2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
20 #include "ntp_internal.h"
23 * NTP timekeeping variables:
25 * Note: All of the NTP state is protected by the timekeeping locks.
29 /* USER_HZ period (usecs): */
30 unsigned long tick_usec
= TICK_USEC
;
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long tick_nsec
;
35 static u64 tick_length
;
36 static u64 tick_length_base
;
38 #define SECS_PER_DAY 86400
39 #define MAX_TICKADJ 500LL /* usecs */
40 #define MAX_TICKADJ_SCALED \
41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
44 * phase-lock loop variables
48 * clock synchronization status
50 * (TIME_ERROR prevents overwriting the CMOS clock)
52 static int time_state
= TIME_OK
;
54 /* clock status bits: */
55 static int time_status
= STA_UNSYNC
;
57 /* time adjustment (nsecs): */
58 static s64 time_offset
;
60 /* pll time constant: */
61 static long time_constant
= 2;
63 /* maximum error (usecs): */
64 static long time_maxerror
= NTP_PHASE_LIMIT
;
66 /* estimated error (usecs): */
67 static long time_esterror
= NTP_PHASE_LIMIT
;
69 /* frequency offset (scaled nsecs/secs): */
72 /* time at last adjustment (secs): */
73 static long time_reftime
;
75 static long time_adjust
;
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78 static s64 ntp_tick_adj
;
80 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
81 static time64_t ntp_next_leap_sec
= TIME64_MAX
;
86 * The following variables are used when a pulse-per-second (PPS) signal
87 * is available. They establish the engineering parameters of the clock
88 * discipline loop when controlled by the PPS signal.
90 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
91 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
92 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
93 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
94 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
95 increase pps_shift or consecutive bad
96 intervals to decrease it */
97 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
99 static int pps_valid
; /* signal watchdog counter */
100 static long pps_tf
[3]; /* phase median filter */
101 static long pps_jitter
; /* current jitter (ns) */
102 static struct timespec64 pps_fbase
; /* beginning of the last freq interval */
103 static int pps_shift
; /* current interval duration (s) (shift) */
104 static int pps_intcnt
; /* interval counter */
105 static s64 pps_freq
; /* frequency offset (scaled ns/s) */
106 static long pps_stabil
; /* current stability (scaled ns/s) */
109 * PPS signal quality monitors
111 static long pps_calcnt
; /* calibration intervals */
112 static long pps_jitcnt
; /* jitter limit exceeded */
113 static long pps_stbcnt
; /* stability limit exceeded */
114 static long pps_errcnt
; /* calibration errors */
117 /* PPS kernel consumer compensates the whole phase error immediately.
118 * Otherwise, reduce the offset by a fixed factor times the time constant.
120 static inline s64
ntp_offset_chunk(s64 offset
)
122 if (time_status
& STA_PPSTIME
&& time_status
& STA_PPSSIGNAL
)
125 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
128 static inline void pps_reset_freq_interval(void)
130 /* the PPS calibration interval may end
131 surprisingly early */
132 pps_shift
= PPS_INTMIN
;
137 * pps_clear - Clears the PPS state variables
139 static inline void pps_clear(void)
141 pps_reset_freq_interval();
145 pps_fbase
.tv_sec
= pps_fbase
.tv_nsec
= 0;
149 /* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
153 static inline void pps_dec_valid(void)
158 time_status
&= ~(STA_PPSSIGNAL
| STA_PPSJITTER
|
159 STA_PPSWANDER
| STA_PPSERROR
);
164 static inline void pps_set_freq(s64 freq
)
169 static inline int is_error_status(int status
)
171 return (status
& (STA_UNSYNC
|STA_CLOCKERR
))
172 /* PPS signal lost when either PPS time or
173 * PPS frequency synchronization requested
175 || ((status
& (STA_PPSFREQ
|STA_PPSTIME
))
176 && !(status
& STA_PPSSIGNAL
))
177 /* PPS jitter exceeded when
178 * PPS time synchronization requested */
179 || ((status
& (STA_PPSTIME
|STA_PPSJITTER
))
180 == (STA_PPSTIME
|STA_PPSJITTER
))
181 /* PPS wander exceeded or calibration error when
182 * PPS frequency synchronization requested
184 || ((status
& STA_PPSFREQ
)
185 && (status
& (STA_PPSWANDER
|STA_PPSERROR
)));
188 static inline void pps_fill_timex(struct timex
*txc
)
190 txc
->ppsfreq
= shift_right((pps_freq
