 header = (__le32 *) &d[1];
946 switch (packet->header_length) {
947 case 16:
948 case 12:
949 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
950 (packet->speed << 16));
951 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
952 (packet->header[0] & 0xffff0000));
953 header[2] = cpu_to_le32(packet->header[2]);
955 tcode = (packet->header[0] >> 4) & 0x0f;
956 if (TCODE_IS_BLOCK_PACKET(tcode))
957 header[3] = cpu_to_le32(packet->header[3]);
958 else
959 header[3] = (__force __le32) packet->header[3];
961 d[0].req_count = cpu_to_le16(packet->header_length);
962 break;
964 case 8:
965 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
966 (packet->speed << 16));
967 header[1] = cpu_to_le32(packet->header[0]);
968 header[2] = cpu_to_le32(packet->header[1]);
969 d[0].req_count = cpu_to_le16(12);
970 break;
972 case 4:
973 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
974 (packet->speed << 16));
975 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
976 d[0].req_count = cpu_to_le16(8);
977 break;
979 default:
980 /* BUG(); */
981 packet->ack = RCODE_SEND_ERROR;
982 return -1;
985 driver_data = (struct driver_data *) &d[3];
986 driver_data->packet = packet;
987 packet->driver_data = driver_data;
989 if (packet->payload_length > 0) {
990 payload_bus =
991 dma_map_single(ohci->card.device, packet->payload,
992 packet->payload_length, DMA_TO_DEVICE);
993 if (dma_mapping_error(ohci->card.device, payload_bus)) {
994 packet->ack = RCODE_SEND_ERROR;
995 return -1;
997 packet->payload_bus = payload_bus;
999 d[2].req_count = cpu_to_le16(packet->payload_length);
1000 d[2].data_address = cpu_to_le32(payload_bus);
1001 last = &d[2];
1002 z = 3;
1003 } else {
1004 last = &d[0];
1005 z = 2;
1008 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1009 DESCRIPTOR_IRQ_ALWAYS |
1010 DESCRIPTOR_BRANCH_ALWAYS);
1013 * If the controller and packet generations don't match, we need to
1014 * bail out and try again. If IntEvent.busReset is set, the AT context
1015 * is halted, so appending to the context and trying to run it is
1016 * futile. Most controllers do the right thing and just flush the AT
1017 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1018 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1019 * up stalling out. So we just bail out in software and try again
1020 * later, and everyone is happy.
1021 * FIXME: Document how the locking works.
1023 if (ohci->generation != packet->generation ||
1024 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1025 if (packet->payload_length > 0)
1026 dma_unmap_single(ohci->card.device, payload_bus,
1027 packet->payload_length, DMA_TO_DEVICE);
1028 packet->ack = RCODE_GENERATION;
1029 return -1;
1032 context_append(ctx, d, z, 4 - z);
1034 /* If the context isn't already running, start it up. */
1035 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1036 if ((reg & CONTEXT_RUN) == 0)
1037 context_run(ctx, 0);
1039 return 0;
1042 static int handle_at_packet(struct context *context,
1043 struct descriptor *d,
1044 struct descriptor *last)
1046 struct driver_data *driver_data;
1047 struct fw_packet *packet;
1048 struct fw_ohci *ohci = context->ohci;
1049 int evt;
1051 if (last->transfer_status == 0)
1052 /* This descriptor isn't done yet, stop iteration. */
1053 return 0;
1055 driver_data = (struct driver_data *) &d[3];
1056 packet = driver_data->packet;
1057 if (packet == NULL)
1058 /* This packet was cancelled, just continue. */
1059 return 1;
1061 if (packet->payload_bus)
1062 dma_unmap_single(ohci->card.device, packet->payload_bus,
1063 packet->payload_length, DMA_TO_DEVICE);
1065 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1066 packet->timestamp = le16_to_cpu(last->res_count);
1068 log_ar_at_event('T', packet->speed, packet->header, evt);
1070 switch (evt) {
1071 case OHCI1394_evt_timeout:
1072 /* Async response transmit timed out. */
1073 packet->ack = RCODE_CANCELLED;
1074 break;
1076 case OHCI1394_evt_flushed:
1078 * The packet was flushed should give same error as
1079 * when we try to use a stale generation count.
1081 packet->ack = RCODE_GENERATION;
1082 break;
1084 case OHCI1394_evt_missing_ack:
1086 * Using a valid (current) generation count, but the
1087 * node is not on the bus or not sending acks.
