vfio/pci: Fix integer overflows, bitmask check
[linux/fpc-iii.git] / kernel / time / timekeeping.c
blob738012d68117dc4f9ba6d6f2da2a97c2a90048a1
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
54 * See @update_fast_timekeeper() below.
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
77 struct timespec64 ts;
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
99 struct timespec64 tmp;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
147 tk->underflow_seen = 0;
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
157 tk->overflow_seen = 0;
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
163 struct timekeeper *tk = &tk_core.timekeeper;
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
182 delta = clocksource_delta(now, last, mask);
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
199 return delta;
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
207 cycle_t cycle_now, delta;
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
215 return delta;
217 #endif
220 * tk_setup_internals - Set up internals to use clocksource clock.
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
228 * Unless you're the timekeeping code, you should not be using this!
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
232 cycle_t interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
236 old_clock = tk->tkr_mono.clock;
237 tk->tkr_mono.clock = clock;
238 tk->tkr_mono.read = clock->read;
239 tk->tkr_mono.mask = clock->mask;
240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242 tk->tkr_raw.clock = clock;
243 tk->tkr_raw.read = clock->read;
244 tk->tkr_raw.mask = clock->mask;
245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp = NTP_INTERVAL_LENGTH;
249 tmp <<= clock->shift;
250 ntpinterval = tmp;
251 tmp += clock->mult/2;
252 do_div(tmp, clock->mult);
253 if (tmp == 0)
254 tmp = 1;
256 interval = (cycle_t) tmp;
257 tk->cycle_interval = interval;
259 /* Go back from cycles -> shifted ns */
260 tk->xtime_interval = (u64) interval * clock->mult;
261 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262 tk->raw_interval =
263 ((u64) interval * clock->mult) >> clock->shift;
265 /* if changing clocks, convert xtime_nsec shift units */
266 if (old_clock) {
267 int shift_change = clock->shift - old_clock->shift;
268 if (shift_change < 0)
269 tk->tkr_mono.xtime_nsec >>= -shift_change;
270 else
271 tk->tkr_mono.xtime_nsec <<= shift_change;
273 tk->tkr_raw.xtime_nsec = 0;
275 tk->tkr_mono.shift = clock->shift;
276 tk->tkr_raw.shift = clock->shift;
278 tk->ntp_error = 0;
279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
287 tk->tkr_mono.mult = clock->mult;
288 tk->tkr_raw.mult = clock->mult;
289 tk->ntp_err_mult = 0;
292 /* Timekeeper helper functions. */
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
302 cycle_t delta)
304 u64 nsec;
306 nsec = delta * tkr->mult + tkr->xtime_nsec;
307 nsec >>= tkr->shift;
309 /* If arch requires, add in get_arch_timeoffset() */
310 return nsec + arch_gettimeoffset();
313 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 cycle_t delta;
317 delta = timekeeping_get_delta(tkr);
318 return timekeeping_delta_to_ns(tkr, delta);
321 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
322 cycle_t cycles)
324 cycle_t delta;
326 /* calculate the delta since the last update_wall_time */
327 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
328 return timekeeping_delta_to_ns(tkr, delta);
332 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333 * @tkr: Timekeeping readout base from which we take the update
335 * We want to use this from any context including NMI and tracing /
336 * instrumenting the timekeeping code itself.
338 * Employ the latch technique; see @raw_write_seqcount_latch.
340 * So if a NMI hits the update of base[0] then it will use base[1]
341 * which is still consistent. In the worst case this can result is a
342 * slightly wrong timestamp (a few nanoseconds). See
343 * @ktime_get_mono_fast_ns.
345 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 struct tk_read_base *base = tkf->base;
349 /* Force readers off to base[1] */
350 raw_write_seqcount_latch(&tkf->seq);
352 /* Update base[0] */
353 memcpy(base, tkr, sizeof(*base));
355 /* Force readers back to base[0] */
356 raw_write_seqcount_latch(&tkf->seq);
358 /* Update base[1] */
359 memcpy(base + 1, base, sizeof(*base));
363 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 * This timestamp is not guaranteed to be monotonic across an update.
366 * The timestamp is calculated by:
368 * now = base_mono + clock_delta * slope
370 * So if the update lowers the slope, readers who are forced to the
371 * not yet updated second array are still using the old steeper slope.
373 * tmono
375 * | o n
376 * | o n
377 * | u
378 * | o
379 * |o
380 * |12345678---> reader order
382 * o = old slope
383 * u = update
384 * n = new slope
386 * So reader 6 will observe time going backwards versus reader 5.
388 * While other CPUs are likely to be able observe that, the only way
389 * for a CPU local observation is when an NMI hits in the middle of
390 * the update. Timestamps taken from that NMI context might be ahead
391 * of the following timestamps. Callers need to be aware of that and
392 * deal with it.
394 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 struct tk_read_base *tkr;
397 unsigned int seq;
398 u64 now;
400 do {
401 seq = raw_read_seqcount_latch(&tkf->seq);
402 tkr = tkf->base + (seq & 0x01);
403 now = ktime_to_ns(tkr->base);
405 now += timekeeping_delta_to_ns(tkr,
406 clocksource_delta(
407 tkr->read(tkr->clock),
408 tkr->cycle_last,
409 tkr->mask));
410 } while (read_seqcount_retry(&tkf->seq, seq));
412 return now;
415 u64 ktime_get_mono_fast_ns(void)
417 return __ktime_get_fast_ns(&tk_fast_mono);
419 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
421 u64 ktime_get_raw_fast_ns(void)
423 return __ktime_get_fast_ns(&tk_fast_raw);
425 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
427 /* Suspend-time cycles value for halted fast timekeeper. */
428 static cycle_t cycles_at_suspend;
430 static cycle_t dummy_clock_read(struct clocksource *cs)
432 return cycles_at_suspend;
436 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
437 * @tk: Timekeeper to snapshot.
439 * It generally is unsafe to access the clocksource after timekeeping has been
440 * suspended, so take a snapshot of the readout base of @tk and use it as the
441 * fast timekeeper's readout base while suspended. It will return the same
442 * number of cycles every time until timekeeping is resumed at which time the
443 * proper readout base for the fast timekeeper will be restored automatically.
