4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 static void page_cache_tree_delete(struct address_space
*mapping
,
114 struct page
*page
, void *shadow
)
116 struct radix_tree_node
*node
;
122 VM_BUG_ON(!PageLocked(page
));
124 __radix_tree_lookup(&mapping
->page_tree
, page
->index
, &node
, &slot
);
127 mapping
->nrexceptional
++;
129 * Make sure the nrexceptional update is committed before
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
139 /* Clear direct pointer tags in root node */
140 mapping
->page_tree
.gfp_mask
&= __GFP_BITS_MASK
;
141 radix_tree_replace_slot(slot
, shadow
);
145 /* Clear tree tags for the removed page */
147 offset
= index
& RADIX_TREE_MAP_MASK
;
148 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
149 if (test_bit(offset
, node
->tags
[tag
]))
150 radix_tree_tag_clear(&mapping
->page_tree
, index
, tag
);
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot
, shadow
);
155 workingset_node_pages_dec(node
);
157 workingset_node_shadows_inc(node
);
159 if (__radix_tree_delete_node(&mapping
->page_tree
, node
))
163 * Track node that only contains shadow entries.
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
169 if (!workingset_node_pages(node
) &&
170 list_empty(&node
->private_list
)) {
171 node
->private_data
= mapping
;
172 list_lru_add(&workingset_shadow_nodes
, &node
->private_list
);
177 * Delete a page from the page cache and free it. Caller has to make
178 * sure the page is locked and that nobody else uses it - or that usage
179 * is safe. The caller must hold the mapping's tree_lock and
180 * mem_cgroup_begin_page_stat().
182 void __delete_from_page_cache(struct page
*page
, void *shadow
,
183 struct mem_cgroup
*memcg
)
185 struct address_space
*mapping
= page
->mapping
;
187 trace_mm_filemap_delete_from_page_cache(page
);
189 * if we're uptodate, flush out into the cleancache, otherwise
190 * invalidate any existing cleancache entries. We can't leave
191 * stale data around in the cleancache once our page is gone
193 if (PageUptodate(page
) && PageMappedToDisk(page
))
194 cleancache_put_page(page
);
196 cleancache_invalidate_page(mapping
, page
);
198 page_cache_tree_delete(mapping
, page
, shadow
);
200 page
->mapping
= NULL
;
201 /* Leave page->index set: truncation lookup relies upon it */
203 /* hugetlb pages do not participate in page cache accounting. */
205 __dec_zone_page_state(page
, NR_FILE_PAGES
);
206 if (PageSwapBacked(page
))
207 __dec_zone_page_state(page
, NR_SHMEM
);
208 VM_BUG_ON_PAGE(page_mapped(page
), page
);
211 * At this point page must be either written or cleaned by truncate.
212 * Dirty page here signals a bug and loss of unwritten data.
214 * This fixes dirty accounting after removing the page entirely but
215 * leaves PageDirty set: it has no effect for truncated page and
216 * anyway will be cleared before returning page into buddy allocator.
218 if (WARN_ON_ONCE(PageDirty(page
)))
219 account_page_cleaned(page
, mapping
, memcg
,
220 inode_to_wb(mapping
->host
));
224 * delete_from_page_cache - delete page from page cache
225 * @page: the page which the kernel is trying to remove from page cache
227 * This must be called only on pages that have been verified to be in the page
228 * cache and locked. It will never put the page into the free list, the caller
229 * has a reference on the page.
231 void delete_from_page_cache(struct page
*page
)
233 struct address_space
*mapping
= page
->mapping
;
234 struct mem_cgroup
*memcg
;
237 void (*freepage
)(struct page
*);
239 BUG_ON(!PageLocked(page
));
241 freepage
= mapping
->a_ops
->freepage
;
243 memcg
= mem_cgroup_begin_page_stat(page
);
244 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
245 __delete_from_page_cache(page
, NULL
, memcg
);
246 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
247 mem_cgroup_end_page_stat(memcg
);
251 page_cache_release(page
);
253 EXPORT_SYMBOL(delete_from_page_cache
);
255 static int filemap_check_errors(struct address_space
*mapping
)
258 /* Check for outstanding write errors */
259 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
260 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
262 if (test_bit(AS_EIO
, &mapping
->flags
) &&
263 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
269 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270 * @mapping: address space structure to write
271 * @start: offset in bytes where the range starts
272 * @end: offset in bytes where the range ends (inclusive)
273 * @sync_mode: enable synchronous operation
275 * Start writeback against all of a mapping's dirty pages that lie
276 * within the byte offsets <start, end> inclusive.
278 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279 * opposed to a regular memory cleansing writeback. The difference between
280 * these two operations is that if a dirty page/buffer is encountered, it must
281 * be waited upon, and not just skipped over.
283 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
284 loff_t end
, int sync_mode
)
287 struct writeback_control wbc
= {
288 .sync_mode
= sync_mode
,
289 .nr_to_write
= LONG_MAX
,
290 .range_start
= start
,
294 if (!mapping_cap_writeback_dirty(mapping
))
297 wbc_attach_fdatawrite_inode(&wbc
, mapping
->host
);
298 ret
= do_writepages(mapping
, &wbc
);
299 wbc_detach_inode(&wbc
);
303 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
306 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
309 int filemap_fdatawrite(struct address_space
*mapping
)
311 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
313 EXPORT_SYMBOL(filemap_fdatawrite
);
315 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
318 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
320 EXPORT_SYMBOL(filemap_fdatawrite_range
);
323 * filemap_flush - mostly a non-blocking flush
324 * @mapping: target address_space
326 * This is a mostly non-blocking flush. Not suitable for data-integrity
327 * purposes - I/O may not be started against all dirty pages.
329 int filemap_flush(struct address_space
*mapping
)
331 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
333 EXPORT_SYMBOL(filemap_flush
);
335 static int __filemap_fdatawait_range(struct address_space
*mapping
,
336 loff_t start_byte
, loff_t end_byte
)
338 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
339 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
344 if (end_byte
< start_byte
)
347 pagevec_init(&pvec
, 0);
348 while ((index
<= end
) &&
349 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
350 PAGECACHE_TAG_WRITEBACK
,
351 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
354 for (i
= 0; i
< nr_pages
; i
++) {
355 struct page
*page
= pvec
.pages
[i
];
357 /* until radix tree lookup accepts end_index */
358 if (page
->index
> end
)
361 wait_on_page_writeback(page
);
362 if (TestClearPageError(page
))
365 pagevec_release(&pvec
);
373 * filemap_fdatawait_range - wait for writeback to complete
374 * @mapping: address space structure to wait for
375 * @start_byte: offset in bytes where the range starts
376 * @end_byte: offset in bytes where the range ends (inclusive)
378 * Walk the list of under-writeback pages of the given address space
379 * in the given range and wait for all of them. Check error status of
380 * the address space and return it.
382 * Since the error status of the address space is cleared by this function,
383 * callers are responsible for checking the return value and handling and/or
384 * reporting the error.
386 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
391 ret
= __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
392 ret2
= filemap_check_errors(mapping
);
398 EXPORT_SYMBOL(filemap_fdatawait_range
);
401 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402 * @mapping: address space structure to wait for
404 * Walk the list of under-writeback pages of the given address space
405 * and wait for all of them. Unlike filemap_fdatawait(), this function
406 * does not clear error status of the address space.
408 * Use this function if callers don't handle errors themselves. Expected
409 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
412 void filemap_fdatawait_keep_errors(struct address_space
*mapping
)
414 loff_t i_size
= i_size_read(mapping
->host
);
419 __filemap_fdatawait_range(mapping
, 0, i_size
- 1);
423 * filemap_fdatawait - wait for all under-writeback pages to complete
424 * @mapping: address space structure to wait for
426 * Walk the list of under-writeback pages of the given address space
427 * and wait for all of them. Check error status of the address space
430 * Since the error status of the address space is cleared by this function,
431 * callers are responsible for checking the return value and handling and/or
432 * reporting the error.
