4 ///////////////////////////////////////////////////////////////////////////////////////////////////
6 //*****************************************************************************
8 /*****************************************************************************
9 ; For MAXIM2825/6/7 Ver. 331 or more
10 ; Edited by Tiger, Sep-17-2003
11 ; revised by Ben, Sep-18-2003
18 ;channe1 01 ; 0x03 0x30142 ; 0x04 0x0b333;
19 ;channe1 02 ;0x03 0x32141 ;0x04 0x08444;
20 ;channe1 03 ;0x03 0x32143 ;0x04 0x0aeee;
21 ;channe1 04 ;0x03 0x32142 ;0x04 0x0b333;
22 ;channe1 05 ;0x03 0x31141 ;0x04 0x08444;
26 ;channe1 07 ;0x03 0x31142 ;0x04 0x0b333;
27 ;channe1 08 ;0x03 0x33141 ;0x04 0x08444;
28 ;channe1 09 ;0x03 0x33143 ;0x04 0x0aeee;
29 ;channe1 10 ;0x03 0x33142 ;0x04 0x0b333;
30 ;channe1 11 ;0x03 0x30941 ;0x04 0x08444;
31 ;channe1 12 ;0x03 0x30943 ;0x04 0x0aeee;
32 ;channe1 13 ;0x03 0x30942 ;0x04 0x0b333;
37 0x08 0x05100; 100 Hz DC
38 ;0x08 0x05900; 30 KHz DC
42 0x0c 0x0c900 // 0x0ca00 (lager power 9db than 0x0c000), 0x0c000
43 *****************************************************************************/
45 u32 max2825_rf_data
[] =
59 (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
62 u32 max2825_channel_data_24
[][3] =
64 {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
65 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
66 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
67 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
68 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
69 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
70 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
71 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
72 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
73 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
74 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
75 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
76 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
77 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
80 u32 max2825_power_data_24
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
82 /****************************************************************************/
84 u32 max2827_rf_data
[] =
98 (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
101 u32 max2827_channel_data_24
[][3] =
103 {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
104 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
105 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
106 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
107 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
108 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
109 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
110 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
111 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
112 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
113 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
114 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
115 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
116 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
119 u32 max2827_channel_data_50
[][3] =
121 {(0x03<<18)|0x33cc3, (0x04<<18)|0x08ccc, (0x05<<18)|0x2A9A6}, // channel 36
122 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x2A9A6}, // channel 40
123 {(0x03<<18)|0x302c2, (0x04<<18)|0x0b333, (0x05<<18)|0x2A9A6}, // channel 44
124 {(0x03<<18)|0x322c1, (0x04<<18)|0x09999, (0x05<<18)|0x2A9A6}, // channel 48
125 {(0x03<<18)|0x312c1, (0x04<<18)|0x0a666, (0x05<<18)|0x2A9A6}, // channel 52
126 {(0x03<<18)|0x332c3, (0x04<<18)|0x08ccc, (0x05<<18)|0x2A9A6}, // channel 56
127 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x2A9A6}, // channel 60
128 {(0x03<<18)|0x30ac2, (0x04<<18)|0x0b333, (0x05<<18)|0x2A9A6} // channel 64
131 u32 max2827_power_data_24
[] = {(0x0C<<18)|0x0C000, (0x0C<<18)|0x0D600, (0x0C<<18)|0x0C100};
132 u32 max2827_power_data_50
[] = {(0x0C<<18)|0x0C400, (0x0C<<18)|0x0D500, (0x0C<<18)|0x0C300};
134 /****************************************************************************/
136 u32 max2828_rf_data
[] =
150 (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100
153 u32 max2828_channel_data_24
[][3] =
155 {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01
156 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02
157 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03
158 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04
159 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05
160 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06
161 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07
162 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08
163 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09
164 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10
165 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11
166 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12
167 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13
168 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify
171 u32 max2828_channel_data_50
[][3] =
173 {(0x03<<18)|0x33cc3, (0x04<<18)|0x08ccc, (0x05<<18)|0x289A6}, // channel 36
174 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x289A6}, // channel 40
175 {(0x03<<18)|0x302c2, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channel 44
176 {(0x03<<18)|0x322c1, (0x04<<18)|0x09999, (0x05<<18)|0x289A6}, // channel 48
177 {(0x03<<18)|0x312c1, (0x04<<18)|0x0a666, (0x05<<18)|0x289A6}, // channel 52
178 {(0x03<<18)|0x332c3, (0x04<<18)|0x08ccc, (0x05<<18)|0x289A6}, // channel 56
179 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x289A6}, // channel 60
180 {(0x03<<18)|0x30ac2, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6} // channel 64
183 u32 max2828_power_data_24
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
184 u32 max2828_power_data_50
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
186 /****************************************************************************/
189 u32 max2829_rf_data
[] =
203 (0x0C<<18)|0x0F300 //TXVGA=51, (MAX-6 dB)
206 u32 max2829_channel_data_24
[][3] =
208 {(3<<18)|0x30142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 01 (2412MHz)
209 {(3<<18)|0x32141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 02 (2417MHz)
210 {(3<<18)|0x32143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 03 (2422MHz)
211 {(3<<18)|0x32142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 04 (2427MHz)
212 {(3<<18)|0x31141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 05 (2432MHz)
213 {(3<<18)|0x31143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 06 (2437MHz)
214 {(3<<18)|0x31142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 07 (2442MHz)
215 {(3<<18)|0x33141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 08 (2447MHz)
216 {(3<<18)|0x33143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 09 (2452MHz)
217 {(3<<18)|0x33142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 10 (2457MHz)
218 {(3<<18)|0x30941, (4<<18)|0x08444, (5<<18)|0x289C6}, // 11 (2462MHz)
219 {(3<<18)|0x30943, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 12 (2467MHz)
220 {(3<<18)|0x30942, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 13 (2472MHz)
221 {(3<<18)|0x32941, (4<<18)|0x09999, (5<<18)|0x289C6}, // 14 (2484MHz) hh-modify
224 u32 max2829_channel_data_50
[][4] =
226 {36, (3<<18)|0x33cc3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 36 (5.180GHz)
227 {40, (3<<18)|0x302c0, (4<<18)|0x08000, (5<<18)|0x2A946}, // 40 (5.200GHz)
228 {44, (3<<18)|0x302c2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 44 (5.220GHz)
229 {48, (3<<18)|0x322c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 48 (5.240GHz)
230 {52, (3<<18)|0x312c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 52 (5.260GHz)
231 {56, (3<<18)|0x332c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 56 (5.280GHz)
232 {60, (3<<18)|0x30ac0, (4<<18)|0x08000, (5<<18)|0x2A946}, // 60 (5.300GHz)
233 {64, (3<<18)|0x30ac2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 64 (5.320GHz)
235 {100, (3<<18)|0x30ec0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 100 (5.500GHz)
236 {104, (3<<18)|0x30ec2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 104 (5.520GHz)
237 {108, (3<<18)|0x32ec1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 108 (5.540GHz)
238 {112, (3<<18)|0x31ec1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 112 (5.560GHz)
239 {116, (3<<18)|0x33ec3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 116 (5.580GHz)
240 {120, (3<<18)|0x301c0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 120 (5.600GHz)
241 {124, (3<<18)|0x301c2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 124 (5.620GHz)
242 {128, (3<<18)|0x321c1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 128 (5.640GHz)
243 {132, (3<<18)|0x311c1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 132 (5.660GHz)
244 {136, (3<<18)|0x331c3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 136 (5.680GHz)
245 {140, (3<<18)|0x309c0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 140 (5.700GHz)
247 {149, (3<<18)|0x329c2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 149 (5.745GHz)
248 {153, (3<<18)|0x319c1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 153 (5.765GHz)
249 {157, (3<<18)|0x339c1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 157 (5.785GHz)
250 {161, (3<<18)|0x305c3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 161 (5.805GHz)
253 { 184, (3<<18)|0x308c2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 184 (4.920GHz)
254 { 188, (3<<18)|0x328c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 188 (4.940GHz)
255 { 192, (3<<18)|0x318c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 192 (4.960GHz)
256 { 196, (3<<18)|0x338c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 196 (4.980GHz)
257 { 8, (3<<18)|0x324c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 8 (5.040GHz)
258 { 12, (3<<18)|0x314c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 12 (5.060GHz)
259 { 16, (3<<18)|0x334c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 16 (5.080GHz)
260 { 34, (3<<18)|0x31cc2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 34 (5.170GHz)
261 { 38, (3<<18)|0x33cc1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 38 (5.190GHz)
262 { 42, (3<<18)|0x302c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 42 (5.210GHz)
263 { 46, (3<<18)|0x322c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 46 (5.230GHz)
266 /*****************************************************************************
267 ; For MAXIM2825/6/7 Ver. 317 or less
268 ; Edited by Tiger, Sep-17-2003 for 2.4Ghz channels
269 ; Updated by Tiger, Sep-22-2003 for 5.0Ghz channels
270 ; Corrected by Tiger, Sep-23-2003, for 0x03 and 0x04 of 5.0Ghz channels
277 ;channe1 01 (2.412GHz); 0x03 0x30143 ;0x04 0x0accc
278 ;channe1 02 (2.417GHz); 0x03 0x32140 ;0x04 0x09111
279 ;channe1 03 (2.422GHz); 0x03 0x32142 ;0x04 0x0bbbb
280 ;channe1 04 (2.427GHz); 0x03 0x32143 ;0x04 0x0accc
281 ;channe1 05 (2.432GHz); 0x03 0x31140 ;0x04 0x09111
282 ;channe1 06 (2.437GHz); 0x03 0x31142 ;0x04 0x0bbbb
283 ;channe1 07 (2.442GHz); 0x03 0x31143 ;0x04 0x0accc
284 ;channe1 08 (2.447GHz); 0x03 0x33140 ;0x04 0x09111
285 ;channe1 09 (2.452GHz); 0x03 0x33142 ;0x04 0x0bbbb
286 ;channe1 10 (2.457GHz); 0x03 0x33143 ;0x04 0x0accc
287 ;channe1 11 (2.462GHz); 0x03 0x30940 ;0x04 0x09111