445 static void halt_fast_timekeeper(struct timekeeper *tk)
447 static struct tk_read_base tkr_dummy;
448 struct tk_read_base *tkr = &tk->tkr_mono;
450 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
451 cycles_at_suspend = tkr->read(tkr->clock);
452 tkr_dummy.read = dummy_clock_read;
453 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
455 tkr = &tk->tkr_raw;
456 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
457 tkr_dummy.read = dummy_clock_read;
458 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
461 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
463 static inline void update_vsyscall(struct timekeeper *tk)
465 struct timespec xt, wm;
467 xt = timespec64_to_timespec(tk_xtime(tk));
468 wm = timespec64_to_timespec(tk->wall_to_monotonic);
469 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
470 tk->tkr_mono.cycle_last);
473 static inline void old_vsyscall_fixup(struct timekeeper *tk)
475 s64 remainder;
478 * Store only full nanoseconds into xtime_nsec after rounding
479 * it up and add the remainder to the error difference.
480 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
481 * by truncating the remainder in vsyscalls. However, it causes
482 * additional work to be done in timekeeping_adjust(). Once
483 * the vsyscall implementations are converted to use xtime_nsec
484 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
485 * users are removed, this can be killed.
487 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
488 tk->tkr_mono.xtime_nsec -= remainder;
489 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
490 tk->ntp_error += remainder << tk->ntp_error_shift;
491 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
493 #else
494 #define old_vsyscall_fixup(tk)
495 #endif
497 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
499 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
501 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
507 int pvclock_gtod_register_notifier(struct notifier_block *nb)
509 struct timekeeper *tk = &tk_core.timekeeper;
510 unsigned long flags;
511 int ret;
513 raw_spin_lock_irqsave(&timekeeper_lock, flags);
514 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
515 update_pvclock_gtod(tk, true);
516 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
518 return ret;
520 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
523 * pvclock_gtod_unregister_notifier - unregister a pvclock
524 * timedata update listener
526 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
528 unsigned long flags;
529 int ret;
531 raw_spin_lock_irqsave(&timekeeper_lock, flags);
532 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
533 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
535 return ret;
537 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
540 * tk_update_leap_state - helper to update the next_leap_ktime
542 static inline void tk_update_leap_state(struct timekeeper *tk)
544 tk->next_leap_ktime = ntp_get_next_leap();
545 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
546 /* Convert to monotonic time */
547 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
551 * Update the ktime_t based scalar nsec members of the timekeeper
553 static inline void tk_update_ktime_data(struct timekeeper *tk)
555 u64 seconds;
556 u32 nsec;
559 * The xtime based monotonic readout is:
560 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
561 * The ktime based monotonic readout is:
562 * nsec = base_mono + now();
563 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
565 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
566 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
567 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
569 /* Update the monotonic raw base */
570 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
573 * The sum of the nanoseconds portions of xtime and
574 * wall_to_monotonic can be greater/equal one second. Take
575 * this into account before updating tk->ktime_sec.
577 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
578 if (nsec >= NSEC_PER_SEC)
579 seconds++;
580 tk->ktime_sec = seconds;
583 /* must hold timekeeper_lock */
584 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
586 if (action & TK_CLEAR_NTP) {
587 tk->ntp_error = 0;
588 ntp_clear();
591 tk_update_leap_state(tk);
592 tk_update_ktime_data(tk);
594 update_vsyscall(tk);
595 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
597 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
598 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
600 if (action & TK_CLOCK_WAS_SET)
601 tk->clock_was_set_seq++;
603 * The mirroring of the data to the shadow-timekeeper needs
604 * to happen last here to ensure we don't over-write the
605 * timekeeper structure on the next update with stale data
607 if (action & TK_MIRROR)
608 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
609 sizeof(tk_core.timekeeper));
613 * timekeeping_forward_now - update clock to the current time
615 * Forward the current clock to update its state since the last call to
616 * update_wall_time(). This is useful before significant clock changes,
617 * as it avoids having to deal with this time offset explicitly.
619 static void timekeeping_forward_now(struct timekeeper *tk)
621 struct clocksource *clock = tk->tkr_mono.clock;
622 cycle_t cycle_now, delta;
623 s64 nsec;
625 cycle_now = tk->tkr_mono.read(clock);
626 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
627 tk->tkr_mono.cycle_last = cycle_now;
628 tk->tkr_raw.cycle_last = cycle_now;
630 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
632 /* If arch requires, add in get_arch_timeoffset() */
633 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
635 tk_normalize_xtime(tk);
637 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
638 timespec64_add_ns(&tk->raw_time, nsec);
642 * __getnstimeofday64 - Returns the time of day in a timespec64.
643 * @ts: pointer to the timespec to be set
645 * Updates the time of day in the timespec.
646 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
648 int __getnstimeofday64(struct timespec64 *ts)
650 struct timekeeper *tk = &tk_core.timekeeper;
651 unsigned long seq;
652 s64 nsecs = 0;
654 do {
655 seq = read_seqcount_begin(&tk_core.seq);
657 ts->tv_sec = tk->xtime_sec;
658 nsecs = timekeeping_get_ns(&tk->tkr_mono);
660 } while (read_seqcount_retry(&tk_core.seq, seq));
662 ts->tv_nsec = 0;
663 timespec64_add_ns(ts, nsecs);
666 * Do not bail out early, in case there were callers still using
667 * the value, even in the face of the WARN_ON.
669 if (unlikely(timekeeping_suspended))
670 return -EAGAIN;
671 return 0;
673 EXPORT_SYMBOL(__getnstimeofday64);
676 * getnstimeofday64 - Returns the time of day in a timespec64.
677 * @ts: pointer to the timespec64 to be set
679 * Returns the time of day in a timespec64 (WARN if suspended).
