usb: ohci-at91: use __maybe_unused to hide pm functions
[linux/fpc-iii.git] / mm / filemap.c
blob3461d97ecb30bfe18d1ed50729e5147aa2ad7e6d
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 #include <asm/mman.h>
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 * Lock ordering:
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
122 VM_BUG_ON(!PageLocked(page));
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
126 if (shadow) {
127 mapping->nrexceptional++;
129 * Make sure the nrexceptional update is committed before
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
134 smp_wmb();
136 mapping->nrpages--;
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
163 * Track node that only contains shadow entries.
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
177 * Delete a page from the page cache and free it. Caller has to make
178 * sure the page is locked and that nobody else uses it - or that usage
179 * is safe. The caller must hold the mapping's tree_lock and
180 * mem_cgroup_begin_page_stat().
182 void __delete_from_page_cache(struct page *page, void *shadow,
183 struct mem_cgroup *memcg)
185 struct address_space *mapping = page->mapping;
187 trace_mm_filemap_delete_from_page_cache(page);
189 * if we're uptodate, flush out into the cleancache, otherwise
190 * invalidate any existing cleancache entries. We can't leave
191 * stale data around in the cleancache once our page is gone
193 if (PageUptodate(page) && PageMappedToDisk(page))
194 cleancache_put_page(page);
195 else
196 cleancache_invalidate_page(mapping, page);
198 page_cache_tree_delete(mapping, page, shadow);
200 page->mapping = NULL;
201 /* Leave page->index set: truncation lookup relies upon it */
203 /* hugetlb pages do not participate in page cache accounting. */
204 if (!PageHuge(page))
205 __dec_zone_page_state(page, NR_FILE_PAGES);
206 if (PageSwapBacked(page))
207 __dec_zone_page_state(page, NR_SHMEM);
208 VM_BUG_ON_PAGE(page_mapped(page), page);
211 * At this point page must be either written or cleaned by truncate.
212 * Dirty page here signals a bug and loss of unwritten data.
214 * This fixes dirty accounting after removing the page entirely but
215 * leaves PageDirty set: it has no effect for truncated page and
216 * anyway will be cleared before returning page into buddy allocator.
218 if (WARN_ON_ONCE(PageDirty(page)))
219 account_page_cleaned(page, mapping, memcg,
220 inode_to_wb(mapping->host));
224 * delete_from_page_cache - delete page from page cache
225 * @page: the page which the kernel is trying to remove from page cache
227 * This must be called only on pages that have been verified to be in the page
228 * cache and locked. It will never put the page into the free list, the caller
229 * has a reference on the page.
231 void delete_from_page_cache(struct page *page)
233 struct address_space *mapping = page->mapping;
234 struct mem_cgroup *memcg;
235 unsigned long flags;
237 void (*freepage)(struct page *);
239 BUG_ON(!PageLocked(page));
241 freepage = mapping->a_ops->freepage;
243 memcg = mem_cgroup_begin_page_stat(page);
244 spin_lock_irqsave(&mapping->tree_lock, flags);
245 __delete_from_page_cache(page, NULL, memcg);
246 spin_unlock_irqrestore(&mapping->tree_lock, flags);
247 mem_cgroup_end_page_stat(memcg);
249 if (freepage)
250 freepage(page);
251 page_cache_release(page);
253 EXPORT_SYMBOL(delete_from_page_cache);
255 static int filemap_check_errors(struct address_space *mapping)
257 int ret = 0;
258 /* Check for outstanding write errors */
259 if (test_bit(AS_ENOSPC, &mapping->flags) &&
260 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261 ret = -ENOSPC;
262 if (test_bit(AS_EIO, &mapping->flags) &&
263 test_and_clear_bit(AS_EIO, &mapping->flags))
264 ret = -EIO;
265 return ret;
269 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270 * @mapping: address space structure to write
271 * @start: offset in bytes where the range starts
272 * @end: offset in bytes where the range ends (inclusive)
273 * @sync_mode: enable synchronous operation
275 * Start writeback against all of a mapping's dirty pages that lie
276 * within the byte offsets <start, end> inclusive.
278 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279 * opposed to a regular memory cleansing writeback. The difference between
280 * these two operations is that if a dirty page/buffer is encountered, it must
281 * be waited upon, and not just skipped over.
283 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284 loff_t end, int sync_mode)
286 int ret;
287 struct writeback_control wbc = {
288 .sync_mode = sync_mode,
289 .nr_to_write = LONG_MAX,
290 .range_start = start,
291 .range_end = end,
294 if (!mapping_cap_writeback_dirty(mapping))
295 return 0;
297 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
298 ret = do_writepages(mapping, &wbc);
299 wbc_detach_inode(&wbc);
300 return ret;
303 static inline int __filemap_fdatawrite(struct address_space *mapping,
304 int sync_mode)
306 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
309 int filemap_fdatawrite(struct address_space *mapping)
311 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
313 EXPORT_SYMBOL(filemap_fdatawrite);
315 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
316 loff_t end)
318 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
320 EXPORT_SYMBOL(filemap_fdatawrite_range);
323 * filemap_flush - mostly a non-blocking flush
324 * @mapping: target address_space
326 * This is a mostly non-blocking flush. Not suitable for data-integrity
327 * purposes - I/O may not be started against all dirty pages.