1089 packet->ack = RCODE_NO_ACK;
1090 break;
1092 case ACK_COMPLETE + 0x10:
1093 case ACK_PENDING + 0x10:
1094 case ACK_BUSY_X + 0x10:
1095 case ACK_BUSY_A + 0x10:
1096 case ACK_BUSY_B + 0x10:
1097 case ACK_DATA_ERROR + 0x10:
1098 case ACK_TYPE_ERROR + 0x10:
1099 packet->ack = evt - 0x10;
1100 break;
1102 default:
1103 packet->ack = RCODE_SEND_ERROR;
1104 break;
1107 packet->callback(packet, &ohci->card, packet->ack);
1109 return 1;
1112 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1113 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1114 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1115 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1116 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1118 static void handle_local_rom(struct fw_ohci *ohci,
1119 struct fw_packet *packet, u32 csr)
1121 struct fw_packet response;
1122 int tcode, length, i;
1124 tcode = HEADER_GET_TCODE(packet->header[0]);
1125 if (TCODE_IS_BLOCK_PACKET(tcode))
1126 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1127 else
1128 length = 4;
1130 i = csr - CSR_CONFIG_ROM;
1131 if (i + length > CONFIG_ROM_SIZE) {
1132 fw_fill_response(&response, packet->header,
1133 RCODE_ADDRESS_ERROR, NULL, 0);
1134 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1135 fw_fill_response(&response, packet->header,
1136 RCODE_TYPE_ERROR, NULL, 0);
1137 } else {
1138 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1139 (void *) ohci->config_rom + i, length);
1142 fw_core_handle_response(&ohci->card, &response);
1145 static void handle_local_lock(struct fw_ohci *ohci,
1146 struct fw_packet *packet, u32 csr)
1148 struct fw_packet response;
1149 int tcode, length, ext_tcode, sel;
1150 __be32 *payload, lock_old;
1151 u32 lock_arg, lock_data;
1153 tcode = HEADER_GET_TCODE(packet->header[0]);
1154 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1155 payload = packet->payload;
1156 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1158 if (tcode == TCODE_LOCK_REQUEST &&
1159 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1160 lock_arg = be32_to_cpu(payload[0]);
1161 lock_data = be32_to_cpu(payload[1]);
1162 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1163 lock_arg = 0;
1164 lock_data = 0;
1165 } else {
1166 fw_fill_response(&response, packet->header,
1167 RCODE_TYPE_ERROR, NULL, 0);
1168 goto out;
1171 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1172 reg_write(ohci, OHCI1394_CSRData, lock_data);
1173 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1174 reg_write(ohci, OHCI1394_CSRControl, sel);
1176 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1177 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1178 else
1179 fw_notify("swap not done yet\n");
1181 fw_fill_response(&response, packet->header,
1182 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1183 out:
1184 fw_core_handle_response(&ohci->card, &response);
1187 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1189 u64 offset;
1190 u32 csr;
1192 if (ctx == &ctx->ohci->at_request_ctx) {
1193 packet->ack = ACK_PENDING;
1194 packet->callback(packet, &ctx->ohci->card, packet->ack);
1197 offset =
1198 ((unsigned long long)
1199 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1200 packet->header[2];
1201 csr = offset - CSR_REGISTER_BASE;
1203 /* Handle config rom reads. */
1204 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1205 handle_local_rom(ctx->ohci, packet, csr);
1206 else switch (csr) {
1207 case CSR_BUS_MANAGER_ID:
1208 case CSR_BANDWIDTH_AVAILABLE:
1209 case CSR_CHANNELS_AVAILABLE_HI:
1210 case CSR_CHANNELS_AVAILABLE_LO:
1211 handle_local_lock(ctx->ohci, packet, csr);
1212 break;
1213 default:
1214 if (ctx == &ctx->ohci->at_request_ctx)
1215 fw_core_handle_request(&ctx->ohci->card, packet);
1216 else
1217 fw_core_handle_response(&ctx->ohci->card, packet);
1218 break;
1221 if (ctx == &ctx->ohci->at_response_ctx) {
1222 packet->ack = ACK_COMPLETE;
1223 packet->callback(packet, &ctx->ohci->card, packet->ack);
1227 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1229 unsigned long flags;
1230 int ret;
1232 spin_lock_irqsave(&ctx->ohci->lock, flags);
1234 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1235 ctx->ohci->generation == packet->generation) {
1236 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1237 handle_local_request(ctx, packet);
1238 return;
1241 ret = at_context_queue_packet(ctx, packet);
1242 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1244 if (ret < 0)
1245 packet->callback(packet, &ctx->ohci->card, packet->ack);
1249 static void bus_reset_tasklet(unsigned long data)
1251 struct fw_ohci *ohci = (struct fw_ohci *)data;
1252 int self_id_count, i, j, reg;
1253 int generation, new_generation;
1254 unsigned long flags;
1255 void *free_rom = NULL;
1256 dma_addr_t free_rom_bus = 0;
1258 reg = reg_read(ohci, OHCI1394_NodeID);
1259 if (!(reg & OHCI1394_NodeID_idValid)) {
1260 fw_notify("node ID not valid, new bus reset in progress\n");
1261 return;
1263 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1264 fw_notify("malconfigured bus\n");
1265 return;
1267 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1268 OHCI1394_NodeID_nodeNumber);
1270 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1271 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1272 fw_notify("inconsistent self IDs\n");
1273 return;
1276 * The count in the SelfIDCount register is the number of
1277 * bytes in the self ID receive buffer. Since we also receive
1278 * the inverted quadlets and a header quadlet, we shift one
1279 * bit extra to get the actual number of self IDs.
1281 self_id_count = (reg >> 3) & 0x3ff;
1282 if (self_id_count == 0) {
1283 fw_notify("inconsistent self IDs\n");
1284 return;
1286 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1287 rmb();
1289 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1290 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1291 fw_notify("inconsistent self IDs\n");
1292 return;
1294 ohci->self_id_buffer[j] =
1295 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1297 rmb();
1300 * Check the consistency of the self IDs we just read. The
1301 * problem we face is that a new bus reset can start while we
1302 * read out the self IDs from the DMA buffer. If this happens,
1303 * the DMA buffer will be overwritten with new self IDs and we
1304 * will read out inconsistent data. The OHCI specification
1305 * (section 11.2) recommends a technique similar to
1306 * linux/seqlock.h, where we remember the generation of the
1307 * self IDs in the buffer before reading them out and compare
1308 * it to the current generation after reading them out. If
1309 * the two generations match we know we have a consistent set
1310 * of self IDs.
1313 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1314 if (new_generation != generation) {
1315 fw_notify("recursive bus reset detected, "
1316 "discarding self ids\n");
1317 return;
1320 /* FIXME: Document how the locking works. */
1321 spin_lock_irqsave(&ohci->lock, flags);
1323 ohci->generation = generation;
1324 context_stop(&ohci->at_request_ctx);
1325 context_stop(&ohci->at_response_ctx);
1326 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1328 if (ohci->bus_reset_packet_quirk)
1329 ohci->request_generation = generation;
1332 * This next bit is unrelated to the AT context stuff but we
1333 * have to do it under the spinlock also. If a new config rom
1334 * was set up before this reset, the old one is now no longer
1335 * in use and we can free it. Update the config rom pointers
1336 * to point to the current config rom and clear the
1337 * next_config_rom pointer so a new udpate can take place.
1340 if (ohci->next_config_rom != NULL) {
1341 if (ohci->next_config_rom != ohci->config_rom) {
1342 free_rom = ohci->config_rom;
1343 free_rom_bus = ohci->config_rom_bus;
1345 ohci->config_rom = ohci->next_config_rom;
1346 ohci->config_rom_bus = ohci->next_config_rom_bus;
1347 ohci->next_config_rom = NULL;
1350 * Restore config_rom image and manually update
1351 * config_rom registers. Writing the header quadlet
1352 * will indicate that the config rom is ready, so we
1353 * do that last.
