1 /***********************license start***************
2 * Author: Cavium Networks
4 * Contact: support@caviumnetworks.com
5 * This file is part of the OCTEON SDK
7 * Copyright (c) 2003-2008 Cavium Networks
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
19 * You should have received a copy of the GNU General Public License
20 * along with this file; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 * or visit http://www.gnu.org/licenses/.
24 * This file may also be available under a different license from Cavium.
25 * Contact Cavium Networks for more information
26 ***********************license end**************************************/
29 * Interface to the hardware Packet Order / Work unit.
31 * New, starting with SDK 1.7.0, cvmx-pow supports a number of
32 * extended consistency checks. The define
33 * CVMX_ENABLE_POW_CHECKS controls the runtime insertion of POW
34 * internal state checks to find common programming errors. If
35 * CVMX_ENABLE_POW_CHECKS is not defined, checks are by default
36 * enabled. For example, cvmx-pow will check for the following
37 * program errors or POW state inconsistency.
38 * - Requesting a POW operation with an active tag switch in
40 * - Waiting for a tag switch to complete for an excessively
41 * long period. This is normally a sign of an error in locking
43 * - Illegal tag switches from NULL_NULL.
44 * - Illegal tag switches from NULL.
45 * - Illegal deschedule request.
46 * - WQE pointer not matching the one attached to the core by
51 #ifndef __CVMX_POW_H__
52 #define __CVMX_POW_H__
54 #include <asm/octeon/cvmx-pow-defs.h>
56 #include "cvmx-scratch.h"
59 /* Default to having all POW constancy checks turned on */
60 #ifndef CVMX_ENABLE_POW_CHECKS
61 #define CVMX_ENABLE_POW_CHECKS 1
64 enum cvmx_pow_tag_type
{
65 /* Tag ordering is maintained */
66 CVMX_POW_TAG_TYPE_ORDERED
= 0L,
67 /* Tag ordering is maintained, and at most one PP has the tag */
68 CVMX_POW_TAG_TYPE_ATOMIC
= 1L,
70 * The work queue entry from the order - NEVER tag switch from
73 CVMX_POW_TAG_TYPE_NULL
= 2L,
74 /* A tag switch to NULL, and there is no space reserved in POW
75 * - NEVER tag switch to NULL_NULL
76 * - NEVER tag switch from NULL_NULL
77 * - NULL_NULL is entered at the beginning of time and on a deschedule.
78 * - NULL_NULL can be exited by a new work request. A NULL_SWITCH
79 * load can also switch the state to NULL
81 CVMX_POW_TAG_TYPE_NULL_NULL
= 3L
85 * Wait flag values for pow functions.
93 * POW tag operations. These are used in the data stored to the POW.
97 * switch the tag (only) for this PP
98 * - the previous tag should be non-NULL in this case
99 * - tag switch response required
100 * - fields used: op, type, tag
102 CVMX_POW_TAG_OP_SWTAG
= 0L,
104 * switch the tag for this PP, with full information
105 * - this should be used when the previous tag is NULL
106 * - tag switch response required
107 * - fields used: address, op, grp, type, tag
109 CVMX_POW_TAG_OP_SWTAG_FULL
= 1L,
111 * switch the tag (and/or group) for this PP and de-schedule
112 * - OK to keep the tag the same and only change the group
113 * - fields used: op, no_sched, grp, type, tag
115 CVMX_POW_TAG_OP_SWTAG_DESCH
= 2L,
118 * - fields used: op, no_sched
120 CVMX_POW_TAG_OP_DESCH
= 3L,
122 * create an entirely new work queue entry
123 * - fields used: address, op, qos, grp, type, tag
125 CVMX_POW_TAG_OP_ADDWQ
= 4L,
127 * just update the work queue pointer and grp for this PP
128 * - fields used: address, op, grp
130 CVMX_POW_TAG_OP_UPDATE_WQP_GRP
= 5L,
132 * set the no_sched bit on the de-schedule list
134 * - does nothing if the selected entry is not on the
137 * - does nothing if the stored work queue pointer does not
138 * match the address field
140 * - fields used: address, index, op
142 * Before issuing a *_NSCHED operation, SW must guarantee
143 * that all prior deschedules and set/clr NSCHED operations
144 * are complete and all prior switches are complete. The
145 * hardware provides the opsdone bit and swdone bit for SW
146 * polling. After issuing a *_NSCHED operation, SW must
147 * guarantee that the set/clr NSCHED is complete before any
148 * subsequent operations.
150 CVMX_POW_TAG_OP_SET_NSCHED
= 6L,
152 * clears the no_sched bit on the de-schedule list
154 * - does nothing if the selected entry is not on the
157 * - does nothing if the stored work queue pointer does not
158 * match the address field
160 * - fields used: address, index, op
162 * Before issuing a *_NSCHED operation, SW must guarantee that
163 * all prior deschedules and set/clr NSCHED operations are
164 * complete and all prior switches are complete. The hardware
165 * provides the opsdone bit and swdone bit for SW
166 * polling. After issuing a *_NSCHED operation, SW must
167 * guarantee that the set/clr NSCHED is complete before any
168 * subsequent operations.
170 CVMX_POW_TAG_OP_CLR_NSCHED
= 7L,
172 CVMX_POW_TAG_OP_NOP
= 15L
176 * This structure defines the store data on a store to POW
182 * Don't reschedule this entry. no_sched is used for
183 * CVMX_POW_TAG_OP_SWTAG_DESCH and
184 * CVMX_POW_TAG_OP_DESCH
188 /* Tontains index of entry for a CVMX_POW_TAG_OP_*_NSCHED */
190 /* The operation to perform */
191 cvmx_pow_tag_op_t op
:4;
194 * The QOS level for the packet. qos is only used for
195 * CVMX_POW_TAG_OP_ADDWQ
199 * The group that the work queue entry will be
200 * scheduled to grp is used for CVMX_POW_TAG_OP_ADDWQ,
201 * CVMX_POW_TAG_OP_SWTAG_FULL,
202 * CVMX_POW_TAG_OP_SWTAG_DESCH, and
203 * CVMX_POW_TAG_OP_UPDATE_WQP_GRP
207 * The type of the tag. type is used for everything
208 * except CVMX_POW_TAG_OP_DESCH,
209 * CVMX_POW_TAG_OP_UPDATE_WQP_GRP, and
210 * CVMX_POW_TAG_OP_*_NSCHED
214 * The actual tag. tag is used for everything except
215 * CVMX_POW_TAG_OP_DESCH,
216 * CVMX_POW_TAG_OP_UPDATE_WQP_GRP, and
217 * CVMX_POW_TAG_OP_*_NSCHED
221 } cvmx_pow_tag_req_t
;
224 * This structure describes the address to load stuff from POW
230 * Address for new work request loads (did<2:0> == 0)
233 /* Mips64 address region. Should be CVMX_IO_SEG */
234 uint64_t mem_region
:2;
236 uint64_t reserved_49_61
:13;
239 /* the ID of POW -- did<2:0> == 0 in this case */
242 uint64_t reserved_4_39
:36;
244 * If set, don't return load response until work is
249 uint64_t reserved_0_2
:3;
253 * Address for loads to get POW internal status
256 /* Mips64 address region. Should be CVMX_IO_SEG */
257 uint64_t mem_region
:2;
259 uint64_t reserved_49_61
:13;
262 /* the ID of POW -- did<2:0> == 1 in this case */
265 uint64_t reserved_10_39
:30;
266 /* The core id to get status for */
269 * If set and get_cur is set, return reverse tag-list
270 * pointer rather than forward tag-list pointer.