434 int filemap_fdatawait(struct address_space
*mapping
)
436 loff_t i_size
= i_size_read(mapping
->host
);
441 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
443 EXPORT_SYMBOL(filemap_fdatawait
);
445 int filemap_write_and_wait(struct address_space
*mapping
)
449 if ((!dax_mapping(mapping
) && mapping
->nrpages
) ||
450 (dax_mapping(mapping
) && mapping
->nrexceptional
)) {
451 err
= filemap_fdatawrite(mapping
);
453 * Even if the above returned error, the pages may be
454 * written partially (e.g. -ENOSPC), so we wait for it.
455 * But the -EIO is special case, it may indicate the worst
456 * thing (e.g. bug) happened, so we avoid waiting for it.
459 int err2
= filemap_fdatawait(mapping
);
464 err
= filemap_check_errors(mapping
);
468 EXPORT_SYMBOL(filemap_write_and_wait
);
471 * filemap_write_and_wait_range - write out & wait on a file range
472 * @mapping: the address_space for the pages
473 * @lstart: offset in bytes where the range starts
474 * @lend: offset in bytes where the range ends (inclusive)
476 * Write out and wait upon file offsets lstart->lend, inclusive.
478 * Note that `lend' is inclusive (describes the last byte to be written) so
479 * that this function can be used to write to the very end-of-file (end = -1).
481 int filemap_write_and_wait_range(struct address_space
*mapping
,
482 loff_t lstart
, loff_t lend
)
486 if ((!dax_mapping(mapping
) && mapping
->nrpages
) ||
487 (dax_mapping(mapping
) && mapping
->nrexceptional
)) {
488 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
490 /* See comment of filemap_write_and_wait() */
492 int err2
= filemap_fdatawait_range(mapping
,
498 err
= filemap_check_errors(mapping
);
502 EXPORT_SYMBOL(filemap_write_and_wait_range
);
505 * replace_page_cache_page - replace a pagecache page with a new one
506 * @old: page to be replaced
507 * @new: page to replace with
508 * @gfp_mask: allocation mode
510 * This function replaces a page in the pagecache with a new one. On
511 * success it acquires the pagecache reference for the new page and
512 * drops it for the old page. Both the old and new pages must be
513 * locked. This function does not add the new page to the LRU, the
514 * caller must do that.
516 * The remove + add is atomic. The only way this function can fail is
517 * memory allocation failure.
519 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
523 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
524 VM_BUG_ON_PAGE(!PageLocked(new), new);
525 VM_BUG_ON_PAGE(new->mapping
, new);
527 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
529 struct address_space
*mapping
= old
->mapping
;
530 void (*freepage
)(struct page
*);
531 struct mem_cgroup
*memcg
;
534 pgoff_t offset
= old
->index
;
535 freepage
= mapping
->a_ops
->freepage
;
538 new->mapping
= mapping
;
541 memcg
= mem_cgroup_begin_page_stat(old
);
542 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
543 __delete_from_page_cache(old
, NULL
, memcg
);
544 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
549 * hugetlb pages do not participate in page cache accounting.
552 __inc_zone_page_state(new, NR_FILE_PAGES
);
553 if (PageSwapBacked(new))
554 __inc_zone_page_state(new, NR_SHMEM
);
555 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
556 mem_cgroup_end_page_stat(memcg
);
557 mem_cgroup_replace_page(old
, new);
558 radix_tree_preload_end();
561 page_cache_release(old
);
566 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
568 static int page_cache_tree_insert(struct address_space
*mapping
,
569 struct page
*page
, void **shadowp
)
571 struct radix_tree_node
*node
;
575 error
= __radix_tree_create(&mapping
->page_tree
, page
->index
,
582 p
= radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
583 if (!radix_tree_exceptional_entry(p
))
586 if (WARN_ON(dax_mapping(mapping
)))
591 mapping
->nrexceptional
--;
593 workingset_node_shadows_dec(node
);
595 radix_tree_replace_slot(slot
, page
);
598 workingset_node_pages_inc(node
);
600 * Don't track node that contains actual pages.
602 * Avoid acquiring the list_lru lock if already
603 * untracked. The list_empty() test is safe as
604 * node->private_list is protected by
605 * mapping->tree_lock.
607 if (!list_empty(&node
->private_list
))
608 list_lru_del(&workingset_shadow_nodes
,
609 &node
->private_list
);
614 static int __add_to_page_cache_locked(struct page
*page
,
615 struct address_space
*mapping
,
616 pgoff_t offset
, gfp_t gfp_mask
,
619 int huge
= PageHuge(page
);
620 struct mem_cgroup
*memcg
;
623 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
624 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
627 error
= mem_cgroup_try_charge(page
, current
->mm
,
628 gfp_mask
, &memcg
, false);
633 error
= radix_tree_maybe_preload(gfp_mask
& ~__GFP_HIGHMEM
);
636 mem_cgroup_cancel_charge(page
, memcg
, false);
640 page_cache_get(page
);
641 page
->mapping
= mapping
;
642 page
->index
= offset
;
644 spin_lock_irq(&mapping
->tree_lock
);
645 error
= page_cache_tree_insert(mapping
, page
, shadowp
);
646 radix_tree_preload_end();
650 /* hugetlb pages do not participate in page cache accounting. */
652 __inc_zone_page_state(page
, NR_FILE_PAGES
);
653 spin_unlock_irq(&mapping
->tree_lock
);
655 mem_cgroup_commit_charge(page
, memcg
, false, false);
656 trace_mm_filemap_add_to_page_cache(page
);
659 page
->mapping
= NULL
;
660 /* Leave page->index set: truncation relies upon it */
661 spin_unlock_irq(&mapping
->tree_lock
);
663 mem_cgroup_cancel_charge(page
, memcg
, false);
664 page_cache_release(page
);
669 * add_to_page_cache_locked - add a locked page to the pagecache
671 * @mapping: the page's address_space
672 * @offset: page index
673 * @gfp_mask: page allocation mode
675 * This function is used to add a page to the pagecache. It must be locked.
676 * This function does not add the page to the LRU. The caller must do that.
678 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
679 pgoff_t offset
, gfp_t gfp_mask
)
681 return __add_to_page_cache_locked(page
, mapping
, offset
,
684 EXPORT_SYMBOL(add_to_page_cache_locked
);
686 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
687 pgoff_t offset
, gfp_t gfp_mask
)
692 __SetPageLocked(page
);
693 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
696 __ClearPageLocked(page
);
699 * The page might have been evicted from cache only
700 * recently, in which case it should be activated like
701 * any other repeatedly accessed page.
703 if (shadow
&& workingset_refault(shadow
)) {
705 workingset_activation(page
);
707 ClearPageActive(page
);
712 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
715 struct page
*__page_cache_alloc(gfp_t gfp
)
720 if (cpuset_do_page_mem_spread()) {
721 unsigned int cpuset_mems_cookie
;
723 cpuset_mems_cookie
= read_mems_allowed_begin();
724 n
= cpuset_mem_spread_node();
725 page
= __alloc_pages_node(n
, gfp
, 0);
726 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
730 return alloc_pages(gfp
, 0);
732 EXPORT_SYMBOL(__page_cache_alloc
);
736 * In order to wait for pages to become available there must be
737 * waitqueues associated with pages. By using a hash table of
738 * waitqueues where the bucket discipline is to maintain all
739 * waiters on the same queue and wake all when any of the pages
740 * become available, and for the woken contexts to check to be
741 * sure the appropriate page became available, this saves space
742 * at a cost of "thundering herd" phenomena during rare hash
745 wait_queue_head_t
*page_waitqueue(struct page
*page
)
747 const struct zone
*zone
= page_zone(page
);
749 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
751 EXPORT_SYMBOL(page_waitqueue
);
753 void wait_on_page_bit(struct page
*page
, int bit_nr
)
755 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
757 if (test_bit(bit_nr
, &page
->flags
))
758 __wait_on_bit(page_waitqueue(page
), &wait
, bit_wait_io
,
759 TASK_UNINTERRUPTIBLE
);
761 EXPORT_SYMBOL(wait_on_page_bit
);
763 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
765 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
767 if (!test_bit(bit_nr
, &page
->flags
))
770 return __wait_on_bit(page_waitqueue(page
), &wait
,
771 bit_wait_io
, TASK_KILLABLE
);
774 int wait_on_page_bit_killable_timeout(struct page
*page
,
775 int bit_nr
, unsigned long timeout
)
777 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
779 wait
.key
.timeout
= jiffies
+ timeout
;
780 if (!test_bit(bit_nr
, &page
->flags
))
782 return __wait_on_bit(page_waitqueue(page
), &wait
,
783 bit_wait_io_timeout
, TASK_KILLABLE
);
785 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout
);
788 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
789 * @page: Page defining the wait queue of interest
790 * @waiter: Waiter to add to the queue
792 * Add an arbitrary @waiter to the wait queue for the nominated @page.