1355 reg_write(ohci, OHCI1394_BusOptions,
1356 be32_to_cpu(ohci->config_rom[2]));
1357 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1358 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1361 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1362 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1363 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1364 #endif
1366 spin_unlock_irqrestore(&ohci->lock, flags);
1368 if (free_rom)
1369 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1370 free_rom, free_rom_bus);
1372 log_selfids(ohci->node_id, generation,
1373 self_id_count, ohci->self_id_buffer);
1375 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1376 self_id_count, ohci->self_id_buffer);
1379 static irqreturn_t irq_handler(int irq, void *data)
1381 struct fw_ohci *ohci = data;
1382 u32 event, iso_event, cycle_time;
1383 int i;
1385 event = reg_read(ohci, OHCI1394_IntEventClear);
1387 if (!event || !~event)
1388 return IRQ_NONE;
1390 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1391 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1392 log_irqs(event);
1394 if (event & OHCI1394_selfIDComplete)
1395 tasklet_schedule(&ohci->bus_reset_tasklet);
1397 if (event & OHCI1394_RQPkt)
1398 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1400 if (event & OHCI1394_RSPkt)
1401 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1403 if (event & OHCI1394_reqTxComplete)
1404 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1406 if (event & OHCI1394_respTxComplete)
1407 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1409 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1410 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1412 while (iso_event) {
1413 i = ffs(iso_event) - 1;
1414 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1415 iso_event &= ~(1 << i);
1418 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1419 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1421 while (iso_event) {
1422 i = ffs(iso_event) - 1;
1423 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1424 iso_event &= ~(1 << i);
1427 if (unlikely(event & OHCI1394_regAccessFail))
1428 fw_error("Register access failure - "
1429 "please notify linux1394-devel@lists.sf.net\n");
1431 if (unlikely(event & OHCI1394_postedWriteErr))
1432 fw_error("PCI posted write error\n");
1434 if (unlikely(event & OHCI1394_cycleTooLong)) {
1435 if (printk_ratelimit())
1436 fw_notify("isochronous cycle too long\n");
1437 reg_write(ohci, OHCI1394_LinkControlSet,
1438 OHCI1394_LinkControl_cycleMaster);
1441 if (event & OHCI1394_cycle64Seconds) {
1442 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1443 if ((cycle_time & 0x80000000) == 0)
1444 atomic_inc(&ohci->bus_seconds);
1447 return IRQ_HANDLED;
1450 static int software_reset(struct fw_ohci *ohci)
1452 int i;
1454 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1456 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1457 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1458 OHCI1394_HCControl_softReset) == 0)
1459 return 0;
1460 msleep(1);
1463 return -EBUSY;
1466 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1468 struct fw_ohci *ohci = fw_ohci(card);
1469 struct pci_dev *dev = to_pci_dev(card->device);
1470 u32 lps;
1471 int i;
1473 if (software_reset(ohci)) {
1474 fw_error("Failed to reset ohci card.\n");
1475 return -EBUSY;
1479 * Now enable LPS, which we need in order to start accessing
1480 * most of the registers. In fact, on some cards (ALI M5251),
1481 * accessing registers in the SClk domain without LPS enabled
1482 * will lock up the machine. Wait 50msec to make sure we have
1483 * full link enabled. However, with some cards (well, at least
1484 * a JMicron PCIe card), we have to try again sometimes.
1486 reg_write(ohci, OHCI1394_HCControlSet,
1487 OHCI1394_HCControl_LPS |
1488 OHCI1394_HCControl_postedWriteEnable);
1489 flush_writes(ohci);
1491 for (lps = 0, i = 0; !lps && i < 3; i++) {
1492 msleep(50);
1493 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1494 OHCI1394_HCControl_LPS;
1497 if (!lps) {
1498 fw_error("Failed to set Link Power Status\n");
1499 return -EIO;
1502 reg_write(ohci, OHCI1394_HCControlClear,
1503 OHCI1394_HCControl_noByteSwapData);
1505 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1506 reg_write(ohci, OHCI1394_LinkControlClear,
1507 OHCI1394_LinkControl_rcvPhyPkt);
1508 reg_write(ohci, OHCI1394_LinkControlSet,
1509 OHCI1394_LinkControl_rcvSelfID |
1510 OHCI1394_LinkControl_cycleTimerEnable |
1511 OHCI1394_LinkControl_cycleMaster);
1513 reg_write(ohci, OHCI1394_ATRetries,
1514 OHCI1394_MAX_AT_REQ_RETRIES |
1515 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1516 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1518 ar_context_run(&ohci->ar_request_ctx);
1519 ar_context_run(&ohci->ar_response_ctx);
1521 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1522 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1523 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1524 reg_write(ohci, OHCI1394_IntMaskSet,
1525 OHCI1394_selfIDComplete |
1526 OHCI1394_RQPkt | OHCI1394_RSPkt |
1527 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1528 OHCI1394_isochRx | OHCI1394_isochTx |
1529 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1530 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1531 OHCI1394_masterIntEnable);
1532 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1533 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1535 /* Activate link_on bit and contender bit in our self ID packets.*/
1536 if (ohci_update_phy_reg(card, 4, 0,
1537 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1538 return -EIO;
1541 * When the link is not yet enabled, the atomic config rom
1542 * update mechanism described below in ohci_set_config_rom()
1543 * is not active. We have to update ConfigRomHeader and
1544 * BusOptions manually, and the write to ConfigROMmap takes
1545 * effect immediately. We tie this to the enabling of the
1546 * link, so we have a valid config rom before enabling - the
1547 * OHCI requires that ConfigROMhdr and BusOptions have valid
1548 * values before enabling.
1550 * However, when the ConfigROMmap is written, some controllers
1551 * always read back quadlets 0 and 2 from the config rom to
1552 * the ConfigRomHeader and BusOptions registers on bus reset.
1553 * They shouldn't do that in this initial case where the link
1554 * isn't enabled. This means we have to use the same
1555 * workaround here, setting the bus header to 0 and then write
1556 * the right values in the bus reset tasklet.