274 * If set, return current status rather than pending
279 * If set, get the work-queue pointer rather than
284 uint64_t reserved_0_2
:3;
288 * Address for memory loads to get POW internal state
291 /* Mips64 address region. Should be CVMX_IO_SEG */
292 uint64_t mem_region
:2;
294 uint64_t reserved_49_61
:13;
297 /* the ID of POW -- did<2:0> == 2 in this case */
300 uint64_t reserved_16_39
:24;
301 /* POW memory index */
304 * If set, return deschedule information rather than
305 * the standard response for work-queue index (invalid
306 * if the work-queue entry is not on the deschedule
311 * If set, get the work-queue pointer rather than
312 * tag/type (no effect when get_des set).
316 uint64_t reserved_0_2
:3;
320 * Address for index/pointer loads
323 /* Mips64 address region. Should be CVMX_IO_SEG */
324 uint64_t mem_region
:2;
326 uint64_t reserved_49_61
:13;
329 /* the ID of POW -- did<2:0> == 3 in this case */
332 uint64_t reserved_9_39
:31;
334 * when {get_rmt ==0 AND get_des_get_tail == 0}, this
335 * field selects one of eight POW internal-input
336 * queues (0-7), one per QOS level; values 8-15 are
337 * illegal in this case; when {get_rmt ==0 AND
338 * get_des_get_tail == 1}, this field selects one of
339 * 16 deschedule lists (per group); when get_rmt ==1,
340 * this field selects one of 16 memory-input queue
341 * lists. The two memory-input queue lists associated
342 * with each QOS level are:
344 * - qosgrp = 0, qosgrp = 8: QOS0
345 * - qosgrp = 1, qosgrp = 9: QOS1
346 * - qosgrp = 2, qosgrp = 10: QOS2
347 * - qosgrp = 3, qosgrp = 11: QOS3
348 * - qosgrp = 4, qosgrp = 12: QOS4
349 * - qosgrp = 5, qosgrp = 13: QOS5
350 * - qosgrp = 6, qosgrp = 14: QOS6
351 * - qosgrp = 7, qosgrp = 15: QOS7
355 * If set and get_rmt is clear, return deschedule list
356 * indexes rather than indexes for the specified qos
357 * level; if set and get_rmt is set, return the tail
358 * pointer rather than the head pointer for the
359 * specified qos level.
361 uint64_t get_des_get_tail
:1;
363 * If set, return remote pointers rather than the
364 * local indexes for the specified qos level.
368 uint64_t reserved_0_2
:3;
372 * address for NULL_RD request (did<2:0> == 4) when this is read,
373 * HW attempts to change the state to NULL if it is NULL_NULL (the
374 * hardware cannot switch from NULL_NULL to NULL if a POW entry is
375 * not available - software may need to recover by finishing
376 * another piece of work before a POW entry can ever become
380 /* Mips64 address region. Should be CVMX_IO_SEG */
381 uint64_t mem_region
:2;
383 uint64_t reserved_49_61
:13;
386 /* the ID of POW -- did<2:0> == 4 in this case */
389 uint64_t reserved_0_39
:40;
391 } cvmx_pow_load_addr_t
;
394 * This structure defines the response to a load/SENDSINGLE to POW
401 * Response to new work request loads
405 * Set when no new work queue entry was returned. *
406 * If there was de-scheduled work, the HW will
407 * definitely return it. When this bit is set, it
408 * could mean either mean:
410 * - There was no work, or
412 * - There was no work that the HW could find. This
413 * case can happen, regardless of the wait bit value
414 * in the original request, when there is work in
415 * the IQ's that is too deep down the list.
419 uint64_t reserved_40_62
:23;
420 /* 36 in O1 -- the work queue pointer */
425 * Result for a POW Status Load (when get_cur==0 and get_wqp==0)
428 uint64_t reserved_62_63
:2;
429 /* Set when there is a pending non-NULL SWTAG or
430 * SWTAG_FULL, and the POW entry has not left the list
431 * for the original tag. */
432 uint64_t pend_switch
:1;
433 /* Set when SWTAG_FULL and pend_switch is set. */
434 uint64_t pend_switch_full
:1;
436 * Set when there is a pending NULL SWTAG, or an
437 * implicit switch to NULL.
439 uint64_t pend_switch_null
:1;
440 /* Set when there is a pending DESCHED or SWTAG_DESCHED. */
441 uint64_t pend_desched
:1;
443 * Set when there is a pending SWTAG_DESCHED and
444 * pend_desched is set.
446 uint64_t pend_desched_switch
:1;
447 /* Set when nosched is desired and pend_desched is set. */
448 uint64_t pend_nosched
:1;
449 /* Set when there is a pending GET_WORK. */
450 uint64_t pend_new_work
:1;
452 * When pend_new_work is set, this bit indicates that
453 * the wait bit was set.
455 uint64_t pend_new_work_wait
:1;
456 /* Set when there is a pending NULL_RD. */
457 uint64_t pend_null_rd
:1;
458 /* Set when there is a pending CLR_NSCHED. */
459 uint64_t pend_nosched_clr
:1;
460 uint64_t reserved_51
:1;
461 /* This is the index when pend_nosched_clr is set. */
462 uint64_t pend_index
:11;
464 * This is the new_grp when (pend_desched AND
465 * pend_desched_switch) is set.
468 uint64_t reserved_34_35
:2;
470 * This is the tag type when pend_switch or
471 * (pend_desched AND pend_desched_switch) are set.
473 uint64_t pend_type
:2;
475 * - this is the tag when pend_switch or (pend_desched
476 * AND pend_desched_switch) are set.
478 uint64_t pend_tag
:32;
482 * Result for a POW Status Load (when get_cur==0 and get_wqp==1)
485 uint64_t reserved_62_63
:2;
487 * Set when there is a pending non-NULL SWTAG or
488 * SWTAG_FULL, and the POW entry has not left the list
489 * for the original tag.
491 uint64_t pend_switch
:1;
492 /* Set when SWTAG_FULL and pend_switch is set. */
493 uint64_t pend_switch_full
:1;
495 * Set when there is a pending NULL SWTAG, or an
496 * implicit switch to NULL.
498 uint64_t pend_switch_null
:1;
500 * Set when there is a pending DESCHED or
503 uint64_t pend_desched
:1;
505 * Set when there is a pending SWTAG_DESCHED and
506 * pend_desched is set.
508 uint64_t pend_desched_switch
:1;
509 /* Set when nosched is desired and pend_desched is set. */
510 uint64_t pend_nosched
:1;
511 /* Set when there is a pending GET_WORK. */
512 uint64_t pend_new_work
:1;
514 * When pend_new_work is set, this bit indicates that
515 * the wait bit was set.
517 uint64_t pend_new_work_wait
:1;
518 /* Set when there is a pending NULL_RD. */
519 uint64_t pend_null_rd
:1;
520 /* Set when there is a pending CLR_NSCHED. */
521 uint64_t pend_nosched_clr
:1;
522 uint64_t reserved_51
:1;
523 /* This is the index when pend_nosched_clr is set. */
524 uint64_t pend_index
:11;
526 * This is the new_grp when (pend_desched AND
527 * pend_desched_switch) is set.
530 /* This is the wqp when pend_nosched_clr is set. */
531 uint64_t pend_wqp
:36;
535 * Result for a POW Status Load (when get_cur==1, get_wqp==0, and
539 uint64_t reserved_62_63
:2;
541 * Points to the next POW entry in the tag list when
542 * tail == 0 (and tag_type is not NULL or NULL_NULL).
544 uint64_t link_index
:11;
545 /* The POW entry attached to the core. */
548 * The group attached to the core (updated when new
549 * tag list entered on SWTAG_FULL).