794 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
796 wait_queue_head_t
*q
= page_waitqueue(page
);
799 spin_lock_irqsave(&q
->lock
, flags
);
800 __add_wait_queue(q
, waiter
);
801 spin_unlock_irqrestore(&q
->lock
, flags
);
803 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
806 * unlock_page - unlock a locked page
809 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
810 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
811 * mechanism between PageLocked pages and PageWriteback pages is shared.
812 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
814 * The mb is necessary to enforce ordering between the clear_bit and the read
815 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
817 void unlock_page(struct page
*page
)
819 page
= compound_head(page
);
820 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
821 clear_bit_unlock(PG_locked
, &page
->flags
);
822 smp_mb__after_atomic();
823 wake_up_page(page
, PG_locked
);
825 EXPORT_SYMBOL(unlock_page
);
828 * end_page_writeback - end writeback against a page
831 void end_page_writeback(struct page
*page
)
834 * TestClearPageReclaim could be used here but it is an atomic
835 * operation and overkill in this particular case. Failing to
836 * shuffle a page marked for immediate reclaim is too mild to
837 * justify taking an atomic operation penalty at the end of
838 * ever page writeback.
840 if (PageReclaim(page
)) {
841 ClearPageReclaim(page
);
842 rotate_reclaimable_page(page
);
845 if (!test_clear_page_writeback(page
))
848 smp_mb__after_atomic();
849 wake_up_page(page
, PG_writeback
);
851 EXPORT_SYMBOL(end_page_writeback
);
854 * After completing I/O on a page, call this routine to update the page
855 * flags appropriately
857 void page_endio(struct page
*page
, int rw
, int err
)
861 SetPageUptodate(page
);
863 ClearPageUptodate(page
);
867 } else { /* rw == WRITE */
871 mapping_set_error(page
->mapping
, err
);
873 end_page_writeback(page
);
876 EXPORT_SYMBOL_GPL(page_endio
);
879 * __lock_page - get a lock on the page, assuming we need to sleep to get it
880 * @page: the page to lock
882 void __lock_page(struct page
*page
)
884 struct page
*page_head
= compound_head(page
);
885 DEFINE_WAIT_BIT(wait
, &page_head
->flags
, PG_locked
);
887 __wait_on_bit_lock(page_waitqueue(page_head
), &wait
, bit_wait_io
,
888 TASK_UNINTERRUPTIBLE
);
890 EXPORT_SYMBOL(__lock_page
);
892 int __lock_page_killable(struct page
*page
)
894 struct page
*page_head
= compound_head(page
);
895 DEFINE_WAIT_BIT(wait
, &page_head
->flags
, PG_locked
);
897 return __wait_on_bit_lock(page_waitqueue(page_head
), &wait
,
898 bit_wait_io
, TASK_KILLABLE
);
900 EXPORT_SYMBOL_GPL(__lock_page_killable
);
904 * 1 - page is locked; mmap_sem is still held.
905 * 0 - page is not locked.
906 * mmap_sem has been released (up_read()), unless flags had both
907 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
908 * which case mmap_sem is still held.
910 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
911 * with the page locked and the mmap_sem unperturbed.
913 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
916 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
918 * CAUTION! In this case, mmap_sem is not released
919 * even though return 0.
921 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
924 up_read(&mm
->mmap_sem
);
925 if (flags
& FAULT_FLAG_KILLABLE
)
926 wait_on_page_locked_killable(page
);
928 wait_on_page_locked(page
);
931 if (flags
& FAULT_FLAG_KILLABLE
) {
934 ret
= __lock_page_killable(page
);
936 up_read(&mm
->mmap_sem
);
946 * page_cache_next_hole - find the next hole (not-present entry)
949 * @max_scan: maximum range to search
951 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
952 * lowest indexed hole.
954 * Returns: the index of the hole if found, otherwise returns an index
955 * outside of the set specified (in which case 'return - index >=
956 * max_scan' will be true). In rare cases of index wrap-around, 0 will
959 * page_cache_next_hole may be called under rcu_read_lock. However,
960 * like radix_tree_gang_lookup, this will not atomically search a
961 * snapshot of the tree at a single point in time. For example, if a
962 * hole is created at index 5, then subsequently a hole is created at
963 * index 10, page_cache_next_hole covering both indexes may return 10
964 * if called under rcu_read_lock.
966 pgoff_t
page_cache_next_hole(struct address_space
*mapping
,
967 pgoff_t index
, unsigned long max_scan
)
971 for (i
= 0; i
< max_scan
; i
++) {
974 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
975 if (!page
|| radix_tree_exceptional_entry(page
))
984 EXPORT_SYMBOL(page_cache_next_hole
);
987 * page_cache_prev_hole - find the prev hole (not-present entry)
990 * @max_scan: maximum range to search
992 * Search backwards in the range [max(index-max_scan+1, 0), index] for
995 * Returns: the index of the hole if found, otherwise returns an index
996 * outside of the set specified (in which case 'index - return >=
997 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1000 * page_cache_prev_hole may be called under rcu_read_lock. However,
1001 * like radix_tree_gang_lookup, this will not atomically search a
1002 * snapshot of the tree at a single point in time. For example, if a
1003 * hole is created at index 10, then subsequently a hole is created at
1004 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1005 * called under rcu_read_lock.
1007 pgoff_t
page_cache_prev_hole(struct address_space
*mapping
,
1008 pgoff_t index
, unsigned long max_scan
)
1012 for (i
= 0; i
< max_scan
; i
++) {
1015 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
1016 if (!page
|| radix_tree_exceptional_entry(page
))
1019 if (index
== ULONG_MAX
)
1025 EXPORT_SYMBOL(page_cache_prev_hole
);
1028 * find_get_entry - find and get a page cache entry
1029 * @mapping: the address_space to search
1030 * @offset: the page cache index
1032 * Looks up the page cache slot at @mapping & @offset. If there is a
1033 * page cache page, it is returned with an increased refcount.
1035 * If the slot holds a shadow entry of a previously evicted page, or a
1036 * swap entry from shmem/tmpfs, it is returned.
1038 * Otherwise, %NULL is returned.
1040 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
1048 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
1050 page
= radix_tree_deref_slot(pagep
);
1051 if (unlikely(!page
))
1053 if (radix_tree_exception(page
)) {
1054 if (radix_tree_deref_retry(page
))
1057 * A shadow entry of a recently evicted page,
1058 * or a swap entry from shmem/tmpfs. Return
1059 * it without attempting to raise page count.
1063 if (!page_cache_get_speculative(page
))
1067 * Has the page moved?
1068 * This is part of the lockless pagecache protocol. See
1069 * include/linux/pagemap.h for details.
1071 if (unlikely(page
!= *pagep
)) {
1072 page_cache_release(page
);
1081 EXPORT_SYMBOL(find_get_entry
);
1084 * find_lock_entry - locate, pin and lock a page cache entry
1085 * @mapping: the address_space to search
1086 * @offset: the page cache index
1088 * Looks up the page cache slot at @mapping & @offset. If there is a
1089 * page cache page, it is returned locked and with an increased
1092 * If the slot holds a shadow entry of a previously evicted page, or a
1093 * swap entry from shmem/tmpfs, it is returned.
1095 * Otherwise, %NULL is returned.
1097 * find_lock_entry() may sleep.