>> PPM_SCALE_INV_SHIFT
) *
191 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
192 txc
->jitter
= pps_jitter
;
193 if (!(time_status
& STA_NANO
))
194 txc
->jitter
/= NSEC_PER_USEC
;
195 txc
->shift
= pps_shift
;
196 txc
->stabil
= pps_stabil
;
197 txc
->jitcnt
= pps_jitcnt
;
198 txc
->calcnt
= pps_calcnt
;
199 txc
->errcnt
= pps_errcnt
;
200 txc
->stbcnt
= pps_stbcnt
;
203 #else /* !CONFIG_NTP_PPS */
205 static inline s64
ntp_offset_chunk(s64 offset
)
207 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
210 static inline void pps_reset_freq_interval(void) {}
211 static inline void pps_clear(void) {}
212 static inline void pps_dec_valid(void) {}
213 static inline void pps_set_freq(s64 freq
) {}
215 static inline int is_error_status(int status
)
217 return status
& (STA_UNSYNC
|STA_CLOCKERR
);
220 static inline void pps_fill_timex(struct timex
*txc
)
222 /* PPS is not implemented, so these are zero */
233 #endif /* CONFIG_NTP_PPS */
237 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
240 static inline int ntp_synced(void)
242 return !(time_status
& STA_UNSYNC
);
251 * Update (tick_length, tick_length_base, tick_nsec), based
252 * on (tick_usec, ntp_tick_adj, time_freq):
254 static void ntp_update_frequency(void)
259 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
262 second_length
+= ntp_tick_adj
;
263 second_length
+= time_freq
;
265 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
266 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
269 * Don't wait for the next second_overflow, apply
270 * the change to the tick length immediately:
272 tick_length
+= new_base
- tick_length_base
;
273 tick_length_base
= new_base
;
276 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
278 time_status
&= ~STA_MODE
;
283 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
286 time_status
|= STA_MODE
;
288 return div64_long(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
291 static void ntp_update_offset(long offset
)
297 if (!(time_status
& STA_PLL
))
300 if (!(time_status
& STA_NANO
))
301 offset
*= NSEC_PER_USEC
;
304 * Scale the phase adjustment and
305 * clamp to the operating range.
307 offset
= min(offset
, MAXPHASE
);
308 offset
= max(offset
, -MAXPHASE
);
311 * Select how the frequency is to be controlled
312 * and in which mode (PLL or FLL).
314 secs
= get_seconds() - time_reftime
;
315 if (unlikely(time_status
& STA_FREQHOLD
))
318 time_reftime
= get_seconds();
321 freq_adj
= ntp_update_offset_fll(offset64
, secs
);
324 * Clamp update interval to reduce PLL gain with low
325 * sampling rate (e.g. intermittent network connection)
326 * to avoid instability.
328 if (unlikely(secs
> 1 << (SHIFT_PLL
+ 1 + time_constant
)))
329 secs
= 1 << (SHIFT_PLL
+ 1 + time_constant
);
331 freq_adj
+= (offset64
* secs
) <<
332 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
334 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
336 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
338 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
342 * ntp_clear - Clears the NTP state variables
346 time_adjust
= 0; /* stop active adjtime() */
347 time_status
|= STA_UNSYNC
;
348 time_maxerror
= NTP_PHASE_LIMIT
;
349 time_esterror
= NTP_PHASE_LIMIT
;
351 ntp_update_frequency();
353 tick_length
= tick_length_base
;
356 ntp_next_leap_sec
= TIME64_MAX
;
357 /* Clear PPS state variables */
362 u64
ntp_tick_length(void)
368 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
370 * Provides the time of the next leapsecond against CLOCK_REALTIME in
371 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
373 ktime_t
ntp_get_next_leap(void)
377 if ((time_state
== TIME_INS
) && (time_status
& STA_INS
))
378 return ktime_set(ntp_next_leap_sec
, 0);
379 ret
.tv64
= KTIME_MAX
;
384 * this routine handles the overflow of the microsecond field
386 * The tricky bits of code to handle the accurate clock support
387 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
388 * They were originally developed for SUN and DEC kernels.
389 * All the kudos should go to Dave for this stuff.
391 * Also handles leap second processing, and returns leap offset
393 int second_overflow(unsigned long secs
)
399 * Leap second processing. If in leap-insert state at the end of the
400 * day, the system clock is set back one second; if in leap-delete
401 * state, the system clock is set ahead one second.