288 ;channe1 12 (2.467GHz); 0x03 0x30942 ;0x04 0x0bbbb
289 ;channe1 13 (2.472GHz); 0x03 0x30943 ;0x04 0x0accc
292 ;channel 36 (5.180GHz); 0x03 0x33cc0 ;0x04 0x0b333
293 ;channel 40 (5.200GHz); 0x03 0x302c0 ;0x04 0x08000
294 ;channel 44 (5.220GHz); 0x03 0x302c2 ;0x04 0x0b333
295 ;channel 48 (5.240GHz); 0x03 0x322c1 ;0x04 0x09999
296 ;channel 52 (5.260GHz); 0x03 0x312c1 ;0x04 0x0a666
297 ;channel 56 (5.280GHz); 0x03 0x332c3 ;0x04 0x08ccc
298 ;channel 60 (5.300GHz); 0x03 0x30ac0 ;0x04 0x08000
299 ;channel 64 (5.320GHz); 0x03 0x30ac2 ;0x04 0x08333
301 ;2.4GHz band ;0x05 0x28986;
312 *****************************************************************************/
313 u32 maxim_317_rf_data
[] =
330 u32 maxim_317_channel_data_24
[][3] =
332 {(0x03<<18)|0x30143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 01
333 {(0x03<<18)|0x32140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 02
334 {(0x03<<18)|0x32142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 03
335 {(0x03<<18)|0x32143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 04
336 {(0x03<<18)|0x31140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 05
337 {(0x03<<18)|0x31142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 06
338 {(0x03<<18)|0x31143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 07
339 {(0x03<<18)|0x33140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 08
340 {(0x03<<18)|0x33142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 09
341 {(0x03<<18)|0x33143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 10
342 {(0x03<<18)|0x30940, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 11
343 {(0x03<<18)|0x30942, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 12
344 {(0x03<<18)|0x30943, (0x04<<18)|0x0accc, (0x05<<18)|0x28986} // channe1 13
347 u32 maxim_317_channel_data_50
[][3] =
349 {(0x03<<18)|0x33cc0, (0x04<<18)|0x0b333, (0x05<<18)|0x2a986}, // channel 36
350 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x2a986}, // channel 40
351 {(0x03<<18)|0x302c3, (0x04<<18)|0x0accc, (0x05<<18)|0x2a986}, // channel 44
352 {(0x03<<18)|0x322c1, (0x04<<18)|0x09666, (0x05<<18)|0x2a986}, // channel 48
353 {(0x03<<18)|0x312c2, (0x04<<18)|0x09999, (0x05<<18)|0x2a986}, // channel 52
354 {(0x03<<18)|0x332c0, (0x04<<18)|0x0b333, (0x05<<18)|0x2a99e}, // channel 56
355 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x2a99e}, // channel 60
356 {(0x03<<18)|0x30ac3, (0x04<<18)|0x0accc, (0x05<<18)|0x2a99e} // channel 64
359 u32 maxim_317_power_data_24
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
360 u32 maxim_317_power_data_50
[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100};
362 /*****************************************************************************
363 ;;AL2230 MP (Mass Production Version)
364 ;;RF Registers Setting for Airoha AL2230 silicon after June 1st, 2004
365 ;;Updated by Tiger Huang (June 1st, 2004)
366 ;;20-bit length and LSB first
368 ;;Ch01 (2412MHz) ;0x00 0x09EFC ;0x01 0x8CCCC;
369 ;;Ch02 (2417MHz) ;0x00 0x09EFC ;0x01 0x8CCCD;
370 ;;Ch03 (2422MHz) ;0x00 0x09E7C ;0x01 0x8CCCC;
371 ;;Ch04 (2427MHz) ;0x00 0x09E7C ;0x01 0x8CCCD;
372 ;;Ch05 (2432MHz) ;0x00 0x05EFC ;0x01 0x8CCCC;
373 ;;Ch06 (2437MHz) ;0x00 0x05EFC ;0x01 0x8CCCD;
374 ;;Ch07 (2442MHz) ;0x00 0x05E7C ;0x01 0x8CCCC;
375 ;;Ch08 (2447MHz) ;0x00 0x05E7C ;0x01 0x8CCCD;
376 ;;Ch09 (2452MHz) ;0x00 0x0DEFC ;0x01 0x8CCCC;
377 ;;Ch10 (2457MHz) ;0x00 0x0DEFC ;0x01 0x8CCCD;
378 ;;Ch11 (2462MHz) ;0x00 0x0DE7C ;0x01 0x8CCCC;
379 ;;Ch12 (2467MHz) ;0x00 0x0DE7C ;0x01 0x8CCCD;
380 ;;Ch13 (2472MHz) ;0x00 0x03EFC ;0x01 0x8CCCC;
381 ;;Ch14 (2484Mhz) ;0x00 0x03E7C ;0x01 0x86666;
383 0x02 0x401D8; RXDCOC BW 100Hz for RXHP low
384 ;;0x02 0x481DC; RXDCOC BW 30Khz for RXHP low
399 ;RF Calibration for Airoha AL2230
400 ;Edit by Ben Chang (01/30/04)
401 ;Updated by Tiger Huang (03/03/04)
402 0x0f 0xf00a0 ; Initial Setting
403 0x0f 0xf00b0 ; Activate TX DCC
404 0x0f 0xf02a0 ; Activate Phase Calibration
405 0x0f 0xf00e0 ; Activate Filter RC Calibration
406 0x0f 0xf00a0 ; Restore Initial Setting
407 *****************************************************************************/
409 u32 al2230_rf_data
[] =
413 (0x02<<20)|0x40058,// 20060627 Anson 0x401D8,
415 (0x04<<20)|0x24100,// 20060627 Anson 0x23800,
416 (0x05<<20)|0xA3B2F,// 20060627 Anson 0xA3B72
418 (0x07<<20)|0xE3628,// 20060627 Anson 0xE1688,
420 (0x09<<20)|0x9DC02,// 20060627 Anosn 0x97602,//0x99E02, //0x9AE02
421 (0x0A<<20)|0x5ddb0, // 941206 For QCOM interference 0x588b0,//0x5DDB0, 940601 adj 0x5aa30 for bluetooth
425 (0x0F<<20)|0xF01A0 // 20060627 Anson 0xF00A0
428 u32 al2230s_rf_data
[] =
432 (0x02<<20)|0x40058,// 20060419 0x401D8,
434 (0x04<<20)|0x24100,// 20060419 0x23800,
435 (0x05<<20)|0xA3B2F,// 20060419 0xA3B72,
437 (0x07<<20)|0xE3628,// 20060419 0xE1688,
439 (0x09<<20)|0x9DC02,// 20060419 0x97602,//0x99E02, //0x9AE02
440 (0x0A<<20)|0x5DDB0,// 941206 For QCOM interference 0x588b0,//0x5DDB0, 940601 adj 0x5aa30 for bluetooth
444 (0x0F<<20)|0xF01A0 // 20060419 0xF00A0
447 u32 al2230_channel_data_24
[][2] =
449 {(0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCC}, // channe1 01
450 {(0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCD}, // channe1 02
451 {(0x00<<20)|0x09E7C, (0x01<<20)|0x8CCCC}, // channe1 03
452 {(0x00<<20)|0x09E7C, (0x01<<20)|0x8CCCD}, // channe1 04
453 {(0x00<<20)|0x05EFC, (0x01<<20)|0x8CCCC}, // channe1 05
454 {(0x00<<20)|0x05EFC, (0x01<<20)|0x8CCCD}, // channe1 06
455 {(0x00<<20)|0x05E7C, (0x01<<20)|0x8CCCC}, // channe1 07
456 {(0x00<<20)|0x05E7C, (0x01<<20)|0x8CCCD}, // channe1 08
457 {(0x00<<20)|0x0DEFC, (0x01<<20)|0x8CCCC}, // channe1 09
458 {(0x00<<20)|0x0DEFC, (0x01<<20)|0x8CCCD}, // channe1 10
459 {(0x00<<20)|0x0DE7C, (0x01<<20)|0x8CCCC}, // channe1 11
460 {(0x00<<20)|0x0DE7C, (0x01<<20)|0x8CCCD}, // channe1 12
461 {(0x00<<20)|0x03EFC, (0x01<<20)|0x8CCCC}, // channe1 13
462 {(0x00<<20)|0x03E7C, (0x01<<20)|0x86666} // channe1 14
465 // Current setting. u32 airoha_power_data_24[] = {(0x09<<20)|0x90202, (0x09<<20)|0x96602, (0x09<<20)|0x97602};
466 #define AIROHA_TXVGA_LOW_INDEX 31 // Index for 0x90202
467 #define AIROHA_TXVGA_MIDDLE_INDEX 12 // Index for 0x96602
468 #define AIROHA_TXVGA_HIGH_INDEX 8 // Index for 0x97602 1.0.24.0 1.0.28.0
470 u32 airoha_power_data_24[] =
472 0x9FE02, // Max - 0 dB
473 0x9BE02, // Max - 1 dB
474 0x9DE02, // Max - 2 dB
475 0x99E02, // Max - 3 dB
476 0x9EE02, // Max - 4 dB
477 0x9AE02, // Max - 5 dB
478 0x9CE02, // Max - 6 dB
479 0x98E02, // Max - 7 dB
480 0x97602, // Max - 8 dB
481 0x93602, // Max - 9 dB
482 0x95602, // Max - 10 dB
483 0x91602, // Max - 11 dB
484 0x96602, // Max - 12 dB
485 0x92602, // Max - 13 dB
486 0x94602, // Max - 14 dB
487 0x90602, // Max - 15 dB
488 0x97A02, // Max - 16 dB
489 0x93A02, // Max - 17 dB
490 0x95A02, // Max - 18 dB
491 0x91A02, // Max - 19 dB
492 0x96A02, // Max - 20 dB
493 0x92A02, // Max - 21 dB
494 0x94A02, // Max - 22 dB
495 0x90A02, // Max - 23 dB
496 0x97202, // Max - 24 dB
497 0x93202, // Max - 25 dB
498 0x95202, // Max - 26 dB
499 0x91202, // Max - 27 dB
500 0x96202, // Max - 28 dB
501 0x92202, // Max - 29 dB
502 0x94202, // Max - 30 dB
503 0x90202 // Max - 31 dB
507 // 20040927 1.1.69.1000 ybjiang
509 u32 al2230_txvga_data
[][2] =
554 //--------------------------------
555 // For Airoha AL7230, 2.4Ghz band
556 // Edit by Tiger, (March, 9, 2005)
559 //channel independent registers:
560 u32 al7230_rf_data_24
[] =
580 u32 al7230_channel_data_24
[][2] =
582 {(0x00<<24)|0x003790, (0x01<<24)|0x133331}, // channe1 01
583 {(0x00<<24)|0x003790, (0x01<<24)|0x1B3331}, // channe1 02
584 {(0x00<<24)|0x003790, (0x01<<24)|0x033331}, // channe1 03
585 {(0x00<<24)|0x003790, (0x01<<24)|0x0B3331}, // channe1 04
586 {(0x00<<24)|0x0037A0, (0x01<<24)|0x133331}, // channe1 05
587 {(0x00<<24)|0x0037A0, (0x01<<24)|0x1B3331}, // channe1 06
588 {(0x00<<24)|0x0037A0, (0x01<<24)|0x033331}, // channe1 07
589 {(0x00<<24)|0x0037A0, (0x01<<24)|0x0B3331}, // channe1 08
590 {(0x00<<24)|0x0037B0, (0x01<<24)|0x133331}, // channe1 09
591 {(0x00<<24)|0x0037B0, (0x01<<24)|0x1B3331}, // channe1 10
592 {(0x00<<24)|0x0037B0, (0x01<<24)|0x033331}, // channe1 11
593 {(0x00<<24)|0x0037B0, (0x01<<24)|0x0B3331}, // channe1 12
594 {(0x00<<24)|0x0037C0, (0x01<<24)|0x133331}, // channe1 13
595 {(0x00<<24)|0x0037C0, (0x01<<24)|0x066661} // channel 14
598 //channel independent registers:
599 u32 al7230_rf_data_50
[] =
616 (0x0F<<24)|0x12BACF //5Ghz default state
619 u32 al7230_channel_data_5
[][4] =
621 //channel dependent registers: 0x00, 0x01 and 0x04
623 {184, (0x00<<24)|0x0FF520, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 184
624 {188, (0x00<<24)|0x0FF520, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 188
625 {192, (0x00<<24)|0x0FF530, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 192
626 {196, (0x00<<24)|0x0FF530, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 196
627 {8, (0x00<<24)|0x0FF540, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 008
628 {12, (0x00<<24)|0x0FF540, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 012
629 {16, (0x00<<24)|0x0FF550, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 016
630 {34, (0x00<<24)|0x0FF560, (0x01<<24)|0x055551, (0x04<<24)|0x77F784}, // channel 034
631 {38, (0x00<<24)|0x0FF570, (0x01<<24)|0x100001, (0x04<<24)|0x77F784}, // channel 038
632 {42, (0x00<<24)|0x0FF570, (0x01<<24)|0x1AAAA1, (0x04<<24)|0x77F784}, // channel 042
633 {46, (0x00<<24)|0x0FF570, (0x01<<24)|0x055551, (0x04<<24)|0x77F784}, // channel 046
635 {36, (0x00<<24)|0x0FF560, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 036
636 {40, (0x00<<24)|0x0FF570, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 040
637 {44, (0x00<<24)|0x0FF570, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 044
638 {48, (0x00<<24)|0x0FF570, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 048
639 {52, (0x00<<24)|0x0FF580, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 052
640 {56, (0x00<<24)|0x0FF580, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 056
641 {60, (0x00<<24)|0x0FF580, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 060
642 {64, (0x00<<24)|0x0FF590, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 064
643 {100, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 100
644 {104, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 104
645 {108, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 108
646 {112, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 112
647 {116, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 116
648 {120, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 120
649 {124, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 124
650 {128, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 128
651 {132, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 132
652 {136, (0x00<<24)|0x0FF5F0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 136
653 {140, (0x00<<24)|0x0FF5F0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 140
654 {149, (0x00<<24)|0x0FF600, (0x01<<24)|0x180001, (0x04<<24)|0x77F784}, // channel 149
655 {153, (0x00<<24)|0x0FF600, (0x01<<24)|0x02AAA1, (0x04<<24)|0x77F784}, // channel 153
656 {157, (0x00<<24)|0x0FF600, (0x01<<24)|0x0D5551, (0x04<<24)|0x77F784}, // channel 157
657 {161, (0x00<<24)|0x0FF610, (0x01<<24)|0x180001, (0x04<<24)|0x77F784}, // channel 161
658 {165, (0x00<<24)|0x0FF610, (0x01<<24)|0x02AAA1, (0x04<<24)|0x77F784} // channel 165
661 //; RF Calibration <=== Register 0x0F