329 int filemap_flush(struct address_space *mapping)
331 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
333 EXPORT_SYMBOL(filemap_flush);
335 static int __filemap_fdatawait_range(struct address_space *mapping,
336 loff_t start_byte, loff_t end_byte)
338 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
339 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
340 struct pagevec pvec;
341 int nr_pages;
342 int ret = 0;
344 if (end_byte < start_byte)
345 goto out;
347 pagevec_init(&pvec, 0);
348 while ((index <= end) &&
349 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350 PAGECACHE_TAG_WRITEBACK,
351 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352 unsigned i;
354 for (i = 0; i < nr_pages; i++) {
355 struct page *page = pvec.pages[i];
357 /* until radix tree lookup accepts end_index */
358 if (page->index > end)
359 continue;
361 wait_on_page_writeback(page);
362 if (TestClearPageError(page))
363 ret = -EIO;
365 pagevec_release(&pvec);
366 cond_resched();
368 out:
369 return ret;
373 * filemap_fdatawait_range - wait for writeback to complete
374 * @mapping: address space structure to wait for
375 * @start_byte: offset in bytes where the range starts
376 * @end_byte: offset in bytes where the range ends (inclusive)
378 * Walk the list of under-writeback pages of the given address space
379 * in the given range and wait for all of them. Check error status of
380 * the address space and return it.
382 * Since the error status of the address space is cleared by this function,
383 * callers are responsible for checking the return value and handling and/or
384 * reporting the error.
386 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387 loff_t end_byte)
389 int ret, ret2;
391 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
392 ret2 = filemap_check_errors(mapping);
393 if (!ret)
394 ret = ret2;
396 return ret;
398 EXPORT_SYMBOL(filemap_fdatawait_range);
401 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402 * @mapping: address space structure to wait for
404 * Walk the list of under-writeback pages of the given address space
405 * and wait for all of them. Unlike filemap_fdatawait(), this function
406 * does not clear error status of the address space.
408 * Use this function if callers don't handle errors themselves. Expected
409 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410 * fsfreeze(8)
412 void filemap_fdatawait_keep_errors(struct address_space *mapping)
414 loff_t i_size = i_size_read(mapping->host);
416 if (i_size == 0)
417 return;
419 __filemap_fdatawait_range(mapping, 0, i_size - 1);
423 * filemap_fdatawait - wait for all under-writeback pages to complete
424 * @mapping: address space structure to wait for
426 * Walk the list of under-writeback pages of the given address space
427 * and wait for all of them. Check error status of the address space
428 * and return it.
430 * Since the error status of the address space is cleared by this function,
431 * callers are responsible for checking the return value and handling and/or
432 * reporting the error.
434 int filemap_fdatawait(struct address_space *mapping)
436 loff_t i_size = i_size_read(mapping->host);
438 if (i_size == 0)
439 return 0;
441 return filemap_fdatawait_range(mapping, 0, i_size - 1);
443 EXPORT_SYMBOL(filemap_fdatawait);
445 int filemap_write_and_wait(struct address_space *mapping)
447 int err = 0;
449 if ((!dax_mapping(mapping) && mapping->nrpages) ||
450 (dax_mapping(mapping) && mapping->nrexceptional)) {
451 err = filemap_fdatawrite(mapping);
453 * Even if the above returned error, the pages may be
454 * written partially (e.g. -ENOSPC), so we wait for it.
455 * But the -EIO is special case, it may indicate the worst
456 * thing (e.g. bug) happened, so we avoid waiting for it.
458 if (err != -EIO) {
459 int err2 = filemap_fdatawait(mapping);
460 if (!err)
461 err = err2;
463 } else {
464 err = filemap_check_errors(mapping);
466 return err;
468 EXPORT_SYMBOL(filemap_write_and_wait);
471 * filemap_write_and_wait_range - write out & wait on a file range
472 * @mapping: the address_space for the pages
473 * @lstart: offset in bytes where the range starts
474 * @lend: offset in bytes where the range ends (inclusive)
476 * Write out and wait upon file offsets lstart->lend, inclusive.
478 * Note that `lend' is inclusive (describes the last byte to be written) so
479 * that this function can be used to write to the very end-of-file (end = -1).
481 int filemap_write_and_wait_range(struct address_space *mapping,
482 loff_t lstart, loff_t lend)
484 int err = 0;
486 if ((!dax_mapping(mapping) && mapping->nrpages) ||
487 (dax_mapping(mapping) && mapping->nrexceptional)) {
488 err = __filemap_fdatawrite_range(mapping, lstart, lend,
489 WB_SYNC_ALL);
490 /* See comment of filemap_write_and_wait() */
491 if (err != -EIO) {
492 int err2 = filemap_fdatawait_range(mapping,
493 lstart, lend);
494 if (!err)
495 err = err2;
497 } else {
498 err = filemap_check_errors(mapping);
500 return err;
502 EXPORT_SYMBOL(filemap_write_and_wait_range);
505 * replace_page_cache_page - replace a pagecache page with a new one
506 * @old: page to be replaced
507 * @new: page to replace with
508 * @gfp_mask: allocation mode
510 * This function replaces a page in the pagecache with a new one. On
511 * success it acquires the pagecache reference for the new page and
512 * drops it for the old page. Both the old and new pages must be
513 * locked. This function does not add the new page to the LRU, the
514 * caller must do that.