553 * Set when this POW entry is at the head of its tag
554 * list (also set when in the NULL or NULL_NULL
559 * Set when this POW entry is at the tail of its tag
560 * list (also set when in the NULL or NULL_NULL
565 * The tag type attached to the core (updated when new
566 * tag list entered on SWTAG, SWTAG_FULL, or
571 * The tag attached to the core (updated when new tag
572 * list entered on SWTAG, SWTAG_FULL, or
579 * Result for a POW Status Load (when get_cur==1, get_wqp==0, and get_rev==1)
582 uint64_t reserved_62_63
:2;
584 * Points to the prior POW entry in the tag list when
585 * head == 0 (and tag_type is not NULL or
586 * NULL_NULL). This field is unpredictable when the
587 * core's state is NULL or NULL_NULL.
589 uint64_t revlink_index
:11;
590 /* The POW entry attached to the core. */
593 * The group attached to the core (updated when new
594 * tag list entered on SWTAG_FULL).
597 /* Set when this POW entry is at the head of its tag
598 * list (also set when in the NULL or NULL_NULL
603 * Set when this POW entry is at the tail of its tag
604 * list (also set when in the NULL or NULL_NULL
609 * The tag type attached to the core (updated when new
610 * tag list entered on SWTAG, SWTAG_FULL, or
615 * The tag attached to the core (updated when new tag
616 * list entered on SWTAG, SWTAG_FULL, or
623 * Result for a POW Status Load (when get_cur==1, get_wqp==1, and
627 uint64_t reserved_62_63
:2;
629 * Points to the next POW entry in the tag list when
630 * tail == 0 (and tag_type is not NULL or NULL_NULL).
632 uint64_t link_index
:11;
633 /* The POW entry attached to the core. */
636 * The group attached to the core (updated when new
637 * tag list entered on SWTAG_FULL).
641 * The wqp attached to the core (updated when new tag
642 * list entered on SWTAG_FULL).
648 * Result for a POW Status Load (when get_cur==1, get_wqp==1, and
652 uint64_t reserved_62_63
:2;
654 * Points to the prior POW entry in the tag list when
655 * head == 0 (and tag_type is not NULL or
656 * NULL_NULL). This field is unpredictable when the
657 * core's state is NULL or NULL_NULL.
659 uint64_t revlink_index
:11;
660 /* The POW entry attached to the core. */
663 * The group attached to the core (updated when new
664 * tag list entered on SWTAG_FULL).
668 * The wqp attached to the core (updated when new tag
669 * list entered on SWTAG_FULL).
675 * Result For POW Memory Load (get_des == 0 and get_wqp == 0)
678 uint64_t reserved_51_63
:13;
680 * The next entry in the input, free, descheduled_head
681 * list (unpredictable if entry is the tail of the
684 uint64_t next_index
:11;
685 /* The group of the POW entry. */
687 uint64_t reserved_35
:1;
689 * Set when this POW entry is at the tail of its tag
690 * list (also set when in the NULL or NULL_NULL
694 /* The tag type of the POW entry. */
696 /* The tag of the POW entry. */
701 * Result For POW Memory Load (get_des == 0 and get_wqp == 1)
704 uint64_t reserved_51_63
:13;
706 * The next entry in the input, free, descheduled_head
707 * list (unpredictable if entry is the tail of the
710 uint64_t next_index
:11;
711 /* The group of the POW entry. */
713 /* The WQP held in the POW entry. */
718 * Result For POW Memory Load (get_des == 1)
721 uint64_t reserved_51_63
:13;
723 * The next entry in the tag list connected to the
726 uint64_t fwd_index
:11;
727 /* The group of the POW entry. */
729 /* The nosched bit for the POW entry. */
731 /* There is a pending tag switch */
732 uint64_t pend_switch
:1;
734 * The next tag type for the new tag list when
735 * pend_switch is set.
737 uint64_t pend_type
:2;
739 * The next tag for the new tag list when pend_switch
742 uint64_t pend_tag
:32;
746 * Result For POW Index/Pointer Load (get_rmt == 0/get_des_get_tail == 0)
749 uint64_t reserved_52_63
:12;
751 * set when there is one or more POW entries on the
756 * set when there is exactly one POW entry on the free
760 uint64_t reserved_49
:1;
762 * when free_val is set, indicates the first entry on
765 uint64_t free_head
:11;
766 uint64_t reserved_37
:1;
768 * when free_val is set, indicates the last entry on
771 uint64_t free_tail
:11;
773 * set when there is one or more POW entries on the
774 * input Q list selected by qosgrp.
778 * set when there is exactly one POW entry on the
779 * input Q list selected by qosgrp.
782 uint64_t reserved_23
:1;
784 * when loc_val is set, indicates the first entry on
785 * the input Q list selected by qosgrp.
787 uint64_t loc_head
:11;
788 uint64_t reserved_11
:1;
790 * when loc_val is set, indicates the last entry on
791 * the input Q list selected by qosgrp.
793 uint64_t loc_tail
:11;
797 * Result For POW Index/Pointer Load (get_rmt == 0/get_des_get_tail == 1)
800 uint64_t reserved_52_63
:12;
802 * set when there is one or more POW entries on the
805 uint64_t nosched_val
:1;
807 * set when there is exactly one POW entry on the
810 uint64_t nosched_one
:1;
811 uint64_t reserved_49
:1;
813 * when nosched_val is set, indicates the first entry
814 * on the nosched list.
816 uint64_t nosched_head
:11;
817 uint64_t reserved_37
:1;
819 * when nosched_val is set, indicates the last entry
820 * on the nosched list.
822 uint64_t nosched_tail
:11;
824 * set when there is one or more descheduled heads on
825 * the descheduled list selected by qosgrp.
829 * set when there is exactly one descheduled head on
830 * the descheduled list selected by qosgrp.
833 uint64_t reserved_23
:1;
835 * when des_val is set, indicates the first
836 * descheduled head on the descheduled list selected
839 uint64_t des_head
:11;
840 uint64_t reserved_11
:1;
842 * when des_val is set, indicates the last descheduled
843 * head on the descheduled list selected by qosgrp.
845 uint64_t des_tail
:11;
849 * Result For POW Index/Pointer Load (get_rmt == 1/get_des_get_tail == 0)
852 uint64_t reserved_39_63
:25;
854 * Set when this DRAM list is the current head
855 * (i.e. is the next to be reloaded when the POW
856 * hardware reloads a POW entry from DRAM). The POW
857 * hardware alternates between the two DRAM lists
858 * associated with a QOS level when it reloads work
859 * from DRAM into the POW unit.
861 uint64_t rmt_is_head
:1;
863 * Set when the DRAM portion of the input Q list
864 * selected by qosgrp contains one or more pieces of
869 * Set when the DRAM portion of the input Q list
870 * selected by qosgrp contains exactly one piece of
875 * When rmt_val is set, indicates the first piece of
876 * work on the DRAM input Q list selected by
879 uint64_t rmt_head
:36;
883 * Result For POW Index/Pointer Load (get_rmt ==
884 * 1/get_des_get_tail == 1)
887 uint64_t reserved_39_63
:25;
889 * set when this DRAM list is the current head
890 * (i.e. is the next to be reloaded when the POW
891 * hardware reloads a POW entry from DRAM). The POW
892 * hardware alternates between the two DRAM lists
893 * associated with a QOS level when it reloads work
894 * from DRAM into the POW unit.
896 uint64_t rmt_is_head
:1;
898 * set when the DRAM portion of the input Q list
899 * selected by qosgrp contains one or more pieces of
904 * set when the DRAM portion of the input Q list
905 * selected by qosgrp contains exactly one piece of
910 * when rmt_val is set, indicates the last piece of
911 * work on the DRAM input Q list selected by
914 uint64_t rmt_tail
:36;
918 * Response to NULL_RD request loads
922 /* of type cvmx_pow_tag_type_t. state is one of the
925 * - CVMX_POW_TAG_TYPE_ORDERED
926 * - CVMX_POW_TAG_TYPE_ATOMIC
927 * - CVMX_POW_TAG_TYPE_NULL
928 * - CVMX_POW_TAG_TYPE_NULL_NULL
933 } cvmx_pow_tag_load_resp_t
;
936 * This structure describes the address used for stores to the POW.