1099 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1104 page
= find_get_entry(mapping
, offset
);
1105 if (page
&& !radix_tree_exception(page
)) {
1107 /* Has the page been truncated? */
1108 if (unlikely(page
->mapping
!= mapping
)) {
1110 page_cache_release(page
);
1113 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1117 EXPORT_SYMBOL(find_lock_entry
);
1120 * pagecache_get_page - find and get a page reference
1121 * @mapping: the address_space to search
1122 * @offset: the page index
1123 * @fgp_flags: PCG flags
1124 * @gfp_mask: gfp mask to use for the page cache data page allocation
1126 * Looks up the page cache slot at @mapping & @offset.
1128 * PCG flags modify how the page is returned.
1130 * FGP_ACCESSED: the page will be marked accessed
1131 * FGP_LOCK: Page is return locked
1132 * FGP_CREAT: If page is not present then a new page is allocated using
1133 * @gfp_mask and added to the page cache and the VM's LRU
1134 * list. The page is returned locked and with an increased
1135 * refcount. Otherwise, %NULL is returned.
1137 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1138 * if the GFP flags specified for FGP_CREAT are atomic.
1140 * If there is a page cache page, it is returned with an increased refcount.
1142 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1143 int fgp_flags
, gfp_t gfp_mask
)
1148 page
= find_get_entry(mapping
, offset
);
1149 if (radix_tree_exceptional_entry(page
))
1154 if (fgp_flags
& FGP_LOCK
) {
1155 if (fgp_flags
& FGP_NOWAIT
) {
1156 if (!trylock_page(page
)) {
1157 page_cache_release(page
);
1164 /* Has the page been truncated? */
1165 if (unlikely(page
->mapping
!= mapping
)) {
1167 page_cache_release(page
);
1170 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1173 if (page
&& (fgp_flags
& FGP_ACCESSED
))
1174 mark_page_accessed(page
);
1177 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1179 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1180 gfp_mask
|= __GFP_WRITE
;
1181 if (fgp_flags
& FGP_NOFS
)
1182 gfp_mask
&= ~__GFP_FS
;
1184 page
= __page_cache_alloc(gfp_mask
);
1188 if (WARN_ON_ONCE(!(fgp_flags
& FGP_LOCK
)))
1189 fgp_flags
|= FGP_LOCK
;
1191 /* Init accessed so avoid atomic mark_page_accessed later */
1192 if (fgp_flags
& FGP_ACCESSED
)
1193 __SetPageReferenced(page
);
1195 err
= add_to_page_cache_lru(page
, mapping
, offset
,
1196 gfp_mask
& GFP_RECLAIM_MASK
);
1197 if (unlikely(err
)) {
1198 page_cache_release(page
);
1207 EXPORT_SYMBOL(pagecache_get_page
);
1210 * find_get_entries - gang pagecache lookup
1211 * @mapping: The address_space to search
1212 * @start: The starting page cache index
1213 * @nr_entries: The maximum number of entries
1214 * @entries: Where the resulting entries are placed
1215 * @indices: The cache indices corresponding to the entries in @entries
1217 * find_get_entries() will search for and return a group of up to
1218 * @nr_entries entries in the mapping. The entries are placed at
1219 * @entries. find_get_entries() takes a reference against any actual
1222 * The search returns a group of mapping-contiguous page cache entries
1223 * with ascending indexes. There may be holes in the indices due to
1224 * not-present pages.
1226 * Any shadow entries of evicted pages, or swap entries from
1227 * shmem/tmpfs, are included in the returned array.
1229 * find_get_entries() returns the number of pages and shadow entries
1232 unsigned find_get_entries(struct address_space
*mapping
,
1233 pgoff_t start
, unsigned int nr_entries
,
1234 struct page
**entries
, pgoff_t
*indices
)
1237 unsigned int ret
= 0;
1238 struct radix_tree_iter iter
;
1245 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1248 page
= radix_tree_deref_slot(slot
);
1249 if (unlikely(!page
))
1251 if (radix_tree_exception(page
)) {
1252 if (radix_tree_deref_retry(page
))
1255 * A shadow entry of a recently evicted page, a swap
1256 * entry from shmem/tmpfs or a DAX entry. Return it
1257 * without attempting to raise page count.
1261 if (!page_cache_get_speculative(page
))
1264 /* Has the page moved? */
1265 if (unlikely(page
!= *slot
)) {
1266 page_cache_release(page
);
1270 indices
[ret
] = iter
.index
;
1271 entries
[ret
] = page
;
1272 if (++ret
== nr_entries
)
1280 * find_get_pages - gang pagecache lookup
1281 * @mapping: The address_space to search
1282 * @start: The starting page index
1283 * @nr_pages: The maximum number of pages
1284 * @pages: Where the resulting pages are placed
1286 * find_get_pages() will search for and return a group of up to
1287 * @nr_pages pages in the mapping. The pages are placed at @pages.
1288 * find_get_pages() takes a reference against the returned pages.
1290 * The search returns a group of mapping-contiguous pages with ascending
1291 * indexes. There may be holes in the indices due to not-present pages.
1293 * find_get_pages() returns the number of pages which were found.
1295 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
1296 unsigned int nr_pages
, struct page
**pages
)
1298 struct radix_tree_iter iter
;
1302 if (unlikely(!nr_pages
))
1307 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1310 page
= radix_tree_deref_slot(slot
);
1311 if (unlikely(!page
))
1314 if (radix_tree_exception(page
)) {
1315 if (radix_tree_deref_retry(page
)) {
1317 * Transient condition which can only trigger
1318 * when entry at index 0 moves out of or back
1319 * to root: none yet gotten, safe to restart.
1321 WARN_ON(iter
.index
);
1325 * A shadow entry of a recently evicted page,
1326 * or a swap entry from shmem/tmpfs. Skip
1332 if (!page_cache_get_speculative(page
))
1335 /* Has the page moved? */
1336 if (unlikely(page
!= *slot
)) {
1337 page_cache_release(page
);
1342 if (++ret
== nr_pages
)
1351 * find_get_pages_contig - gang contiguous pagecache lookup
1352 * @mapping: The address_space to search
1353 * @index: The starting page index
1354 * @nr_pages: The maximum number of pages
1355 * @pages: Where the resulting pages are placed
1357 * find_get_pages_contig() works exactly like find_get_pages(), except
1358 * that the returned number of pages are guaranteed to be contiguous.
1360 * find_get_pages_contig() returns the number of pages which were found.
1362 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1363 unsigned int nr_pages
, struct page
**pages
)
1365 struct radix_tree_iter iter
;
1367 unsigned int ret
= 0;
1369 if (unlikely(!nr_pages
))
1374 radix_tree_for_each_contig(slot
, &mapping
->page_tree
, &iter
, index
) {
1377 page
= radix_tree_deref_slot(slot
);
1378 /* The hole, there no reason to continue */
1379 if (unlikely(!page
))
1382 if (radix_tree_exception(page
)) {
1383 if (radix_tree_deref_retry(page
)) {
1385 * Transient condition which can only trigger
1386 * when entry at index 0 moves out of or back
1387 * to root: none yet gotten, safe to restart.
1392 * A shadow entry of a recently evicted page,
1393 * or a swap entry from shmem/tmpfs. Stop
1394 * looking for contiguous pages.
1399 if (!page_cache_get_speculative(page
))
1402 /* Has the page moved? */
1403 if (unlikely(page
!= *slot
)) {
1404 page_cache_release(page
);
1409 * must check mapping and index after taking the ref.
1410 * otherwise we can get both false positives and false
1411 * negatives, which is just confusing to the caller.
1413 if (page
->mapping
== NULL
|| page
->index
!= iter
.index
) {
1414 page_cache_release(page
);
1419 if (++ret
== nr_pages
)
1425 EXPORT_SYMBOL(find_get_pages_contig
);
1428 * find_get_pages_tag - find and return pages that match @tag
1429 * @mapping: the address_space to search
1430 * @index: the starting page index
1431 * @tag: the tag index
1432 * @nr_pages: the maximum number of pages
1433 * @pages: where the resulting pages are placed
1435 * Like find_get_pages, except we only return pages which are tagged with
1436 * @tag. We update @index to index the next page for the traversal.