516 * The remove + add is atomic. The only way this function can fail is
517 * memory allocation failure.
519 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
521 int error;
523 VM_BUG_ON_PAGE(!PageLocked(old), old);
524 VM_BUG_ON_PAGE(!PageLocked(new), new);
525 VM_BUG_ON_PAGE(new->mapping, new);
527 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
528 if (!error) {
529 struct address_space *mapping = old->mapping;
530 void (*freepage)(struct page *);
531 struct mem_cgroup *memcg;
532 unsigned long flags;
534 pgoff_t offset = old->index;
535 freepage = mapping->a_ops->freepage;
537 page_cache_get(new);
538 new->mapping = mapping;
539 new->index = offset;
541 memcg = mem_cgroup_begin_page_stat(old);
542 spin_lock_irqsave(&mapping->tree_lock, flags);
543 __delete_from_page_cache(old, NULL, memcg);
544 error = radix_tree_insert(&mapping->page_tree, offset, new);
545 BUG_ON(error);
546 mapping->nrpages++;
549 * hugetlb pages do not participate in page cache accounting.
551 if (!PageHuge(new))
552 __inc_zone_page_state(new, NR_FILE_PAGES);
553 if (PageSwapBacked(new))
554 __inc_zone_page_state(new, NR_SHMEM);
555 spin_unlock_irqrestore(&mapping->tree_lock, flags);
556 mem_cgroup_end_page_stat(memcg);
557 mem_cgroup_replace_page(old, new);
558 radix_tree_preload_end();
559 if (freepage)
560 freepage(old);
561 page_cache_release(old);
564 return error;
566 EXPORT_SYMBOL_GPL(replace_page_cache_page);
568 static int page_cache_tree_insert(struct address_space *mapping,
569 struct page *page, void **shadowp)
571 struct radix_tree_node *node;
572 void **slot;
573 int error;
575 error = __radix_tree_create(&mapping->page_tree, page->index,
576 &node, &slot);
577 if (error)
578 return error;
579 if (*slot) {
580 void *p;
582 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
583 if (!radix_tree_exceptional_entry(p))
584 return -EEXIST;
586 if (WARN_ON(dax_mapping(mapping)))
587 return -EINVAL;
589 if (shadowp)
590 *shadowp = p;
591 mapping->nrexceptional--;
592 if (node)
593 workingset_node_shadows_dec(node);
595 radix_tree_replace_slot(slot, page);
596 mapping->nrpages++;
597 if (node) {
598 workingset_node_pages_inc(node);
600 * Don't track node that contains actual pages.
602 * Avoid acquiring the list_lru lock if already
603 * untracked. The list_empty() test is safe as
604 * node->private_list is protected by
605 * mapping->tree_lock.
607 if (!list_empty(&node->private_list))
608 list_lru_del(&workingset_shadow_nodes,
609 &node->private_list);
611 return 0;
614 static int __add_to_page_cache_locked(struct page *page,
615 struct address_space *mapping,
616 pgoff_t offset, gfp_t gfp_mask,
617 void **shadowp)
619 int huge = PageHuge(page);
620 struct mem_cgroup *memcg;
621 int error;
623 VM_BUG_ON_PAGE(!PageLocked(page), page);
624 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
626 if (!huge) {
627 error = mem_cgroup_try_charge(page, current->mm,
628 gfp_mask, &memcg, false);
629 if (error)
630 return error;
633 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
634 if (error) {
635 if (!huge)
636 mem_cgroup_cancel_charge(page, memcg, false);
637 return error;
640 page_cache_get(page);
641 page->mapping = mapping;
642 page->index = offset;
644 spin_lock_irq(&mapping->tree_lock);
645 error = page_cache_tree_insert(mapping, page, shadowp);
646 radix_tree_preload_end();
647 if (unlikely(error))
648 goto err_insert;
650 /* hugetlb pages do not participate in page cache accounting. */
651 if (!huge)
652 __inc_zone_page_state(page, NR_FILE_PAGES);
653 spin_unlock_irq(&mapping->tree_lock);
654 if (!huge)
655 mem_cgroup_commit_charge(page, memcg, false, false);
656 trace_mm_filemap_add_to_page_cache(page);
657 return 0;
658 err_insert:
659 page->mapping = NULL;
660 /* Leave page->index set: truncation relies upon it */
661 spin_unlock_irq(&mapping->tree_lock);
662 if (!huge)
663 mem_cgroup_cancel_charge(page, memcg, false);
664 page_cache_release(page);
665 return error;
669 * add_to_page_cache_locked - add a locked page to the pagecache
670 * @page: page to add
671 * @mapping: the page's address_space
672 * @offset: page index
673 * @gfp_mask: page allocation mode
675 * This function is used to add a page to the pagecache. It must be locked.