681 void getnstimeofday64(struct timespec64 *ts)
683 WARN_ON(__getnstimeofday64(ts));
685 EXPORT_SYMBOL(getnstimeofday64);
687 ktime_t ktime_get(void)
689 struct timekeeper *tk = &tk_core.timekeeper;
690 unsigned int seq;
691 ktime_t base;
692 s64 nsecs;
694 WARN_ON(timekeeping_suspended);
696 do {
697 seq = read_seqcount_begin(&tk_core.seq);
698 base = tk->tkr_mono.base;
699 nsecs = timekeeping_get_ns(&tk->tkr_mono);
701 } while (read_seqcount_retry(&tk_core.seq, seq));
703 return ktime_add_ns(base, nsecs);
705 EXPORT_SYMBOL_GPL(ktime_get);
707 u32 ktime_get_resolution_ns(void)
709 struct timekeeper *tk = &tk_core.timekeeper;
710 unsigned int seq;
711 u32 nsecs;
713 WARN_ON(timekeeping_suspended);
715 do {
716 seq = read_seqcount_begin(&tk_core.seq);
717 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
718 } while (read_seqcount_retry(&tk_core.seq, seq));
720 return nsecs;
722 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
724 static ktime_t *offsets[TK_OFFS_MAX] = {
725 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
726 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
727 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
730 ktime_t ktime_get_with_offset(enum tk_offsets offs)
732 struct timekeeper *tk = &tk_core.timekeeper;
733 unsigned int seq;
734 ktime_t base, *offset = offsets[offs];
735 s64 nsecs;
737 WARN_ON(timekeeping_suspended);
739 do {
740 seq = read_seqcount_begin(&tk_core.seq);
741 base = ktime_add(tk->tkr_mono.base, *offset);
742 nsecs = timekeeping_get_ns(&tk->tkr_mono);
744 } while (read_seqcount_retry(&tk_core.seq, seq));
746 return ktime_add_ns(base, nsecs);
749 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
752 * ktime_mono_to_any() - convert mononotic time to any other time
753 * @tmono: time to convert.
754 * @offs: which offset to use
756 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
758 ktime_t *offset = offsets[offs];
759 unsigned long seq;
760 ktime_t tconv;
762 do {
763 seq = read_seqcount_begin(&tk_core.seq);
764 tconv = ktime_add(tmono, *offset);
765 } while (read_seqcount_retry(&tk_core.seq, seq));
767 return tconv;
769 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
772 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
774 ktime_t ktime_get_raw(void)
776 struct timekeeper *tk = &tk_core.timekeeper;
777 unsigned int seq;
778 ktime_t base;
779 s64 nsecs;
781 do {
782 seq = read_seqcount_begin(&tk_core.seq);
783 base = tk->tkr_raw.base;
784 nsecs = timekeeping_get_ns(&tk->tkr_raw);
786 } while (read_seqcount_retry(&tk_core.seq, seq));
788 return ktime_add_ns(base, nsecs);
790 EXPORT_SYMBOL_GPL(ktime_get_raw);
793 * ktime_get_ts64 - get the monotonic clock in timespec64 format
794 * @ts: pointer to timespec variable
796 * The function calculates the monotonic clock from the realtime
797 * clock and the wall_to_monotonic offset and stores the result
798 * in normalized timespec64 format in the variable pointed to by @ts.
800 void ktime_get_ts64(struct timespec64 *ts)
802 struct timekeeper *tk = &tk_core.timekeeper;
803 struct timespec64 tomono;
804 s64 nsec;
805 unsigned int seq;
807 WARN_ON(timekeeping_suspended);
809 do {
810 seq = read_seqcount_begin(&tk_core.seq);
811 ts->tv_sec = tk->xtime_sec;
812 nsec = timekeeping_get_ns(&tk->tkr_mono);
813 tomono = tk->wall_to_monotonic;
815 } while (read_seqcount_retry(&tk_core.seq, seq));
817 ts->tv_sec += tomono.tv_sec;
818 ts->tv_nsec = 0;
819 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
821 EXPORT_SYMBOL_GPL(ktime_get_ts64);
824 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
826 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
827 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
828 * works on both 32 and 64 bit systems. On 32 bit systems the readout
829 * covers ~136 years of uptime which should be enough to prevent
830 * premature wrap arounds.
832 time64_t ktime_get_seconds(void)
834 struct timekeeper *tk = &tk_core.timekeeper;
836 WARN_ON(timekeeping_suspended);
837 return tk->ktime_sec;
839 EXPORT_SYMBOL_GPL(ktime_get_seconds);
842 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
844 * Returns the wall clock seconds since 1970. This replaces the
845 * get_seconds() interface which is not y2038 safe on 32bit systems.
847 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
848 * 32bit systems the access must be protected with the sequence
849 * counter to provide "atomic" access to the 64bit tk->xtime_sec
850 * value.
852 time64_t ktime_get_real_seconds(void)
854 struct timekeeper *tk = &tk_core.timekeeper;
855 time64_t seconds;
856 unsigned int seq;
858 if (IS_ENABLED(CONFIG_64BIT))
859 return tk->xtime_sec;
861 do {
862 seq = read_seqcount_begin(&tk_core.seq);
863 seconds = tk->xtime_sec;
865 } while (read_seqcount_retry(&tk_core.seq, seq));
867 return seconds;
869 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
871 #ifdef CONFIG_NTP_PPS
874 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
875 * @ts_raw: pointer to the timespec to be set to raw monotonic time
876 * @ts_real: pointer to the timespec to be set to the time of day
878 * This function reads both the time of day and raw monotonic time at the
879 * same time atomically and stores the resulting timestamps in timespec
880 * format.
882 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
884 struct timekeeper *tk = &tk_core.timekeeper;
885 unsigned long seq;
886 s64 nsecs_raw, nsecs_real;
888 WARN_ON_ONCE(timekeeping_suspended);
890 do {
891 seq = read_seqcount_begin(&tk_core.seq);
893 *ts_raw = tk->raw_time;
894 ts_real->tv_sec = tk->xtime_sec;
895 ts_real->tv_nsec = 0;
897 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
898 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
900 } while (read_seqcount_retry(&tk_core.seq, seq));
902 timespec64_add_ns(ts_raw, nsecs_raw);
903 timespec64_add_ns(ts_real, nsecs_real);
905 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
907 #endif /* CONFIG_NTP_PPS */
910 * do_gettimeofday - Returns the time of day in a timeval
911 * @tv: pointer to the timeval to be set
913 * NOTE: Users should be converted to using getnstimeofday()
915 void do_gettimeofday(struct timeval *tv)
917 struct timespec64 now;
919 getnstimeofday64(&now);
920 tv->tv_sec = now.tv_sec;
921 tv->tv_usec = now.tv_nsec/1000;
923 EXPORT_SYMBOL(do_gettimeofday);
926 * do_settimeofday64 - Sets the time of day.