662 //0x0F 0x1ABA8F; start from 2.4Ghz default state
663 //0x0F 0x9ABA8F; TXDC compensation
664 //0x0F 0x3ABA8F; RXFIL adjustment
665 //0x0F 0x1ABA8F; restore 2.4Ghz default state
667 //;TXVGA Mapping Table <=== Register 0x0B
668 u32 al7230_txvga_data
[][2] =
670 {0x08040B, 0}, //TXVGA=0;
671 {0x08041B, 1}, //TXVGA=1;
672 {0x08042B, 2}, //TXVGA=2;
673 {0x08043B, 3}, //TXVGA=3;
674 {0x08044B, 4}, //TXVGA=4;
675 {0x08045B, 5}, //TXVGA=5;
676 {0x08046B, 6}, //TXVGA=6;
677 {0x08047B, 7}, //TXVGA=7;
678 {0x08048B, 8}, //TXVGA=8;
679 {0x08049B, 9}, //TXVGA=9;
680 {0x0804AB, 10}, //TXVGA=10;
681 {0x0804BB, 11}, //TXVGA=11;
682 {0x0804CB, 12}, //TXVGA=12;
683 {0x0804DB, 13}, //TXVGA=13;
684 {0x0804EB, 14}, //TXVGA=14;
685 {0x0804FB, 15}, //TXVGA=15;
686 {0x08050B, 16}, //TXVGA=16;
687 {0x08051B, 17}, //TXVGA=17;
688 {0x08052B, 18}, //TXVGA=18;
689 {0x08053B, 19}, //TXVGA=19;
690 {0x08054B, 20}, //TXVGA=20;
691 {0x08055B, 21}, //TXVGA=21;
692 {0x08056B, 22}, //TXVGA=22;
693 {0x08057B, 23}, //TXVGA=23;
694 {0x08058B, 24}, //TXVGA=24;
695 {0x08059B, 25}, //TXVGA=25;
696 {0x0805AB, 26}, //TXVGA=26;
697 {0x0805BB, 27}, //TXVGA=27;
698 {0x0805CB, 28}, //TXVGA=28;
699 {0x0805DB, 29}, //TXVGA=29;
700 {0x0805EB, 30}, //TXVGA=30;
701 {0x0805FB, 31}, //TXVGA=31;
702 {0x08060B, 32}, //TXVGA=32;
703 {0x08061B, 33}, //TXVGA=33;
704 {0x08062B, 34}, //TXVGA=34;
705 {0x08063B, 35}, //TXVGA=35;
706 {0x08064B, 36}, //TXVGA=36;
707 {0x08065B, 37}, //TXVGA=37;
708 {0x08066B, 38}, //TXVGA=38;
709 {0x08067B, 39}, //TXVGA=39;
710 {0x08068B, 40}, //TXVGA=40;
711 {0x08069B, 41}, //TXVGA=41;
712 {0x0806AB, 42}, //TXVGA=42;
713 {0x0806BB, 43}, //TXVGA=43;
714 {0x0806CB, 44}, //TXVGA=44;
715 {0x0806DB, 45}, //TXVGA=45;
716 {0x0806EB, 46}, //TXVGA=46;
717 {0x0806FB, 47}, //TXVGA=47;
718 {0x08070B, 48}, //TXVGA=48;
719 {0x08071B, 49}, //TXVGA=49;
720 {0x08072B, 50}, //TXVGA=50;
721 {0x08073B, 51}, //TXVGA=51;
722 {0x08074B, 52}, //TXVGA=52;
723 {0x08075B, 53}, //TXVGA=53;
724 {0x08076B, 54}, //TXVGA=54;
725 {0x08077B, 55}, //TXVGA=55;
726 {0x08078B, 56}, //TXVGA=56;
727 {0x08079B, 57}, //TXVGA=57;
728 {0x0807AB, 58}, //TXVGA=58;
729 {0x0807BB, 59}, //TXVGA=59;
730 {0x0807CB, 60}, //TXVGA=60;
731 {0x0807DB, 61}, //TXVGA=61;
732 {0x0807EB, 62}, //TXVGA=62;
733 {0x0807FB, 63}, //TXVGA=63;
735 //--------------------------------
738 //; W89RF242 RFIC SPI programming initial data
739 //; Winbond WLAN 11g RFIC BB-SPI register -- version FA5976A rev 1.3b
740 //; Update Date: Ocotber 3, 2005 by PP10 Hsiang-Te Ho
742 //; Version 1.3b revision items: (Oct. 1, 2005 by HTHo) for FA5976A
743 u32 w89rf242_rf_data
[] =
745 (0x00<<24)|0xF86100, // 20060721 0xF86100, //; 3E184; MODA (0x00) -- Normal mode ; calibration off
746 (0x01<<24)|0xEFFFC2, //; 3BFFF; MODB (0x01) -- turn off RSSI, and other circuits are turned on
747 (0x02<<24)|0x102504, //; 04094; FSET (0x02) -- default 20MHz crystal ; Icmp=1.5mA
748 (0x03<<24)|0x026286, //; 0098A; FCHN (0x03) -- default CH7, 2442MHz
749 (0x04<<24)|0x000208, // 20060612.1.a 0x0002C8, // 20050818 // 20050816 0x000388
750 //; 02008; FCAL (0x04) -- XTAL Freq Trim=001000 (socket board#1); FA5976AYG_v1.3C
751 (0x05<<24)|0x24C60A, // 20060612.1.a 0x24C58A, // 941003 0x24C48A, // 20050818.2 0x24848A, // 20050818 // 20050816 0x24C48A
752 //; 09316; GANA (0x05) -- TX VGA default (TXVGA=0x18(12)) & TXGPK=110 ; FA5976A_1.3D
753 (0x06<<24)|0x3432CC, // 941003 0x26C34C, // 20050818 0x06B40C
754 //; 0D0CB; GANB (0x06) -- RXDC(DC offset) on; LNA=11; RXVGA=001011(11) ; RXFLSW=11(010001); RXGPK=00; RXGCF=00; -50dBm input
755 (0x07<<24)|0x0C68CE, // 20050818.2 0x0C66CE, // 20050818 // 20050816 0x0C68CE
756 //; 031A3; FILT (0x07) -- TX/RX filter with auto-tuning; TFLBW=011; RFLBW=100
757 (0x08<<24)|0x100010, //; 04000; TCAL (0x08) -- //for LO
758 (0x09<<24)|0x004012, // 20060612.1.a 0x6E4012, // 0x004012,
759 //; 1B900; RCALA (0x09) -- FASTS=11; HPDE=01 (100nsec); SEHP=1 (select B0 pin=RXHP); RXHP=1 (Turn on RXHP function)(FA5976A_1.3C)
760 (0x0A<<24)|0x704014, //; 1C100; RCALB (0x0A)
761 (0x0B<<24)|0x18BDD6, // 941003 0x1805D6, // 20050818.2 0x1801D6, // 20050818 // 20050816 0x1805D6
762 //; 062F7; IQCAL (0x0B) -- Turn on LO phase tuner=0111 & RX-LO phase = 0111; FA5976A_1.3B (2005/09/29)
763 (0x0C<<24)|0x575558, // 20050818.2 0x555558, // 20050818 // 20050816 0x575558
764 //; 15D55 ; IBSA (0x0C) -- IFPre =11 ; TC5376A_v1.3A for corner
765 (0x0D<<24)|0x55545A, // 20060612.1.a 0x55555A,
766 //; 15555 ; IBSB (0x0D)
767 (0x0E<<24)|0x5557DC, // 20060612.1.a 0x55555C, // 941003 0x5557DC,
768 //; 1555F ; IBSC (0x0E) -- IRLNA & IRLNB (PTAT & Const current)=01/01; FA5976B_1.3F (2005/11/25)
769 (0x10<<24)|0x000C20, // 941003 0x000020, // 20050818
770 //; 00030 ; TMODA (0x10) -- LNA_gain_step=0011 ; LNA=15/16dB
771 (0x11<<24)|0x0C0022, // 941003 0x030022 // 20050818.2 0x030022 // 20050818 // 20050816 0x0C0022
772 //; 03000 ; TMODB (0x11) -- Turn ON RX-Q path Test Switch; To improve IQ path group delay (FA5976A_1.3C)
773 (0x12<<24)|0x000024 // 20060612.1.a 0x001824 // 941003 add
774 //; TMODC (0x12) -- Turn OFF Tempearure sensor
777 u32 w89rf242_channel_data_24
[][2] =
779 {(0x03<<24)|0x025B06, (0x04<<24)|0x080408}, // channe1 01
780 {(0x03<<24)|0x025C46, (0x04<<24)|0x080408}, // channe1 02
781 {(0x03<<24)|0x025D86, (0x04<<24)|0x080408}, // channe1 03
782 {(0x03<<24)|0x025EC6, (0x04<<24)|0x080408}, // channe1 04
783 {(0x03<<24)|0x026006, (0x04<<24)|0x080408}, // channe1 05
784 {(0x03<<24)|0x026146, (0x04<<24)|0x080408}, // channe1 06
785 {(0x03<<24)|0x026286, (0x04<<24)|0x080408}, // channe1 07
786 {(0x03<<24)|0x0263C6, (0x04<<24)|0x080408}, // channe1 08
787 {(0x03<<24)|0x026506, (0x04<<24)|0x080408}, // channe1 09
788 {(0x03<<24)|0x026646, (0x04<<24)|0x080408}, // channe1 10
789 {(0x03<<24)|0x026786, (0x04<<24)|0x080408}, // channe1 11
790 {(0x03<<24)|0x0268C6, (0x04<<24)|0x080408}, // channe1 12
791 {(0x03<<24)|0x026A06, (0x04<<24)|0x080408}, // channe1 13
792 {(0x03<<24)|0x026D06, (0x04<<24)|0x080408} // channe1 14
795 u32 w89rf242_power_data_24
[] = {(0x05<<24)|0x24C48A, (0x05<<24)|0x24C48A, (0x05<<24)|0x24C48A};
797 // 20060315.6 Enlarge for new scale
798 // 20060316.6 20060619.2.a add mapping array
799 u32 w89rf242_txvga_old_mapping
[][2] =
801 {0, 0} , // New <-> Old
825 // 20060619.3 modify from Bruce's mail
826 u32 w89rf242_txvga_data
[][5] =
829 { (0x05<<24)|0x24C00A, 0, 0x00292315, 0x0800FEFF, 0x52523131 },// ; min gain
830 { (0x05<<24)|0x24C80A, 1, 0x00292315, 0x0800FEFF, 0x52523131 },
831 { (0x05<<24)|0x24C04A, 2, 0x00292315, 0x0800FEFF, 0x52523131 },// (default) +14dBm (ANT)
832 { (0x05<<24)|0x24C84A, 3, 0x00292315, 0x0800FEFF, 0x52523131 },
835 { (0x05<<24)|0x24C40A, 4, 0x00292315, 0x0800FEFF, 0x60603838 },
836 { (0x05<<24)|0x24C40A, 5, 0x00262114, 0x0700FEFF, 0x65653B3B },
839 { (0x05<<24)|0x24C44A, 6, 0x00241F13, 0x0700FFFF, 0x58583333 },
840 { (0x05<<24)|0x24C44A, 7, 0x00292315, 0x0800FEFF, 0x5E5E3737 },
843 { (0x05<<24)|0x24C48A, 8, 0x00262114, 0x0700FEFF, 0x53533030 },
844 { (0x05<<24)|0x24C48A, 9, 0x00241F13, 0x0700FFFF, 0x59593434 },
847 { (0x05<<24)|0x24C4CA, 10, 0x00292315, 0x0800FEFF, 0x52523030 },
848 { (0x05<<24)|0x24C4CA, 11, 0x00262114, 0x0700FEFF, 0x56563232 },
851 { (0x05<<24)|0x24C50A, 12, 0x00292315, 0x0800FEFF, 0x54543131 },
852 { (0x05<<24)|0x24C50A, 13, 0x00262114, 0x0700FEFF, 0x58583434 },
855 { (0x05<<24)|0x24C54A, 14, 0x00292315, 0x0800FEFF, 0x54543131 },
856 { (0x05<<24)|0x24C54A, 15, 0x00262114, 0x0700FEFF, 0x59593434 },
859 { (0x05<<24)|0x24C58A, 16, 0x00292315, 0x0800FEFF, 0x55553131 },
860 { (0x05<<24)|0x24C58A, 17, 0x00292315, 0x0800FEFF, 0x5B5B3535 },
863 { (0x05<<24)|0x24C5CA, 18, 0x00262114, 0x0700FEFF, 0x51512F2F },
864 { (0x05<<24)|0x24C5CA, 19, 0x00241F13, 0x0700FFFF, 0x55553131 },
867 { (0x05<<24)|0x24C60A, 20, 0x00292315, 0x0800FEFF, 0x4F4F2E2E },
868 { (0x05<<24)|0x24C60A, 21, 0x00262114, 0x0700FEFF, 0x53533030 },
871 { (0x05<<24)|0x24C64A, 22, 0x00292315, 0x0800FEFF, 0x4E4E2D2D },
872 { (0x05<<24)|0x24C64A, 23, 0x00262114, 0x0700FEFF, 0x53533030 },
875 { (0x05<<24)|0x24C68A, 24, 0x00292315, 0x0800FEFF, 0x50502E2E },
876 { (0x05<<24)|0x24C68A, 25, 0x00262114, 0x0700FEFF, 0x55553131 },
879 { (0x05<<24)|0x24C6CA, 26, 0x00262114, 0x0700FEFF, 0x53533030 },
880 { (0x05<<24)|0x24C6CA, 27, 0x00292315, 0x0800FEFF, 0x5A5A3434 },
883 { (0x05<<24)|0x24C70A, 28, 0x00292315, 0x0800FEFF, 0x55553131 },
884 { (0x05<<24)|0x24C70A, 29, 0x00292315, 0x0800FEFF, 0x5D5D3636 },
887 { (0x05<<24)|0x24C74A, 30, 0x00292315, 0x0800FEFF, 0x5F5F3737 },
888 { (0x05<<24)|0x24C74A, 31, 0x00262114, 0x0700FEFF, 0x65653B3B },
891 { (0x05<<24)|0x24C78A, 32, 0x00292315, 0x0800FEFF, 0x66663B3B },
892 { (0x05<<24)|0x24C78A, 33, 0x00262114, 0x0700FEFF, 0x70704141 },
895 { (0x05<<24)|0x24C7CA, 34, 0x00292315, 0x0800FEFF, 0x72724242 }
898 ///////////////////////////////////////////////////////////////////////////////////////////////////
899 ///////////////////////////////////////////////////////////////////////////////////////////////////
900 ///////////////////////////////////////////////////////////////////////////////////////////////////
904 //=============================================================================================================
905 // Uxx_ReadEthernetAddress --
907 // Routine Description:
908 // Reads in the Ethernet address from the IC.
911 // pHwData - The pHwData structure
915 // The address is stored in EthernetIDAddr.
916 //=============================================================================================================
918 Uxx_ReadEthernetAddress( struct hw_data
* pHwData
)
922 // Reading Ethernet address from EEPROM and set into hardware due to MAC address maybe change.
923 // Only unplug and plug again can make hardware read EEPROM again. 20060727
924 Wb35Reg_WriteSync( pHwData
, 0x03b4, 0x08000000 ); // Start EEPROM access + Read + address(0x0d)
925 Wb35Reg_ReadSync( pHwData
, 0x03b4, <mp
);
926 *(u16
*)pHwData
->PermanentMacAddress
= cpu_to_le16((u16
)ltmp
); //20060926 anson's endian
927 Wb35Reg_WriteSync( pHwData
, 0x03b4, 0x08010000 ); // Start EEPROM access + Read + address(0x0d)
928 Wb35Reg_ReadSync( pHwData
, 0x03b4, <mp
);
929 *(u16
*)(pHwData
->PermanentMacAddress
+ 2) = cpu_to_le16((u16
)ltmp
); //20060926 anson's endian
930 Wb35Reg_WriteSync( pHwData
, 0x03b4, 0x08020000 ); // Start EEPROM access + Read + address(0x0d)
931 Wb35Reg_ReadSync( pHwData
, 0x03b4, <mp
);
932 *(u16
*)(pHwData
->PermanentMacAddress
+ 4) = cpu_to_le16((u16
)ltmp
); //20060926 anson's endian
933 *(u16
*)(pHwData
->PermanentMacAddress
+ 6) = 0;
934 Wb35Reg_WriteSync( pHwData
, 0x03e8, cpu_to_le32(*(u32
*)pHwData
->PermanentMacAddress
) ); //20060926 anson's endian
935 Wb35Reg_WriteSync( pHwData
, 0x03ec, cpu_to_le32(*(u32
*)(pHwData
->PermanentMacAddress
+4)) ); //20060926 anson's endian
939 //===============================================================================================================
940 // CardGetMulticastBit --
942 // For a given multicast address, returns the byte and bit in the card multicast registers that it hashes to.
943 // Calls CardComputeCrc() to determine the CRC value.
945 // Address - the address
946 // Byte - the byte that it hashes to
947 // Value - will have a 1 in the relevant bit
950 //==============================================================================================================
951 void CardGetMulticastBit( u8 Address
[ETH_ALEN
], u8
*Byte
, u8
*Value
)
956 // First compute the CRC.