676 * This function does not add the page to the LRU. The caller must do that.
678 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
679 pgoff_t offset, gfp_t gfp_mask)
681 return __add_to_page_cache_locked(page, mapping, offset,
682 gfp_mask, NULL);
684 EXPORT_SYMBOL(add_to_page_cache_locked);
686 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
687 pgoff_t offset, gfp_t gfp_mask)
689 void *shadow = NULL;
690 int ret;
692 __SetPageLocked(page);
693 ret = __add_to_page_cache_locked(page, mapping, offset,
694 gfp_mask, &shadow);
695 if (unlikely(ret))
696 __ClearPageLocked(page);
697 else {
699 * The page might have been evicted from cache only
700 * recently, in which case it should be activated like
701 * any other repeatedly accessed page.
703 if (shadow && workingset_refault(shadow)) {
704 SetPageActive(page);
705 workingset_activation(page);
706 } else
707 ClearPageActive(page);
708 lru_cache_add(page);
710 return ret;
712 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
714 #ifdef CONFIG_NUMA
715 struct page *__page_cache_alloc(gfp_t gfp)
717 int n;
718 struct page *page;
720 if (cpuset_do_page_mem_spread()) {
721 unsigned int cpuset_mems_cookie;
722 do {
723 cpuset_mems_cookie = read_mems_allowed_begin();
724 n = cpuset_mem_spread_node();
725 page = __alloc_pages_node(n, gfp, 0);
726 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
728 return page;
730 return alloc_pages(gfp, 0);
732 EXPORT_SYMBOL(__page_cache_alloc);
733 #endif
736 * In order to wait for pages to become available there must be
737 * waitqueues associated with pages. By using a hash table of
738 * waitqueues where the bucket discipline is to maintain all
739 * waiters on the same queue and wake all when any of the pages
740 * become available, and for the woken contexts to check to be
741 * sure the appropriate page became available, this saves space
742 * at a cost of "thundering herd" phenomena during rare hash
743 * collisions.
745 wait_queue_head_t *page_waitqueue(struct page *page)
747 const struct zone *zone = page_zone(page);
749 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
751 EXPORT_SYMBOL(page_waitqueue);
753 void wait_on_page_bit(struct page *page, int bit_nr)
755 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
757 if (test_bit(bit_nr, &page->flags))
758 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
759 TASK_UNINTERRUPTIBLE);
761 EXPORT_SYMBOL(wait_on_page_bit);
763 int wait_on_page_bit_killable(struct page *page, int bit_nr)
765 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
767 if (!test_bit(bit_nr, &page->flags))
768 return 0;
770 return __wait_on_bit(page_waitqueue(page), &wait,
771 bit_wait_io, TASK_KILLABLE);
774 int wait_on_page_bit_killable_timeout(struct page *page,
775 int bit_nr, unsigned long timeout)
777 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779 wait.key.timeout = jiffies + timeout;
780 if (!test_bit(bit_nr, &page->flags))
781 return 0;
782 return __wait_on_bit(page_waitqueue(page), &wait,
783 bit_wait_io_timeout, TASK_KILLABLE);
785 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
788 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
789 * @page: Page defining the wait queue of interest
790 * @waiter: Waiter to add to the queue
792 * Add an arbitrary @waiter to the wait queue for the nominated @page.
794 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
796 wait_queue_head_t *q = page_waitqueue(page);
797 unsigned long flags;
799 spin_lock_irqsave(&q->lock, flags);
800 __add_wait_queue(q, waiter);
801 spin_unlock_irqrestore(&q->lock, flags);
803 EXPORT_SYMBOL_GPL(add_page_wait_queue);
806 * unlock_page - unlock a locked page
807 * @page: the page
809 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
810 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
811 * mechanism between PageLocked pages and PageWriteback pages is shared.
812 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
814 * The mb is necessary to enforce ordering between the clear_bit and the read
815 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
817 void unlock_page(struct page *page)
819 page = compound_head(page);
820 VM_BUG_ON_PAGE(!PageLocked(page), page);
821 clear_bit_unlock(PG_locked, &page->flags);
822 smp_mb__after_atomic();
823 wake_up_page(page, PG_locked);
825 EXPORT_SYMBOL(unlock_page);
828 * end_page_writeback - end writeback against a page
829 * @page: the page
831 void end_page_writeback(struct page *page)
834 * TestClearPageReclaim could be used here but it is an atomic
835 * operation and overkill in this particular case. Failing to
836 * shuffle a page marked for immediate reclaim is too mild to
837 * justify taking an atomic operation penalty at the end of
838 * ever page writeback.