1438 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
1439 int tag
, unsigned int nr_pages
, struct page
**pages
)
1441 struct radix_tree_iter iter
;
1445 if (unlikely(!nr_pages
))
1450 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1451 &iter
, *index
, tag
) {
1454 page
= radix_tree_deref_slot(slot
);
1455 if (unlikely(!page
))
1458 if (radix_tree_exception(page
)) {
1459 if (radix_tree_deref_retry(page
)) {
1461 * Transient condition which can only trigger
1462 * when entry at index 0 moves out of or back
1463 * to root: none yet gotten, safe to restart.
1468 * A shadow entry of a recently evicted page.
1470 * Those entries should never be tagged, but
1471 * this tree walk is lockless and the tags are
1472 * looked up in bulk, one radix tree node at a
1473 * time, so there is a sizable window for page
1474 * reclaim to evict a page we saw tagged.
1481 if (!page_cache_get_speculative(page
))
1484 /* Has the page moved? */
1485 if (unlikely(page
!= *slot
)) {
1486 page_cache_release(page
);
1491 if (++ret
== nr_pages
)
1498 *index
= pages
[ret
- 1]->index
+ 1;
1502 EXPORT_SYMBOL(find_get_pages_tag
);
1505 * find_get_entries_tag - find and return entries that match @tag
1506 * @mapping: the address_space to search
1507 * @start: the starting page cache index
1508 * @tag: the tag index
1509 * @nr_entries: the maximum number of entries
1510 * @entries: where the resulting entries are placed
1511 * @indices: the cache indices corresponding to the entries in @entries
1513 * Like find_get_entries, except we only return entries which are tagged with
1516 unsigned find_get_entries_tag(struct address_space
*mapping
, pgoff_t start
,
1517 int tag
, unsigned int nr_entries
,
1518 struct page
**entries
, pgoff_t
*indices
)
1521 unsigned int ret
= 0;
1522 struct radix_tree_iter iter
;
1529 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1530 &iter
, start
, tag
) {
1533 page
= radix_tree_deref_slot(slot
);
1534 if (unlikely(!page
))
1536 if (radix_tree_exception(page
)) {
1537 if (radix_tree_deref_retry(page
)) {
1539 * Transient condition which can only trigger
1540 * when entry at index 0 moves out of or back
1541 * to root: none yet gotten, safe to restart.
1547 * A shadow entry of a recently evicted page, a swap
1548 * entry from shmem/tmpfs or a DAX entry. Return it
1549 * without attempting to raise page count.
1553 if (!page_cache_get_speculative(page
))
1556 /* Has the page moved? */
1557 if (unlikely(page
!= *slot
)) {
1558 page_cache_release(page
);
1562 indices
[ret
] = iter
.index
;
1563 entries
[ret
] = page
;
1564 if (++ret
== nr_entries
)
1570 EXPORT_SYMBOL(find_get_entries_tag
);
1573 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1574 * a _large_ part of the i/o request. Imagine the worst scenario:
1576 * ---R__________________________________________B__________
1577 * ^ reading here ^ bad block(assume 4k)
1579 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1580 * => failing the whole request => read(R) => read(R+1) =>
1581 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1582 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1583 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1585 * It is going insane. Fix it by quickly scaling down the readahead size.
1587 static void shrink_readahead_size_eio(struct file
*filp
,
1588 struct file_ra_state
*ra
)
1594 * do_generic_file_read - generic file read routine
1595 * @filp: the file to read
1596 * @ppos: current file position
1597 * @iter: data destination
1598 * @written: already copied
1600 * This is a generic file read routine, and uses the
1601 * mapping->a_ops->readpage() function for the actual low-level stuff.
1603 * This is really ugly. But the goto's actually try to clarify some
1604 * of the logic when it comes to error handling etc.
1606 static ssize_t
do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1607 struct iov_iter
*iter
, ssize_t written
)
1609 struct address_space
*mapping
= filp
->f_mapping
;
1610 struct inode
*inode
= mapping
->host
;
1611 struct file_ra_state
*ra
= &filp
->f_ra
;
1615 unsigned long offset
; /* offset into pagecache page */
1616 unsigned int prev_offset
;
1619 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1620 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1621 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1622 last_index
= (*ppos
+ iter
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1623 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1629 unsigned long nr
, ret
;
1633 page
= find_get_page(mapping
, index
);
1635 page_cache_sync_readahead(mapping
,
1637 index
, last_index
- index
);
1638 page
= find_get_page(mapping
, index
);
1639 if (unlikely(page
== NULL
))
1640 goto no_cached_page
;
1642 if (PageReadahead(page
)) {
1643 page_cache_async_readahead(mapping
,
1645 index
, last_index
- index
);
1647 if (!PageUptodate(page
)) {
1648 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1649 !mapping
->a_ops
->is_partially_uptodate
)
1650 goto page_not_up_to_date
;
1651 if (!trylock_page(page
))
1652 goto page_not_up_to_date
;
1653 /* Did it get truncated before we got the lock? */
1655 goto page_not_up_to_date_locked
;
1656 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1657 offset
, iter
->count
))
1658 goto page_not_up_to_date_locked
;
1663 * i_size must be checked after we know the page is Uptodate.
1665 * Checking i_size after the check allows us to calculate
1666 * the correct value for "nr", which means the zero-filled
1667 * part of the page is not copied back to userspace (unless
1668 * another truncate extends the file - this is desired though).
1671 isize
= i_size_read(inode
);
1672 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1673 if (unlikely(!isize
|| index
> end_index
)) {
1674 page_cache_release(page
);
1678 /* nr is the maximum number of bytes to copy from this page */
1679 nr
= PAGE_CACHE_SIZE
;
1680 if (index
== end_index
) {
1681 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1683 page_cache_release(page
);
1689 /* If users can be writing to this page using arbitrary
1690 * virtual addresses, take care about potential aliasing
1691 * before reading the page on the kernel side.
1693 if (mapping_writably_mapped(mapping
))
1694 flush_dcache_page(page
);
1697 * When a sequential read accesses a page several times,
1698 * only mark it as accessed the first time.
1700 if (prev_index
!= index
|| offset
!= prev_offset
)
1701 mark_page_accessed(page
);
1705 * Ok, we have the page, and it's up-to-date, so
1706 * now we can copy it to user space...
1709 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
1711 index
+= offset
>> PAGE_CACHE_SHIFT
;
1712 offset
&= ~PAGE_CACHE_MASK
;
1713 prev_offset
= offset
;
1715 page_cache_release(page
);
1717 if (!iov_iter_count(iter
))
1725 page_not_up_to_date
:
1726 /* Get exclusive access to the page ... */
1727 error
= lock_page_killable(page
);
1728 if (unlikely(error
))
1729 goto readpage_error
;
1731 page_not_up_to_date_locked
:
1732 /* Did it get truncated before we got the lock? */
1733 if (!page
->mapping
) {
1735 page_cache_release(page
);
1739 /* Did somebody else fill it already? */
1740 if (PageUptodate(page
)) {
1747 * A previous I/O error may have been due to temporary
1748 * failures, eg. multipath errors.
1749 * PG_error will be set again if readpage fails.
1751 ClearPageError(page
);
1752 /* Start the actual read. The read will unlock the page. */
1753 error
= mapping
->a_ops
->readpage(filp
, page
);
1755 if (unlikely(error
)) {
1756 if (error
== AOP_TRUNCATED_PAGE
) {
1757 page_cache_release(page
);
1761 goto readpage_error
;
1764 if (!PageUptodate(page
)) {
1765 error
= lock_page_killable(page
);
1766 if (unlikely(error
))
1767 goto readpage_error
;
1768 if (!PageUptodate(page
)) {
1769 if (page
->mapping
== NULL
) {
1771 * invalidate_mapping_pages got it
1774 page_cache_release(page
);
1778 shrink_readahead_size_eio(filp
, ra
);
1780 goto readpage_error
;
1788 /* UHHUH! A synchronous read error occurred. Report it */
1789 page_cache_release(page
);
1794 * Ok, it wasn't cached, so we need to create a new
1797 page
= page_cache_alloc_cold(mapping
);
1802 error
= add_to_page_cache_lru(page
, mapping
, index
,
1803 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
1805 page_cache_release(page
);
1806 if (error
== -EEXIST
) {
1816 ra
->prev_pos
= prev_index
;
1817 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1818 ra
->prev_pos
|= prev_offset
;
1820 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1821 file_accessed(filp
);
1822 return written
? written
: error
;
1826 * generic_file_read_iter - generic filesystem read routine
1827 * @iocb: kernel I/O control block
1828 * @iter: destination for the data read
1830 * This is the "read_iter()" routine for all filesystems
1831 * that can use the page cache directly.