957 Crc
= CardComputeCrc(Address
, ETH_ALEN
);
959 // The computed CRC is bit0~31 from left to right
960 //At first we should do right shift 25bits, and read 7bits by using '&', 2^7=128
961 BitNumber
= (u32
) ((Crc
>> 26) & 0x3f);
963 *Byte
= (u8
) (BitNumber
>> 3);// 900514 original (BitNumber / 8)
964 *Value
= (u8
) ((u8
)1 << (BitNumber
% 8));
967 void Uxx_power_on_procedure( struct hw_data
* pHwData
)
971 if( pHwData
->phy_type
<= RF_MAXIM_V1
)
972 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xffffff38 );
975 Wb35Reg_WriteSync( pHwData
, 0x03f4, 0xFF5807FF );// 20060721 For NEW IC 0xFF5807FF
977 // 20060511.1 Fix the following 4 steps for Rx of RF 2230 initial fail
978 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0x80 );// regulator on only
979 msleep(10); // Modify 20051221.1.b
980 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xb8 );// REG_ON RF_RSTN on, and
981 msleep(10); // Modify 20051221.1.b
984 if( (pHwData
->phy_type
== RF_WB_242
) ||
985 (RF_WB_242_1
== pHwData
->phy_type
) ) // 20060619.5 Add
987 Wb35Reg_WriteSync( pHwData
, 0x03d0, ltmp
);
989 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xa0 );// PLL_PD REF_PD set to 0
991 msleep(20); // Modify 20051221.1.b
992 Wb35Reg_ReadSync( pHwData
, 0x03d0, <mp
);
993 loop
= 500; // Wait for 5 second 20061101
994 while( !(ltmp
& 0x20) && loop
-- )
996 msleep(10); // Modify 20051221.1.b
997 if( !Wb35Reg_ReadSync( pHwData
, 0x03d0, <mp
) )
1001 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xe0 );// MLK_EN
1004 Wb35Reg_WriteSync( pHwData
, 0x03b0, 1 );// Reset hardware first
1005 msleep(10); // Add this 20051221.1.b
1007 // Set burst write delay
1008 Wb35Reg_WriteSync( pHwData
, 0x03f8, 0x7ff );
1011 void Set_ChanIndep_RfData_al7230_24( struct hw_data
* pHwData
, u32
*pltmp
,char number
)
1015 for( i
=0; i
<number
; i
++ )
1017 pHwData
->phy_para
[i
] = al7230_rf_data_24
[i
];
1018 pltmp
[i
] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_rf_data_24
[i
]&0xffffff);
1022 void Set_ChanIndep_RfData_al7230_50( struct hw_data
* pHwData
, u32
*pltmp
, char number
)
1026 for( i
=0; i
<number
; i
++ )
1028 pHwData
->phy_para
[i
] = al7230_rf_data_50
[i
];
1029 pltmp
[i
] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_rf_data_50
[i
]&0xffffff);
1034 //=============================================================================================================
1035 // RFSynthesizer_initial --
1036 //=============================================================================================================
1038 RFSynthesizer_initial(struct hw_data
* pHwData
)
1041 u32
* pltmp
= altmp
;
1043 u8 number
=0x00; // The number of register vale
1047 // bit[31] SPI Enable.
1048 // 1=perform synthesizer program operation. This bit will
1049 // cleared automatically after the operation is completed.
1050 // bit[30] SPI R/W Control
1052 // bit[29:24] SPI Data Format Length
1053 // bit[17:4 ] RF Data bits.
1054 // bit[3 :0 ] RF address.
1055 switch( pHwData
->phy_type
)
1058 case RF_MAXIM_V1
: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331)
1059 number
= sizeof(max2825_rf_data
)/sizeof(max2825_rf_data
[0]);
1060 for( i
=0; i
<number
; i
++ )
1062 pHwData
->phy_para
[i
] = max2825_rf_data
[i
];// Backup Rf parameter
1063 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_rf_data
[i
], 18);
1068 number
= sizeof(max2827_rf_data
)/sizeof(max2827_rf_data
[0]);
1069 for( i
=0; i
<number
; i
++ )
1071 pHwData
->phy_para
[i
] = max2827_rf_data
[i
];
1072 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_rf_data
[i
], 18);
1077 number
= sizeof(max2828_rf_data
)/sizeof(max2828_rf_data
[0]);
1078 for( i
=0; i
<number
; i
++ )
1080 pHwData
->phy_para
[i
] = max2828_rf_data
[i
];
1081 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_rf_data
[i
], 18);
1086 number
= sizeof(max2829_rf_data
)/sizeof(max2829_rf_data
[0]);
1087 for( i
=0; i
<number
; i
++ )
1089 pHwData
->phy_para
[i
] = max2829_rf_data
[i
];
1090 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_rf_data
[i
], 18);
1094 case RF_AIROHA_2230
:
1095 number
= sizeof(al2230_rf_data
)/sizeof(al2230_rf_data
[0]);
1096 for( i
=0; i
<number
; i
++ )
1098 pHwData
->phy_para
[i
] = al2230_rf_data
[i
];
1099 pltmp
[i
] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_rf_data
[i
], 20);
1103 case RF_AIROHA_2230S
:
1104 number
= sizeof(al2230s_rf_data
)/sizeof(al2230s_rf_data
[0]);
1105 for( i
=0; i
<number
; i
++ )
1107 pHwData
->phy_para
[i
] = al2230s_rf_data
[i
];
1108 pltmp
[i
] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230s_rf_data
[i
], 20);
1112 case RF_AIROHA_7230
:
1114 //Start to fill RF parameters, PLL_ON should be pulled low.
1115 Wb35Reg_WriteSync( pHwData
, 0x03dc, 0x00000000 );
1116 #ifdef _PE_STATE_DUMP_
1117 printk("* PLL_ON low\n");
1120 number
= sizeof(al7230_rf_data_24
)/sizeof(al7230_rf_data_24
[0]);
1121 Set_ChanIndep_RfData_al7230_24(pHwData
, pltmp
, number
);
1125 case RF_WB_242_1
: // 20060619.5 Add
1126 number
= sizeof(w89rf242_rf_data
)/sizeof(w89rf242_rf_data
[0]);
1127 for( i
=0; i
<number
; i
++ )
1129 ltmp
= w89rf242_rf_data
[i
];
1130 if( i
== 4 ) // Update the VCO trim from EEPROM
1132 ltmp
&= ~0xff0; // Mask bit4 ~bit11
1133 ltmp
|= pHwData
->VCO_trim
<<4;
1136 pHwData
->phy_para
[i
] = ltmp
;
1137 pltmp
[i
] = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( ltmp
, 24);
1142 pHwData
->phy_number
= number
;
1144 // The 16 is the maximum capability of hardware. Here use 12
1146 //Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 12, NO_INCREMENT );
1147 for( i
=0; i
<12; i
++ ) // For Al2230
1148 Wb35Reg_WriteSync( pHwData
, 0x0864, pltmp
[i
] );
1154 // Write to register. number must less and equal than 16
1155 for( i
=0; i
<number
; i
++ )
1156 Wb35Reg_WriteSync( pHwData
, 0x864, pltmp
[i
] );
1158 // 20060630.1 Calibration only 1 time
1159 if( pHwData
->CalOneTime
)
1161 pHwData
->CalOneTime
= 1;
1163 switch( pHwData
->phy_type
)
1165 case RF_AIROHA_2230
:
1167 // 20060511.1 --- Modifying the follow step for Rx issue-----------------
1168 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x07<<20)|0xE168E, 20);
1169 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1171 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_rf_data
[7], 20);
1172 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1175 case RF_AIROHA_2230S
: // 20060420 Add this
1177 // 20060511.1 --- Modifying the follow step for Rx issue-----------------
1178 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0x80 );// regulator on only
1179 msleep(10); // Modify 20051221.1.b
1181 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xa0 );// PLL_PD REF_PD set to 0
1182 msleep(10); // Modify 20051221.1.b
1184 Wb35Reg_WriteSync( pHwData
, 0x03d4, 0xe0 );// MLK_EN
1185 Wb35Reg_WriteSync( pHwData
, 0x03b0, 1 );// Reset hardware first
1186 msleep(10); // Add this 20051221.1.b
1187 //------------------------------------------------------------------------
1189 // The follow code doesn't use the burst-write mode
1190 //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01A0); //Raise Initial Setting
1191 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01A0, 20);
1192 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1194 ltmp
= pHwData
->reg
.BB5C
& 0xfffff000;
1195 Wb35Reg_WriteSync( pHwData
, 0x105c, ltmp
);
1196 pHwData
->reg
.BB50
|= 0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START);//20060315.1 modify
1197 Wb35Reg_WriteSync(pHwData
, 0x1050, pHwData
->reg
.BB50
);
1200 //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01B0); //Activate Filter Cal.
1201 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01B0, 20);
1202 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1205 //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01e0); //Activate TX DCC
1206 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01E0, 20);
1207 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1210 //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01A0); //Resotre Initial Setting
1211 ltmp
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01A0, 20);
1212 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1214 // //Force TXI(Q)P(N) to normal control
1215 Wb35Reg_WriteSync( pHwData
, 0x105c, pHwData
->reg
.BB5C
);
1216 pHwData
->reg
.BB50
&= ~0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START);
1217 Wb35Reg_WriteSync( pHwData
, 0x1050, pHwData
->reg
.BB50
);
1220 case RF_AIROHA_7230
:
1222 //RF parameters have filled completely, PLL_ON should be
1224 Wb35Reg_WriteSync( pHwData
, 0x03dc, 0x00000080 );
1225 #ifdef _PE_STATE_DUMP_
1226 printk("* PLL_ON high\n");
1230 //ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x1ABA8F;
1231 //Wb35Reg_WriteSync pHwData, 0x0864, ltmp );
1232 //msleep(1); // Sleep 1 ms
1233 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x9ABA8F;
1234 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1236 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x3ABA8F;
1237 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1239 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x1ABA8F;
1240 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1244 Wb35Reg_WriteSync( pHwData
, 0x03dc, 0x00000000 );
1245 #ifdef _PE_STATE_DUMP_
1246 printk("* PLL_ON low\n");
1249 number
= sizeof(al7230_rf_data_50
)/sizeof(al7230_rf_data_50
[0]);
1250 Set_ChanIndep_RfData_al7230_50(pHwData
, pltmp
, number
);
1251 // Write to register. number must less and equal than 16
1252 for( i
=0; i
<number
; i
++ )
1253 Wb35Reg_WriteSync( pHwData
, 0x0864, pltmp
[i
] );
1256 Wb35Reg_WriteSync( pHwData
, 0x03dc, 0x00000080 );
1257 #ifdef _PE_STATE_DUMP_
1258 printk("* PLL_ON high\n");
1261 //ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x12BACF;
1262 //Wb35Reg_WriteSync( pHwData, 0x0864, ltmp );
1263 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x9ABA8F;
1264 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1266 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x3ABA8F;
1267 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1269 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x12BACF;
1270 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1273 //Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000080 );
1274 //printk("* PLL_ON high\n");
1278 case RF_WB_242_1
: // 20060619.5 Add
1281 // ; Version 1.3B revision items: for FA5976A , October 3, 2005 by HTHo
1283 ltmp
= pHwData
->reg
.BB5C
& 0xfffff000;
1284 Wb35Reg_WriteSync( pHwData
, 0x105c, ltmp
);
1285 Wb35Reg_WriteSync( pHwData
, 0x1058, 0 );
1286 pHwData
->reg
.BB50
|= 0x3;//(MASK_IQCAL_MODE|MASK_CALIB_START);//20060630
1287 Wb35Reg_WriteSync(pHwData
, 0x1050, pHwData
->reg
.BB50
);
1289 //----- Calibration (1). VCO frequency calibration
1290 //Calibration (1a.0). Synthesizer reset (HTHo corrected 2005/05/10)
1291 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00101E, 24);
1292 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1293 msleep(5); // Sleep 5ms
1294 //Calibration (1a). VCO frequency calibration mode ; waiting 2msec VCO calibration time
1295 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFE69c0, 24);
1296 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1297 msleep(2); // Sleep 2ms
1299 //----- Calibration (2). TX baseband Gm-C filter auto-tuning
1300 //Calibration (2a). turn off ENCAL signal
1301 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF8EBC0, 24);
1302 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1303 //Calibration (2b.0). TX filter auto-tuning BW: TFLBW=101 (TC5376A default)
1304 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x07<<24) | 0x0C68CE, 24);
1305 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1306 //Calibration (2b). send TX reset signal (HTHo corrected May 10, 2005)
1307 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00201E, 24);
1308 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1309 //Calibration (2c). turn-on TX Gm-C filter auto-tuning
1310 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFCEBC0, 24);
1311 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1312 udelay(150); // Sleep 150 us
1313 //turn off ENCAL signal
1314 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF8EBC0, 24);
1315 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1317 //----- Calibration (3). RX baseband Gm-C filter auto-tuning
1318 //Calibration (3a). turn off ENCAL signal
1319 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1320 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1321 //Calibration (3b.0). RX filter auto-tuning BW: RFLBW=100 (TC5376A+corner default; July 26, 2005)
1322 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x07<<24) | 0x0C68CE, 24);
1323 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1324 //Calibration (3b). send RX reset signal (HTHo corrected May 10, 2005)
1325 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00401E, 24);
1326 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1327 //Calibration (3c). turn-on RX Gm-C filter auto-tuning
1328 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFEEDC0, 24);
1329 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1330 udelay(150); // Sleep 150 us
1331 //Calibration (3e). turn off ENCAL signal
1332 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1333 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1335 //----- Calibration (4). TX LO leakage calibration
1336 //Calibration (4a). TX LO leakage calibration
1337 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFD6BC0, 24);
1338 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1339 udelay(150); // Sleep 150 us
1341 //----- Calibration (5). RX DC offset calibration