840 if (PageReclaim(page)) {
841 ClearPageReclaim(page);
842 rotate_reclaimable_page(page);
845 if (!test_clear_page_writeback(page))
846 BUG();
848 smp_mb__after_atomic();
849 wake_up_page(page, PG_writeback);
851 EXPORT_SYMBOL(end_page_writeback);
854 * After completing I/O on a page, call this routine to update the page
855 * flags appropriately
857 void page_endio(struct page *page, int rw, int err)
859 if (rw == READ) {
860 if (!err) {
861 SetPageUptodate(page);
862 } else {
863 ClearPageUptodate(page);
864 SetPageError(page);
866 unlock_page(page);
867 } else { /* rw == WRITE */
868 if (err) {
869 SetPageError(page);
870 if (page->mapping)
871 mapping_set_error(page->mapping, err);
873 end_page_writeback(page);
876 EXPORT_SYMBOL_GPL(page_endio);
879 * __lock_page - get a lock on the page, assuming we need to sleep to get it
880 * @page: the page to lock
882 void __lock_page(struct page *page)
884 struct page *page_head = compound_head(page);
885 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
887 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
888 TASK_UNINTERRUPTIBLE);
890 EXPORT_SYMBOL(__lock_page);
892 int __lock_page_killable(struct page *page)
894 struct page *page_head = compound_head(page);
895 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
897 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
898 bit_wait_io, TASK_KILLABLE);
900 EXPORT_SYMBOL_GPL(__lock_page_killable);
903 * Return values:
904 * 1 - page is locked; mmap_sem is still held.
905 * 0 - page is not locked.
906 * mmap_sem has been released (up_read()), unless flags had both
907 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
908 * which case mmap_sem is still held.
910 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
911 * with the page locked and the mmap_sem unperturbed.
913 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
914 unsigned int flags)
916 if (flags & FAULT_FLAG_ALLOW_RETRY) {
918 * CAUTION! In this case, mmap_sem is not released
919 * even though return 0.
921 if (flags & FAULT_FLAG_RETRY_NOWAIT)
922 return 0;
924 up_read(&mm->mmap_sem);
925 if (flags & FAULT_FLAG_KILLABLE)
926 wait_on_page_locked_killable(page);
927 else
928 wait_on_page_locked(page);
929 return 0;
930 } else {
931 if (flags & FAULT_FLAG_KILLABLE) {
932 int ret;
934 ret = __lock_page_killable(page);
935 if (ret) {
936 up_read(&mm->mmap_sem);
937 return 0;
939 } else
940 __lock_page(page);
941 return 1;
946 * page_cache_next_hole - find the next hole (not-present entry)
947 * @mapping: mapping
948 * @index: index
949 * @max_scan: maximum range to search
951 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
952 * lowest indexed hole.
954 * Returns: the index of the hole if found, otherwise returns an index
955 * outside of the set specified (in which case 'return - index >=
956 * max_scan' will be true). In rare cases of index wrap-around, 0 will
957 * be returned.
959 * page_cache_next_hole may be called under rcu_read_lock. However,
960 * like radix_tree_gang_lookup, this will not atomically search a
961 * snapshot of the tree at a single point in time. For example, if a
962 * hole is created at index 5, then subsequently a hole is created at
963 * index 10, page_cache_next_hole covering both indexes may return 10
964 * if called under rcu_read_lock.
966 pgoff_t page_cache_next_hole(struct address_space *mapping,
967 pgoff_t index, unsigned long max_scan)
969 unsigned long i;
971 for (i = 0; i < max_scan; i++) {
972 struct page *page;
974 page = radix_tree_lookup(&mapping->page_tree, index);
975 if (!page || radix_tree_exceptional_entry(page))
976 break;
977 index++;
978 if (index == 0)
979 break;
982 return index;
984 EXPORT_SYMBOL(page_cache_next_hole);
987 * page_cache_prev_hole - find the prev hole (not-present entry)
988 * @mapping: mapping
989 * @index: index
990 * @max_scan: maximum range to search
992 * Search backwards in the range [max(index-max_scan+1, 0), index] for
993 * the first hole.
995 * Returns: the index of the hole if found, otherwise returns an index
996 * outside of the set specified (in which case 'index - return >=
997 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
998 * will be returned.
1000 * page_cache_prev_hole may be called under rcu_read_lock. However,
1001 * like radix_tree_gang_lookup, this will not atomically search a
1002 * snapshot of the tree at a single point in time. For example, if a
1003 * hole is created at index 10, then subsequently a hole is created at
1004 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1005 * called under rcu_read_lock.
1007 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1008 pgoff_t index, unsigned long max_scan)
1010 unsigned long i;
1012 for (i = 0; i < max_scan; i++) {
1013 struct page *page;
1015 page = radix_tree_lookup(&mapping->page_tree, index);
1016 if (!page || radix_tree_exceptional_entry(page))
1017 break;
1018 index--;
1019 if (index == ULONG_MAX)
1020 break;
1023 return index;
1025 EXPORT_SYMBOL(page_cache_prev_hole);
1028 * find_get_entry - find and get a page cache entry
1029 * @mapping: the address_space to search
1030 * @offset: the page cache index
1032 * Looks up the page cache slot at @mapping & @offset. If there is a
1033 * page cache page, it is returned with an increased refcount.