1834 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
1836 struct file
*file
= iocb
->ki_filp
;
1838 loff_t
*ppos
= &iocb
->ki_pos
;
1841 if (iocb
->ki_flags
& IOCB_DIRECT
) {
1842 struct address_space
*mapping
= file
->f_mapping
;
1843 struct inode
*inode
= mapping
->host
;
1844 size_t count
= iov_iter_count(iter
);
1848 goto out
; /* skip atime */
1849 size
= i_size_read(inode
);
1850 retval
= filemap_write_and_wait_range(mapping
, pos
,
1853 struct iov_iter data
= *iter
;
1854 retval
= mapping
->a_ops
->direct_IO(iocb
, &data
, pos
);
1858 *ppos
= pos
+ retval
;
1859 iov_iter_advance(iter
, retval
);
1863 * Btrfs can have a short DIO read if we encounter
1864 * compressed extents, so if there was an error, or if
1865 * we've already read everything we wanted to, or if
1866 * there was a short read because we hit EOF, go ahead
1867 * and return. Otherwise fallthrough to buffered io for
1868 * the rest of the read. Buffered reads will not work for
1869 * DAX files, so don't bother trying.
1871 if (retval
< 0 || !iov_iter_count(iter
) || *ppos
>= size
||
1873 file_accessed(file
);
1878 retval
= do_generic_file_read(file
, ppos
, iter
, retval
);
1882 EXPORT_SYMBOL(generic_file_read_iter
);
1886 * page_cache_read - adds requested page to the page cache if not already there
1887 * @file: file to read
1888 * @offset: page index
1889 * @gfp_mask: memory allocation flags
1891 * This adds the requested page to the page cache if it isn't already there,
1892 * and schedules an I/O to read in its contents from disk.
1894 static int page_cache_read(struct file
*file
, pgoff_t offset
, gfp_t gfp_mask
)
1896 struct address_space
*mapping
= file
->f_mapping
;
1901 page
= __page_cache_alloc(gfp_mask
|__GFP_COLD
);
1905 ret
= add_to_page_cache_lru(page
, mapping
, offset
, gfp_mask
& GFP_KERNEL
);
1907 ret
= mapping
->a_ops
->readpage(file
, page
);
1908 else if (ret
== -EEXIST
)
1909 ret
= 0; /* losing race to add is OK */
1911 page_cache_release(page
);
1913 } while (ret
== AOP_TRUNCATED_PAGE
);
1918 #define MMAP_LOTSAMISS (100)
1921 * Synchronous readahead happens when we don't even find
1922 * a page in the page cache at all.
1924 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1925 struct file_ra_state
*ra
,
1929 struct address_space
*mapping
= file
->f_mapping
;
1931 /* If we don't want any read-ahead, don't bother */
1932 if (vma
->vm_flags
& VM_RAND_READ
)
1937 if (vma
->vm_flags
& VM_SEQ_READ
) {
1938 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1943 /* Avoid banging the cache line if not needed */
1944 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1948 * Do we miss much more than hit in this file? If so,
1949 * stop bothering with read-ahead. It will only hurt.
1951 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1957 ra
->start
= max_t(long, 0, offset
- ra
->ra_pages
/ 2);
1958 ra
->size
= ra
->ra_pages
;
1959 ra
->async_size
= ra
->ra_pages
/ 4;
1960 ra_submit(ra
, mapping
, file
);
1964 * Asynchronous readahead happens when we find the page and PG_readahead,
1965 * so we want to possibly extend the readahead further..
1967 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1968 struct file_ra_state
*ra
,
1973 struct address_space
*mapping
= file
->f_mapping
;
1975 /* If we don't want any read-ahead, don't bother */
1976 if (vma
->vm_flags
& VM_RAND_READ
)
1978 if (ra
->mmap_miss
> 0)
1980 if (PageReadahead(page
))
1981 page_cache_async_readahead(mapping
, ra
, file
,
1982 page
, offset
, ra
->ra_pages
);
1986 * filemap_fault - read in file data for page fault handling
1987 * @vma: vma in which the fault was taken
1988 * @vmf: struct vm_fault containing details of the fault
1990 * filemap_fault() is invoked via the vma operations vector for a
1991 * mapped memory region to read in file data during a page fault.
1993 * The goto's are kind of ugly, but this streamlines the normal case of having
1994 * it in the page cache, and handles the special cases reasonably without
1995 * having a lot of duplicated code.
1997 * vma->vm_mm->mmap_sem must be held on entry.
1999 * If our return value has VM_FAULT_RETRY set, it's because
2000 * lock_page_or_retry() returned 0.
2001 * The mmap_sem has usually been released in this case.
2002 * See __lock_page_or_retry() for the exception.
2004 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2005 * has not been released.
2007 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2009 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2012 struct file
*file
= vma
->vm_file
;
2013 struct address_space
*mapping
= file
->f_mapping
;
2014 struct file_ra_state
*ra
= &file
->f_ra
;
2015 struct inode
*inode
= mapping
->host
;
2016 pgoff_t offset
= vmf
->pgoff
;
2021 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
2022 if (offset
>= size
>> PAGE_CACHE_SHIFT
)
2023 return VM_FAULT_SIGBUS
;
2026 * Do we have something in the page cache already?
2028 page
= find_get_page(mapping
, offset
);
2029 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
2031 * We found the page, so try async readahead before
2032 * waiting for the lock.
2034 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
2036 /* No page in the page cache at all */
2037 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
2038 count_vm_event(PGMAJFAULT
);
2039 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
2040 ret
= VM_FAULT_MAJOR
;
2042 page
= find_get_page(mapping
, offset
);
2044 goto no_cached_page
;
2047 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
2048 page_cache_release(page
);
2049 return ret
| VM_FAULT_RETRY
;
2052 /* Did it get truncated? */
2053 if (unlikely(page
->mapping
!= mapping
)) {
2058 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
2061 * We have a locked page in the page cache, now we need to check
2062 * that it's up-to-date. If not, it is going to be due to an error.
2064 if (unlikely(!PageUptodate(page
)))
2065 goto page_not_uptodate
;
2068 * Found the page and have a reference on it.
2069 * We must recheck i_size under page lock.
2071 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
2072 if (unlikely(offset
>= size
>> PAGE_CACHE_SHIFT
)) {
2074 page_cache_release(page
);
2075 return VM_FAULT_SIGBUS
;
2079 return ret
| VM_FAULT_LOCKED
;
2083 * We're only likely to ever get here if MADV_RANDOM is in
2086 error
= page_cache_read(file
, offset
, vmf
->gfp_mask
);
2089 * The page we want has now been added to the page cache.
2090 * In the unlikely event that someone removed it in the
2091 * meantime, we'll just come back here and read it again.
2097 * An error return from page_cache_read can result if the
2098 * system is low on memory, or a problem occurs while trying
2101 if (error
== -ENOMEM
)
2102 return VM_FAULT_OOM
;
2103 return VM_FAULT_SIGBUS
;
2107 * Umm, take care of errors if the page isn't up-to-date.
2108 * Try to re-read it _once_. We do this synchronously,
2109 * because there really aren't any performance issues here
2110 * and we need to check for errors.