1342 //Calibration (5a). turn off ENCAL signal and set to RX SW DC caliration mode
1343 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1344 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1345 //Calibration (5b). turn off AGC servo-loop & RSSI
1346 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x01<<24) | 0xEBFFC2, 24);
1347 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1349 //; for LNA=11 --------
1350 //Calibration (5c-h). RX DC offset current bias ON; & LNA=11; RXVGA=111111
1351 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x343FCC, 24);
1352 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1353 //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
1354 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
1355 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1356 msleep(2); // Sleep 2ms
1357 //Calibration (5f). turn off ENCAL signal
1358 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1359 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1361 //; for LNA=10 --------
1362 //Calibration (5c-m). RX DC offset current bias ON; & LNA=10; RXVGA=111111
1363 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x342FCC, 24);
1364 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1365 //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
1366 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
1367 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1368 msleep(2); // Sleep 2ms
1369 //Calibration (5f). turn off ENCAL signal
1370 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1371 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1373 //; for LNA=01 --------
1374 //Calibration (5c-m). RX DC offset current bias ON; & LNA=01; RXVGA=111111
1375 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x341FCC, 24);
1376 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1377 //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
1378 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
1379 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1380 msleep(2); // Sleep 2ms
1381 //Calibration (5f). turn off ENCAL signal
1382 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1383 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1385 //; for LNA=00 --------
1386 //Calibration (5c-l). RX DC offset current bias ON; & LNA=00; RXVGA=111111
1387 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x340FCC, 24);
1388 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1389 //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time
1390 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24);
1391 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1392 msleep(2); // Sleep 2ms
1393 //Calibration (5f). turn off ENCAL signal
1394 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24);
1395 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1396 //Calibration (5g). turn on AGC servo-loop
1397 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x01<<24) | 0xEFFFC2, 24);
1398 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1400 //; ----- Calibration (7). Switch RF chip to normal mode
1401 //0x00 0xF86100 ; 3E184 ; Switch RF chip to normal mode
1402 // msleep(10); // @@ 20060721
1403 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF86100, 24);
1404 Wb35Reg_WriteSync( pHwData
, 0x0864, ltmp
);
1405 msleep(5); // Sleep 5 ms
1408 // Wb35Reg_WriteSync(pHwData, 0x105c, pHwData->reg.BB5C);
1409 // pHwData->reg.BB50 &= ~0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START); // 20060315.1 fix
1410 // Wb35Reg_WriteSync(pHwData, 0x1050, pHwData->reg.BB50);
1411 // msleep(1); // Sleep 1 ms
1416 void BBProcessor_AL7230_2400( struct hw_data
* pHwData
)
1418 struct wb35_reg
*reg
= &pHwData
->reg
;
1421 pltmp
[0] = 0x16A8337A; // 0x16a5215f; // 0x1000 AGC_Ctrl1
1422 pltmp
[1] = 0x9AFF9AA6; // 0x9aff9ca6; // 0x1004 AGC_Ctrl2
1423 pltmp
[2] = 0x55D00A04; // 0x55d00a04; // 0x1008 AGC_Ctrl3
1424 pltmp
[3] = 0xFFF72031; // 0xFfFf2138; // 0x100c AGC_Ctrl4
1425 reg
->BB0C
= 0xFFF72031;
1426 pltmp
[4] = 0x0FacDCC5; // 0x1010 AGC_Ctrl5 // 20050927 0x0FacDCB7
1427 pltmp
[5] = 0x00CAA333; // 0x00eaa333; // 0x1014 AGC_Ctrl6
1428 pltmp
[6] = 0xF2211111; // 0x11111111; // 0x1018 AGC_Ctrl7
1429 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1430 pltmp
[8] = 0x06443440; // 0x1020 AGC_Ctrl9
1431 pltmp
[9] = 0xA8002A79; // 0xa9002A79; // 0x1024 AGC_Ctrl10
1432 pltmp
[10] = 0x40000528; // 20050927 0x40000228
1433 pltmp
[11] = 0x232D7F30; // 0x23457f30;// 0x102c A_ACQ_Ctrl
1434 reg
->BB2C
= 0x232D7F30;
1435 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1437 pltmp
[0] = 0x00002c54; // 0x1030 B_ACQ_Ctrl
1438 reg
->BB30
= 0x00002c54;
1439 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1440 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
1441 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1442 reg
->BB3C
= 0x00000000;
1443 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1444 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1445 pltmp
[6] = 0x00332C1B; // 0x00453B24; // 0x1048 11b TX RC filter
1446 pltmp
[7] = 0x0A00FEFF; // 0x0E00FEFF; // 0x104c 11b TX RC filter
1447 pltmp
[8] = 0x2B106208; // 0x1050 MODE_Ctrl
1448 reg
->BB50
= 0x2B106208;
1449 pltmp
[9] = 0; // 0x1054
1450 reg
->BB54
= 0x00000000;
1451 pltmp
[10] = 0x52524242; // 0x64645252; // 0x1058 IQ_Alpha
1452 reg
->BB58
= 0x52524242;
1453 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1454 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1458 void BBProcessor_AL7230_5000( struct hw_data
* pHwData
)
1460 struct wb35_reg
*reg
= &pHwData
->reg
;
1463 pltmp
[0] = 0x16AA6678; // 0x1000 AGC_Ctrl1
1464 pltmp
[1] = 0x9AFFA0B2; // 0x1004 AGC_Ctrl2
1465 pltmp
[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
1466 pltmp
[3] = 0xEFFF233E; // 0x100c AGC_Ctrl4
1467 reg
->BB0C
= 0xEFFF233E;
1468 pltmp
[4] = 0x0FacDCC5; // 0x1010 AGC_Ctrl5 // 20050927 0x0FacDCB7
1469 pltmp
[5] = 0x00CAA333; // 0x1014 AGC_Ctrl6
1470 pltmp
[6] = 0xF2432111; // 0x1018 AGC_Ctrl7
1471 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1472 pltmp
[8] = 0x05C43440; // 0x1020 AGC_Ctrl9
1473 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1474 pltmp
[10] = 0x40000528; // 20050927 0x40000228
1475 pltmp
[11] = 0x232FDF30;// 0x102c A_ACQ_Ctrl
1476 reg
->BB2C
= 0x232FDF30;
1477 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1479 pltmp
[0] = 0x80002C7C; // 0x1030 B_ACQ_Ctrl
1480 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1481 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
1482 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1483 reg
->BB3C
= 0x00000000;
1484 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1485 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1486 pltmp
[6] = 0x00332C1B; // 0x1048 11b TX RC filter
1487 pltmp
[7] = 0x0A00FEFF; // 0x104c 11b TX RC filter
1488 pltmp
[8] = 0x2B107208; // 0x1050 MODE_Ctrl
1489 reg
->BB50
= 0x2B107208;
1490 pltmp
[9] = 0; // 0x1054
1491 reg
->BB54
= 0x00000000;
1492 pltmp
[10] = 0x52524242; // 0x1058 IQ_Alpha
1493 reg
->BB58
= 0x52524242;
1494 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1495 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1499 //=============================================================================================================
1500 // BBProcessorPowerupInit --
1503 // Initialize the Baseband processor.
1506 // pHwData - Handle of the USB Device.
1510 //=============================================================================================================
1512 BBProcessor_initial( struct hw_data
* pHwData
)
1514 struct wb35_reg
*reg
= &pHwData
->reg
;
1517 switch( pHwData
->phy_type
)
1519 case RF_MAXIM_V1
: // Initializng the Winbond 2nd BB(with Phy board (v1) + Maxim 331)
1521 pltmp
[0] = 0x16F47E77; // 0x1000 AGC_Ctrl1
1522 pltmp
[1] = 0x9AFFAEA4; // 0x1004 AGC_Ctrl2
1523 pltmp
[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
1524 pltmp
[3] = 0xEFFF1A34; // 0x100c AGC_Ctrl4
1525 reg
->BB0C
= 0xEFFF1A34;
1526 pltmp
[4] = 0x0FABE0B7; // 0x1010 AGC_Ctrl5
1527 pltmp
[5] = 0x00CAA332; // 0x1014 AGC_Ctrl6
1528 pltmp
[6] = 0xF6632111; // 0x1018 AGC_Ctrl7
1529 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1530 pltmp
[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
1531 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1532 pltmp
[10] = (pHwData
->phy_type
==3) ? 0x40000a28 : 0x40000228; // 0x1028 MAXIM_331(b31=0) + WBRF_V1(b11=1) : MAXIM_331(b31=0) + WBRF_V2(b11=0)
1533 pltmp
[11] = 0x232FDF30; // 0x102c A_ACQ_Ctrl
1534 reg
->BB2C
= 0x232FDF30; //Modify for 33's 1.0.95.xxx version, antenna 1
1535 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1537 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1538 reg
->BB30
= 0x00002C54;
1539 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1540 pltmp
[2] = 0x5B6C8769; // 0x1038 B_TXRX_Ctrl
1541 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1542 reg
->BB3C
= 0x00000000;
1543 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1544 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1545 pltmp
[6] = 0x00453B24; // 0x1048 11b TX RC filter
1546 pltmp
[7] = 0x0E00FEFF; // 0x104c 11b TX RC filter
1547 pltmp
[8] = 0x27106208; // 0x1050 MODE_Ctrl
1548 reg
->BB50
= 0x27106208;
1549 pltmp
[9] = 0; // 0x1054
1550 reg
->BB54
= 0x00000000;
1551 pltmp
[10] = 0x64646464; // 0x1058 IQ_Alpha
1552 reg
->BB58
= 0x64646464;
1553 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1554 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1556 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1559 //------------------------------------------------------------------
1561 //Only for baseband version 2
1562 // case RF_MAXIM_317:
1567 pltmp
[0] = 0x16b47e77; // 0x1000 AGC_Ctrl1
1568 pltmp
[1] = 0x9affaea4; // 0x1004 AGC_Ctrl2
1569 pltmp
[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1570 pltmp
[3] = 0xefff1a34; // 0x100c AGC_Ctrl4
1571 reg
->BB0C
= 0xefff1a34;
1572 pltmp
[4] = 0x0fabe0b7; // 0x1010 AGC_Ctrl5
1573 pltmp
[5] = 0x00caa332; // 0x1014 AGC_Ctrl6
1574 pltmp
[6] = 0xf6632111; // 0x1018 AGC_Ctrl7
1575 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1576 pltmp
[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
1577 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1578 pltmp
[10] = 0x40000528; // 0x40000128; Modify for 33's 1.0.95
1579 pltmp
[11] = 0x232fdf30; // 0x102c A_ACQ_Ctrl
1580 reg
->BB2C
= 0x232fdf30; //Modify for 33's 1.0.95.xxx version, antenna 1
1581 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1583 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1584 reg
->BB30
= 0x00002C54;
1585 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1586 pltmp
[2] = 0x5B6C8769; // 0x1038 B_TXRX_Ctrl
1587 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1588 reg
->BB3C
= 0x00000000;
1589 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1590 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1591 pltmp
[6] = 0x00453B24; // 0x1048 11b TX RC filter
1592 pltmp
[7] = 0x0D00FDFF; // 0x104c 11b TX RC filter
1593 pltmp
[8] = 0x27106208; // 0x1050 MODE_Ctrl
1594 reg
->BB50
= 0x27106208;
1595 pltmp
[9] = 0; // 0x1054
1596 reg
->BB54
= 0x00000000;
1597 pltmp
[10] = 0x64646464; // 0x1058 IQ_Alpha
1598 reg
->BB58
= 0x64646464;
1599 pltmp
[11] = 0xAA28C000; // 0x105c DC_Cancel
1600 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1602 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1607 pltmp
[0] = 0x16b47e77; // 0x1000 AGC_Ctrl1
1608 pltmp
[1] = 0x9affaea4; // 0x1004 AGC_Ctrl2
1609 pltmp
[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1610 pltmp
[3] = 0xf4ff1632; // 0xefff1a34; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95
1611 reg
->BB0C
= 0xf4ff1632; // 0xefff1a34; Modify for 33's 1.0.95
1612 pltmp
[4] = 0x0fabe0b7; // 0x1010 AGC_Ctrl5
1613 pltmp
[5] = 0x00caa332; // 0x1014 AGC_Ctrl6
1614 pltmp
[6] = 0xf8632112; // 0xf6632111; // 0x1018 AGC_Ctrl7 Modify for 33's 1.0.95
1615 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1616 pltmp
[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9
1617 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1618 pltmp
[10] = 0x40000528; // 0x40000128; modify for 33's 1.0.95
1619 pltmp
[11] = 0x232fdf30; // 0x102c A_ACQ_Ctrl
1620 reg
->BB2C
= 0x232fdf30; //Modify for 33's 1.0.95.xxx version, antenna 1
1621 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1623 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1624 reg
->BB30
= 0x00002C54;
1625 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1626 pltmp
[2] = 0x5b2c8769; // 0x5B6C8769; // 0x1038 B_TXRX_Ctrl Modify for 33's 1.0.95
1627 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1628 reg
->BB3C
= 0x00000000;
1629 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1630 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1631 pltmp
[6] = 0x002c2617; // 0x00453B24; // 0x1048 11b TX RC filter Modify for 33's 1.0.95
1632 pltmp
[7] = 0x0800feff; // 0x0D00FDFF; // 0x104c 11b TX RC filter Modify for 33's 1.0.95
1633 pltmp
[8] = 0x27106208; // 0x1050 MODE_Ctrl
1634 reg
->BB50
= 0x27106208;
1635 pltmp
[9] = 0; // 0x1054
1636 reg
->BB54
= 0x00000000;
1637 pltmp
[10] = 0x64644a4a; // 0x64646464; // 0x1058 IQ_Alpha Modify for 33's 1.0.95
1638 reg
->BB58
= 0x64646464;
1639 pltmp
[11] = 0xAA28C000; // 0x105c DC_Cancel
1640 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1642 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1645 case RF_AIROHA_2230
:
1647 pltmp
[0] = 0X16764A77; // 0x1000 AGC_Ctrl1 //0x16765A77
1648 pltmp
[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
1649 pltmp
[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1650 pltmp