1559 if (config_rom) {
1560 ohci->next_config_rom =
1561 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1562 &ohci->next_config_rom_bus,
1563 GFP_KERNEL);
1564 if (ohci->next_config_rom == NULL)
1565 return -ENOMEM;
1567 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1568 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1569 } else {
1571 * In the suspend case, config_rom is NULL, which
1572 * means that we just reuse the old config rom.
1574 ohci->next_config_rom = ohci->config_rom;
1575 ohci->next_config_rom_bus = ohci->config_rom_bus;
1578 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1579 ohci->next_config_rom[0] = 0;
1580 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1581 reg_write(ohci, OHCI1394_BusOptions,
1582 be32_to_cpu(ohci->next_config_rom[2]));
1583 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1585 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1587 if (request_irq(dev->irq, irq_handler,
1588 IRQF_SHARED, ohci_driver_name, ohci)) {
1589 fw_error("Failed to allocate shared interrupt %d.\n",
1590 dev->irq);
1591 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1592 ohci->config_rom, ohci->config_rom_bus);
1593 return -EIO;
1596 reg_write(ohci, OHCI1394_HCControlSet,
1597 OHCI1394_HCControl_linkEnable |
1598 OHCI1394_HCControl_BIBimageValid);
1599 flush_writes(ohci);
1602 * We are ready to go, initiate bus reset to finish the
1603 * initialization.
1606 fw_core_initiate_bus_reset(&ohci->card, 1);
1608 return 0;
1611 static int ohci_set_config_rom(struct fw_card *card,
1612 u32 *config_rom, size_t length)
1614 struct fw_ohci *ohci;
1615 unsigned long flags;
1616 int ret = -EBUSY;
1617 __be32 *next_config_rom;
1618 dma_addr_t uninitialized_var(next_config_rom_bus);
1620 ohci = fw_ohci(card);
1623 * When the OHCI controller is enabled, the config rom update
1624 * mechanism is a bit tricky, but easy enough to use. See
1625 * section 5.5.6 in the OHCI specification.
1627 * The OHCI controller caches the new config rom address in a
1628 * shadow register (ConfigROMmapNext) and needs a bus reset
1629 * for the changes to take place. When the bus reset is
1630 * detected, the controller loads the new values for the
1631 * ConfigRomHeader and BusOptions registers from the specified
1632 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1633 * shadow register. All automatically and atomically.
1635 * Now, there's a twist to this story. The automatic load of
1636 * ConfigRomHeader and BusOptions doesn't honor the
1637 * noByteSwapData bit, so with a be32 config rom, the
1638 * controller will load be32 values in to these registers
1639 * during the atomic update, even on litte endian
1640 * architectures. The workaround we use is to put a 0 in the
1641 * header quadlet; 0 is endian agnostic and means that the
1642 * config rom isn't ready yet. In the bus reset tasklet we
1643 * then set up the real values for the two registers.
1645 * We use ohci->lock to avoid racing with the code that sets
1646 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1649 next_config_rom =
1650 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1651 &next_config_rom_bus, GFP_KERNEL);
1652 if (next_config_rom == NULL)
1653 return -ENOMEM;
1655 spin_lock_irqsave(&ohci->lock, flags);
1657 if (ohci->next_config_rom == NULL) {
1658 ohci->next_config_rom = next_config_rom;
1659 ohci->next_config_rom_bus = next_config_rom_bus;
1661 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1662 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1663 length * 4);
1665 ohci->next_header = config_rom[0];
1666 ohci->next_config_rom[0] = 0;
1668 reg_write(ohci, OHCI1394_ConfigROMmap,
1669 ohci->next_config_rom_bus);
1670 ret = 0;
1673 spin_unlock_irqrestore(&ohci->lock, flags);
1676 * Now initiate a bus reset to have the changes take
1677 * effect. We clean up the old config rom memory and DMA
1678 * mappings in the bus reset tasklet, since the OHCI
1679 * controller could need to access it before the bus reset
1680 * takes effect.
1682 if (ret == 0)
1683 fw_core_initiate_bus_reset(&ohci->card, 1);
1684 else
1685 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1686 next_config_rom, next_config_rom_bus);
1688 return ret;
1691 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1693 struct fw_ohci *ohci = fw_ohci(card);
1695 at_context_transmit(&ohci->at_request_ctx, packet);
1698 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1700 struct fw_ohci *ohci = fw_ohci(card);
1702 at_context_transmit(&ohci->at_response_ctx, packet);
1705 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1707 struct fw_ohci *ohci = fw_ohci(card);
1708 struct context *ctx = &ohci->at_request_ctx;
1709 struct driver_data *driver_data = packet->driver_data;
1710 int ret = -ENOENT;
1712 tasklet_disable(&ctx->tasklet);
1714 if (packet->ack != 0)
1715 goto out;
1717 if (packet->payload_bus)
1718 dma_unmap_single(ohci->card.device, packet->payload_bus,
1719 packet->payload_length, DMA_TO_DEVICE);
1721 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1722 driver_data->packet = NULL;
1723 packet->ack = RCODE_CANCELLED;
1724 packet->callback(packet, &ohci->card, packet->ack);
1725 ret = 0;
1726 out:
1727 tasklet_enable(&ctx->tasklet);
1729 return ret;
1732 static int ohci_enable_phys_dma(struct fw_card *card,
1733 int node_id, int generation)
1735 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1736 return 0;
1737 #else
1738 struct fw_ohci *ohci = fw_ohci(card);
1739 unsigned long flags;
1740 int n, ret = 0;
1743 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1744 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1747 spin_lock_irqsave(&ohci->lock, flags);
1749 if (ohci->generation != generation) {
1750 ret = -ESTALE;
1751 goto out;
1755 * Note, if the node ID contains a non-local bus ID, physical DMA is
1756 * enabled for _all_ nodes on remote buses.