937 * The store address is meaningful on stores to the POW. The
938 * hardware assumes that an aligned 64-bit store was used for all
939 * these stores. Note the assumption that the work queue entry is
940 * aligned on an 8-byte boundary (since the low-order 3 address bits
941 * must be zero). Note that not all fields are used by all
944 * NOTE: The following is the behavior of the pending switch bit at the PP
945 * for POW stores (i.e. when did<7:3> == 0xc)
946 * - did<2:0> == 0 => pending switch bit is set
947 * - did<2:0> == 1 => no affect on the pending switch bit
948 * - did<2:0> == 3 => pending switch bit is cleared
949 * - did<2:0> == 7 => no affect on the pending switch bit
950 * - did<2:0> == others => must not be used
951 * - No other loads/stores have an affect on the pending switch bit
952 * - The switch bus from POW can clear the pending switch bit
954 * NOTE: did<2:0> == 2 is used by the HW for a special single-cycle
955 * ADDWQ command that only contains the pointer). SW must never use
960 * Unsigned 64 bit integer representation of store address
965 /* Memory region. Should be CVMX_IO_SEG in most cases */
967 uint64_t reserved_49_61
:13; /* Must be zero */
968 uint64_t is_io
:1; /* Must be one */
969 /* Device ID of POW. Note that different sub-dids are used. */
971 uint64_t reserved_36_39
:4; /* Must be zero */
972 /* Address field. addr<2:0> must be zero */
975 } cvmx_pow_tag_store_addr_t
;
978 * decode of the store data when an IOBDMA SENDSINGLE is sent to POW
985 * the (64-bit word) location in scratchpad to write
989 /* the number of words in the response (0 => no response) */
991 /* the ID of the device on the non-coherent bus */
994 /* if set, don't return load response until work is available */
999 } cvmx_pow_iobdma_store_t
;
1001 /* CSR typedefs have been moved to cvmx-csr-*.h */
1004 * Get the POW tag for this core. This returns the current
1005 * tag type, tag, group, and POW entry index associated with
1006 * this core. Index is only valid if the tag type isn't NULL_NULL.
1007 * If a tag switch is pending this routine returns the tag before
1008 * the tag switch, not after.
1010 * Returns Current tag
1012 static inline cvmx_pow_tag_req_t
cvmx_pow_get_current_tag(void)
1014 cvmx_pow_load_addr_t load_addr
;
1015 cvmx_pow_tag_load_resp_t load_resp
;
1016 cvmx_pow_tag_req_t result
;
1019 load_addr
.sstatus
.mem_region
= CVMX_IO_SEG
;
1020 load_addr
.sstatus
.is_io
= 1;
1021 load_addr
.sstatus
.did
= CVMX_OCT_DID_TAG_TAG1
;
1022 load_addr
.sstatus
.coreid
= cvmx_get_core_num();
1023 load_addr
.sstatus
.get_cur
= 1;
1024 load_resp
.u64
= cvmx_read_csr(load_addr
.u64
);
1026 result
.s
.grp
= load_resp
.s_sstatus2
.grp
;
1027 result
.s
.index
= load_resp
.s_sstatus2
.index
;
1028 result
.s
.type
= load_resp
.s_sstatus2
.tag_type
;
1029 result
.s
.tag
= load_resp
.s_sstatus2
.tag
;
1034 * Get the POW WQE for this core. This returns the work queue
1035 * entry currently associated with this core.
1037 * Returns WQE pointer
1039 static inline cvmx_wqe_t
*cvmx_pow_get_current_wqp(void)
1041 cvmx_pow_load_addr_t load_addr
;
1042 cvmx_pow_tag_load_resp_t load_resp
;
1045 load_addr
.sstatus
.mem_region
= CVMX_IO_SEG
;
1046 load_addr
.sstatus
.is_io
= 1;
1047 load_addr
.sstatus
.did
= CVMX_OCT_DID_TAG_TAG1
;
1048 load_addr
.sstatus
.coreid
= cvmx_get_core_num();
1049 load_addr
.sstatus
.get_cur
= 1;
1050 load_addr
.sstatus
.get_wqp
= 1;
1051 load_resp
.u64
= cvmx_read_csr(load_addr
.u64
);
1052 return (cvmx_wqe_t
*) cvmx_phys_to_ptr(load_resp
.s_sstatus4
.wqp
);
1055 #ifndef CVMX_MF_CHORD
1056 #define CVMX_MF_CHORD(dest) CVMX_RDHWR(dest, 30)
1060 * Print a warning if a tag switch is pending for this core
1062 * @function: Function name checking for a pending tag switch
1064 static inline void __cvmx_pow_warn_if_pending_switch(const char *function
)
1066 uint64_t switch_complete
;
1067 CVMX_MF_CHORD(switch_complete
);
1068 if (!switch_complete
)
1069 pr_warning("%s called with tag switch in progress\n", function
);
1073 * Waits for a tag switch to complete by polling the completion bit.
1074 * Note that switches to NULL complete immediately and do not need
1077 static inline void cvmx_pow_tag_sw_wait(void)
1079 const uint64_t MAX_CYCLES
= 1ull << 31;
1080 uint64_t switch_complete
;
1081 uint64_t start_cycle
= cvmx_get_cycle();
1083 CVMX_MF_CHORD(switch_complete
);
1084 if (unlikely(switch_complete
))
1086 if (unlikely(cvmx_get_cycle() > start_cycle
+ MAX_CYCLES
)) {
1087 pr_warning("Tag switch is taking a long time, "
1088 "possible deadlock\n");
1089 start_cycle
= -MAX_CYCLES
- 1;
1095 * Synchronous work request. Requests work from the POW.
1096 * This function does NOT wait for previous tag switches to complete,
1097 * so the caller must ensure that there is not a pending tag switch.
1099 * @wait: When set, call stalls until work becomes avaiable, or times out.
1100 * If not set, returns immediately.
1102 * Returns Returns the WQE pointer from POW. Returns NULL if no work
1105 static inline cvmx_wqe_t
*cvmx_pow_work_request_sync_nocheck(cvmx_pow_wait_t
1108 cvmx_pow_load_addr_t ptr
;
1109 cvmx_pow_tag_load_resp_t result
;
1111 if (CVMX_ENABLE_POW_CHECKS
)
1112 __cvmx_pow_warn_if_pending_switch(__func__
);
1115 ptr
.swork
.mem_region
= CVMX_IO_SEG
;
1116 ptr
.swork
.is_io
= 1;
1117 ptr
.swork
.did
= CVMX_OCT_DID_TAG_SWTAG
;
1118 ptr
.swork
.wait
= wait
;
1120 result
.u64
= cvmx_read_csr(ptr
.u64
);
1122 if (result
.s_work
.no_work
)
1125 return (cvmx_wqe_t
*) cvmx_phys_to_ptr(result
.s_work
.addr
);
1129 * Synchronous work request. Requests work from the POW.
1130 * This function waits for any previous tag switch to complete before
1131 * requesting the new work.
1133 * @wait: When set, call stalls until work becomes avaiable, or times out.
1134 * If not set, returns immediately.
1136 * Returns Returns the WQE pointer from POW. Returns NULL if no work
1139 static inline cvmx_wqe_t
*cvmx_pow_work_request_sync(cvmx_pow_wait_t wait
)
1141 if (CVMX_ENABLE_POW_CHECKS
)
1142 __cvmx_pow_warn_if_pending_switch(__func__
);
1144 /* Must not have a switch pending when requesting work */
1145 cvmx_pow_tag_sw_wait();
1146 return cvmx_pow_work_request_sync_nocheck(wait
);
1151 * Synchronous null_rd request. Requests a switch out of NULL_NULL POW state.