[3] = 0xFFFd203c; // 0xFFFb203a; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95.xxx version
1651 reg
->BB0C
= 0xFFFd203c;
1652 pltmp
[4] = 0X0FBFDCc5; // 0X0FBFDCA0; // 0x1010 AGC_Ctrl5 //0x0FB2E0B7 Modify for 33's 1.0.95.xxx version
1653 pltmp
[5] = 0x00caa332; // 0x00caa333; // 0x1014 AGC_Ctrl6 Modify for 33's 1.0.95.xxx version
1654 pltmp
[6] = 0XF6632111; // 0XF1632112; // 0x1018 AGC_Ctrl7 //0xf6632112 Modify for 33's 1.0.95.xxx version
1655 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1656 pltmp
[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
1657 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1658 pltmp
[10] = 0X40000528; //0x40000228
1659 pltmp
[11] = 0x232dfF30; // 0x232A9F30; // 0x102c A_ACQ_Ctrl //0x232a9730
1660 reg
->BB2C
= 0x232dfF30; //Modify for 33's 1.0.95.xxx version, antenna 1
1661 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1663 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1664 reg
->BB30
= 0x00002C54;
1665 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1666 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl //0x5B6C8769
1667 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1668 reg
->BB3C
= 0x00000000;
1669 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1670 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1671 pltmp
[6] = BB48_DEFAULT_AL2230_11G
; // 0x1048 11b TX RC filter 20060613.2
1672 reg
->BB48
= BB48_DEFAULT_AL2230_11G
; // 20051221 ch14 20060613.2
1673 pltmp
[7] = BB4C_DEFAULT_AL2230_11G
; // 0x104c 11b TX RC filter 20060613.2
1674 reg
->BB4C
= BB4C_DEFAULT_AL2230_11G
; // 20060613.1 20060613.2
1675 pltmp
[8] = 0x27106200; // 0x1050 MODE_Ctrl
1676 reg
->BB50
= 0x27106200;
1677 pltmp
[9] = 0; // 0x1054
1678 reg
->BB54
= 0x00000000;
1679 pltmp
[10] = 0x52524242; // 0x1058 IQ_Alpha
1680 reg
->BB58
= 0x52524242;
1681 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1682 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1684 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1687 case RF_AIROHA_2230S
: // 20060420 Add this
1689 pltmp
[0] = 0X16764A77; // 0x1000 AGC_Ctrl1 //0x16765A77
1690 pltmp
[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
1691 pltmp
[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1692 pltmp
[3] = 0xFFFd203c; // 0xFFFb203a; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95.xxx version
1693 reg
->BB0C
= 0xFFFd203c;
1694 pltmp
[4] = 0X0FBFDCc5; // 0X0FBFDCA0; // 0x1010 AGC_Ctrl5 //0x0FB2E0B7 Modify for 33's 1.0.95.xxx version
1695 pltmp
[5] = 0x00caa332; // 0x00caa333; // 0x1014 AGC_Ctrl6 Modify for 33's 1.0.95.xxx version
1696 pltmp
[6] = 0XF6632111; // 0XF1632112; // 0x1018 AGC_Ctrl7 //0xf6632112 Modify for 33's 1.0.95.xxx version
1697 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1698 pltmp
[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
1699 pltmp
[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1700 pltmp
[10] = 0X40000528; //0x40000228
1701 pltmp
[11] = 0x232dfF30; // 0x232A9F30; // 0x102c A_ACQ_Ctrl //0x232a9730
1702 reg
->BB2C
= 0x232dfF30; //Modify for 33's 1.0.95.xxx version, antenna 1
1703 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1705 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1706 reg
->BB30
= 0x00002C54;
1707 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1708 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl //0x5B6C8769
1709 pltmp
[3] = 0x00000000; // 0x103c 11a TX LS filter
1710 reg
->BB3C
= 0x00000000;
1711 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1712 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1713 pltmp
[6] = BB48_DEFAULT_AL2230_11G
; // 0x1048 11b TX RC filter 20060613.2
1714 reg
->BB48
= BB48_DEFAULT_AL2230_11G
; // 20051221 ch14 20060613.2
1715 pltmp
[7] = BB4C_DEFAULT_AL2230_11G
; // 0x104c 11b TX RC filter 20060613.2
1716 reg
->BB4C
= BB4C_DEFAULT_AL2230_11G
; // 20060613.1
1717 pltmp
[8] = 0x27106200; // 0x1050 MODE_Ctrl
1718 reg
->BB50
= 0x27106200;
1719 pltmp
[9] = 0; // 0x1054
1720 reg
->BB54
= 0x00000000;
1721 pltmp
[10] = 0x52523232; // 20060419 0x52524242; // 0x1058 IQ_Alpha
1722 reg
->BB58
= 0x52523232; // 20060419 0x52524242;
1723 pltmp
[11] = 0xAA0AC000; // 0x105c DC_Cancel
1724 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1726 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1729 case RF_AIROHA_7230
:
1731 pltmp[0] = 0x16a84a77; // 0x1000 AGC_Ctrl1
1732 pltmp[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2
1733 pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3
1734 pltmp[3] = 0xFFFb203a; // 0x100c AGC_Ctrl4
1735 reg->BB0c = 0xFFFb203a;
1736 pltmp[4] = 0x0FBFDCB7; // 0x1010 AGC_Ctrl5
1737 pltmp[5] = 0x00caa333; // 0x1014 AGC_Ctrl6
1738 pltmp[6] = 0xf6632112; // 0x1018 AGC_Ctrl7
1739 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1740 pltmp[8] = 0x04C43640; // 0x1020 AGC_Ctrl9
1741 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10
1742 pltmp[10] = 0x40000228;
1743 pltmp[11] = 0x232A9F30;// 0x102c A_ACQ_Ctrl
1744 reg->BB2c = 0x232A9F30;
1745 Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT );
1747 pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1748 reg->BB30 = 0x00002C54;
1749 pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1750 pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
1751 pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter
1752 reg->BB3c = 0x00000000;
1753 pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter
1754 pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1755 pltmp[6] = 0x00453B24; // 0x1048 11b TX RC filter
1756 pltmp[7] = 0x0E00FEFF; // 0x104c 11b TX RC filter
1757 pltmp[8] = 0x27106200; // 0x1050 MODE_Ctrl
1758 reg->BB50 = 0x27106200;
1759 pltmp[9] = 0; // 0x1054
1760 reg->BB54 = 0x00000000;
1761 pltmp[10] = 0x64645252; // 0x1058 IQ_Alpha
1762 reg->BB58 = 0x64645252;
1763 pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel
1764 Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT );
1766 BBProcessor_AL7230_2400( pHwData
);
1768 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1772 case RF_WB_242_1
: // 20060619.5 Add
1774 pltmp
[0] = 0x16A8525D; // 0x1000 AGC_Ctrl1
1775 pltmp
[1] = 0x9AFF9ABA; // 0x1004 AGC_Ctrl2
1776 pltmp
[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3
1777 pltmp
[3] = 0xEEE91C32; // 0x100c AGC_Ctrl4
1778 reg
->BB0C
= 0xEEE91C32;
1779 pltmp
[4] = 0x0FACDCC5; // 0x1010 AGC_Ctrl5
1780 pltmp
[5] = 0x000AA344; // 0x1014 AGC_Ctrl6
1781 pltmp
[6] = 0x22222221; // 0x1018 AGC_Ctrl7
1782 pltmp
[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8
1783 pltmp
[8] = 0x04CC3440; // 20051018 0x03CB3440; // 0x1020 AGC_Ctrl9 20051014 0x03C33440
1784 pltmp
[9] = 0xA9002A79; // 0x1024 AGC_Ctrl10
1785 pltmp
[10] = 0x40000528; // 0x1028
1786 pltmp
[11] = 0x23457F30; // 0x102c A_ACQ_Ctrl
1787 reg
->BB2C
= 0x23457F30;
1788 Wb35Reg_BurstWrite( pHwData
, 0x1000, pltmp
, 12, AUTO_INCREMENT
);
1790 pltmp
[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl
1791 reg
->BB30
= 0x00002C54;
1792 pltmp
[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl
1793 pltmp
[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl
1794 pltmp
[3] = pHwData
->BB3c_cal
; // 0x103c 11a TX LS filter
1795 reg
->BB3C
= pHwData
->BB3c_cal
;
1796 pltmp
[4] = 0x00003F29; // 0x1040 11a TX LS filter
1797 pltmp
[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter
1798 pltmp
[6] = BB48_DEFAULT_WB242_11G
; // 0x1048 11b TX RC filter 20060613.2
1799 reg
->BB48
= BB48_DEFAULT_WB242_11G
; // 20060613.1 20060613.2
1800 pltmp
[7] = BB4C_DEFAULT_WB242_11G
; // 0x104c 11b TX RC filter 20060613.2
1801 reg
->BB4C
= BB4C_DEFAULT_WB242_11G
; // 20060613.1 20060613.2
1802 pltmp
[8] = 0x27106208; // 0x1050 MODE_Ctrl
1803 reg
->BB50
= 0x27106208;
1804 pltmp
[9] = pHwData
->BB54_cal
; // 0x1054
1805 reg
->BB54
= pHwData
->BB54_cal
;
1806 pltmp
[10] = 0x52523131; // 0x1058 IQ_Alpha
1807 reg
->BB58
= 0x52523131;
1808 pltmp
[11] = 0xAA0AC000; // 20060825 0xAA2AC000; // 0x105c DC_Cancel
1809 Wb35Reg_BurstWrite( pHwData
, 0x1030, pltmp
, 12, AUTO_INCREMENT
);
1811 Wb35Reg_Write( pHwData
, 0x1070, 0x00000045 );
1815 // Fill the LNA table
1816 reg
->LNAValue
[0] = (u8
)(reg
->BB0C
& 0xff);
1817 reg
->LNAValue
[1] = 0;
1818 reg
->LNAValue
[2] = (u8
)((reg
->BB0C
& 0xff00)>>8);
1819 reg
->LNAValue
[3] = 0;
1822 for( i
=0; i
<MAX_SQ3_FILTER_SIZE
; i
++ )
1823 reg
->SQ3_filter
[i
] = 0x2f; // half of Bit 0 ~ 6
1826 void set_tx_power_per_channel_max2829( struct hw_data
* pHwData
, ChanInfo Channel
)
1828 RFSynthesizer_SetPowerIndex( pHwData
, 100 ); // 20060620.1 Modify
1831 void set_tx_power_per_channel_al2230( struct hw_data
* pHwData
, ChanInfo Channel
)
1835 if (pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1] != 0xff) // 20060620.1 Add
1836 index
= pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1];
1838 RFSynthesizer_SetPowerIndex( pHwData
, index
);
1841 void set_tx_power_per_channel_al7230( struct hw_data
* pHwData
, ChanInfo Channel
)
1845 switch ( Channel
.band
)
1847 case BAND_TYPE_DSSS
:
1848 case BAND_TYPE_OFDM_24
:
1850 if (pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1] != 0xff)
1851 index
= pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1];
1854 case BAND_TYPE_OFDM_5
:
1856 for (i
=0; i
<35; i
++)
1858 if (Channel
.ChanNo
== pHwData
->TxVgaFor50
[i
].ChanNo
)
1860 if (pHwData
->TxVgaFor50
[i
].TxVgaValue
!= 0xff)
1861 index
= pHwData
->TxVgaFor50
[i
].TxVgaValue
;
1868 RFSynthesizer_SetPowerIndex( pHwData
, index
);
1871 void set_tx_power_per_channel_wb242( struct hw_data
* pHwData
, ChanInfo Channel
)
1875 switch ( Channel
.band
)
1877 case BAND_TYPE_DSSS
:
1878 case BAND_TYPE_OFDM_24
:
1880 if (pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1] != 0xff)
1881 index
= pHwData
->TxVgaFor24
[Channel
.ChanNo
- 1];
1884 case BAND_TYPE_OFDM_5
:
1887 RFSynthesizer_SetPowerIndex( pHwData
, index
);
1890 //=============================================================================================================
1891 // RFSynthesizer_SwitchingChannel --
1894 // Swithch the RF channel.
1897 // pHwData - Handle of the USB Device.
1898 // Channel - The channel no.
1902 //=============================================================================================================
1904 RFSynthesizer_SwitchingChannel( struct hw_data
* pHwData
, ChanInfo Channel
)
1906 struct wb35_reg
*reg
= &pHwData
->reg
;
1907 u32 pltmp
[16]; // The 16 is the maximum capability of hardware
1912 switch( pHwData
->phy_type
)
1915 case RF_MAXIM_V1
: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331)
1917 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 13
1919 for( i
=0; i
<3; i
++ )
1920 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_channel_data_24
[Channel
.ChanNo
-1][i
], 18);
1921 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1923 RFSynthesizer_SetPowerIndex( pHwData
, 100 );
1928 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 13
1930 for( i
=0; i
<3; i
++ )
1931 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_channel_data_24
[Channel
.ChanNo
-1][i
], 18);
1932 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1934 else if( Channel
.band
== BAND_TYPE_OFDM_5
) // channel 36 ~ 64
1936 ChnlTmp
= (Channel
.ChanNo
- 36) / 4;
1937 for( i
=0; i
<3; i
++ )
1938 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_channel_data_50
[ChnlTmp
][i
], 18);
1939 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1941 RFSynthesizer_SetPowerIndex( pHwData
, 100 );
1946 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 13
1948 for( i
=0; i
<3; i
++ )
1949 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_channel_data_24
[Channel
.ChanNo
-1][i
], 18);
1950 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1952 else if( Channel
.band
== BAND_TYPE_OFDM_5
) // channel 36 ~ 64
1954 ChnlTmp
= (Channel
.ChanNo
- 36) / 4;
1955 for ( i
= 0; i
< 3; i
++)
1956 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_channel_data_50
[ChnlTmp
][i
], 18);
1957 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1959 RFSynthesizer_SetPowerIndex( pHwData
, 100 );
1964 if( Channel
.band
<= BAND_TYPE_OFDM_24
)
1966 for( i
=0; i
<3; i
++ )
1967 pltmp
[i
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_channel_data_24
[Channel
.ChanNo
-1][i
], 18);
1968 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1970 else if( Channel
.band
== BAND_TYPE_OFDM_5
)
1972 count
= sizeof(max2829_channel_data_50
) / sizeof(max2829_channel_data_50
[0]);
1974 for( i
=0; i
<count
; i
++ )
1976 if( max2829_channel_data_50
[i
][0] == Channel
.ChanNo
)
1978 for( j
=0; j
<3; j
++ )
1979 pltmp
[j
] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_channel_data_50
[i
][j
+1], 18);
1980 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
1982 if( (max2829_channel_data_50
[i
][3] & 0x3FFFF) == 0x2A946 )
1984 ltmp
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( (5<<18)|0x2A906, 18);
1985 Wb35Reg_Write( pHwData
, 0x0864, ltmp
);
1989 ltmp
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( (5<<18)|0x2A986, 18);
1990 Wb35Reg_Write( pHwData
, 0x0864, ltmp
);
1995 set_tx_power_per_channel_max2829( pHwData
, Channel
);
1998 case RF_AIROHA_2230
:
1999 case RF_AIROHA_2230S
: // 20060420 Add this
2001 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 14
2003 for( i
=0; i
<2; i
++ )
2004 pltmp
[i
] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_channel_data_24
[Channel
.ChanNo
-1][i
], 20);
2005 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 2, NO_INCREMENT
);
2007 set_tx_power_per_channel_al2230( pHwData
, Channel
);
2010 case RF_AIROHA_7230
:
2012 //Start to fill RF parameters, PLL_ON should be pulled low.