1759 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1760 if (n < 32)
1761 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1762 else
1763 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1765 flush_writes(ohci);
1766 out:
1767 spin_unlock_irqrestore(&ohci->lock, flags);
1769 return ret;
1770 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1773 static u64 ohci_get_bus_time(struct fw_card *card)
1775 struct fw_ohci *ohci = fw_ohci(card);
1776 u32 cycle_time;
1777 u64 bus_time;
1779 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1780 bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1782 return bus_time;
1785 static void copy_iso_headers(struct iso_context *ctx, void *p)
1787 int i = ctx->header_length;
1789 if (i + ctx->base.header_size > PAGE_SIZE)
1790 return;
1793 * The iso header is byteswapped to little endian by
1794 * the controller, but the remaining header quadlets
1795 * are big endian. We want to present all the headers
1796 * as big endian, so we have to swap the first quadlet.
1798 if (ctx->base.header_size > 0)
1799 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1800 if (ctx->base.header_size > 4)
1801 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1802 if (ctx->base.header_size > 8)
1803 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1804 ctx->header_length += ctx->base.header_size;
1807 static int handle_ir_dualbuffer_packet(struct context *context,
1808 struct descriptor *d,
1809 struct descriptor *last)
1811 struct iso_context *ctx =
1812 container_of(context, struct iso_context, context);
1813 struct db_descriptor *db = (struct db_descriptor *) d;
1814 __le32 *ir_header;
1815 size_t header_length;
1816 void *p, *end;
1818 if (db->first_res_count != 0 && db->second_res_count != 0) {
1819 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1820 /* This descriptor isn't done yet, stop iteration. */
1821 return 0;
1823 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1826 header_length = le16_to_cpu(db->first_req_count) -
1827 le16_to_cpu(db->first_res_count);
1829 p = db + 1;
1830 end = p + header_length;
1831 while (p < end) {
1832 copy_iso_headers(ctx, p);
1833 ctx->excess_bytes +=
1834 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1835 p += max(ctx->base.header_size, (size_t)8);
1838 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1839 le16_to_cpu(db->second_res_count);
1841 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1842 ir_header = (__le32 *) (db + 1);
1843 ctx->base.callback(&ctx->base,
1844 le32_to_cpu(ir_header[0]) & 0xffff,
1845 ctx->header_length, ctx->header,
1846 ctx->base.callback_data);
1847 ctx->header_length = 0;
1850 return 1;
1853 static int handle_ir_packet_per_buffer(struct context *context,
1854 struct descriptor *d,
1855 struct descriptor *last)
1857 struct iso_context *ctx =
1858 container_of(context, struct iso_context, context);
1859 struct descriptor *pd;
1860 __le32 *ir_header;
1861 void *p;
1863 for (pd = d; pd <= last; pd++) {
1864 if (pd->transfer_status)
1865 break;
1867 if (pd > last)
1868 /* Descriptor(s) not done yet, stop iteration */
1869 return 0;
1871 p = last + 1;
1872 copy_iso_headers(ctx, p);
1874 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1875 ir_header = (__le32 *) p;
1876 ctx->base.callback(&ctx->base,
1877 le32_to_cpu(ir_header[0]) & 0xffff,
1878 ctx->header_length, ctx->header,
1879 ctx->base.callback_data);
1880 ctx->header_length = 0;
1883 return 1;
1886 static int handle_it_packet(struct context *context,
1887 struct descriptor *d,
1888 struct descriptor *last)
1890 struct iso_context *ctx =
1891 container_of(context, struct iso_context, context);
1893 if (last->transfer_status == 0)
1894 /* This descriptor isn't done yet, stop iteration. */
1895 return 0;
1897 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1898 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1899 0, NULL, ctx->base.callback_data);
1901 return 1;
1904 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1905 int type, int channel, size_t header_size)
1907 struct fw_ohci *ohci = fw_ohci(card);
1908 struct iso_context *ctx, *list;
1909 descriptor_callback_t callback;
1910 u64 *channels, dont_care = ~0ULL;
1911 u32 *mask, regs;
1912 unsigned long flags;
1913 int index, ret = -ENOMEM;
1915 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1916 channels = &dont_care;
1917 mask = &ohci->it_context_mask;
1918 list = ohci->it_context_list;
1919 callback = handle_it_packet;
1920 } else {
1921 channels = &ohci->ir_context_channels;
1922 mask = &ohci->ir_context_mask;
1923 list = ohci->ir_context_list;
1924 if (ohci->use_dualbuffer)
1925 callback = handle_ir_dualbuffer_packet;
1926 else
1927 callback = handle_ir_packet_per_buffer;
1930 spin_lock_irqsave(&ohci->lock, flags);
1931 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1932 if (index >= 0) {
1933 *channels &= ~(1ULL << channel);
1934 *mask &= ~(1 << index);
1936 spin_unlock_irqrestore(&ohci->lock, flags);
1938 if (index < 0)
1939 return ERR_PTR(-EBUSY);
1941 if (type == FW_ISO_CONTEXT_TRANSMIT)
1942 regs = OHCI1394_IsoXmitContextBase(index);
1943 else
1944 regs = OHCI1394_IsoRcvContextBase(index);
1946 ctx = &list[index];
1947 memset(ctx, 0, sizeof(*ctx));
1948 ctx->header_length = 0;
1949 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1950 if (ctx->header == NULL)
1951 goto out;
1953 ret = context_init(&ctx->context, ohci, regs, callback);
1954 if (ret < 0)
1955 goto out_with_header;
1957 return &ctx->base;
1959 out_with_header:
1960 free_page((unsigned long)ctx->header);
1961 out:
1962 spin_lock_irqsave(&ohci->lock, flags);
1963 *mask |= 1 << index;
1964 spin_unlock_irqrestore(&ohci->lock, flags);
1966 return ERR_PTR(ret);
1969 static int ohci_start_iso(struct fw_iso_context *base,
1970 s32 cycle, u32 sync, u32 tags)