1035 * If the slot holds a shadow entry of a previously evicted page, or a
1036 * swap entry from shmem/tmpfs, it is returned.
1038 * Otherwise, %NULL is returned.
1040 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1042 void **pagep;
1043 struct page *page;
1045 rcu_read_lock();
1046 repeat:
1047 page = NULL;
1048 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1049 if (pagep) {
1050 page = radix_tree_deref_slot(pagep);
1051 if (unlikely(!page))
1052 goto out;
1053 if (radix_tree_exception(page)) {
1054 if (radix_tree_deref_retry(page))
1055 goto repeat;
1057 * A shadow entry of a recently evicted page,
1058 * or a swap entry from shmem/tmpfs. Return
1059 * it without attempting to raise page count.
1061 goto out;
1063 if (!page_cache_get_speculative(page))
1064 goto repeat;
1067 * Has the page moved?
1068 * This is part of the lockless pagecache protocol. See
1069 * include/linux/pagemap.h for details.
1071 if (unlikely(page != *pagep)) {
1072 page_cache_release(page);
1073 goto repeat;
1076 out:
1077 rcu_read_unlock();
1079 return page;
1081 EXPORT_SYMBOL(find_get_entry);
1084 * find_lock_entry - locate, pin and lock a page cache entry
1085 * @mapping: the address_space to search
1086 * @offset: the page cache index
1088 * Looks up the page cache slot at @mapping & @offset. If there is a
1089 * page cache page, it is returned locked and with an increased
1090 * refcount.
1092 * If the slot holds a shadow entry of a previously evicted page, or a
1093 * swap entry from shmem/tmpfs, it is returned.
1095 * Otherwise, %NULL is returned.
1097 * find_lock_entry() may sleep.
1099 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1101 struct page *page;
1103 repeat:
1104 page = find_get_entry(mapping, offset);
1105 if (page && !radix_tree_exception(page)) {
1106 lock_page(page);
1107 /* Has the page been truncated? */
1108 if (unlikely(page->mapping != mapping)) {
1109 unlock_page(page);
1110 page_cache_release(page);
1111 goto repeat;
1113 VM_BUG_ON_PAGE(page->index != offset, page);
1115 return page;
1117 EXPORT_SYMBOL(find_lock_entry);
1120 * pagecache_get_page - find and get a page reference
1121 * @mapping: the address_space to search
1122 * @offset: the page index
1123 * @fgp_flags: PCG flags
1124 * @gfp_mask: gfp mask to use for the page cache data page allocation
1126 * Looks up the page cache slot at @mapping & @offset.
1128 * PCG flags modify how the page is returned.
1130 * FGP_ACCESSED: the page will be marked accessed
1131 * FGP_LOCK: Page is return locked
1132 * FGP_CREAT: If page is not present then a new page is allocated using
1133 * @gfp_mask and added to the page cache and the VM's LRU
1134 * list. The page is returned locked and with an increased
1135 * refcount. Otherwise, %NULL is returned.
1137 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1138 * if the GFP flags specified for FGP_CREAT are atomic.
1140 * If there is a page cache page, it is returned with an increased refcount.
1142 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1143 int fgp_flags, gfp_t gfp_mask)
1145 struct page *page;
1147 repeat:
1148 page = find_get_entry(mapping, offset);
1149 if (radix_tree_exceptional_entry(page))
1150 page = NULL;
1151 if (!page)
1152 goto no_page;
1154 if (fgp_flags & FGP_LOCK) {
1155 if (fgp_flags & FGP_NOWAIT) {
1156 if (!trylock_page(page)) {
1157 page_cache_release(page);
1158 return NULL;
1160 } else {
1161 lock_page(page);
1164 /* Has the page been truncated? */
1165 if (unlikely(page->mapping != mapping)) {
1166 unlock_page(page);
1167 page_cache_release(page);
1168 goto repeat;
1170 VM_BUG_ON_PAGE(page->index != offset, page);
1173 if (page && (fgp_flags & FGP_ACCESSED))
1174 mark_page_accessed(page);
1176 no_page:
1177 if (!page && (fgp_flags & FGP_CREAT)) {
1178 int err;
1179 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1180 gfp_mask |= __GFP_WRITE;
1181 if (fgp_flags & FGP_NOFS)
1182 gfp_mask &= ~__GFP_FS;
1184 page = __page_cache_alloc(gfp_mask);
1185 if (!page)
1186 return NULL;
1188 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1189 fgp_flags |= FGP_LOCK;
1191 /* Init accessed so avoid atomic mark_page_accessed later */
1192 if (fgp_flags & FGP_ACCESSED)
1193 __SetPageReferenced(page);
1195 err = add_to_page_cache_lru(page, mapping, offset,
1196 gfp_mask & GFP_RECLAIM_MASK);
1197 if (unlikely(err)) {
1198 page_cache_release(page);
1199 page = NULL;
1200 if (err == -EEXIST)
1201 goto repeat;
1205 return page;
1207 EXPORT_SYMBOL(pagecache_get_page);
1210 * find_get_entries - gang pagecache lookup
1211 * @mapping: The address_space to search
1212 * @start: The starting page cache index
1213 * @nr_entries: The maximum number of entries
1214 * @entries: Where the resulting entries are placed
1215 * @indices: The cache indices corresponding to the entries in @entries
1217 * find_get_entries() will search for and return a group of up to
1218 * @nr_entries entries in the mapping. The entries are placed at
1219 * @entries. find_get_entries() takes a reference against any actual
1220 * pages it returns.