2013 //Wb35Reg_Write( pHwData, 0x03dc, 0x00000000 );
2014 //printk("* PLL_ON low\n");
2016 //Channel independent registers
2017 if( Channel
.band
!= pHwData
->band
)
2019 if (Channel
.band
<= BAND_TYPE_OFDM_24
)
2021 //Update BB register
2022 BBProcessor_AL7230_2400(pHwData
);
2024 number
= sizeof(al7230_rf_data_24
)/sizeof(al7230_rf_data_24
[0]);
2025 Set_ChanIndep_RfData_al7230_24(pHwData
, pltmp
, number
);
2029 //Update BB register
2030 BBProcessor_AL7230_5000(pHwData
);
2032 number
= sizeof(al7230_rf_data_50
)/sizeof(al7230_rf_data_50
[0]);
2033 Set_ChanIndep_RfData_al7230_50(pHwData
, pltmp
, number
);
2036 // Write to register. number must less and equal than 16
2037 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, number
, NO_INCREMENT
);
2038 #ifdef _PE_STATE_DUMP_
2039 printk("Band changed\n");
2043 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 14
2045 for( i
=0; i
<2; i
++ )
2046 pltmp
[i
] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_channel_data_24
[Channel
.ChanNo
-1][i
]&0xffffff);
2047 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 2, NO_INCREMENT
);
2049 else if( Channel
.band
== BAND_TYPE_OFDM_5
)
2052 if ((Channel
.ChanNo
> 64) && (Channel
.ChanNo
<= 165))
2054 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x00143c;
2055 Wb35Reg_Write( pHwData
, 0x0864, ltmp
);
2057 else //reg12 = 0x00147c at Channel 4920 ~ 5320
2059 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | 0x00147c;
2060 Wb35Reg_Write( pHwData
, 0x0864, ltmp
);
2063 count
= sizeof(al7230_channel_data_5
) / sizeof(al7230_channel_data_5
[0]);
2065 for (i
=0; i
<count
; i
++)
2067 if (al7230_channel_data_5
[i
][0] == Channel
.ChanNo
)
2069 for( j
=0; j
<3; j
++ )
2070 pltmp
[j
] = (1 << 31) | (0 << 30) | (24 << 24) | ( al7230_channel_data_5
[i
][j
+1]&0xffffff);
2071 Wb35Reg_BurstWrite( pHwData
, 0x0864, pltmp
, 3, NO_INCREMENT
);
2075 set_tx_power_per_channel_al7230(pHwData
, Channel
);
2079 case RF_WB_242_1
: // 20060619.5 Add
2081 if( Channel
.band
<= BAND_TYPE_OFDM_24
) // channel 1 ~ 14
2083 ltmp
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( w89rf242_channel_data_24
[Channel
.ChanNo
-1][0], 24);
2084 Wb35Reg_Write( pHwData
, 0x864, ltmp
);
2086 set_tx_power_per_channel_wb242(pHwData
, Channel
);
2090 if( Channel
.band
<= BAND_TYPE_OFDM_24
)
2092 // BB: select 2.4 GHz, bit[12-11]=00
2093 reg
->BB50
&= ~(BIT(11)|BIT(12));
2094 Wb35Reg_Write( pHwData
, 0x1050, reg
->BB50
); // MODE_Ctrl
2095 // MAC: select 2.4 GHz, bit[5]=0
2096 reg
->M78_ERPInformation
&= ~BIT(5);
2097 Wb35Reg_Write( pHwData
, 0x0878, reg
->M78_ERPInformation
);
2098 // enable 11b Baseband
2099 reg
->BB30
&= ~BIT(31);
2100 Wb35Reg_Write( pHwData
, 0x1030, reg
->BB30
);
2102 else if( (Channel
.band
== BAND_TYPE_OFDM_5
) )
2105 reg
->BB50
&= ~(BIT(11)|BIT(12));
2106 if (Channel
.ChanNo
<=64 )
2107 reg
->BB50
|= BIT(12); // 10-5.25GHz
2108 else if ((Channel
.ChanNo
>= 100) && (Channel
.ChanNo
<= 124))
2109 reg
->BB50
|= BIT(11); // 01-5.48GHz
2110 else if ((Channel
.ChanNo
>=128) && (Channel
.ChanNo
<= 161))
2111 reg
->BB50
|= (BIT(12)|BIT(11)); // 11-5.775GHz
2112 else //Chan 184 ~ 196 will use bit[12-11] = 10 in version sh-src-1.2.25
2113 reg
->BB50
|= BIT(12);
2114 Wb35Reg_Write( pHwData
, 0x1050, reg
->BB50
); // MODE_Ctrl
2116 //(1) M78 should alway use 2.4G setting when using RF_AIROHA_7230
2117 //(2) BB30 has been updated previously.
2118 if (pHwData
->phy_type
!= RF_AIROHA_7230
)
2120 // MAC: select 5 GHz, bit[5]=1
2121 reg
->M78_ERPInformation
|= BIT(5);
2122 Wb35Reg_Write( pHwData
, 0x0878, reg
->M78_ERPInformation
);
2124 // disable 11b Baseband
2125 reg
->BB30
|= BIT(31);
2126 Wb35Reg_Write( pHwData
, 0x1030, reg
->BB30
);
2131 //Set the tx power directly from DUT GUI, not from the EEPROM. Return the current setting
2132 u8
RFSynthesizer_SetPowerIndex( struct hw_data
* pHwData
, u8 PowerIndex
)
2134 u32 Band
= pHwData
->band
;
2137 if( pHwData
->power_index
== PowerIndex
) // 20060620.1 Add
2140 if (RF_MAXIM_2825
== pHwData
->phy_type
)
2143 index
= RFSynthesizer_SetMaxim2825Power( pHwData
, PowerIndex
);
2145 else if (RF_MAXIM_2827
== pHwData
->phy_type
)
2147 if( Band
<= BAND_TYPE_OFDM_24
) // Channel 1 - 13
2148 index
= RFSynthesizer_SetMaxim2827_24Power( pHwData
, PowerIndex
);
2149 else// if( Band == BAND_TYPE_OFDM_5 ) // Channel 36 - 64
2150 index
= RFSynthesizer_SetMaxim2827_50Power( pHwData
, PowerIndex
);
2152 else if (RF_MAXIM_2828
== pHwData
->phy_type
)
2154 if( Band
<= BAND_TYPE_OFDM_24
) // Channel 1 - 13
2155 index
= RFSynthesizer_SetMaxim2828_24Power( pHwData
, PowerIndex
);
2156 else// if( Band == BAND_TYPE_OFDM_5 ) // Channel 36 - 64
2157 index
= RFSynthesizer_SetMaxim2828_50Power( pHwData
, PowerIndex
);
2159 else if( RF_AIROHA_2230
== pHwData
->phy_type
)
2161 //Power index: 0 ~ 63 // Channel 1 - 14
2162 index
= RFSynthesizer_SetAiroha2230Power( pHwData
, PowerIndex
);
2163 index
= (u8
)al2230_txvga_data
[index
][1];
2165 else if( RF_AIROHA_2230S
== pHwData
->phy_type
) // 20060420 Add this
2167 //Power index: 0 ~ 63 // Channel 1 - 14
2168 index
= RFSynthesizer_SetAiroha2230Power( pHwData
, PowerIndex
);
2169 index
= (u8
)al2230_txvga_data
[index
][1];
2171 else if( RF_AIROHA_7230
== pHwData
->phy_type
)
2173 //Power index: 0 ~ 63
2174 index
= RFSynthesizer_SetAiroha7230Power( pHwData
, PowerIndex
);
2175 index
= (u8
)al7230_txvga_data
[index
][1];
2177 else if( (RF_WB_242
== pHwData
->phy_type
) ||
2178 (RF_WB_242_1
== pHwData
->phy_type
) ) // 20060619.5 Add
2180 //Power index: 0 ~ 19 for original. New range is 0 ~ 33
2181 index
= RFSynthesizer_SetWinbond242Power( pHwData
, PowerIndex
);
2182 index
= (u8
)w89rf242_txvga_data
[index
][1];
2185 pHwData
->power_index
= index
; // Backup current
2190 u8
RFSynthesizer_SetMaxim2828_24Power( struct hw_data
* pHwData
, u8 index
)
2193 if( index
> 1 ) index
= 1;
2194 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_power_data_24
[index
], 18);
2195 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2199 u8
RFSynthesizer_SetMaxim2828_50Power( struct hw_data
* pHwData
, u8 index
)
2202 if( index
> 1 ) index
= 1;
2203 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_power_data_50
[index
], 18);
2204 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2208 u8
RFSynthesizer_SetMaxim2827_24Power( struct hw_data
* pHwData
, u8 index
)
2211 if( index
> 1 ) index
= 1;
2212 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_power_data_24
[index
], 18);
2213 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2217 u8
RFSynthesizer_SetMaxim2827_50Power( struct hw_data
* pHwData
, u8 index
)
2220 if( index
> 1 ) index
= 1;
2221 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_power_data_50
[index
], 18);
2222 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2226 u8
RFSynthesizer_SetMaxim2825Power( struct hw_data
* pHwData
, u8 index
)
2229 if( index
> 1 ) index
= 1;
2230 PowerData
= (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_power_data_24
[index
], 18);
2231 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2235 u8
RFSynthesizer_SetAiroha2230Power( struct hw_data
* pHwData
, u8 index
)
2240 count
= sizeof(al2230_txvga_data
) / sizeof(al2230_txvga_data
[0]);
2241 for (i
=0; i
<count
; i
++)
2243 if (al2230_txvga_data
[i
][1] >= index
)
2249 PowerData
= (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_txvga_data
[i
][0], 20);
2250 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2254 u8
RFSynthesizer_SetAiroha7230Power( struct hw_data
* pHwData
, u8 index
)
2259 //PowerData = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( airoha_power_data_24[index], 20);
2260 count
= sizeof(al7230_txvga_data
) / sizeof(al7230_txvga_data
[0]);
2261 for (i
=0; i
<count
; i
++)
2263 if (al7230_txvga_data
[i
][1] >= index
)
2268 PowerData
= (1 << 31) | (0 << 30) | (24 << 24) | (al7230_txvga_data
[i
][0]&0xffffff);
2269 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2273 u8
RFSynthesizer_SetWinbond242Power( struct hw_data
* pHwData
, u8 index
)
2278 count
= sizeof(w89rf242_txvga_data
) / sizeof(w89rf242_txvga_data
[0]);
2279 for (i
=0; i
<count
; i
++)
2281 if (w89rf242_txvga_data
[i
][1] >= index
)
2287 // Set TxVga into RF
2288 PowerData
= (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( w89rf242_txvga_data
[i
][0], 24);
2289 Wb35Reg_Write( pHwData
, 0x0864, PowerData
);
2291 // Update BB48 BB4C BB58 for high precision txvga
2292 Wb35Reg_Write( pHwData
, 0x1048, w89rf242_txvga_data
[i
][2] );
2293 Wb35Reg_Write( pHwData
, 0x104c, w89rf242_txvga_data
[i
][3] );
2294 Wb35Reg_Write( pHwData
, 0x1058, w89rf242_txvga_data
[i
][4] );
2296 // Rf vga 0 ~ 3 for temperature compensate. It will affect the scan Bss.
2297 // The i value equals to 8 or 7 usually. So It's not necessary to setup this RF register.
2299 // PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( 0x000024, 24 );
2301 // PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( 0x001824, 24 );
2302 // Wb35Reg_Write( pHwData, 0x0864, PowerData );
2306 //===========================================================================================================
2310 // Routine Description:
2311 // Initial the hardware setting and module variable
2313 //===========================================================================================================
2314 void Dxx_initial( struct hw_data
* pHwData
)
2316 struct wb35_reg
*reg
= &pHwData
->reg
;
2318 // Old IC:Single mode only.
2319 // New IC: operation decide by Software set bit[4]. 1:multiple 0: single
2320 reg
->D00_DmaControl
= 0xc0000004; //Txon, Rxon, multiple Rx for new 4k DMA
2321 //Txon, Rxon, single Rx for old 8k ASIC
2322 if( !HAL_USB_MODE_BURST( pHwData
) )
2323 reg
->D00_DmaControl
= 0xc0000000;//Txon, Rxon, single Rx for new 4k DMA
2325 Wb35Reg_WriteSync( pHwData
, 0x0400, reg
->D00_DmaControl
);
2328 void Mxx_initial( struct hw_data
* pHwData
)
2330 struct wb35_reg
*reg
= &pHwData
->reg
;
2336 //======================================================
2337 // Initial Mxx register
2338 //======================================================
2341 #ifdef _IBSS_BEACON_SEQ_STICK_
2342 reg
->M00_MacControl
= 0; // Solve beacon sequence number stop by software
2344 reg
->M00_MacControl
= 0x80000000; // Solve beacon sequence number stop by hardware
2347 // M24 disable enter power save, BB RxOn and enable NAV attack
2348 reg
->M24_MacControl
= 0x08040042;
2349 pltmp
[0] = reg
->M24_MacControl
;
2351 pltmp
[1] = 0; // Skip M28, because no initialize value is required.
2353 // M2C CWmin and CWmax setting
2354 pHwData
->cwmin
= DEFAULT_CWMIN
;
2355 pHwData
->cwmax
= DEFAULT_CWMAX
;
2356 reg
->M2C_MacControl
= DEFAULT_CWMIN
<< 10;
2357 reg
->M2C_MacControl
|= DEFAULT_CWMAX
;
2358 pltmp
[2] = reg
->M2C_MacControl
;
2361 pltmp
[3] = *(u32
*)pHwData
->bssid
;
2364 pHwData
->AID
= DEFAULT_AID
;
2365 tmp
= *(u16
*)(pHwData
->bssid
+4);
2366 tmp
|= DEFAULT_AID
<< 16;
2370 reg
->M38_MacControl
= (DEFAULT_RATE_RETRY_LIMIT
<<8) | (DEFAULT_LONG_RETRY_LIMIT
<< 4) | DEFAULT_SHORT_RETRY_LIMIT
;
2371 pltmp
[5] = reg
->M38_MacControl
;
2374 tmp
= (DEFAULT_PIFST
<< 26) | (DEFAULT_EIFST
<< 16) | (DEFAULT_DIFST
<< 8) | (DEFAULT_SIFST
<< 4) | DEFAULT_OSIFST
;
2375 reg
->M3C_MacControl
= tmp
;
2379 pHwData
->slot_time_select
= DEFAULT_SLOT_TIME
;
2380 tmp
= (DEFAULT_ATIMWD
<< 16) | DEFAULT_SLOT_TIME
;
2381 reg
->M40_MacControl
= tmp
;
2385 tmp
= DEFAULT_MAX_TX_MSDU_LIFE_TIME
<< 10; // *1024
2386 reg
->M44_MacControl
= tmp
;
2390 pHwData
->BeaconPeriod
= DEFAULT_BEACON_INTERVAL
;
2391 pHwData
->ProbeDelay
= DEFAULT_PROBE_DELAY_TIME
;
2392 tmp
= (DEFAULT_BEACON_INTERVAL
<< 16) | DEFAULT_PROBE_DELAY_TIME
;
2393 reg
->M48_MacControl
= tmp
;
2397 reg
->M4C_MacStatus
= (DEFAULT_PROTOCOL_VERSION
<< 30) | (DEFAULT_MAC_POWER_STATE
<< 28) | (DEFAULT_DTIM_ALERT_TIME
<< 24);
2398 pltmp
[10] = reg
->M4C_MacStatus
;
2401 //Wb35Reg_BurstWrite( pHwData, 0x0824, pltmp, 11, AUTO_INCREMENT );
2402 for( i
=0; i
<11; i
++ )
2403 Wb35Reg_WriteSync( pHwData
, 0x0824 + i
*4, pltmp
[i
] );
2406 Wb35Reg_WriteSync( pHwData
, 0x0860, 0x12481248 );
2407 reg
->M60_MacControl
= 0x12481248;
2410 Wb35Reg_WriteSync( pHwData
, 0x0868, 0x00050900 ); // 20051018 0x000F0F00 ); // 940930 0x00131300
2411 reg
->M68_MacControl
= 0x00050900;
2414 Wb35Reg_WriteSync( pHwData
, 0x0898, 0xffff8888 );
2415 reg
->M98_MacControl
= 0xffff8888;
2419 void Uxx_power_off_procedure( struct hw_data
* pHwData
)
2421 // SW, PMU reset and turn off clock
2422 Wb35Reg_WriteSync( pHwData
, 0x03b0, 3 );
2423 Wb35Reg_WriteSync( pHwData
, 0x03f0, 0xf9 );
2426 //Decide the TxVga of every channel
2427 void GetTxVgaFromEEPROM( struct hw_data
* pHwData
)
2430 u16 Value
[MAX_TXVGA_EEPROM
];
2434 // Get the entire TxVga setting in EEPROM
2435 for( i
=0; i
<MAX_TXVGA_EEPROM
; i
++ )
2437 Wb35Reg_WriteSync( pHwData
, 0x03b4, 0x08100000 + 0x00010000*i
);
2438 Wb35Reg_ReadSync( pHwData
, 0x03b4, <mp
);
2439 Value
[i
] = (u16
)( ltmp
& 0xffff ); // Get 16 bit available
2440 Value
[i
] = cpu_to_le16( Value
[i
] ); // [7:0]2412 [7:0]2417 ....