1972 struct iso_context *ctx = container_of(base, struct iso_context, base);
1973 struct fw_ohci *ohci = ctx->context.ohci;
1974 u32 control, match;
1975 int index;
1977 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1978 index = ctx - ohci->it_context_list;
1979 match = 0;
1980 if (cycle >= 0)
1981 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1982 (cycle & 0x7fff) << 16;
1984 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1985 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1986 context_run(&ctx->context, match);
1987 } else {
1988 index = ctx - ohci->ir_context_list;
1989 control = IR_CONTEXT_ISOCH_HEADER;
1990 if (ohci->use_dualbuffer)
1991 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1992 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1993 if (cycle >= 0) {
1994 match |= (cycle & 0x07fff) << 12;
1995 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1998 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1999 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2000 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2001 context_run(&ctx->context, control);
2004 return 0;
2007 static int ohci_stop_iso(struct fw_iso_context *base)
2009 struct fw_ohci *ohci = fw_ohci(base->card);
2010 struct iso_context *ctx = container_of(base, struct iso_context, base);
2011 int index;
2013 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2014 index = ctx - ohci->it_context_list;
2015 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2016 } else {
2017 index = ctx - ohci->ir_context_list;
2018 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2020 flush_writes(ohci);
2021 context_stop(&ctx->context);
2023 return 0;
2026 static void ohci_free_iso_context(struct fw_iso_context *base)
2028 struct fw_ohci *ohci = fw_ohci(base->card);
2029 struct iso_context *ctx = container_of(base, struct iso_context, base);
2030 unsigned long flags;
2031 int index;
2033 ohci_stop_iso(base);
2034 context_release(&ctx->context);
2035 free_page((unsigned long)ctx->header);
2037 spin_lock_irqsave(&ohci->lock, flags);
2039 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2040 index = ctx - ohci->it_context_list;
2041 ohci->it_context_mask |= 1 << index;
2042 } else {
2043 index = ctx - ohci->ir_context_list;
2044 ohci->ir_context_mask |= 1 << index;
2045 ohci->ir_context_channels |= 1ULL << base->channel;
2048 spin_unlock_irqrestore(&ohci->lock, flags);
2051 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2052 struct fw_iso_packet *packet,
2053 struct fw_iso_buffer *buffer,
2054 unsigned long payload)
2056 struct iso_context *ctx = container_of(base, struct iso_context, base);
2057 struct descriptor *d, *last, *pd;
2058 struct fw_iso_packet *p;
2059 __le32 *header;
2060 dma_addr_t d_bus, page_bus;
2061 u32 z, header_z, payload_z, irq;
2062 u32 payload_index, payload_end_index, next_page_index;
2063 int page, end_page, i, length, offset;
2066 * FIXME: Cycle lost behavior should be configurable: lose
2067 * packet, retransmit or terminate..
2070 p = packet;
2071 payload_index = payload;
2073 if (p->skip)
2074 z = 1;
2075 else
2076 z = 2;
2077 if (p->header_length > 0)
2078 z++;
2080 /* Determine the first page the payload isn't contained in. */
2081 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2082 if (p->payload_length > 0)
2083 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2084 else
2085 payload_z = 0;
2087 z += payload_z;
2089 /* Get header size in number of descriptors. */
2090 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2092 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2093 if (d == NULL)
2094 return -ENOMEM;
2096 if (!p->skip) {
2097 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2098 d[0].req_count = cpu_to_le16(8);
2100 header = (__le32 *) &d[1];
2101 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2102 IT_HEADER_TAG(p->tag) |
2103 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2104 IT_HEADER_CHANNEL(ctx->base.channel) |
2105 IT_HEADER_SPEED(ctx->base.speed));
2106 header[1] =
2107 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2108 p->payload_length));
2111 if (p->header_length > 0) {
2112 d[2].req_count = cpu_to_le16(p->header_length);
2113 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2114 memcpy(&d[z], p->header, p->header_length);
2117 pd = d + z - payload_z;
2118 payload_end_index = payload_index + p->payload_length;
2119 for (i = 0; i < payload_z; i++) {
2120 page = payload_index >> PAGE_SHIFT;
2121 offset = payload_index & ~PAGE_MASK;
2122 next_page_index = (page + 1) << PAGE_SHIFT;
2123 length =
2124 min(next_page_index, payload_end_index) - payload_index;
2125 pd[i].req_count = cpu_to_le16(length);
2127 page_bus = page_private(buffer->pages[page]);
2128 pd[i].data_address = cpu_to_le32(page_bus + offset);
2130 payload_index += length;
2133 if (p->interrupt)
2134 irq = DESCRIPTOR_IRQ_ALWAYS;
2135 else
2136 irq = DESCRIPTOR_NO_IRQ;
2138 last = z == 2 ? d : d + z - 1;
2139 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2140 DESCRIPTOR_STATUS |
2141 DESCRIPTOR_BRANCH_ALWAYS |
2142 irq);
2144 context_append(&ctx->context, d, z, header_z);
2146 return 0;
2149 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2150 struct fw_iso_packet *packet,
2151 struct fw_iso_buffer *buffer,
2152 unsigned long payload)
2154 struct iso_context *ctx = container_of(base, struct iso_context, base);
2155 struct db_descriptor *db = NULL;
2156 struct descriptor *d;
2157 struct fw_iso_packet *p;
2158 dma_addr_t d_bus, page_bus;
2159 u32 z, header_z, length, rest;
2160 int page, offset, packet_count, header_size;
2163 * FIXME: Cycle lost behavior should be configurable: lose
2164 * packet, retransmit or terminate..
2167 p = packet;
2168 z = 2;
2171 * The OHCI controller puts the isochronous header and trailer in the
2172 * buffer, so we need at least 8 bytes.