1222 * The search returns a group of mapping-contiguous page cache entries
1223 * with ascending indexes. There may be holes in the indices due to
1224 * not-present pages.
1226 * Any shadow entries of evicted pages, or swap entries from
1227 * shmem/tmpfs, are included in the returned array.
1229 * find_get_entries() returns the number of pages and shadow entries
1230 * which were found.
1232 unsigned find_get_entries(struct address_space *mapping,
1233 pgoff_t start, unsigned int nr_entries,
1234 struct page **entries, pgoff_t *indices)
1236 void **slot;
1237 unsigned int ret = 0;
1238 struct radix_tree_iter iter;
1240 if (!nr_entries)
1241 return 0;
1243 rcu_read_lock();
1244 restart:
1245 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1246 struct page *page;
1247 repeat:
1248 page = radix_tree_deref_slot(slot);
1249 if (unlikely(!page))
1250 continue;
1251 if (radix_tree_exception(page)) {
1252 if (radix_tree_deref_retry(page))
1253 goto restart;
1255 * A shadow entry of a recently evicted page, a swap
1256 * entry from shmem/tmpfs or a DAX entry. Return it
1257 * without attempting to raise page count.
1259 goto export;
1261 if (!page_cache_get_speculative(page))
1262 goto repeat;
1264 /* Has the page moved? */
1265 if (unlikely(page != *slot)) {
1266 page_cache_release(page);
1267 goto repeat;
1269 export:
1270 indices[ret] = iter.index;
1271 entries[ret] = page;
1272 if (++ret == nr_entries)
1273 break;
1275 rcu_read_unlock();
1276 return ret;
1280 * find_get_pages - gang pagecache lookup
1281 * @mapping: The address_space to search
1282 * @start: The starting page index
1283 * @nr_pages: The maximum number of pages
1284 * @pages: Where the resulting pages are placed
1286 * find_get_pages() will search for and return a group of up to
1287 * @nr_pages pages in the mapping. The pages are placed at @pages.
1288 * find_get_pages() takes a reference against the returned pages.
1290 * The search returns a group of mapping-contiguous pages with ascending
1291 * indexes. There may be holes in the indices due to not-present pages.
1293 * find_get_pages() returns the number of pages which were found.
1295 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1296 unsigned int nr_pages, struct page **pages)
1298 struct radix_tree_iter iter;
1299 void **slot;
1300 unsigned ret = 0;
1302 if (unlikely(!nr_pages))
1303 return 0;
1305 rcu_read_lock();
1306 restart:
1307 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1308 struct page *page;
1309 repeat:
1310 page = radix_tree_deref_slot(slot);
1311 if (unlikely(!page))
1312 continue;
1314 if (radix_tree_exception(page)) {
1315 if (radix_tree_deref_retry(page)) {
1317 * Transient condition which can only trigger
1318 * when entry at index 0 moves out of or back
1319 * to root: none yet gotten, safe to restart.
1321 WARN_ON(iter.index);
1322 goto restart;
1325 * A shadow entry of a recently evicted page,
1326 * or a swap entry from shmem/tmpfs. Skip
1327 * over it.
1329 continue;
1332 if (!page_cache_get_speculative(page))
1333 goto repeat;
1335 /* Has the page moved? */
1336 if (unlikely(page != *slot)) {
1337 page_cache_release(page);
1338 goto repeat;
1341 pages[ret] = page;
1342 if (++ret == nr_pages)
1343 break;
1346 rcu_read_unlock();
1347 return ret;
1351 * find_get_pages_contig - gang contiguous pagecache lookup
1352 * @mapping: The address_space to search
1353 * @index: The starting page index
1354 * @nr_pages: The maximum number of pages
1355 * @pages: Where the resulting pages are placed
1357 * find_get_pages_contig() works exactly like find_get_pages(), except
1358 * that the returned number of pages are guaranteed to be contiguous.
1360 * find_get_pages_contig() returns the number of pages which were found.
1362 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1363 unsigned int nr_pages, struct page **pages)
1365 struct radix_tree_iter iter;
1366 void **slot;
1367 unsigned int ret = 0;
1369 if (unlikely(!nr_pages))
1370 return 0;
1372 rcu_read_lock();
1373 restart:
1374 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1375 struct page *page;
1376 repeat:
1377 page = radix_tree_deref_slot(slot);
1378 /* The hole, there no reason to continue */
1379 if (unlikely(!page))
1380 break;
1382 if (radix_tree_exception(page)) {
1383 if (radix_tree_deref_retry(page)) {
1385 * Transient condition which can only trigger
1386 * when entry at index 0 moves out of or back
1387 * to root: none yet gotten, safe to restart.