927 * @ts: pointer to the timespec64 variable containing the new time
929 * Sets the time of day to the new time and update NTP and notify hrtimers
931 int do_settimeofday64(const struct timespec64 *ts)
933 struct timekeeper *tk = &tk_core.timekeeper;
934 struct timespec64 ts_delta, xt;
935 unsigned long flags;
936 int ret = 0;
938 if (!timespec64_valid_strict(ts))
939 return -EINVAL;
941 raw_spin_lock_irqsave(&timekeeper_lock, flags);
942 write_seqcount_begin(&tk_core.seq);
944 timekeeping_forward_now(tk);
946 xt = tk_xtime(tk);
947 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
948 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
950 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
951 ret = -EINVAL;
952 goto out;
955 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
957 tk_set_xtime(tk, ts);
958 out:
959 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
961 write_seqcount_end(&tk_core.seq);
962 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
964 /* signal hrtimers about time change */
965 clock_was_set();
967 return ret;
969 EXPORT_SYMBOL(do_settimeofday64);
972 * timekeeping_inject_offset - Adds or subtracts from the current time.
973 * @tv: pointer to the timespec variable containing the offset
975 * Adds or subtracts an offset value from the current time.
977 int timekeeping_inject_offset(struct timespec *ts)
979 struct timekeeper *tk = &tk_core.timekeeper;
980 unsigned long flags;
981 struct timespec64 ts64, tmp;
982 int ret = 0;
984 if (!timespec_inject_offset_valid(ts))
985 return -EINVAL;
987 ts64 = timespec_to_timespec64(*ts);
989 raw_spin_lock_irqsave(&timekeeper_lock, flags);
990 write_seqcount_begin(&tk_core.seq);
992 timekeeping_forward_now(tk);
994 /* Make sure the proposed value is valid */
995 tmp = timespec64_add(tk_xtime(tk), ts64);
996 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
997 !timespec64_valid_strict(&tmp)) {
998 ret = -EINVAL;
999 goto error;
1002 tk_xtime_add(tk, &ts64);
1003 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1005 error: /* even if we error out, we forwarded the time, so call update */
1006 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1008 write_seqcount_end(&tk_core.seq);
1009 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1011 /* signal hrtimers about time change */
1012 clock_was_set();
1014 return ret;
1016 EXPORT_SYMBOL(timekeeping_inject_offset);
1020 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1023 s32 timekeeping_get_tai_offset(void)
1025 struct timekeeper *tk = &tk_core.timekeeper;
1026 unsigned int seq;
1027 s32 ret;
1029 do {
1030 seq = read_seqcount_begin(&tk_core.seq);
1031 ret = tk->tai_offset;
1032 } while (read_seqcount_retry(&tk_core.seq, seq));
1034 return ret;
1038 * __timekeeping_set_tai_offset - Lock free worker function
1041 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1043 tk->tai_offset = tai_offset;
1044 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1048 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1051 void timekeeping_set_tai_offset(s32 tai_offset)
1053 struct timekeeper *tk = &tk_core.timekeeper;
1054 unsigned long flags;
1056 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1057 write_seqcount_begin(&tk_core.seq);
1058 __timekeeping_set_tai_offset(tk, tai_offset);
1059 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1060 write_seqcount_end(&tk_core.seq);
1061 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1062 clock_was_set();
1066 * change_clocksource - Swaps clocksources if a new one is available
1068 * Accumulates current time interval and initializes new clocksource
1070 static int change_clocksource(void *data)
1072 struct timekeeper *tk = &tk_core.timekeeper;
1073 struct clocksource *new, *old;
1074 unsigned long flags;
1076 new = (struct clocksource *) data;
1078 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1079 write_seqcount_begin(&tk_core.seq);
1081 timekeeping_forward_now(tk);
1083 * If the cs is in module, get a module reference. Succeeds
1084 * for built-in code (owner == NULL) as well.
1086 if (try_module_get(new->owner)) {
1087 if (!new->enable || new->enable(new) == 0) {
1088 old = tk->tkr_mono.clock;
1089 tk_setup_internals(tk, new);
1090 if (old->disable)
1091 old->disable(old);
1092 module_put(old->owner);
1093 } else {
1094 module_put(new->owner);
1097 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1099 write_seqcount_end(&tk_core.seq);
1100 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1102 return 0;
1106 * timekeeping_notify - Install a new clock source
1107 * @clock: pointer to the clock source
1109 * This function is called from clocksource.c after a new, better clock
1110 * source has been registered. The caller holds the clocksource_mutex.
1112 int timekeeping_notify(struct clocksource *clock)
1114 struct timekeeper *tk = &tk_core.timekeeper;
1116 if (tk->tkr_mono.clock == clock)
1117 return 0;
1118 stop_machine(change_clocksource, clock, NULL);
1119 tick_clock_notify();
1120 return tk->tkr_mono.clock == clock ? 0 : -1;
1124 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1125 * @ts: pointer to the timespec64 to be set
1127 * Returns the raw monotonic time (completely un-modified by ntp)
1129 void getrawmonotonic64(struct timespec64 *ts)
1131 struct timekeeper *tk = &tk_core.timekeeper;
1132 struct timespec64 ts64;
1133 unsigned long seq;
1134 s64 nsecs;
1136 do {
1137 seq = read_seqcount_begin(&tk_core.seq);
1138 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1139 ts64 = tk->raw_time;
1141 } while (read_seqcount_retry(&tk_core.seq, seq));
1143 timespec64_add_ns(&ts64, nsecs);
1144 *ts = ts64;
1146 EXPORT_SYMBOL(getrawmonotonic64);
1150 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1152 int timekeeping_valid_for_hres(void)
1154 struct timekeeper *tk = &tk_core.timekeeper;
1155 unsigned long seq;
1156 int ret;
1158 do {
1159 seq = read_seqcount_begin(&tk_core.seq);
1161 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1163 } while (read_seqcount_retry(&tk_core.seq, seq));
1165 return ret;
1169 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1171 u64 timekeeping_max_deferment(void)
1173 struct timekeeper *tk = &tk_core.timekeeper;
1174 unsigned long seq;
1175 u64 ret;
1177 do {
1178 seq = read_seqcount_begin(&tk_core.seq);
1180 ret = tk->tkr_mono.clock->max_idle_ns;
1182 } while (read_seqcount_retry(&tk_core.seq, seq));
1184 return ret;
1188 * read_persistent_clock - Return time from the persistent clock.
1190 * Weak dummy function for arches that do not yet support it.
1191 * Reads the time from the battery backed persistent clock.
1192 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1194 * XXX - Do be sure to remove it once all arches implement it.
1196 void __weak read_persistent_clock(struct timespec *ts)
1198 ts->tv_sec = 0;
1199 ts->tv_nsec = 0;
1202 void __weak read_persistent_clock64(struct timespec64 *ts64)
1204 struct timespec ts;
1206 read_persistent_clock(&ts);
1207 *ts64 = timespec_to_timespec64(ts);
1211 * read_boot_clock64 - Return time of the system start.