2174 packet_count = p->header_length / ctx->base.header_size;
2175 header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2177 /* Get header size in number of descriptors. */
2178 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2179 page = payload >> PAGE_SHIFT;
2180 offset = payload & ~PAGE_MASK;
2181 rest = p->payload_length;
2183 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2184 while (rest > 0) {
2185 d = context_get_descriptors(&ctx->context,
2186 z + header_z, &d_bus);
2187 if (d == NULL)
2188 return -ENOMEM;
2190 db = (struct db_descriptor *) d;
2191 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2192 DESCRIPTOR_BRANCH_ALWAYS);
2193 db->first_size =
2194 cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2195 if (p->skip && rest == p->payload_length) {
2196 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2197 db->first_req_count = db->first_size;
2198 } else {
2199 db->first_req_count = cpu_to_le16(header_size);
2201 db->first_res_count = db->first_req_count;
2202 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2204 if (p->skip && rest == p->payload_length)
2205 length = 4;
2206 else if (offset + rest < PAGE_SIZE)
2207 length = rest;
2208 else
2209 length = PAGE_SIZE - offset;
2211 db->second_req_count = cpu_to_le16(length);
2212 db->second_res_count = db->second_req_count;
2213 page_bus = page_private(buffer->pages[page]);
2214 db->second_buffer = cpu_to_le32(page_bus + offset);
2216 if (p->interrupt && length == rest)
2217 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2219 context_append(&ctx->context, d, z, header_z);
2220 offset = (offset + length) & ~PAGE_MASK;
2221 rest -= length;
2222 if (offset == 0)
2223 page++;
2226 return 0;
2229 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2230 struct fw_iso_packet *packet,
2231 struct fw_iso_buffer *buffer,
2232 unsigned long payload)
2234 struct iso_context *ctx = container_of(base, struct iso_context, base);
2235 struct descriptor *d = NULL, *pd = NULL;
2236 struct fw_iso_packet *p = packet;
2237 dma_addr_t d_bus, page_bus;
2238 u32 z, header_z, rest;
2239 int i, j, length;
2240 int page, offset, packet_count, header_size, payload_per_buffer;
2243 * The OHCI controller puts the isochronous header and trailer in the
2244 * buffer, so we need at least 8 bytes.
2246 packet_count = p->header_length / ctx->base.header_size;
2247 header_size = max(ctx->base.header_size, (size_t)8);
2249 /* Get header size in number of descriptors. */
2250 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2251 page = payload >> PAGE_SHIFT;
2252 offset = payload & ~PAGE_MASK;
2253 payload_per_buffer = p->payload_length / packet_count;
2255 for (i = 0; i < packet_count; i++) {
2256 /* d points to the header descriptor */
2257 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2258 d = context_get_descriptors(&ctx->context,
2259 z + header_z, &d_bus);
2260 if (d == NULL)
2261 return -ENOMEM;
2263 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2264 DESCRIPTOR_INPUT_MORE);
2265 if (p->skip && i == 0)
2266 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2267 d->req_count = cpu_to_le16(header_size);
2268 d->res_count = d->req_count;
2269 d->transfer_status = 0;
2270 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2272 rest = payload_per_buffer;
2273 for (j = 1; j < z; j++) {
2274 pd = d + j;
2275 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2276 DESCRIPTOR_INPUT_MORE);
2278 if (offset + rest < PAGE_SIZE)
2279 length = rest;
2280 else
2281 length = PAGE_SIZE - offset;
2282 pd->req_count = cpu_to_le16(length);
2283 pd->res_count = pd->req_count;
2284 pd->transfer_status = 0;
2286 page_bus = page_private(buffer->pages[page]);
2287 pd->data_address = cpu_to_le32(page_bus + offset);
2289 offset = (offset + length) & ~PAGE_MASK;
2290 rest -= length;
2291 if (offset == 0)
2292 page++;
2294 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2295 DESCRIPTOR_INPUT_LAST |
2296 DESCRIPTOR_BRANCH_ALWAYS);
2297 if (p->interrupt && i == packet_count - 1)
2298 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2300 context_append(&ctx->context, d, z, header_z);
2303 return 0;
2306 static int ohci_queue_iso(struct fw_iso_context *base,
2307 struct fw_iso_packet *packet,
2308 struct fw_iso_buffer *buffer,
2309 unsigned long payload)
2311 struct iso_context *ctx = container_of(base, struct iso_context, base);
2312 unsigned long flags;
2313 int ret;
2315 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2316 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2317 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2318 else if (ctx->context.ohci->use_dualbuffer)
2319 ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2320 buffer, payload);
2321 else
2322 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2323 buffer, payload);
2324 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2326 return ret;
2329 static const struct fw_card_driver ohci_driver = {
2330 .enable = ohci_enable,
2331 .update_phy_reg = ohci_update_phy_reg,
2332 .set_config_rom = ohci_set_config_rom,
2333 .send_request = ohci_send_request,
2334 .send_response = ohci_send_response,
2335 .cancel_packet = ohci_cancel_packet,
2336 .enable_phys_dma = ohci_enable_phys_dma,
2337 .get_bus_time = ohci_get_bus_time,
2339 .allocate_iso_context = ohci_allocate_iso_context,
2340 .free_iso_context = ohci_free_iso_context,
2341 .queue_iso = ohci_queue_iso,
2342 .start_iso = ohci_start_iso,
2343 .stop_iso = ohci_stop_iso,
2346 #ifdef CONFIG_PPC_PMAC
2347 static void ohci_pmac_on(struct pci_dev *dev)
2349 if (machine_is(powermac)) {
2350 struct device_node *ofn = pci_device_to_OF_node(dev);
2352 if (ofn) {
2353 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2354 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2359 static void ohci_pmac_off(struct pci_dev *dev)
2361 if (machine_is(powermac)) {
2362 struct device_node *ofn = pci_device_to_OF_node(dev);
2364 if (ofn) {
2365 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2366 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2370 #else
2371 #define ohci_pmac_on(dev)
2372 #define ohci_pmac_off(dev)
2373 #endif /* CONFIG_PPC_PMAC */
2375 static int __devinit pci_probe(struct pci_dev *dev,
2376 const struct pci_device_id *ent)
2378 struct fw_ohci *ohci;
2379 u32 bus_options, max_receive, link_speed, version;
2380 u64 guid;
2381 int err;
2382 size_t size;
2384 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2385 if (ohci == NULL) {
2386 err = -ENOMEM;
2387 goto fail;
2390 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2392 ohci_pmac_on(dev);
2394 err = pci_enable_device(dev);
2395 if (err) {
2396 fw_error("Failed to enable OHCI hardware\n");
2397 goto fail_free;
2400 pci_set_master(dev);