403 switch (time_state
) {
405 if (time_status
& STA_INS
) {
406 time_state
= TIME_INS
;
407 ntp_next_leap_sec
= secs
+ SECS_PER_DAY
-
408 (secs
% SECS_PER_DAY
);
409 } else if (time_status
& STA_DEL
) {
410 time_state
= TIME_DEL
;
411 ntp_next_leap_sec
= secs
+ SECS_PER_DAY
-
412 ((secs
+1) % SECS_PER_DAY
);
416 if (!(time_status
& STA_INS
)) {
417 ntp_next_leap_sec
= TIME64_MAX
;
418 time_state
= TIME_OK
;
419 } else if (secs
% SECS_PER_DAY
== 0) {
421 time_state
= TIME_OOP
;
423 "Clock: inserting leap second 23:59:60 UTC\n");
427 if (!(time_status
& STA_DEL
)) {
428 ntp_next_leap_sec
= TIME64_MAX
;
429 time_state
= TIME_OK
;
430 } else if ((secs
+ 1) % SECS_PER_DAY
== 0) {
432 ntp_next_leap_sec
= TIME64_MAX
;
433 time_state
= TIME_WAIT
;
435 "Clock: deleting leap second 23:59:59 UTC\n");
439 ntp_next_leap_sec
= TIME64_MAX
;
440 time_state
= TIME_WAIT
;
443 if (!(time_status
& (STA_INS
| STA_DEL
)))
444 time_state
= TIME_OK
;
449 /* Bump the maxerror field */
450 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
451 if (time_maxerror
> NTP_PHASE_LIMIT
) {
452 time_maxerror
= NTP_PHASE_LIMIT
;
453 time_status
|= STA_UNSYNC
;
456 /* Compute the phase adjustment for the next second */
457 tick_length
= tick_length_base
;
459 delta
= ntp_offset_chunk(time_offset
);
460 time_offset
-= delta
;
461 tick_length
+= delta
;
463 /* Check PPS signal */
469 if (time_adjust
> MAX_TICKADJ
) {
470 time_adjust
-= MAX_TICKADJ
;
471 tick_length
+= MAX_TICKADJ_SCALED
;
475 if (time_adjust
< -MAX_TICKADJ
) {
476 time_adjust
+= MAX_TICKADJ
;
477 tick_length
-= MAX_TICKADJ_SCALED
;
481 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
489 #ifdef CONFIG_GENERIC_CMOS_UPDATE
490 int __weak
update_persistent_clock(struct timespec now
)
495 int __weak
update_persistent_clock64(struct timespec64 now64
)
499 now
= timespec64_to_timespec(now64
);
500 return update_persistent_clock(now
);
504 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
505 static void sync_cmos_clock(struct work_struct
*work
);
507 static DECLARE_DELAYED_WORK(sync_cmos_work
, sync_cmos_clock
);
509 static void sync_cmos_clock(struct work_struct
*work
)
511 struct timespec64 now
;
512 struct timespec64 next
;
516 * If we have an externally synchronized Linux clock, then update
517 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
518 * called as close as possible to 500 ms before the new second starts.
519 * This code is run on a timer. If the clock is set, that timer
520 * may not expire at the correct time. Thus, we adjust...
521 * We want the clock to be within a couple of ticks from the target.
525 * Not synced, exit, do not restart a timer (if one is
526 * running, let it run out).
531 getnstimeofday64(&now
);
532 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
* 5) {
533 struct timespec64 adjust
= now
;
536 if (persistent_clock_is_local
)
537 adjust
.tv_sec
-= (sys_tz
.tz_minuteswest
* 60);
538 #ifdef CONFIG_GENERIC_CMOS_UPDATE
539 fail
= update_persistent_clock64(adjust
);
542 #ifdef CONFIG_RTC_SYSTOHC
544 fail
= rtc_set_ntp_time(adjust
);
548 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
- (TICK_NSEC
/ 2);
549 if (next
.tv_nsec
<= 0)
550 next
.tv_nsec
+= NSEC_PER_SEC
;
552 if (!fail
|| fail
== -ENODEV
)
557 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
559 next
.tv_nsec
-= NSEC_PER_SEC
;
561 queue_delayed_work(system_power_efficient_wq
,
562 &sync_cmos_work
, timespec64_to_jiffies(&next
));
565 void ntp_notify_cmos_timer(void)
567 queue_delayed_work(system_power_efficient_wq
, &sync_cmos_work
, 0);
571 void ntp_notify_cmos_timer(void) { }
576 * Propagate a new txc->status value into the NTP state:
578 static inline void process_adj_status(struct timex
*txc
, struct timespec64
*ts
)
580 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
581 time_state
= TIME_OK
;
582 time_status
= STA_UNSYNC
;
583 ntp_next_leap_sec
= TIME64_MAX
;
584 /* restart PPS frequency calibration */
585 pps_reset_freq_interval();
589 * If we turn on PLL adjustments then reset the
590 * reference time to current time.