1213 * Weak dummy function for arches that do not yet support it.
1214 * Function to read the exact time the system has been started.
1215 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1217 * XXX - Do be sure to remove it once all arches implement it.
1219 void __weak read_boot_clock64(struct timespec64 *ts)
1221 ts->tv_sec = 0;
1222 ts->tv_nsec = 0;
1225 /* Flag for if timekeeping_resume() has injected sleeptime */
1226 static bool sleeptime_injected;
1228 /* Flag for if there is a persistent clock on this platform */
1229 static bool persistent_clock_exists;
1232 * timekeeping_init - Initializes the clocksource and common timekeeping values
1234 void __init timekeeping_init(void)
1236 struct timekeeper *tk = &tk_core.timekeeper;
1237 struct clocksource *clock;
1238 unsigned long flags;
1239 struct timespec64 now, boot, tmp;
1241 read_persistent_clock64(&now);
1242 if (!timespec64_valid_strict(&now)) {
1243 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1244 " Check your CMOS/BIOS settings.\n");
1245 now.tv_sec = 0;
1246 now.tv_nsec = 0;
1247 } else if (now.tv_sec || now.tv_nsec)
1248 persistent_clock_exists = true;
1250 read_boot_clock64(&boot);
1251 if (!timespec64_valid_strict(&boot)) {
1252 pr_warn("WARNING: Boot clock returned invalid value!\n"
1253 " Check your CMOS/BIOS settings.\n");
1254 boot.tv_sec = 0;
1255 boot.tv_nsec = 0;
1258 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1259 write_seqcount_begin(&tk_core.seq);
1260 ntp_init();
1262 clock = clocksource_default_clock();
1263 if (clock->enable)
1264 clock->enable(clock);
1265 tk_setup_internals(tk, clock);
1267 tk_set_xtime(tk, &now);
1268 tk->raw_time.tv_sec = 0;
1269 tk->raw_time.tv_nsec = 0;
1270 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1271 boot = tk_xtime(tk);
1273 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1274 tk_set_wall_to_mono(tk, tmp);
1276 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1278 write_seqcount_end(&tk_core.seq);
1279 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1282 /* time in seconds when suspend began for persistent clock */
1283 static struct timespec64 timekeeping_suspend_time;
1286 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1287 * @delta: pointer to a timespec delta value
1289 * Takes a timespec offset measuring a suspend interval and properly
1290 * adds the sleep offset to the timekeeping variables.
1292 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1293 struct timespec64 *delta)
1295 if (!timespec64_valid_strict(delta)) {
1296 printk_deferred(KERN_WARNING
1297 "__timekeeping_inject_sleeptime: Invalid "
1298 "sleep delta value!\n");
1299 return;
1301 tk_xtime_add(tk, delta);
1302 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1303 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1304 tk_debug_account_sleep_time(delta);
1307 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1309 * We have three kinds of time sources to use for sleep time
1310 * injection, the preference order is:
1311 * 1) non-stop clocksource
1312 * 2) persistent clock (ie: RTC accessible when irqs are off)
1313 * 3) RTC
1315 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1316 * If system has neither 1) nor 2), 3) will be used finally.
1319 * If timekeeping has injected sleeptime via either 1) or 2),
1320 * 3) becomes needless, so in this case we don't need to call
1321 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1322 * means.
1324 bool timekeeping_rtc_skipresume(void)
1326 return sleeptime_injected;
1330 * 1) can be determined whether to use or not only when doing
1331 * timekeeping_resume() which is invoked after rtc_suspend(),
1332 * so we can't skip rtc_suspend() surely if system has 1).
1334 * But if system has 2), 2) will definitely be used, so in this
1335 * case we don't need to call rtc_suspend(), and this is what
1336 * timekeeping_rtc_skipsuspend() means.
1338 bool timekeeping_rtc_skipsuspend(void)
1340 return persistent_clock_exists;
1344 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1345 * @delta: pointer to a timespec64 delta value
1347 * This hook is for architectures that cannot support read_persistent_clock64
1348 * because their RTC/persistent clock is only accessible when irqs are enabled.
1349 * and also don't have an effective nonstop clocksource.
1351 * This function should only be called by rtc_resume(), and allows
1352 * a suspend offset to be injected into the timekeeping values.
1354 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1356 struct timekeeper *tk = &tk_core.timekeeper;
1357 unsigned long flags;
1359 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1360 write_seqcount_begin(&tk_core.seq);
1362 timekeeping_forward_now(tk);
1364 __timekeeping_inject_sleeptime(tk, delta);
1366 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1368 write_seqcount_end(&tk_core.seq);
1369 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1371 /* signal hrtimers about time change */
1372 clock_was_set();
1374 #endif
1377 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1379 void timekeeping_resume(void)
1381 struct timekeeper *tk = &tk_core.timekeeper;
1382 struct clocksource *clock = tk->tkr_mono.clock;
1383 unsigned long flags;
1384 struct timespec64 ts_new, ts_delta;
1385 cycle_t cycle_now, cycle_delta;
1387 sleeptime_injected = false;
1388 read_persistent_clock64(&ts_new);
1390 clockevents_resume();
1391 clocksource_resume();
1393 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1394 write_seqcount_begin(&tk_core.seq);
1397 * After system resumes, we need to calculate the suspended time and
1398 * compensate it for the OS time. There are 3 sources that could be
1399 * used: Nonstop clocksource during suspend, persistent clock and rtc
1400 * device.
1402 * One specific platform may have 1 or 2 or all of them, and the
1403 * preference will be:
1404 * suspend-nonstop clocksource -> persistent clock -> rtc
1405 * The less preferred source will only be tried if there is no better
1406 * usable source. The rtc part is handled separately in rtc core code.