1152 * This function waits for any previous tag switch to complete before
1153 * requesting the null_rd.
1155 * Returns Returns the POW state of type cvmx_pow_tag_type_t.
1157 static inline enum cvmx_pow_tag_type
cvmx_pow_work_request_null_rd(void)
1159 cvmx_pow_load_addr_t ptr
;
1160 cvmx_pow_tag_load_resp_t result
;
1162 if (CVMX_ENABLE_POW_CHECKS
)
1163 __cvmx_pow_warn_if_pending_switch(__func__
);
1165 /* Must not have a switch pending when requesting work */
1166 cvmx_pow_tag_sw_wait();
1169 ptr
.snull_rd
.mem_region
= CVMX_IO_SEG
;
1170 ptr
.snull_rd
.is_io
= 1;
1171 ptr
.snull_rd
.did
= CVMX_OCT_DID_TAG_NULL_RD
;
1173 result
.u64
= cvmx_read_csr(ptr
.u64
);
1175 return (enum cvmx_pow_tag_type
) result
.s_null_rd
.state
;
1179 * Asynchronous work request. Work is requested from the POW unit,
1180 * and should later be checked with function
1181 * cvmx_pow_work_response_async. This function does NOT wait for
1182 * previous tag switches to complete, so the caller must ensure that
1183 * there is not a pending tag switch.
1185 * @scr_addr: Scratch memory address that response will be returned
1186 * to, which is either a valid WQE, or a response with the
1187 * invalid bit set. Byte address, must be 8 byte aligned.
1189 * @wait: 1 to cause response to wait for work to become available (or
1190 * timeout), 0 to cause response to return immediately
1192 static inline void cvmx_pow_work_request_async_nocheck(int scr_addr
,
1193 cvmx_pow_wait_t wait
)
1195 cvmx_pow_iobdma_store_t data
;
1197 if (CVMX_ENABLE_POW_CHECKS
)
1198 __cvmx_pow_warn_if_pending_switch(__func__
);
1200 /* scr_addr must be 8 byte aligned */
1201 data
.s
.scraddr
= scr_addr
>> 3;
1203 data
.s
.did
= CVMX_OCT_DID_TAG_SWTAG
;
1205 cvmx_send_single(data
.u64
);
1209 * Asynchronous work request. Work is requested from the POW unit,
1210 * and should later be checked with function
1211 * cvmx_pow_work_response_async. This function waits for any previous
1212 * tag switch to complete before requesting the new work.
1214 * @scr_addr: Scratch memory address that response will be returned
1215 * to, which is either a valid WQE, or a response with the
1216 * invalid bit set. Byte address, must be 8 byte aligned.
1218 * @wait: 1 to cause response to wait for work to become available (or
1219 * timeout), 0 to cause response to return immediately
1221 static inline void cvmx_pow_work_request_async(int scr_addr
,
1222 cvmx_pow_wait_t wait
)
1224 if (CVMX_ENABLE_POW_CHECKS
)
1225 __cvmx_pow_warn_if_pending_switch(__func__
);
1227 /* Must not have a switch pending when requesting work */
1228 cvmx_pow_tag_sw_wait();
1229 cvmx_pow_work_request_async_nocheck(scr_addr
, wait
);
1233 * Gets result of asynchronous work request. Performs a IOBDMA sync
1234 * to wait for the response.
1236 * @scr_addr: Scratch memory address to get result from Byte address,
1237 * must be 8 byte aligned.
1239 * Returns Returns the WQE from the scratch register, or NULL if no
1240 * work was available.
1242 static inline cvmx_wqe_t
*cvmx_pow_work_response_async(int scr_addr
)
1244 cvmx_pow_tag_load_resp_t result
;
1247 result
.u64
= cvmx_scratch_read64(scr_addr
);
1249 if (result
.s_work
.no_work
)
1252 return (cvmx_wqe_t
*) cvmx_phys_to_ptr(result
.s_work
.addr
);
1256 * Checks if a work queue entry pointer returned by a work
1257 * request is valid. It may be invalid due to no work
1258 * being available or due to a timeout.
1260 * @wqe_ptr: pointer to a work queue entry returned by the POW
1262 * Returns 0 if pointer is valid
1263 * 1 if invalid (no work was returned)
1265 static inline uint64_t cvmx_pow_work_invalid(cvmx_wqe_t
*wqe_ptr
)
1267 return wqe_ptr
== NULL
;
1271 * Starts a tag switch to the provided tag value and tag type.
1272 * Completion for the tag switch must be checked for separately. This
1273 * function does NOT update the work queue entry in dram to match tag
1274 * value and type, so the application must keep track of these if they
1275 * are important to the application. This tag switch command must not
1276 * be used for switches to NULL, as the tag switch pending bit will be
1277 * set by the switch request, but never cleared by the hardware.
1279 * NOTE: This should not be used when switching from a NULL tag. Use
1280 * cvmx_pow_tag_sw_full() instead.
1282 * This function does no checks, so the caller must ensure that any
1283 * previous tag switch has completed.
1285 * @tag: new tag value
1286 * @tag_type: new tag type (ordered or atomic)
1288 static inline void cvmx_pow_tag_sw_nocheck(uint32_t tag
,
1289 enum cvmx_pow_tag_type tag_type
)
1292 cvmx_pow_tag_req_t tag_req
;
1294 if (CVMX_ENABLE_POW_CHECKS
) {
1295 cvmx_pow_tag_req_t current_tag
;
1296 __cvmx_pow_warn_if_pending_switch(__func__
);
1297 current_tag
= cvmx_pow_get_current_tag();
1298 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL_NULL
)
1299 pr_warning("%s called with NULL_NULL tag\n",
1301 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL
)
1302 pr_warning("%s called with NULL tag\n", __func__
);
1303 if ((current_tag
.s
.type
== tag_type
)
1304 && (current_tag
.s
.tag
== tag
))
1305 pr_warning("%s called to perform a tag switch to the "
1308 if (tag_type
== CVMX_POW_TAG_TYPE_NULL
)
1309 pr_warning("%s called to perform a tag switch to "
1310 "NULL. Use cvmx_pow_tag_sw_null() instead\n",
1315 * Note that WQE in DRAM is not updated here, as the POW does
1316 * not read from DRAM once the WQE is in flight. See hardware
1317 * manual for complete details. It is the application's
1318 * responsibility to keep track of the current tag value if
1319 * that is important.
1323 tag_req
.s
.op
= CVMX_POW_TAG_OP_SWTAG
;
1324 tag_req
.s
.tag
= tag
;
1325 tag_req
.s
.type
= tag_type
;
1328 ptr
.sio
.mem_region
= CVMX_IO_SEG
;
1330 ptr
.sio
.did
= CVMX_OCT_DID_TAG_SWTAG
;
1332 /* once this store arrives at POW, it will attempt the switch
1333 software must wait for the switch to complete separately */
1334 cvmx_write_io(ptr
.u64
, tag_req
.u64
);
1338 * Starts a tag switch to the provided tag value and tag type.
1339 * Completion for the tag switch must be checked for separately. This
1340 * function does NOT update the work queue entry in dram to match tag
1341 * value and type, so the application must keep track of these if they
1342 * are important to the application. This tag switch command must not
1343 * be used for switches to NULL, as the tag switch pending bit will be
1344 * set by the switch request, but never cleared by the hardware.
1346 * NOTE: This should not be used when switching from a NULL tag. Use
1347 * cvmx_pow_tag_sw_full() instead.
1349 * This function waits for any previous tag switch to complete, and also
1350 * displays an error on tag switches to NULL.