592 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
593 time_reftime
= get_seconds();
595 /* only set allowed bits */
596 time_status
&= STA_RONLY
;
597 time_status
|= txc
->status
& ~STA_RONLY
;
601 static inline void process_adjtimex_modes(struct timex
*txc
,
602 struct timespec64
*ts
,
605 if (txc
->modes
& ADJ_STATUS
)
606 process_adj_status(txc
, ts
);
608 if (txc
->modes
& ADJ_NANO
)
609 time_status
|= STA_NANO
;
611 if (txc
->modes
& ADJ_MICRO
)
612 time_status
&= ~STA_NANO
;
614 if (txc
->modes
& ADJ_FREQUENCY
) {
615 time_freq
= txc
->freq
* PPM_SCALE
;
616 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
617 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
618 /* update pps_freq */
619 pps_set_freq(time_freq
);
622 if (txc
->modes
& ADJ_MAXERROR
)
623 time_maxerror
= txc
->maxerror
;
625 if (txc
->modes
& ADJ_ESTERROR
)
626 time_esterror
= txc
->esterror
;
628 if (txc
->modes
& ADJ_TIMECONST
) {
629 time_constant
= txc
->constant
;
630 if (!(time_status
& STA_NANO
))
632 time_constant
= min(time_constant
, (long)MAXTC
);
633 time_constant
= max(time_constant
, 0l);
636 if (txc
->modes
& ADJ_TAI
&& txc
->constant
> 0)
637 *time_tai
= txc
->constant
;
639 if (txc
->modes
& ADJ_OFFSET
)
640 ntp_update_offset(txc
->offset
);
642 if (txc
->modes
& ADJ_TICK
)
643 tick_usec
= txc
->tick
;
645 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
646 ntp_update_frequency();
652 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
654 int ntp_validate_timex(struct timex
*txc
)
656 if (txc
->modes
& ADJ_ADJTIME
) {
657 /* singleshot must not be used with any other mode bits */
658 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
660 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
661 !capable(CAP_SYS_TIME
))
664 /* In order to modify anything, you gotta be super-user! */
665 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
668 * if the quartz is off by more than 10% then
669 * something is VERY wrong!
671 if (txc
->modes
& ADJ_TICK
&&
672 (txc
->tick
< 900000/USER_HZ
||
673 txc
->tick
> 1100000/USER_HZ
))
677 if (txc
->modes
& ADJ_SETOFFSET
) {
678 /* In order to inject time, you gotta be super-user! */
679 if (!capable(CAP_SYS_TIME
))
682 if (txc
->modes
& ADJ_NANO
) {
685 ts
.tv_sec
= txc
->time
.tv_sec
;
686 ts
.tv_nsec
= txc
->time
.tv_usec
;
687 if (!timespec_inject_offset_valid(&ts
))
691 if (!timeval_inject_offset_valid(&txc
->time
))
697 * Check for potential multiplication overflows that can
698 * only happen on 64-bit systems:
700 if ((txc
->modes
& ADJ_FREQUENCY
) && (BITS_PER_LONG
== 64)) {
701 if (LLONG_MIN
/ PPM_SCALE
> txc
->freq
)
703 if (LLONG_MAX
/ PPM_SCALE
< txc
->freq
)
712 * adjtimex mainly allows reading (and writing, if superuser) of
713 * kernel time-keeping variables. used by xntpd.