1408 cycle_now = tk->tkr_mono.read(clock);
1409 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1410 cycle_now > tk->tkr_mono.cycle_last) {
1411 u64 num, max = ULLONG_MAX;
1412 u32 mult = clock->mult;
1413 u32 shift = clock->shift;
1414 s64 nsec = 0;
1416 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1417 tk->tkr_mono.mask);
1420 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1421 * suspended time is too long. In that case we need do the
1422 * 64 bits math carefully
1424 do_div(max, mult);
1425 if (cycle_delta > max) {
1426 num = div64_u64(cycle_delta, max);
1427 nsec = (((u64) max * mult) >> shift) * num;
1428 cycle_delta -= num * max;
1430 nsec += ((u64) cycle_delta * mult) >> shift;
1432 ts_delta = ns_to_timespec64(nsec);
1433 sleeptime_injected = true;
1434 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1435 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1436 sleeptime_injected = true;
1439 if (sleeptime_injected)
1440 __timekeeping_inject_sleeptime(tk, &ts_delta);
1442 /* Re-base the last cycle value */
1443 tk->tkr_mono.cycle_last = cycle_now;
1444 tk->tkr_raw.cycle_last = cycle_now;
1446 tk->ntp_error = 0;
1447 timekeeping_suspended = 0;
1448 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1449 write_seqcount_end(&tk_core.seq);
1450 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1452 touch_softlockup_watchdog();
1454 tick_resume();
1455 hrtimers_resume();
1458 int timekeeping_suspend(void)
1460 struct timekeeper *tk = &tk_core.timekeeper;
1461 unsigned long flags;
1462 struct timespec64 delta, delta_delta;
1463 static struct timespec64 old_delta;
1465 read_persistent_clock64(&timekeeping_suspend_time);
1468 * On some systems the persistent_clock can not be detected at
1469 * timekeeping_init by its return value, so if we see a valid
1470 * value returned, update the persistent_clock_exists flag.
1472 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1473 persistent_clock_exists = true;
1475 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1476 write_seqcount_begin(&tk_core.seq);
1477 timekeeping_forward_now(tk);
1478 timekeeping_suspended = 1;
1480 if (persistent_clock_exists) {
1482 * To avoid drift caused by repeated suspend/resumes,
1483 * which each can add ~1 second drift error,
1484 * try to compensate so the difference in system time
1485 * and persistent_clock time stays close to constant.
1487 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1488 delta_delta = timespec64_sub(delta, old_delta);
1489 if (abs(delta_delta.tv_sec) >= 2) {
1491 * if delta_delta is too large, assume time correction
1492 * has occurred and set old_delta to the current delta.
1494 old_delta = delta;
1495 } else {
1496 /* Otherwise try to adjust old_system to compensate */
1497 timekeeping_suspend_time =
1498 timespec64_add(timekeeping_suspend_time, delta_delta);
1502 timekeeping_update(tk, TK_MIRROR);
1503 halt_fast_timekeeper(tk);
1504 write_seqcount_end(&tk_core.seq);
1505 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1507 tick_suspend();
1508 clocksource_suspend();
1509 clockevents_suspend();
1511 return 0;
1514 /* sysfs resume/suspend bits for timekeeping */
1515 static struct syscore_ops timekeeping_syscore_ops = {
1516 .resume = timekeeping_resume,
1517 .suspend = timekeeping_suspend,
1520 static int __init timekeeping_init_ops(void)
1522 register_syscore_ops(&timekeeping_syscore_ops);
1523 return 0;
1525 device_initcall(timekeeping_init_ops);
1528 * Apply a multiplier adjustment to the timekeeper
1530 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1531 s64 offset,
1532 bool negative,
1533 int adj_scale)
1535 s64 interval = tk->cycle_interval;
1536 s32 mult_adj = 1;
1538 if (negative) {
1539 mult_adj = -mult_adj;
1540 interval = -interval;
1541 offset = -offset;
1543 mult_adj <<= adj_scale;
1544 interval <<= adj_scale;
1545 offset <<= adj_scale;
1548 * So the following can be confusing.
1550 * To keep things simple, lets assume mult_adj == 1 for now.
1552 * When mult_adj != 1, remember that the interval and offset values
1553 * have been appropriately scaled so the math is the same.
1555 * The basic idea here is that we're increasing the multiplier
1556 * by one, this causes the xtime_interval to be incremented by
1557 * one cycle_interval. This is because:
1558 * xtime_interval = cycle_interval * mult
1559 * So if mult is being incremented by one:
1560 * xtime_interval = cycle_interval * (mult + 1)
1561 * Its the same as:
1562 * xtime_interval = (cycle_interval * mult) + cycle_interval
1563 * Which can be shortened to:
1564 * xtime_interval += cycle_interval
1566 * So offset stores the non-accumulated cycles. Thus the current
1567 * time (in shifted nanoseconds) is:
1568 * now = (offset * adj) + xtime_nsec
1569 * Now, even though we're adjusting the clock frequency, we have
1570 * to keep time consistent. In other words, we can't jump back
1571 * in time, and we also want to avoid jumping forward in time.
1573 * So given the same offset value, we need the time to be the same
1574 * both before and after the freq adjustment.
1575 * now = (offset * adj_1) + xtime_nsec_1
1576 * now = (offset * adj_2) + xtime_nsec_2
1577 * So:
1578 * (offset * adj_1) + xtime_nsec_1 =
1579 * (offset * adj_2) + xtime_nsec_2
1580 * And we know:
1581 * adj_2 = adj_1 + 1
1582 * So:
1583 * (offset * adj_1) + xtime_nsec_1 =
1584 * (offset * (adj_1+1)) + xtime_nsec_2
1585 * (offset * adj_1) + xtime_nsec_1 =
1586 * (offset * adj_1) + offset + xtime_nsec_2
1587 * Canceling the sides:
1588 * xtime_nsec_1 = offset + xtime_nsec_2
1589 * Which gives us:
1590 * xtime_nsec_2 = xtime_nsec_1 - offset
1591 * Which simplfies to:
1592 * xtime_nsec -= offset
1594 * XXX - TODO: Doc ntp_error calculation.
1596 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1597 /* NTP adjustment caused clocksource mult overflow */
1598 WARN_ON_ONCE(1);
1599 return;
1602 tk->tkr_mono.mult += mult_adj;
1603 tk->xtime_interval += interval;
1604 tk->tkr_mono.xtime_nsec -= offset;
1605 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1609 * Calculate the multiplier adjustment needed to match the frequency
1610 * specified by NTP
1612 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1613 s64 offset)
1615 s64 interval = tk->cycle_interval;
1616 s64 xinterval = tk->xtime_interval;
1617 s64 tick_error;
1618 bool negative;
1619 u32 adj;
1621 /* Remove any current error adj from freq calculation */
1622 if (tk->ntp_err_mult)
1623 xinterval -= tk->cycle_interval;
1625 tk->ntp_tick = ntp_tick_length();
1627 /* Calculate current error per tick */
1628 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1629 tick_error -= (xinterval + tk->xtime_remainder);
1631 /* Don't worry about correcting it if its small */
1632 if (likely((tick_error >= 0) && (tick_error <= interval)))
1633 return;
1635 /* preserve the direction of correction */
1636 negative = (tick_error < 0);
1638 /* Sort out the magnitude of the correction */
1639 tick_error = abs(tick_error);
1640 for (adj = 0; tick_error > interval; adj++)
1641 tick_error >>= 1;
1643 /* scale the corrections */
1644 timekeeping_apply_adjustment(tk, offset, negative, adj);
1648 * Adjust the timekeeper's multiplier to the correct frequency
1649 * and also to reduce the accumulated error value.