2112 ClearPageError(page
);
2113 error
= mapping
->a_ops
->readpage(file
, page
);
2115 wait_on_page_locked(page
);
2116 if (!PageUptodate(page
))
2119 page_cache_release(page
);
2121 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
2124 /* Things didn't work out. Return zero to tell the mm layer so. */
2125 shrink_readahead_size_eio(file
, ra
);
2126 return VM_FAULT_SIGBUS
;
2128 EXPORT_SYMBOL(filemap_fault
);
2130 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2132 struct radix_tree_iter iter
;
2134 struct file
*file
= vma
->vm_file
;
2135 struct address_space
*mapping
= file
->f_mapping
;
2138 unsigned long address
= (unsigned long) vmf
->virtual_address
;
2143 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, vmf
->pgoff
) {
2144 if (iter
.index
> vmf
->max_pgoff
)
2147 page
= radix_tree_deref_slot(slot
);
2148 if (unlikely(!page
))
2150 if (radix_tree_exception(page
)) {
2151 if (radix_tree_deref_retry(page
))
2157 if (!page_cache_get_speculative(page
))
2160 /* Has the page moved? */
2161 if (unlikely(page
!= *slot
)) {
2162 page_cache_release(page
);
2166 if (!PageUptodate(page
) ||
2167 PageReadahead(page
) ||
2170 if (!trylock_page(page
))
2173 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2176 size
= round_up(i_size_read(mapping
->host
), PAGE_CACHE_SIZE
);
2177 if (page
->index
>= size
>> PAGE_CACHE_SHIFT
)
2180 pte
= vmf
->pte
+ page
->index
- vmf
->pgoff
;
2181 if (!pte_none(*pte
))
2184 if (file
->f_ra
.mmap_miss
> 0)
2185 file
->f_ra
.mmap_miss
--;
2186 addr
= address
+ (page
->index
- vmf
->pgoff
) * PAGE_SIZE
;
2187 do_set_pte(vma
, addr
, page
, pte
, false, false);
2193 page_cache_release(page
);
2195 if (iter
.index
== vmf
->max_pgoff
)
2200 EXPORT_SYMBOL(filemap_map_pages
);
2202 int filemap_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2204 struct page
*page
= vmf
->page
;
2205 struct inode
*inode
= file_inode(vma
->vm_file
);
2206 int ret
= VM_FAULT_LOCKED
;
2208 sb_start_pagefault(inode
->i_sb
);
2209 file_update_time(vma
->vm_file
);
2211 if (page
->mapping
!= inode
->i_mapping
) {
2213 ret
= VM_FAULT_NOPAGE
;
2217 * We mark the page dirty already here so that when freeze is in
2218 * progress, we are guaranteed that writeback during freezing will
2219 * see the dirty page and writeprotect it again.
2221 set_page_dirty(page
);
2222 wait_for_stable_page(page
);
2224 sb_end_pagefault(inode
->i_sb
);
2227 EXPORT_SYMBOL(filemap_page_mkwrite
);
2229 const struct vm_operations_struct generic_file_vm_ops
= {
2230 .fault
= filemap_fault
,
2231 .map_pages
= filemap_map_pages
,
2232 .page_mkwrite
= filemap_page_mkwrite
,
2235 /* This is used for a general mmap of a disk file */
2237 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2239 struct address_space
*mapping
= file
->f_mapping
;
2241 if (!mapping
->a_ops
->readpage
)
2243 file_accessed(file
);
2244 vma
->vm_ops
= &generic_file_vm_ops
;
2249 * This is for filesystems which do not implement ->writepage.
2251 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2253 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2255 return generic_file_mmap(file
, vma
);
2258 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2262 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2266 #endif /* CONFIG_MMU */
2268 EXPORT_SYMBOL(generic_file_mmap
);
2269 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2271 static struct page
*wait_on_page_read(struct page
*page
)
2273 if (!IS_ERR(page
)) {
2274 wait_on_page_locked(page
);
2275 if (!PageUptodate(page
)) {
2276 page_cache_release(page
);
2277 page
= ERR_PTR(-EIO
);
2283 static struct page
*__read_cache_page(struct address_space
*mapping
,
2285 int (*filler
)(void *, struct page
*),
2292 page
= find_get_page(mapping
, index
);
2294 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
2296 return ERR_PTR(-ENOMEM
);
2297 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2298 if (unlikely(err
)) {
2299 page_cache_release(page
);
2302 /* Presumably ENOMEM for radix tree node */
2303 return ERR_PTR(err
);
2305 err
= filler(data
, page
);
2307 page_cache_release(page
);
2308 page
= ERR_PTR(err
);
2310 page
= wait_on_page_read(page
);
2316 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2318 int (*filler
)(void *, struct page
*),
2327 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
2330 if (PageUptodate(page
))
2334 if (!page
->mapping
) {
2336 page_cache_release(page
);
2339 if (PageUptodate(page
)) {
2343 err
= filler(data
, page
);
2345 page_cache_release(page
);
2346 return ERR_PTR(err
);
2348 page
= wait_on_page_read(page
);
2353 mark_page_accessed(page
);
2358 * read_cache_page - read into page cache, fill it if needed
2359 * @mapping: the page's address_space
2360 * @index: the page index
2361 * @filler: function to perform the read
2362 * @data: first arg to filler(data, page) function, often left as NULL
2364 * Read into the page cache. If a page already exists, and PageUptodate() is
2365 * not set, try to fill the page and wait for it to become unlocked.
2367 * If the page does not get brought uptodate, return -EIO.
2369 struct page
*read_cache_page(struct address_space
*mapping
,
2371 int (*filler
)(void *, struct page
*),
2374 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
2376 EXPORT_SYMBOL(read_cache_page
);
2379 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2380 * @mapping: the page's address_space
2381 * @index: the page index
2382 * @gfp: the page allocator flags to use if allocating
2384 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2385 * any new page allocations done using the specified allocation flags.
2387 * If the page does not get brought uptodate, return -EIO.
2389 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2393 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
2395 return do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
);
2397 EXPORT_SYMBOL(read_cache_page_gfp
);
2400 * Performs necessary checks before doing a write
2402 * Can adjust writing position or amount of bytes to write.
2403 * Returns appropriate error code that caller should return or
2404 * zero in case that write should be allowed.
2406 inline ssize_t
generic_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
2408 struct file
*file
= iocb
->ki_filp
;
2409 struct inode
*inode
= file
->f_mapping
->host
;
2410 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2413 if (!iov_iter_count(from
))
2416 /* FIXME: this is for backwards compatibility with 2.4 */
2417 if (iocb
->ki_flags
& IOCB_APPEND
)
2418 iocb
->ki_pos
= i_size_read(inode
);
2422 if (limit
!= RLIM_INFINITY
) {
2423 if (iocb
->ki_pos
>= limit
) {
2424 send_sig(SIGXFSZ
, current
, 0);
2427 iov_iter_truncate(from
, limit
- (unsigned long)pos
);
2433 if (unlikely(pos
+ iov_iter_count(from
) > MAX_NON_LFS
&&
2434 !(file
->f_flags
& O_LARGEFILE
))) {
2435 if (pos
>= MAX_NON_LFS
)
2437 iov_iter_truncate(from
, MAX_NON_LFS
- (unsigned long)pos
);
2441 * Are we about to exceed the fs block limit ?
2443 * If we have written data it becomes a short write. If we have
2444 * exceeded without writing data we send a signal and return EFBIG.
2445 * Linus frestrict idea will clean these up nicely..
2447 if (unlikely(pos
>= inode
->i_sb
->s_maxbytes
))
2450 iov_iter_truncate(from
, inode
->i_sb
->s_maxbytes
- pos
);
2451 return iov_iter_count(from
);
2453 EXPORT_SYMBOL(generic_write_checks
);
2455 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2456 loff_t pos
, unsigned len
, unsigned flags
,
2457 struct page
**pagep
, void **fsdata
)
2459 const struct address_space_operations
*aops
= mapping
->a_ops
;
2461 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2464 EXPORT_SYMBOL(pagecache_write_begin
);
2466 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2467 loff_t pos
, unsigned len
, unsigned copied
,
2468 struct page
*page
, void *fsdata
)
2470 const struct address_space_operations
*aops
= mapping
->a_ops
;
2472 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2474 EXPORT_SYMBOL(pagecache_write_end
);
2477 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
, loff_t pos
)
2479 struct file
*file
= iocb
->ki_filp
;
2480 struct address_space
*mapping
= file
->f_mapping
;
2481 struct inode
*inode
= mapping
->host
;
2485 struct iov_iter data
;
2487 write_len
= iov_iter_count(from
);
2488 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2490 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2495 * After a write we want buffered reads to be sure to go to disk to get
2496 * the new data. We invalidate clean cached page from the region we're
2497 * about to write. We do this *before* the write so that we can return
2498 * without clobbering -EIOCBQUEUED from ->direct_IO().