1352 * @tag: new tag value
1353 * @tag_type: new tag type (ordered or atomic)
1355 static inline void cvmx_pow_tag_sw(uint32_t tag
,
1356 enum cvmx_pow_tag_type tag_type
)
1358 if (CVMX_ENABLE_POW_CHECKS
)
1359 __cvmx_pow_warn_if_pending_switch(__func__
);
1362 * Note that WQE in DRAM is not updated here, as the POW does
1363 * not read from DRAM once the WQE is in flight. See hardware
1364 * manual for complete details. It is the application's
1365 * responsibility to keep track of the current tag value if
1366 * that is important.
1370 * Ensure that there is not a pending tag switch, as a tag
1371 * switch cannot be started if a previous switch is still
1374 cvmx_pow_tag_sw_wait();
1375 cvmx_pow_tag_sw_nocheck(tag
, tag_type
);
1379 * Starts a tag switch to the provided tag value and tag type.
1380 * Completion for the tag switch must be checked for separately. This
1381 * function does NOT update the work queue entry in dram to match tag
1382 * value and type, so the application must keep track of these if they
1383 * are important to the application. This tag switch command must not
1384 * be used for switches to NULL, as the tag switch pending bit will be
1385 * set by the switch request, but never cleared by the hardware.
1387 * This function must be used for tag switches from NULL.
1389 * This function does no checks, so the caller must ensure that any
1390 * previous tag switch has completed.
1392 * @wqp: pointer to work queue entry to submit. This entry is
1393 * updated to match the other parameters
1394 * @tag: tag value to be assigned to work queue entry
1395 * @tag_type: type of tag
1396 * @group: group value for the work queue entry.
1398 static inline void cvmx_pow_tag_sw_full_nocheck(cvmx_wqe_t
*wqp
, uint32_t tag
,
1399 enum cvmx_pow_tag_type tag_type
,
1403 cvmx_pow_tag_req_t tag_req
;
1405 if (CVMX_ENABLE_POW_CHECKS
) {
1406 cvmx_pow_tag_req_t current_tag
;
1407 __cvmx_pow_warn_if_pending_switch(__func__
);
1408 current_tag
= cvmx_pow_get_current_tag();
1409 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL_NULL
)
1410 pr_warning("%s called with NULL_NULL tag\n",
1412 if ((current_tag
.s
.type
== tag_type
)
1413 && (current_tag
.s
.tag
== tag
))
1414 pr_warning("%s called to perform a tag switch to "
1417 if (tag_type
== CVMX_POW_TAG_TYPE_NULL
)
1418 pr_warning("%s called to perform a tag switch to "
1419 "NULL. Use cvmx_pow_tag_sw_null() instead\n",
1421 if (wqp
!= cvmx_phys_to_ptr(0x80))
1422 if (wqp
!= cvmx_pow_get_current_wqp())
1423 pr_warning("%s passed WQE(%p) doesn't match "
1424 "the address in the POW(%p)\n",
1426 cvmx_pow_get_current_wqp());
1430 * Note that WQE in DRAM is not updated here, as the POW does
1431 * not read from DRAM once the WQE is in flight. See hardware
1432 * manual for complete details. It is the application's
1433 * responsibility to keep track of the current tag value if
1434 * that is important.
1438 tag_req
.s
.op
= CVMX_POW_TAG_OP_SWTAG_FULL
;
1439 tag_req
.s
.tag
= tag
;
1440 tag_req
.s
.type
= tag_type
;
1441 tag_req
.s
.grp
= group
;
1444 ptr
.sio
.mem_region
= CVMX_IO_SEG
;
1446 ptr
.sio
.did
= CVMX_OCT_DID_TAG_SWTAG
;
1447 ptr
.sio
.offset
= CAST64(wqp
);
1450 * once this store arrives at POW, it will attempt the switch
1451 * software must wait for the switch to complete separately.
1453 cvmx_write_io(ptr
.u64
, tag_req
.u64
);
1457 * Starts a tag switch to the provided tag value and tag type.
1458 * Completion for the tag switch must be checked for separately. This
1459 * function does NOT update the work queue entry in dram to match tag
1460 * value and type, so the application must keep track of these if they
1461 * are important to the application. This tag switch command must not
1462 * be used for switches to NULL, as the tag switch pending bit will be
1463 * set by the switch request, but never cleared by the hardware.
1465 * This function must be used for tag switches from NULL.
1467 * This function waits for any pending tag switches to complete
1468 * before requesting the tag switch.
1470 * @wqp: pointer to work queue entry to submit. This entry is updated
1471 * to match the other parameters
1472 * @tag: tag value to be assigned to work queue entry
1473 * @tag_type: type of tag
1474 * @group: group value for the work queue entry.
1476 static inline void cvmx_pow_tag_sw_full(cvmx_wqe_t
*wqp
, uint32_t tag
,
1477 enum cvmx_pow_tag_type tag_type
,
1480 if (CVMX_ENABLE_POW_CHECKS
)
1481 __cvmx_pow_warn_if_pending_switch(__func__
);
1484 * Ensure that there is not a pending tag switch, as a tag
1485 * switch cannot be started if a previous switch is still
1488 cvmx_pow_tag_sw_wait();
1489 cvmx_pow_tag_sw_full_nocheck(wqp
, tag
, tag_type
, group
);
1493 * Switch to a NULL tag, which ends any ordering or
1494 * synchronization provided by the POW for the current
1495 * work queue entry. This operation completes immediatly,
1496 * so completetion should not be waited for.
1497 * This function does NOT wait for previous tag switches to complete,
1498 * so the caller must ensure that any previous tag switches have completed.
1500 static inline void cvmx_pow_tag_sw_null_nocheck(void)
1503 cvmx_pow_tag_req_t tag_req
;
1505 if (CVMX_ENABLE_POW_CHECKS
) {
1506 cvmx_pow_tag_req_t current_tag
;
1507 __cvmx_pow_warn_if_pending_switch(__func__
);
1508 current_tag
= cvmx_pow_get_current_tag();
1509 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL_NULL
)
1510 pr_warning("%s called with NULL_NULL tag\n",
1512 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL
)
1513 pr_warning("%s called when we already have a "
1519 tag_req
.s
.op
= CVMX_POW_TAG_OP_SWTAG
;
1520 tag_req
.s
.type
= CVMX_POW_TAG_TYPE_NULL
;
1523 ptr
.sio
.mem_region
= CVMX_IO_SEG
;
1525 ptr
.sio
.did
= CVMX_OCT_DID_TAG_TAG1
;
1527 cvmx_write_io(ptr
.u64
, tag_req
.u64
);
1529 /* switch to NULL completes immediately */
1533 * Switch to a NULL tag, which ends any ordering or
1534 * synchronization provided by the POW for the current
1535 * work queue entry. This operation completes immediatly,
1536 * so completetion should not be waited for.
1537 * This function waits for any pending tag switches to complete
1538 * before requesting the switch to NULL.
1540 static inline void cvmx_pow_tag_sw_null(void)
1542 if (CVMX_ENABLE_POW_CHECKS
)
1543 __cvmx_pow_warn_if_pending_switch(__func__
);
1546 * Ensure that there is not a pending tag switch, as a tag
1547 * switch cannot be started if a previous switch is still
1550 cvmx_pow_tag_sw_wait();
1551 cvmx_pow_tag_sw_null_nocheck();
1553 /* switch to NULL completes immediately */
1557 * Submits work to an input queue. This function updates the work
1558 * queue entry in DRAM to match the arguments given. Note that the
1559 * tag provided is for the work queue entry submitted, and is
1560 * unrelated to the tag that the core currently holds.
1562 * @wqp: pointer to work queue entry to submit. This entry is
1563 * updated to match the other parameters
1564 * @tag: tag value to be assigned to work queue entry
1565 * @tag_type: type of tag
1566 * @qos: Input queue to add to.
1567 * @grp: group value for the work queue entry.