1651 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1653 /* Correct for the current frequency error */
1654 timekeeping_freqadjust(tk, offset);
1656 /* Next make a small adjustment to fix any cumulative error */
1657 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1658 tk->ntp_err_mult = 1;
1659 timekeeping_apply_adjustment(tk, offset, 0, 0);
1660 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1661 /* Undo any existing error adjustment */
1662 timekeeping_apply_adjustment(tk, offset, 1, 0);
1663 tk->ntp_err_mult = 0;
1666 if (unlikely(tk->tkr_mono.clock->maxadj &&
1667 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1668 > tk->tkr_mono.clock->maxadj))) {
1669 printk_once(KERN_WARNING
1670 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1671 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1672 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1676 * It may be possible that when we entered this function, xtime_nsec
1677 * was very small. Further, if we're slightly speeding the clocksource
1678 * in the code above, its possible the required corrective factor to
1679 * xtime_nsec could cause it to underflow.
1681 * Now, since we already accumulated the second, cannot simply roll
1682 * the accumulated second back, since the NTP subsystem has been
1683 * notified via second_overflow. So instead we push xtime_nsec forward
1684 * by the amount we underflowed, and add that amount into the error.
1686 * We'll correct this error next time through this function, when
1687 * xtime_nsec is not as small.
1689 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1690 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1691 tk->tkr_mono.xtime_nsec = 0;
1692 tk->ntp_error += neg << tk->ntp_error_shift;
1697 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1699 * Helper function that accumulates the nsecs greater than a second
1700 * from the xtime_nsec field to the xtime_secs field.
1701 * It also calls into the NTP code to handle leapsecond processing.
1704 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1706 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1707 unsigned int clock_set = 0;
1709 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1710 int leap;
1712 tk->tkr_mono.xtime_nsec -= nsecps;
1713 tk->xtime_sec++;
1715 /* Figure out if its a leap sec and apply if needed */
1716 leap = second_overflow(tk->xtime_sec);
1717 if (unlikely(leap)) {
1718 struct timespec64 ts;
1720 tk->xtime_sec += leap;
1722 ts.tv_sec = leap;
1723 ts.tv_nsec = 0;
1724 tk_set_wall_to_mono(tk,
1725 timespec64_sub(tk->wall_to_monotonic, ts));
1727 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1729 clock_set = TK_CLOCK_WAS_SET;
1732 return clock_set;
1736 * logarithmic_accumulation - shifted accumulation of cycles
1738 * This functions accumulates a shifted interval of cycles into
1739 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1740 * loop.
1742 * Returns the unconsumed cycles.
1744 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1745 u32 shift,
1746 unsigned int *clock_set)
1748 cycle_t interval = tk->cycle_interval << shift;
1749 u64 raw_nsecs;
1751 /* If the offset is smaller than a shifted interval, do nothing */
1752 if (offset < interval)
1753 return offset;
1755 /* Accumulate one shifted interval */
1756 offset -= interval;
1757 tk->tkr_mono.cycle_last += interval;
1758 tk->tkr_raw.cycle_last += interval;
1760 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1761 *clock_set |= accumulate_nsecs_to_secs(tk);
1763 /* Accumulate raw time */
1764 raw_nsecs = (u64)tk->raw_interval << shift;
1765 raw_nsecs += tk->raw_time.tv_nsec;
1766 if (raw_nsecs >= NSEC_PER_SEC) {
1767 u64 raw_secs = raw_nsecs;
1768 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1769 tk->raw_time.tv_sec += raw_secs;
1771 tk->raw_time.tv_nsec = raw_nsecs;
1773 /* Accumulate error between NTP and clock interval */
1774 tk->ntp_error += tk->ntp_tick << shift;
1775 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1776 (tk->ntp_error_shift + shift);
1778 return offset;
1782 * update_wall_time - Uses the current clocksource to increment the wall time
1785 void update_wall_time(void)
1787 struct timekeeper *real_tk = &tk_core.timekeeper;
1788 struct timekeeper *tk = &shadow_timekeeper;
1789 cycle_t offset;
1790 int shift = 0, maxshift;
1791 unsigned int clock_set = 0;
1792 unsigned long flags;
1794 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1796 /* Make sure we're fully resumed: */
1797 if (unlikely(timekeeping_suspended))
1798 goto out;
1800 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1801 offset = real_tk->cycle_interval;
1802 #else
1803 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1804 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1805 #endif
1807 /* Check if there's really nothing to do */
1808 if (offset < real_tk->cycle_interval)
1809 goto out;
1811 /* Do some additional sanity checking */
1812 timekeeping_check_update(real_tk, offset);
1815 * With NO_HZ we may have to accumulate many cycle_intervals
1816 * (think "ticks") worth of time at once. To do this efficiently,
1817 * we calculate the largest doubling multiple of cycle_intervals
1818 * that is smaller than the offset. We then accumulate that
1819 * chunk in one go, and then try to consume the next smaller
1820 * doubled multiple.
1822 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1823 shift = max(0, shift);
1824 /* Bound shift to one less than what overflows tick_length */
1825 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1826 shift = min(shift, maxshift);
1827 while (offset >= tk->cycle_interval) {
1828 offset = logarithmic_accumulation(tk, offset, shift,
1829 &clock_set);
1830 if (offset < tk->cycle_interval<<shift)
1831 shift--;
1834 /* correct the clock when NTP error is too big */
1835 timekeeping_adjust(tk, offset);
1838 * XXX This can be killed once everyone converts
1839 * to the new update_vsyscall.
1841 old_vsyscall_fixup(tk);
1844 * Finally, make sure that after the rounding
1845 * xtime_nsec isn't larger than NSEC_PER_SEC
1847 clock_set |= accumulate_nsecs_to_secs(tk);
1849 write_seqcount_begin(&tk_core.seq);
1851 * Update the real timekeeper.