2500 if (mapping
->nrpages
) {
2501 written
= invalidate_inode_pages2_range(mapping
,
2502 pos
>> PAGE_CACHE_SHIFT
, end
);
2504 * If a page can not be invalidated, return 0 to fall back
2505 * to buffered write.
2508 if (written
== -EBUSY
)
2515 written
= mapping
->a_ops
->direct_IO(iocb
, &data
, pos
);
2518 * Finally, try again to invalidate clean pages which might have been
2519 * cached by non-direct readahead, or faulted in by get_user_pages()
2520 * if the source of the write was an mmap'ed region of the file
2521 * we're writing. Either one is a pretty crazy thing to do,
2522 * so we don't support it 100%. If this invalidation
2523 * fails, tough, the write still worked...
2525 if (mapping
->nrpages
) {
2526 invalidate_inode_pages2_range(mapping
,
2527 pos
>> PAGE_CACHE_SHIFT
, end
);
2532 iov_iter_advance(from
, written
);
2533 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2534 i_size_write(inode
, pos
);
2535 mark_inode_dirty(inode
);
2542 EXPORT_SYMBOL(generic_file_direct_write
);
2545 * Find or create a page at the given pagecache position. Return the locked
2546 * page. This function is specifically for buffered writes.
2548 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2549 pgoff_t index
, unsigned flags
)
2552 int fgp_flags
= FGP_LOCK
|FGP_ACCESSED
|FGP_WRITE
|FGP_CREAT
;
2554 if (flags
& AOP_FLAG_NOFS
)
2555 fgp_flags
|= FGP_NOFS
;
2557 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
2558 mapping_gfp_mask(mapping
));
2560 wait_for_stable_page(page
);
2564 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2566 ssize_t
generic_perform_write(struct file
*file
,
2567 struct iov_iter
*i
, loff_t pos
)
2569 struct address_space
*mapping
= file
->f_mapping
;
2570 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2572 ssize_t written
= 0;
2573 unsigned int flags
= 0;
2576 * Copies from kernel address space cannot fail (NFSD is a big user).
2578 if (!iter_is_iovec(i
))
2579 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2583 unsigned long offset
; /* Offset into pagecache page */
2584 unsigned long bytes
; /* Bytes to write to page */
2585 size_t copied
; /* Bytes copied from user */
2588 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2589 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2594 * Bring in the user page that we will copy from _first_.
2595 * Otherwise there's a nasty deadlock on copying from the
2596 * same page as we're writing to, without it being marked
2599 * Not only is this an optimisation, but it is also required
2600 * to check that the address is actually valid, when atomic
2601 * usercopies are used, below.
2603 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2608 if (fatal_signal_pending(current
)) {
2613 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2615 if (unlikely(status
< 0))
2618 if (mapping_writably_mapped(mapping
))
2619 flush_dcache_page(page
);
2621 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2622 flush_dcache_page(page
);
2624 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2626 if (unlikely(status
< 0))
2632 iov_iter_advance(i
, copied
);
2633 if (unlikely(copied
== 0)) {
2635 * If we were unable to copy any data at all, we must
2636 * fall back to a single segment length write.
2638 * If we didn't fallback here, we could livelock
2639 * because not all segments in the iov can be copied at
2640 * once without a pagefault.
2642 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2643 iov_iter_single_seg_count(i
));
2649 balance_dirty_pages_ratelimited(mapping
);
2650 } while (iov_iter_count(i
));
2652 return written
? written
: status
;
2654 EXPORT_SYMBOL(generic_perform_write
);
2657 * __generic_file_write_iter - write data to a file
2658 * @iocb: IO state structure (file, offset, etc.)
2659 * @from: iov_iter with data to write
2661 * This function does all the work needed for actually writing data to a
2662 * file. It does all basic checks, removes SUID from the file, updates
2663 * modification times and calls proper subroutines depending on whether we
2664 * do direct IO or a standard buffered write.
2666 * It expects i_mutex to be grabbed unless we work on a block device or similar
2667 * object which does not need locking at all.
2669 * This function does *not* take care of syncing data in case of O_SYNC write.
2670 * A caller has to handle it. This is mainly due to the fact that we want to
2671 * avoid syncing under i_mutex.
2673 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2675 struct file
*file
= iocb
->ki_filp
;
2676 struct address_space
* mapping
= file
->f_mapping
;
2677 struct inode
*inode
= mapping
->host
;
2678 ssize_t written
= 0;
2682 /* We can write back this queue in page reclaim */
2683 current
->backing_dev_info
= inode_to_bdi(inode
);
2684 err
= file_remove_privs(file
);
2688 err
= file_update_time(file
);
2692 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2693 loff_t pos
, endbyte
;
2695 written
= generic_file_direct_write(iocb
, from
, iocb
->ki_pos
);
2697 * If the write stopped short of completing, fall back to
2698 * buffered writes. Some filesystems do this for writes to
2699 * holes, for example. For DAX files, a buffered write will
2700 * not succeed (even if it did, DAX does not handle dirty
2701 * page-cache pages correctly).
2703 if (written
< 0 || !iov_iter_count(from
) || IS_DAX(inode
))
2706 status
= generic_perform_write(file
, from
, pos
= iocb
->ki_pos
);
2708 * If generic_perform_write() returned a synchronous error
2709 * then we want to return the number of bytes which were
2710 * direct-written, or the error code if that was zero. Note
2711 * that this differs from normal direct-io semantics, which
2712 * will return -EFOO even if some bytes were written.
2714 if (unlikely(status
< 0)) {
2719 * We need to ensure that the page cache pages are written to
2720 * disk and invalidated to preserve the expected O_DIRECT
2723 endbyte
= pos
+ status
- 1;
2724 err
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
2726 iocb
->ki_pos
= endbyte
+ 1;
2728 invalidate_mapping_pages(mapping
,
2729 pos
>> PAGE_CACHE_SHIFT
,
2730 endbyte
>> PAGE_CACHE_SHIFT
);
2733 * We don't know how much we wrote, so just return
2734 * the number of bytes which were direct-written
2738 written
= generic_perform_write(file
, from
, iocb
->ki_pos
);
2739 if (likely(written
> 0))
2740 iocb
->ki_pos
+= written
;
2743 current
->backing_dev_info
= NULL
;
2744 return written
? written
: err
;
2746 EXPORT_SYMBOL(__generic_file_write_iter
);
2749 * generic_file_write_iter - write data to a file
2750 * @iocb: IO state structure
2751 * @from: iov_iter with data to write
2753 * This is a wrapper around __generic_file_write_iter() to be used by most
2754 * filesystems. It takes care of syncing the file in case of O_SYNC file
2755 * and acquires i_mutex as needed.
2757 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2759 struct file
*file
= iocb
->ki_filp
;
2760 struct inode
*inode
= file
->f_mapping
->host
;
2764 ret
= generic_write_checks(iocb
, from
);
2766 ret
= __generic_file_write_iter(iocb
, from
);
2767 inode_unlock(inode
);
2772 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
2778 EXPORT_SYMBOL(generic_file_write_iter
);
2781 * try_to_release_page() - release old fs-specific metadata on a page
2783 * @page: the page which the kernel is trying to free
2784 * @gfp_mask: memory allocation flags (and I/O mode)
2786 * The address_space is to try to release any data against the page
2787 * (presumably at page->private). If the release was successful, return `1'.
2788 * Otherwise return zero.
2790 * This may also be called if PG_fscache is set on a page, indicating that the
2791 * page is known to the local caching routines.
2793 * The @gfp_mask argument specifies whether I/O may be performed to release
2794 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2797 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2799 struct address_space
* const mapping
= page
->mapping
;
2801 BUG_ON(!PageLocked(page
));
2802 if (PageWriteback(page
))
2805 if (mapping
&& mapping
->a_ops
->releasepage
)
2806 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2807 return try_to_free_buffers(page
);
2810 EXPORT_SYMBOL(try_to_release_page
);