1569 static inline void cvmx_pow_work_submit(cvmx_wqe_t
*wqp
, uint32_t tag
,
1570 enum cvmx_pow_tag_type tag_type
,
1571 uint64_t qos
, uint64_t grp
)
1574 cvmx_pow_tag_req_t tag_req
;
1578 wqp
->tag_type
= tag_type
;
1582 tag_req
.s
.op
= CVMX_POW_TAG_OP_ADDWQ
;
1583 tag_req
.s
.type
= tag_type
;
1584 tag_req
.s
.tag
= tag
;
1585 tag_req
.s
.qos
= qos
;
1586 tag_req
.s
.grp
= grp
;
1589 ptr
.sio
.mem_region
= CVMX_IO_SEG
;
1591 ptr
.sio
.did
= CVMX_OCT_DID_TAG_TAG1
;
1592 ptr
.sio
.offset
= cvmx_ptr_to_phys(wqp
);
1595 * SYNC write to memory before the work submit. This is
1596 * necessary as POW may read values from DRAM at this time.
1599 cvmx_write_io(ptr
.u64
, tag_req
.u64
);
1603 * This function sets the group mask for a core. The group mask
1604 * indicates which groups each core will accept work from. There are
1607 * @core_num: core to apply mask to
1608 * @mask: Group mask. There are 16 groups, so only bits 0-15 are valid,
1609 * representing groups 0-15.
1610 * Each 1 bit in the mask enables the core to accept work from
1611 * the corresponding group.
1613 static inline void cvmx_pow_set_group_mask(uint64_t core_num
, uint64_t mask
)
1615 union cvmx_pow_pp_grp_mskx grp_msk
;
1617 grp_msk
.u64
= cvmx_read_csr(CVMX_POW_PP_GRP_MSKX(core_num
));
1618 grp_msk
.s
.grp_msk
= mask
;
1619 cvmx_write_csr(CVMX_POW_PP_GRP_MSKX(core_num
), grp_msk
.u64
);
1623 * This function sets POW static priorities for a core. Each input queue has
1624 * an associated priority value.
1626 * @core_num: core to apply priorities to
1627 * @priority: Vector of 8 priorities, one per POW Input Queue (0-7).
1628 * Highest priority is 0 and lowest is 7. A priority value
1629 * of 0xF instructs POW to skip the Input Queue when
1630 * scheduling to this specific core.
1631 * NOTE: priorities should not have gaps in values, meaning
1632 * {0,1,1,1,1,1,1,1} is a valid configuration while
1633 * {0,2,2,2,2,2,2,2} is not.
1635 static inline void cvmx_pow_set_priority(uint64_t core_num
,
1636 const uint8_t priority
[])
1638 /* POW priorities are supported on CN5xxx and later */
1639 if (!OCTEON_IS_MODEL(OCTEON_CN3XXX
)) {
1640 union cvmx_pow_pp_grp_mskx grp_msk
;
1642 grp_msk
.u64
= cvmx_read_csr(CVMX_POW_PP_GRP_MSKX(core_num
));
1643 grp_msk
.s
.qos0_pri
= priority
[0];
1644 grp_msk
.s
.qos1_pri
= priority
[1];
1645 grp_msk
.s
.qos2_pri
= priority
[2];
1646 grp_msk
.s
.qos3_pri
= priority
[3];
1647 grp_msk
.s
.qos4_pri
= priority
[4];
1648 grp_msk
.s
.qos5_pri
= priority
[5];
1649 grp_msk
.s
.qos6_pri
= priority
[6];
1650 grp_msk
.s
.qos7_pri
= priority
[7];
1652 /* Detect gaps between priorities and flag error */
1655 uint32_t prio_mask
= 0;
1657 for (i
= 0; i
< 8; i
++)
1658 if (priority
[i
] != 0xF)
1659 prio_mask
|= 1 << priority
[i
];
1661 if (prio_mask
^ ((1 << cvmx_pop(prio_mask
)) - 1)) {
1662 pr_err("POW static priorities should be "
1663 "contiguous (0x%llx)\n",
1664 (unsigned long long)prio_mask
);
1669 cvmx_write_csr(CVMX_POW_PP_GRP_MSKX(core_num
), grp_msk
.u64
);
1674 * Performs a tag switch and then an immediate deschedule. This completes
1675 * immediatly, so completion must not be waited for. This function does NOT
1676 * update the wqe in DRAM to match arguments.
1678 * This function does NOT wait for any prior tag switches to complete, so the
1679 * calling code must do this.
1681 * Note the following CAVEAT of the Octeon HW behavior when
1682 * re-scheduling DE-SCHEDULEd items whose (next) state is
1684 * - If there are no switches pending at the time that the
1685 * HW executes the de-schedule, the HW will only re-schedule
1686 * the head of the FIFO associated with the given tag. This
1687 * means that in many respects, the HW treats this ORDERED
1688 * tag as an ATOMIC tag. Note that in the SWTAG_DESCH
1689 * case (to an ORDERED tag), the HW will do the switch
1690 * before the deschedule whenever it is possible to do
1691 * the switch immediately, so it may often look like
1693 * - If there is a pending switch to ORDERED at the time
1694 * the HW executes the de-schedule, the HW will perform
1695 * the switch at the time it re-schedules, and will be
1696 * able to reschedule any/all of the entries with the
1698 * Due to this behavior, the RECOMMENDATION to software is
1699 * that they have a (next) state of ATOMIC when they
1700 * DE-SCHEDULE. If an ORDERED tag is what was really desired,
1701 * SW can choose to immediately switch to an ORDERED tag
1702 * after the work (that has an ATOMIC tag) is re-scheduled.
1703 * Note that since there are never any tag switches pending
1704 * when the HW re-schedules, this switch can be IMMEDIATE upon
1705 * the reception of the pointer during the re-schedule.
1707 * @tag: New tag value
1708 * @tag_type: New tag type
1709 * @group: New group value
1710 * @no_sched: Control whether this work queue entry will be rescheduled.
1711 * - 1 : don't schedule this work
1712 * - 0 : allow this work to be scheduled.
1714 static inline void cvmx_pow_tag_sw_desched_nocheck(
1716 enum cvmx_pow_tag_type tag_type
,
1721 cvmx_pow_tag_req_t tag_req
;
1723 if (CVMX_ENABLE_POW_CHECKS
) {
1724 cvmx_pow_tag_req_t current_tag
;
1725 __cvmx_pow_warn_if_pending_switch(__func__
);
1726 current_tag
= cvmx_pow_get_current_tag();
1727 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL_NULL
)
1728 pr_warning("%s called with NULL_NULL tag\n",
1730 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL
)
1731 pr_warning("%s called with NULL tag. Deschedule not "
1732 "allowed from NULL state\n",
1734 if ((current_tag
.s
.type
!= CVMX_POW_TAG_TYPE_ATOMIC
)
1735 && (tag_type
!= CVMX_POW_TAG_TYPE_ATOMIC
))
1736 pr_warning("%s called where neither the before or "
1737 "after tag is ATOMIC\n",
1742 tag_req
.s
.op
= CVMX_POW_TAG_OP_SWTAG_DESCH
;
1743 tag_req
.s
.tag
= tag
;
1744 tag_req
.s
.type
= tag_type
;
1745 tag_req
.s
.grp
= group
;
1746 tag_req
.s
.no_sched
= no_sched
;
1749 ptr
.sio
.mem_region
= CVMX_IO_SEG
;
1751 ptr
.sio
.did
= CVMX_OCT_DID_TAG_TAG3
;
1753 * since TAG3 is used, this store will clear the local pending
1756 cvmx_write_io(ptr
.u64
, tag_req
.u64
);
1760 * Performs a tag switch and then an immediate deschedule. This completes
1761 * immediatly, so completion must not be waited for. This function does NOT
1762 * update the wqe in DRAM to match arguments.
1764 * This function waits for any prior tag switches to complete, so the
1765 * calling code may call this function with a pending tag switch.