1853 * We could avoid this memcpy by switching pointers, but that
1854 * requires changes to all other timekeeper usage sites as
1855 * well, i.e. move the timekeeper pointer getter into the
1856 * spinlocked/seqcount protected sections. And we trade this
1857 * memcpy under the tk_core.seq against one before we start
1858 * updating.
1860 timekeeping_update(tk, clock_set);
1861 memcpy(real_tk, tk, sizeof(*tk));
1862 /* The memcpy must come last. Do not put anything here! */
1863 write_seqcount_end(&tk_core.seq);
1864 out:
1865 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1866 if (clock_set)
1867 /* Have to call _delayed version, since in irq context*/
1868 clock_was_set_delayed();
1872 * getboottime64 - Return the real time of system boot.
1873 * @ts: pointer to the timespec64 to be set
1875 * Returns the wall-time of boot in a timespec64.
1877 * This is based on the wall_to_monotonic offset and the total suspend
1878 * time. Calls to settimeofday will affect the value returned (which
1879 * basically means that however wrong your real time clock is at boot time,
1880 * you get the right time here).
1882 void getboottime64(struct timespec64 *ts)
1884 struct timekeeper *tk = &tk_core.timekeeper;
1885 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1887 *ts = ktime_to_timespec64(t);
1889 EXPORT_SYMBOL_GPL(getboottime64);
1891 unsigned long get_seconds(void)
1893 struct timekeeper *tk = &tk_core.timekeeper;
1895 return tk->xtime_sec;
1897 EXPORT_SYMBOL(get_seconds);
1899 struct timespec __current_kernel_time(void)
1901 struct timekeeper *tk = &tk_core.timekeeper;
1903 return timespec64_to_timespec(tk_xtime(tk));
1906 struct timespec64 current_kernel_time64(void)
1908 struct timekeeper *tk = &tk_core.timekeeper;
1909 struct timespec64 now;
1910 unsigned long seq;
1912 do {
1913 seq = read_seqcount_begin(&tk_core.seq);
1915 now = tk_xtime(tk);
1916 } while (read_seqcount_retry(&tk_core.seq, seq));
1918 return now;
1920 EXPORT_SYMBOL(current_kernel_time64);
1922 struct timespec64 get_monotonic_coarse64(void)
1924 struct timekeeper *tk = &tk_core.timekeeper;
1925 struct timespec64 now, mono;
1926 unsigned long seq;
1928 do {
1929 seq = read_seqcount_begin(&tk_core.seq);
1931 now = tk_xtime(tk);
1932 mono = tk->wall_to_monotonic;
1933 } while (read_seqcount_retry(&tk_core.seq, seq));
1935 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1936 now.tv_nsec + mono.tv_nsec);
1938 return now;
1942 * Must hold jiffies_lock
1944 void do_timer(unsigned long ticks)
1946 jiffies_64 += ticks;
1947 calc_global_load(ticks);
1951 * ktime_get_update_offsets_now - hrtimer helper
1952 * @cwsseq: pointer to check and store the clock was set sequence number
1953 * @offs_real: pointer to storage for monotonic -> realtime offset
1954 * @offs_boot: pointer to storage for monotonic -> boottime offset
1955 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1957 * Returns current monotonic time and updates the offsets if the
1958 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1959 * different.
1961 * Called from hrtimer_interrupt() or retrigger_next_event()
1963 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1964 ktime_t *offs_boot, ktime_t *offs_tai)
1966 struct timekeeper *tk = &tk_core.timekeeper;
1967 unsigned int seq;
1968 ktime_t base;
1969 u64 nsecs;
1971 do {
1972 seq = read_seqcount_begin(&tk_core.seq);
1974 base = tk->tkr_mono.base;
1975 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1976 base = ktime_add_ns(base, nsecs);
1978 if (*cwsseq != tk->clock_was_set_seq) {
1979 *cwsseq = tk->clock_was_set_seq;
1980 *offs_real = tk->offs_real;
1981 *offs_boot = tk->offs_boot;
1982 *offs_tai = tk->offs_tai;
1985 /* Handle leapsecond insertion adjustments */
1986 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1987 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1989 } while (read_seqcount_retry(&tk_core.seq, seq));
1991 return base;
1995 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1997 int do_adjtimex(struct timex *txc)
1999 struct timekeeper *tk = &tk_core.timekeeper;
2000 unsigned long flags;
2001 struct timespec64 ts;
2002 s32 orig_tai, tai;
2003 int ret;
2005 /* Validate the data before disabling interrupts */
2006 ret = ntp_validate_timex(txc);
2007 if (ret)
2008 return ret;
2010 if (txc->modes & ADJ_SETOFFSET) {
2011 struct timespec delta;
2012 delta.tv_sec = txc->time.tv_sec;
2013 delta.tv_nsec = txc->time.tv_usec;
2014 if (!(txc->modes & ADJ_NANO))
2015 delta.tv_nsec *= 1000;
2016 ret = timekeeping_inject_offset(&delta);
2017 if (ret)
2018 return ret;
2021 getnstimeofday64(&ts);
2023 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2024 write_seqcount_begin(&tk_core.seq);
2026 orig_tai = tai = tk->tai_offset;
2027 ret = __do_adjtimex(txc, &ts, &tai);
2029 if (tai != orig_tai) {
2030 __timekeeping_set_tai_offset(tk, tai);
2031 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2033 tk_update_leap_state(tk);
2035 write_seqcount_end(&tk_core.seq);
2036 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2038 if (tai != orig_tai)
2039 clock_was_set();
2041 ntp_notify_cmos_timer();
2043 return ret;
2046 #ifdef CONFIG_NTP_PPS
2048 * hardpps() - Accessor function to NTP __hardpps function
2050 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2052 unsigned long flags;
2054 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2055 write_seqcount_begin(&tk_core.seq);
2057 __hardpps(phase_ts, raw_ts);
2059 write_seqcount_end(&tk_core.seq);
2060 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2062 EXPORT_SYMBOL(hardpps);
2063 #endif
2066 * xtime_update() - advances the timekeeping infrastructure
2067 * @ticks: number of ticks, that have elapsed since the last call.
2069 * Must be called with interrupts disabled.
2071 void xtime_update(unsigned long ticks)
2073 write_seqlock(&jiffies_lock);
2074 do_timer(ticks);
2075 write_sequnlock(&jiffies_lock);
2076 update_wall_time();