715 int __do_adjtimex(struct timex
*txc
, struct timespec64
*ts
, s32
*time_tai
)
719 if (txc
->modes
& ADJ_ADJTIME
) {
720 long save_adjust
= time_adjust
;
722 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
723 /* adjtime() is independent from ntp_adjtime() */
724 time_adjust
= txc
->offset
;
725 ntp_update_frequency();
727 txc
->offset
= save_adjust
;
730 /* If there are input parameters, then process them: */
732 process_adjtimex_modes(txc
, ts
, time_tai
);
734 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
736 if (!(time_status
& STA_NANO
))
737 txc
->offset
/= NSEC_PER_USEC
;
740 result
= time_state
; /* mostly `TIME_OK' */
741 /* check for errors */
742 if (is_error_status(time_status
))
745 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
746 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
747 txc
->maxerror
= time_maxerror
;
748 txc
->esterror
= time_esterror
;
749 txc
->status
= time_status
;
750 txc
->constant
= time_constant
;
752 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
753 txc
->tick
= tick_usec
;
754 txc
->tai
= *time_tai
;
756 /* fill PPS status fields */
759 txc
->time
.tv_sec
= (time_t)ts
->tv_sec
;
760 txc
->time
.tv_usec
= ts
->tv_nsec
;
761 if (!(time_status
& STA_NANO
))
762 txc
->time
.tv_usec
/= NSEC_PER_USEC
;
764 /* Handle leapsec adjustments */
765 if (unlikely(ts
->tv_sec
>= ntp_next_leap_sec
)) {
766 if ((time_state
== TIME_INS
) && (time_status
& STA_INS
)) {
771 if ((time_state
== TIME_DEL
) && (time_status
& STA_DEL
)) {
776 if ((time_state
== TIME_OOP
) &&
777 (ts
->tv_sec
== ntp_next_leap_sec
)) {
785 #ifdef CONFIG_NTP_PPS
787 /* actually struct pps_normtime is good old struct timespec, but it is
788 * semantically different (and it is the reason why it was invented):
789 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
790 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
791 struct pps_normtime
{
792 s64 sec
; /* seconds */
793 long nsec
; /* nanoseconds */
796 /* normalize the timestamp so that nsec is in the
797 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
798 static inline struct pps_normtime
pps_normalize_ts(struct timespec64 ts
)
800 struct pps_normtime norm
= {
805 if (norm
.nsec
> (NSEC_PER_SEC
>> 1)) {
806 norm
.nsec
-= NSEC_PER_SEC
;
813 /* get current phase correction and jitter */
814 static inline long pps_phase_filter_get(long *jitter
)
816 *jitter
= pps_tf
[0] - pps_tf
[1];
820 /* TODO: test various filters */
824 /* add the sample to the phase filter */
825 static inline void pps_phase_filter_add(long err
)
827 pps_tf
[2] = pps_tf
[1];
828 pps_tf
[1] = pps_tf
[0];
832 /* decrease frequency calibration interval length.
833 * It is halved after four consecutive unstable intervals.
835 static inline void pps_dec_freq_interval(void)
837 if (--pps_intcnt
<= -PPS_INTCOUNT
) {
838 pps_intcnt
= -PPS_INTCOUNT
;
839 if (pps_shift
> PPS_INTMIN
) {
846 /* increase frequency calibration interval length.
847 * It is doubled after four consecutive stable intervals.
849 static inline void pps_inc_freq_interval(void)
851 if (++pps_intcnt
>= PPS_INTCOUNT
) {
852 pps_intcnt
= PPS_INTCOUNT
;
853 if (pps_shift
< PPS_INTMAX
) {
860 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
863 * At the end of the calibration interval the difference between the
864 * first and last MONOTONIC_RAW clock timestamps divided by the length
865 * of the interval becomes the frequency update. If the interval was
866 * too long, the data are discarded.
867 * Returns the difference between old and new frequency values.
869 static long hardpps_update_freq(struct pps_normtime freq_norm
)
871 long delta
, delta_mod
;
874 /* check if the frequency interval was too long */
875 if (freq_norm
.sec
> (2 << pps_shift
)) {
876 time_status
|= STA_PPSERROR
;
878 pps_dec_freq_interval();
879 printk_deferred(KERN_ERR
880 "hardpps: PPSERROR: interval too long - %lld s\n",
885 /* here the raw frequency offset and wander (stability) is
886 * calculated. If the wander is less than the wander threshold
887 * the interval is increased; otherwise it is decreased.