1767 * Note the following CAVEAT of the Octeon HW behavior when
1768 * re-scheduling DE-SCHEDULEd items whose (next) state is
1770 * - If there are no switches pending at the time that the
1771 * HW executes the de-schedule, the HW will only re-schedule
1772 * the head of the FIFO associated with the given tag. This
1773 * means that in many respects, the HW treats this ORDERED
1774 * tag as an ATOMIC tag. Note that in the SWTAG_DESCH
1775 * case (to an ORDERED tag), the HW will do the switch
1776 * before the deschedule whenever it is possible to do
1777 * the switch immediately, so it may often look like
1779 * - If there is a pending switch to ORDERED at the time
1780 * the HW executes the de-schedule, the HW will perform
1781 * the switch at the time it re-schedules, and will be
1782 * able to reschedule any/all of the entries with the
1784 * Due to this behavior, the RECOMMENDATION to software is
1785 * that they have a (next) state of ATOMIC when they
1786 * DE-SCHEDULE. If an ORDERED tag is what was really desired,
1787 * SW can choose to immediately switch to an ORDERED tag
1788 * after the work (that has an ATOMIC tag) is re-scheduled.
1789 * Note that since there are never any tag switches pending
1790 * when the HW re-schedules, this switch can be IMMEDIATE upon
1791 * the reception of the pointer during the re-schedule.
1793 * @tag: New tag value
1794 * @tag_type: New tag type
1795 * @group: New group value
1796 * @no_sched: Control whether this work queue entry will be rescheduled.
1797 * - 1 : don't schedule this work
1798 * - 0 : allow this work to be scheduled.
1800 static inline void cvmx_pow_tag_sw_desched(uint32_t tag
,
1801 enum cvmx_pow_tag_type tag_type
,
1802 uint64_t group
, uint64_t no_sched
)
1804 if (CVMX_ENABLE_POW_CHECKS
)
1805 __cvmx_pow_warn_if_pending_switch(__func__
);
1807 /* Need to make sure any writes to the work queue entry are complete */
1810 * Ensure that there is not a pending tag switch, as a tag
1811 * switch cannot be started if a previous switch is still
1814 cvmx_pow_tag_sw_wait();
1815 cvmx_pow_tag_sw_desched_nocheck(tag
, tag_type
, group
, no_sched
);
1819 * Descchedules the current work queue entry.
1821 * @no_sched: no schedule flag value to be set on the work queue
1822 * entry. If this is set the entry will not be
1825 static inline void cvmx_pow_desched(uint64_t no_sched
)
1828 cvmx_pow_tag_req_t tag_req
;
1830 if (CVMX_ENABLE_POW_CHECKS
) {
1831 cvmx_pow_tag_req_t current_tag
;
1832 __cvmx_pow_warn_if_pending_switch(__func__
);
1833 current_tag
= cvmx_pow_get_current_tag();
1834 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL_NULL
)
1835 pr_warning("%s called with NULL_NULL tag\n",
1837 if (current_tag
.s
.type
== CVMX_POW_TAG_TYPE_NULL
)
1838 pr_warning("%s called with NULL tag. Deschedule not "
1839 "expected from NULL state\n",
1843 /* Need to make sure any writes to the work queue entry are complete */
1847 tag_req
.s
.op
= CVMX_POW_TAG_OP_DESCH
;
1848 tag_req
.s
.no_sched
= no_sched
;
1851 ptr
.sio
.mem_region
= CVMX_IO_SEG
;
1853 ptr
.sio
.did
= CVMX_OCT_DID_TAG_TAG3
;
1855 * since TAG3 is used, this store will clear the local pending
1858 cvmx_write_io(ptr
.u64
, tag_req
.u64
);
1861 /****************************************************
1862 * Define usage of bits within the 32 bit tag values.
1863 *****************************************************/
1866 * Number of bits of the tag used by software. The SW bits are always
1867 * a contiguous block of the high starting at bit 31. The hardware
1868 * bits are always the low bits. By default, the top 8 bits of the
1869 * tag are reserved for software, and the low 24 are set by the IPD
1872 #define CVMX_TAG_SW_BITS (8)
1873 #define CVMX_TAG_SW_SHIFT (32 - CVMX_TAG_SW_BITS)
1875 /* Below is the list of values for the top 8 bits of the tag. */
1877 * Tag values with top byte of this value are reserved for internal
1880 #define CVMX_TAG_SW_BITS_INTERNAL 0x1
1881 /* The executive divides the remaining 24 bits as follows:
1882 * - the upper 8 bits (bits 23 - 16 of the tag) define a subgroup
1884 * - the lower 16 bits (bits 15 - 0 of the tag) define are the value
1887 * Note that this section describes the format of tags generated by
1888 * software - refer to the hardware documentation for a description of
1889 * the tags values generated by the packet input hardware. Subgroups
1892 /* Mask for the value portion of the tag */
1893 #define CVMX_TAG_SUBGROUP_MASK 0xFFFF
1894 #define CVMX_TAG_SUBGROUP_SHIFT 16
1895 #define CVMX_TAG_SUBGROUP_PKO 0x1
1897 /* End of executive tag subgroup definitions */
1900 * The remaining values software bit values 0x2 - 0xff are available
1901 * for application use.
1905 * This function creates a 32 bit tag value from the two values provided.
1907 * @sw_bits: The upper bits (number depends on configuration) are set
1908 * to this value. The remainder of bits are set by the
1909 * hw_bits parameter.
1911 * @hw_bits: The lower bits (number depends on configuration) are set
1912 * to this value. The remainder of bits are set by the
1913 * sw_bits parameter.
1915 * Returns 32 bit value of the combined hw and sw bits.
1917 static inline uint32_t cvmx_pow_tag_compose(uint64_t sw_bits
, uint64_t hw_bits
)
1919 return ((sw_bits
& cvmx_build_mask(CVMX_TAG_SW_BITS
)) <<
1920 CVMX_TAG_SW_SHIFT
) |
1921 (hw_bits
& cvmx_build_mask(32 - CVMX_TAG_SW_BITS
));
1925 * Extracts the bits allocated for software use from the tag
1927 * @tag: 32 bit tag value
1929 * Returns N bit software tag value, where N is configurable with the
1930 * CVMX_TAG_SW_BITS define
1932 static inline uint32_t cvmx_pow_tag_get_sw_bits(uint64_t tag
)
1934 return (tag
>> (32 - CVMX_TAG_SW_BITS
)) &
1935 cvmx_build_mask(CVMX_TAG_SW_BITS
);
1940 * Extracts the bits allocated for hardware use from the tag
1942 * @tag: 32 bit tag value
1944 * Returns (32 - N) bit software tag value, where N is configurable
1945 * with the CVMX_TAG_SW_BITS define
1947 static inline uint32_t cvmx_pow_tag_get_hw_bits(uint64_t tag
)
1949 return tag
& cvmx_build_mask(32 - CVMX_TAG_SW_BITS
);
1953 * Store the current POW internal state into the supplied
1954 * buffer. It is recommended that you pass a buffer of at least
1955 * 128KB. The format of the capture may change based on SDK
1956 * version and Octeon chip.
1958 * @buffer: Buffer to store capture into
1960 * The size of the supplied buffer
1962 * Returns Zero on sucess, negative on failure
1964 extern int cvmx_pow_capture(void *buffer
, int buffer_size
);
1967 * Dump a POW capture to the console in a human readable format.
1969 * @buffer: POW capture from cvmx_pow_capture()
1971 * Size of the buffer
1973 extern void cvmx_pow_display(void *buffer
, int buffer_size
);
1976 * Return the number of POW entries supported by this chip
1978 * Returns Number of POW entries
1980 extern int cvmx_pow_get_num_entries(void);
1982 #endif /* __CVMX_POW_H__ */