2443 // Adjust the filed which fills with reserved value.
2444 pctmp
= (u8
*)Value
;
2445 for( i
=0; i
<(MAX_TXVGA_EEPROM
*2); i
++ )
2447 if( pctmp
[i
] != 0xff )
2453 // Adjust WB_242 to WB_242_1 TxVga scale
2454 if( pHwData
->phy_type
== RF_WB_242
)
2456 for( i
=0; i
<4; i
++ ) // Only 2412 2437 2462 2484 case must be modified
2458 for( j
=0; j
<(sizeof(w89rf242_txvga_old_mapping
)/sizeof(w89rf242_txvga_old_mapping
[0])); j
++ )
2460 if( pctmp
[i
] < (u8
)w89rf242_txvga_old_mapping
[j
][1] )
2462 pctmp
[i
] = (u8
)w89rf242_txvga_old_mapping
[j
][0];
2467 if( j
== (sizeof(w89rf242_txvga_old_mapping
)/sizeof(w89rf242_txvga_old_mapping
[0])) )
2468 pctmp
[i
] = (u8
)w89rf242_txvga_old_mapping
[j
-1][0];
2473 memcpy( pHwData
->TxVgaSettingInEEPROM
, pctmp
, MAX_TXVGA_EEPROM
*2 ); //MAX_TXVGA_EEPROM is u16 count
2474 EEPROMTxVgaAdjust( pHwData
);
2477 // This function will affect the TxVga parameter in HAL. If hal_set_current_channel
2478 // or RFSynthesizer_SetPowerIndex be called, new TxVga will take effect.
2479 // TxVgaSettingInEEPROM of sHwData is an u8 array point to EEPROM contain for IS89C35
2480 // This function will use default TxVgaSettingInEEPROM data to calculate new TxVga.
2481 void EEPROMTxVgaAdjust( struct hw_data
* pHwData
) // 20060619.5 Add
2483 u8
* pTxVga
= pHwData
->TxVgaSettingInEEPROM
;
2486 //-- 2.4G -- 20060704.2 Request from Tiger
2488 stmp
= pTxVga
[1] - pTxVga
[0];
2489 for( i
=0; i
<5; i
++ )
2490 pHwData
->TxVgaFor24
[i
] = pTxVga
[0] + stmp
*i
/4;
2492 stmp
= pTxVga
[2] - pTxVga
[1];
2493 for( i
=5; i
<10; i
++ )
2494 pHwData
->TxVgaFor24
[i
] = pTxVga
[1] + stmp
*(i
-5)/4;
2496 stmp
= pTxVga
[3] - pTxVga
[2];
2497 for( i
=10; i
<13; i
++ )
2498 pHwData
->TxVgaFor24
[i
] = pTxVga
[2] + stmp
*(i
-10)/2;
2500 pHwData
->TxVgaFor24
[13] = pTxVga
[3];
2503 if( pHwData
->phy_type
== RF_AIROHA_7230
)
2506 pHwData
->TxVgaFor50
[0].ChanNo
= 184;
2507 pHwData
->TxVgaFor50
[0].TxVgaValue
= pTxVga
[4];
2509 pHwData
->TxVgaFor50
[3].ChanNo
= 196;
2510 pHwData
->TxVgaFor50
[3].TxVgaValue
= pTxVga
[5];
2512 pHwData
->TxVgaFor50
[1].ChanNo
= 188;
2513 pHwData
->TxVgaFor50
[2].ChanNo
= 192;
2514 stmp
= pTxVga
[5] - pTxVga
[4];
2515 pHwData
->TxVgaFor50
[2].TxVgaValue
= pTxVga
[5] - stmp
/3;
2516 pHwData
->TxVgaFor50
[1].TxVgaValue
= pTxVga
[5] - stmp
*2/3;
2519 pHwData
->TxVgaFor50
[6].ChanNo
= 16;
2520 pHwData
->TxVgaFor50
[6].TxVgaValue
= pTxVga
[6];
2521 pHwData
->TxVgaFor50
[4].ChanNo
= 8;
2522 pHwData
->TxVgaFor50
[4].TxVgaValue
= pTxVga
[6];
2523 pHwData
->TxVgaFor50
[5].ChanNo
= 12;
2524 pHwData
->TxVgaFor50
[5].TxVgaValue
= pTxVga
[6];
2527 pHwData
->TxVgaFor50
[8].ChanNo
= 36;
2528 pHwData
->TxVgaFor50
[8].TxVgaValue
= pTxVga
[7];
2529 pHwData
->TxVgaFor50
[7].ChanNo
= 34;
2530 pHwData
->TxVgaFor50
[7].TxVgaValue
= pTxVga
[7];
2531 pHwData
->TxVgaFor50
[9].ChanNo
= 38;
2532 pHwData
->TxVgaFor50
[9].TxVgaValue
= pTxVga
[7];
2535 pHwData
->TxVgaFor50
[10].ChanNo
= 40;
2536 pHwData
->TxVgaFor50
[10].TxVgaValue
= pTxVga
[8];
2538 pHwData
->TxVgaFor50
[14].ChanNo
= 48;
2539 pHwData
->TxVgaFor50
[14].TxVgaValue
= pTxVga
[9];
2541 pHwData
->TxVgaFor50
[11].ChanNo
= 42;
2542 pHwData
->TxVgaFor50
[12].ChanNo
= 44;
2543 pHwData
->TxVgaFor50
[13].ChanNo
= 46;
2544 stmp
= pTxVga
[9] - pTxVga
[8];
2545 pHwData
->TxVgaFor50
[13].TxVgaValue
= pTxVga
[9] - stmp
/4;
2546 pHwData
->TxVgaFor50
[12].TxVgaValue
= pTxVga
[9] - stmp
*2/4;
2547 pHwData
->TxVgaFor50
[11].TxVgaValue
= pTxVga
[9] - stmp
*3/4;
2550 pHwData
->TxVgaFor50
[15].ChanNo
= 52;
2551 pHwData
->TxVgaFor50
[15].TxVgaValue
= pTxVga
[10];
2553 pHwData
->TxVgaFor50
[18].ChanNo
= 64;
2554 pHwData
->TxVgaFor50
[18].TxVgaValue
= pTxVga
[11];
2556 pHwData
->TxVgaFor50
[16].ChanNo
= 56;
2557 pHwData
->TxVgaFor50
[17].ChanNo
= 60;
2558 stmp
= pTxVga
[11] - pTxVga
[10];
2559 pHwData
->TxVgaFor50
[17].TxVgaValue
= pTxVga
[11] - stmp
/3;
2560 pHwData
->TxVgaFor50
[16].TxVgaValue
= pTxVga
[11] - stmp
*2/3;
2563 pHwData
->TxVgaFor50
[19].ChanNo
= 100;
2564 pHwData
->TxVgaFor50
[19].TxVgaValue
= pTxVga
[12];
2566 pHwData
->TxVgaFor50
[22].ChanNo
= 112;
2567 pHwData
->TxVgaFor50
[22].TxVgaValue
= pTxVga
[13];
2569 pHwData
->TxVgaFor50
[20].ChanNo
= 104;
2570 pHwData
->TxVgaFor50
[21].ChanNo
= 108;
2571 stmp
= pTxVga
[13] - pTxVga
[12];
2572 pHwData
->TxVgaFor50
[21].TxVgaValue
= pTxVga
[13] - stmp
/3;
2573 pHwData
->TxVgaFor50
[20].TxVgaValue
= pTxVga
[13] - stmp
*2/3;
2576 pHwData
->TxVgaFor50
[26].ChanNo
= 128;
2577 pHwData
->TxVgaFor50
[26].TxVgaValue
= pTxVga
[14];
2579 pHwData
->TxVgaFor50
[23].ChanNo
= 116;
2580 pHwData
->TxVgaFor50
[24].ChanNo
= 120;
2581 pHwData
->TxVgaFor50
[25].ChanNo
= 124;
2582 stmp
= pTxVga
[14] - pTxVga
[13];
2583 pHwData
->TxVgaFor50
[25].TxVgaValue
= pTxVga
[14] - stmp
/4;
2584 pHwData
->TxVgaFor50
[24].TxVgaValue
= pTxVga
[14] - stmp
*2/4;
2585 pHwData
->TxVgaFor50
[23].TxVgaValue
= pTxVga
[14] - stmp
*3/4;
2588 pHwData
->TxVgaFor50
[29].ChanNo
= 140;
2589 pHwData
->TxVgaFor50
[29].TxVgaValue
= pTxVga
[15];
2591 pHwData
->TxVgaFor50
[27].ChanNo
= 132;
2592 pHwData
->TxVgaFor50
[28].ChanNo
= 136;
2593 stmp
= pTxVga
[15] - pTxVga
[14];
2594 pHwData
->TxVgaFor50
[28].TxVgaValue
= pTxVga
[15] - stmp
/3;
2595 pHwData
->TxVgaFor50
[27].TxVgaValue
= pTxVga
[15] - stmp
*2/3;
2598 pHwData
->TxVgaFor50
[30].ChanNo
= 149;
2599 pHwData
->TxVgaFor50
[30].TxVgaValue
= pTxVga
[16];
2601 pHwData
->TxVgaFor50
[34].ChanNo
= 165;
2602 pHwData
->TxVgaFor50
[34].TxVgaValue
= pTxVga
[17];
2604 pHwData
->TxVgaFor50
[31].ChanNo
= 153;
2605 pHwData
->TxVgaFor50
[32].ChanNo
= 157;
2606 pHwData
->TxVgaFor50
[33].ChanNo
= 161;
2607 stmp
= pTxVga
[17] - pTxVga
[16];
2608 pHwData
->TxVgaFor50
[33].TxVgaValue
= pTxVga
[17] - stmp
/4;
2609 pHwData
->TxVgaFor50
[32].TxVgaValue
= pTxVga
[17] - stmp
*2/4;
2610 pHwData
->TxVgaFor50
[31].TxVgaValue
= pTxVga
[17] - stmp
*3/4;
2613 #ifdef _PE_STATE_DUMP_
2614 printk(" TxVgaFor24 : \n");
2615 DataDmp((u8
*)pHwData
->TxVgaFor24
, 14 ,0);
2616 printk(" TxVgaFor50 : \n");
2617 DataDmp((u8
*)pHwData
->TxVgaFor50
, 70 ,0);
2621 void BBProcessor_RateChanging( struct hw_data
* pHwData
, u8 rate
) // 20060613.1
2623 struct wb35_reg
*reg
= &pHwData
->reg
;
2624 unsigned char Is11bRate
;
2626 Is11bRate
= (rate
% 6) ? 1 : 0;
2627 switch( pHwData
->phy_type
)
2629 case RF_AIROHA_2230
:
2630 case RF_AIROHA_2230S
: // 20060420 Add this
2633 if( (reg
->BB48
!= BB48_DEFAULT_AL2230_11B
) &&
2634 (reg
->BB4C
!= BB4C_DEFAULT_AL2230_11B
) )
2636 Wb35Reg_Write( pHwData
, 0x1048, BB48_DEFAULT_AL2230_11B
);
2637 Wb35Reg_Write( pHwData
, 0x104c, BB4C_DEFAULT_AL2230_11B
);
2642 if( (reg
->BB48
!= BB48_DEFAULT_AL2230_11G
) &&
2643 (reg
->BB4C
!= BB4C_DEFAULT_AL2230_11G
) )
2645 Wb35Reg_Write( pHwData
, 0x1048, BB48_DEFAULT_AL2230_11G
);
2646 Wb35Reg_Write( pHwData
, 0x104c, BB4C_DEFAULT_AL2230_11G
);
2651 case RF_WB_242
: // 20060623 The fix only for old TxVGA setting
2654 if( (reg
->BB48
!= BB48_DEFAULT_WB242_11B
) &&
2655 (reg
->BB4C
!= BB4C_DEFAULT_WB242_11B
) )
2657 reg
->BB48
= BB48_DEFAULT_WB242_11B
;
2658 reg
->BB4C
= BB4C_DEFAULT_WB242_11B
;
2659 Wb35Reg_Write( pHwData
, 0x1048, BB48_DEFAULT_WB242_11B
);
2660 Wb35Reg_Write( pHwData
, 0x104c, BB4C_DEFAULT_WB242_11B
);
2665 if( (reg
->BB48
!= BB48_DEFAULT_WB242_11G
) &&
2666 (reg
->BB4C
!= BB4C_DEFAULT_WB242_11G
) )
2668 reg
->BB48
= BB48_DEFAULT_WB242_11G
;
2669 reg
->BB4C
= BB4C_DEFAULT_WB242_11G
;
2670 Wb35Reg_Write( pHwData
, 0x1048, BB48_DEFAULT_WB242_11G
);
2671 Wb35Reg_Write( pHwData
, 0x104c, BB4C_DEFAULT_WB242_11G
);