889 ftemp
= div_s64(((s64
)(-freq_norm
.nsec
)) << NTP_SCALE_SHIFT
,
891 delta
= shift_right(ftemp
- pps_freq
, NTP_SCALE_SHIFT
);
893 if (delta
> PPS_MAXWANDER
|| delta
< -PPS_MAXWANDER
) {
894 printk_deferred(KERN_WARNING
895 "hardpps: PPSWANDER: change=%ld\n", delta
);
896 time_status
|= STA_PPSWANDER
;
898 pps_dec_freq_interval();
899 } else { /* good sample */
900 pps_inc_freq_interval();
903 /* the stability metric is calculated as the average of recent
904 * frequency changes, but is used only for performance
909 delta_mod
= -delta_mod
;
910 pps_stabil
+= (div_s64(((s64
)delta_mod
) <<
911 (NTP_SCALE_SHIFT
- SHIFT_USEC
),
912 NSEC_PER_USEC
) - pps_stabil
) >> PPS_INTMIN
;
914 /* if enabled, the system clock frequency is updated */
915 if ((time_status
& STA_PPSFREQ
) != 0 &&
916 (time_status
& STA_FREQHOLD
) == 0) {
917 time_freq
= pps_freq
;
918 ntp_update_frequency();
924 /* correct REALTIME clock phase error against PPS signal */
925 static void hardpps_update_phase(long error
)
927 long correction
= -error
;
930 /* add the sample to the median filter */
931 pps_phase_filter_add(correction
);
932 correction
= pps_phase_filter_get(&jitter
);
934 /* Nominal jitter is due to PPS signal noise. If it exceeds the
935 * threshold, the sample is discarded; otherwise, if so enabled,
936 * the time offset is updated.
938 if (jitter
> (pps_jitter
<< PPS_POPCORN
)) {
939 printk_deferred(KERN_WARNING
940 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
941 jitter
, (pps_jitter
<< PPS_POPCORN
));
942 time_status
|= STA_PPSJITTER
;
944 } else if (time_status
& STA_PPSTIME
) {
945 /* correct the time using the phase offset */
946 time_offset
= div_s64(((s64
)correction
) << NTP_SCALE_SHIFT
,
948 /* cancel running adjtime() */
952 pps_jitter
+= (jitter
- pps_jitter
) >> PPS_INTMIN
;
956 * __hardpps() - discipline CPU clock oscillator to external PPS signal
958 * This routine is called at each PPS signal arrival in order to
959 * discipline the CPU clock oscillator to the PPS signal. It takes two
960 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
961 * is used to correct clock phase error and the latter is used to
962 * correct the frequency.
964 * This code is based on David Mills's reference nanokernel
965 * implementation. It was mostly rewritten but keeps the same idea.
967 void __hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
969 struct pps_normtime pts_norm
, freq_norm
;
971 pts_norm
= pps_normalize_ts(*phase_ts
);
973 /* clear the error bits, they will be set again if needed */
974 time_status
&= ~(STA_PPSJITTER
| STA_PPSWANDER
| STA_PPSERROR
);
976 /* indicate signal presence */
977 time_status
|= STA_PPSSIGNAL
;
978 pps_valid
= PPS_VALID
;
980 /* when called for the first time,
981 * just start the frequency interval */
982 if (unlikely(pps_fbase
.tv_sec
== 0)) {
987 /* ok, now we have a base for frequency calculation */
988 freq_norm
= pps_normalize_ts(timespec64_sub(*raw_ts
, pps_fbase
));
990 /* check that the signal is in the range
991 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
992 if ((freq_norm
.sec
== 0) ||
993 (freq_norm
.nsec
> MAXFREQ
* freq_norm
.sec
) ||
994 (freq_norm
.nsec
< -MAXFREQ
* freq_norm
.sec
)) {
995 time_status
|= STA_PPSJITTER
;
996 /* restart the frequency calibration interval */
998 printk_deferred(KERN_ERR
"hardpps: PPSJITTER: bad pulse\n");
1004 /* check if the current frequency interval is finished */
1005 if (freq_norm
.sec
>= (1 << pps_shift
)) {
1007 /* restart the frequency calibration interval */
1008 pps_fbase
= *raw_ts
;
1009 hardpps_update_freq(freq_norm
);
1012 hardpps_update_phase(pts_norm
.nsec
);
1015 #endif /* CONFIG_NTP_PPS */
1017 static int __init
ntp_tick_adj_setup(char *str
)
1019 int rc
= kstrtol(str
, 0, (long *)&ntp_tick_adj
);
1023 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
1028 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
1030 void __init
ntp_init(void)