2401 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2402 pci_set_drvdata(dev, ohci);
2404 spin_lock_init(&ohci->lock);
2406 tasklet_init(&ohci->bus_reset_tasklet,
2407 bus_reset_tasklet, (unsigned long)ohci);
2409 err = pci_request_region(dev, 0, ohci_driver_name);
2410 if (err) {
2411 fw_error("MMIO resource unavailable\n");
2412 goto fail_disable;
2415 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2416 if (ohci->registers == NULL) {
2417 fw_error("Failed to remap registers\n");
2418 err = -ENXIO;
2419 goto fail_iomem;
2422 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2423 ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2425 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2426 #if !defined(CONFIG_X86_32)
2427 /* dual-buffer mode is broken with descriptor addresses above 2G */
2428 if (dev->vendor == PCI_VENDOR_ID_TI &&
2429 dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2430 ohci->use_dualbuffer = false;
2431 #endif
2433 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2434 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2435 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2436 #endif
2437 ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2439 ar_context_init(&ohci->ar_request_ctx, ohci,
2440 OHCI1394_AsReqRcvContextControlSet);
2442 ar_context_init(&ohci->ar_response_ctx, ohci,
2443 OHCI1394_AsRspRcvContextControlSet);
2445 context_init(&ohci->at_request_ctx, ohci,
2446 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2448 context_init(&ohci->at_response_ctx, ohci,
2449 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2451 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2452 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2453 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2454 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2455 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2457 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2458 ohci->ir_context_channels = ~0ULL;
2459 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2460 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2461 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2462 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2464 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2465 err = -ENOMEM;
2466 goto fail_contexts;
2469 /* self-id dma buffer allocation */
2470 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2471 SELF_ID_BUF_SIZE,
2472 &ohci->self_id_bus,
2473 GFP_KERNEL);
2474 if (ohci->self_id_cpu == NULL) {
2475 err = -ENOMEM;
2476 goto fail_contexts;
2479 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2480 max_receive = (bus_options >> 12) & 0xf;
2481 link_speed = bus_options & 0x7;
2482 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2483 reg_read(ohci, OHCI1394_GUIDLo);
2485 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2486 if (err)
2487 goto fail_self_id;
2489 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2490 dev_name(&dev->dev), version >> 16, version & 0xff);
2492 return 0;
2494 fail_self_id:
2495 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2496 ohci->self_id_cpu, ohci->self_id_bus);
2497 fail_contexts:
2498 kfree(ohci->ir_context_list);
2499 kfree(ohci->it_context_list);
2500 context_release(&ohci->at_response_ctx);
2501 context_release(&ohci->at_request_ctx);
2502 ar_context_release(&ohci->ar_response_ctx);
2503 ar_context_release(&ohci->ar_request_ctx);
2504 pci_iounmap(dev, ohci->registers);
2505 fail_iomem:
2506 pci_release_region(dev, 0);
2507 fail_disable:
2508 pci_disable_device(dev);
2509 fail_free:
2510 kfree(&ohci->card);
2511 ohci_pmac_off(dev);
2512 fail:
2513 if (err == -ENOMEM)
2514 fw_error("Out of memory\n");
2516 return err;
2519 static void pci_remove(struct pci_dev *dev)
2521 struct fw_ohci *ohci;
2523 ohci = pci_get_drvdata(dev);
2524 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2525 flush_writes(ohci);
2526 fw_core_remove_card(&ohci->card);
2529 * FIXME: Fail all pending packets here, now that the upper
2530 * layers can't queue any more.
2533 software_reset(ohci);
2534 free_irq(dev->irq, ohci);
2536 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2537 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2538 ohci->next_config_rom, ohci->next_config_rom_bus);
2539 if (ohci->config_rom)
2540 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2541 ohci->config_rom, ohci->config_rom_bus);
2542 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2543 ohci->self_id_cpu, ohci->self_id_bus);
2544 ar_context_release(&ohci->ar_request_ctx);
2545 ar_context_release(&ohci->ar_response_ctx);
2546 context_release(&ohci->at_request_ctx);
2547 context_release(&ohci->at_response_ctx);
2548 kfree(ohci->it_context_list);
2549 kfree(ohci->ir_context_list);
2550 pci_iounmap(dev, ohci->registers);
2551 pci_release_region(dev, 0);
2552 pci_disable_device(dev);
2553 kfree(&ohci->card);
2554 ohci_pmac_off(dev);
2556 fw_notify("Removed fw-ohci device.\n");
2559 #ifdef CONFIG_PM
2560 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2562 struct fw_ohci *ohci = pci_get_drvdata(dev);
2563 int err;
2565 software_reset(ohci);
2566 free_irq(dev->irq, ohci);
2567 err = pci_save_state(dev);
2568 if (err) {
2569 fw_error("pci_save_state failed\n");
2570 return err;
2572 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2573 if (err)
2574 fw_error("pci_set_power_state failed with %d\n", err);
2575 ohci_pmac_off(dev);
2577 return 0;
2580 static int pci_resume(struct pci_dev *dev)
2582 struct fw_ohci *ohci = pci_get_drvdata(dev);
2583 int err;
2585 ohci_pmac_on(dev);
2586 pci_set_power_state(dev, PCI_D0);
2587 pci_restore_state(dev);
2588 err = pci_enable_device(dev);
2589 if (err) {
2590 fw_error("pci_enable_device failed\n");
2591 return err;
2594 return ohci_enable(&ohci->card, NULL, 0);
2596 #endif
2598 static struct pci_device_id pci_table[] = {
2599 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2603 MODULE_DEVICE_TABLE(pci, pci_table);
2605 static struct pci_driver fw_ohci_pci_driver = {
2606 .name = ohci_driver_name,
2607 .id_table = pci_table,
2608 .probe = pci_probe,
2609 .remove = pci_remove,
2610 #ifdef CONFIG_PM
2611 .resume = pci_resume,
2612 .suspend = pci_suspend,
2613 #endif
2616 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2617 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2618 MODULE_LICENSE("GPL");
2620 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2621 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2622 MODULE_ALIAS("ohci1394");
2623 #endif
2625 static int __init fw_ohci_init(void)
2627 return pci_register_driver(&fw_ohci_pci_driver);
2630 static void __exit fw_ohci_cleanup(void)
2632 pci_unregister_driver(&fw_ohci_pci_driver);
2635 module_init(fw_ohci_init);
2636 module_exit(fw_ohci_cleanup);