1389 goto restart;
1392 * A shadow entry of a recently evicted page,
1393 * or a swap entry from shmem/tmpfs. Stop
1394 * looking for contiguous pages.
1396 break;
1399 if (!page_cache_get_speculative(page))
1400 goto repeat;
1402 /* Has the page moved? */
1403 if (unlikely(page != *slot)) {
1404 page_cache_release(page);
1405 goto repeat;
1409 * must check mapping and index after taking the ref.
1410 * otherwise we can get both false positives and false
1411 * negatives, which is just confusing to the caller.
1413 if (page->mapping == NULL || page->index != iter.index) {
1414 page_cache_release(page);
1415 break;
1418 pages[ret] = page;
1419 if (++ret == nr_pages)
1420 break;
1422 rcu_read_unlock();
1423 return ret;
1425 EXPORT_SYMBOL(find_get_pages_contig);
1428 * find_get_pages_tag - find and return pages that match @tag
1429 * @mapping: the address_space to search
1430 * @index: the starting page index
1431 * @tag: the tag index
1432 * @nr_pages: the maximum number of pages
1433 * @pages: where the resulting pages are placed
1435 * Like find_get_pages, except we only return pages which are tagged with
1436 * @tag. We update @index to index the next page for the traversal.
1438 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1439 int tag, unsigned int nr_pages, struct page **pages)
1441 struct radix_tree_iter iter;
1442 void **slot;
1443 unsigned ret = 0;
1445 if (unlikely(!nr_pages))
1446 return 0;
1448 rcu_read_lock();
1449 restart:
1450 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1451 &iter, *index, tag) {
1452 struct page *page;
1453 repeat:
1454 page = radix_tree_deref_slot(slot);
1455 if (unlikely(!page))
1456 continue;
1458 if (radix_tree_exception(page)) {
1459 if (radix_tree_deref_retry(page)) {
1461 * Transient condition which can only trigger
1462 * when entry at index 0 moves out of or back
1463 * to root: none yet gotten, safe to restart.
1465 goto restart;
1468 * A shadow entry of a recently evicted page.
1470 * Those entries should never be tagged, but
1471 * this tree walk is lockless and the tags are
1472 * looked up in bulk, one radix tree node at a
1473 * time, so there is a sizable window for page
1474 * reclaim to evict a page we saw tagged.
1476 * Skip over it.
1478 continue;
1481 if (!page_cache_get_speculative(page))
1482 goto repeat;
1484 /* Has the page moved? */
1485 if (unlikely(page != *slot)) {
1486 page_cache_release(page);
1487 goto repeat;
1490 pages[ret] = page;
1491 if (++ret == nr_pages)
1492 break;
1495 rcu_read_unlock();
1497 if (ret)
1498 *index = pages[ret - 1]->index + 1;
1500 return ret;
1502 EXPORT_SYMBOL(find_get_pages_tag);
1505 * find_get_entries_tag - find and return entries that match @tag
1506 * @mapping: the address_space to search
1507 * @start: the starting page cache index
1508 * @tag: the tag index
1509 * @nr_entries: the maximum number of entries
1510 * @entries: where the resulting entries are placed
1511 * @indices: the cache indices corresponding to the entries in @entries
1513 * Like find_get_entries, except we only return entries which are tagged with
1514 * @tag.
1516 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1517 int tag, unsigned int nr_entries,
1518 struct page **entries, pgoff_t *indices)
1520 void **slot;
1521 unsigned int ret = 0;
1522 struct radix_tree_iter iter;
1524 if (!nr_entries)
1525 return 0;
1527 rcu_read_lock();
1528 restart:
1529 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1530 &iter, start, tag) {
1531 struct page *page;
1532 repeat:
1533 page = radix_tree_deref_slot(slot);
1534 if (unlikely(!page))
1535 continue;
1536 if (radix_tree_exception(page)) {
1537 if (radix_tree_deref_retry(page)) {
1539 * Transient condition which can only trigger
1540 * when entry at index 0 moves out of or back
1541 * to root: none yet gotten, safe to restart.
1543 goto restart;
1547 * A shadow entry of a recently evicted page, a swap
1548 * entry from shmem/tmpfs or a DAX entry. Return it
1549 * without attempting to raise page count.
1551 goto export;
1553 if (!page_cache_get_speculative(page))
1554 goto repeat;
1556 /* Has the page moved? */
1557 if (unlikely(page != *slot)) {
1558 page_cache_release(page);
1559 goto repeat;
1561 export:
1562 indices[ret] = iter.index;
1563 entries[ret] = page;
1564 if (++ret == nr_entries)
1565 break;
1567 rcu_read_unlock();
1568 return ret;
1570 EXPORT_SYMBOL(find_get_entries_tag);
1573 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1574 * a _large_ part of the i/o request. Imagine the worst scenario:
1576 * ---R__________________________________________B__________
1577 * ^ reading here ^ bad block(assume 4k)
1579 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1580 * => failing the whole request => read(R) => read(R+1) =>
1581 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1582 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1583 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1585 * It is going insane. Fix it by quickly scaling down the readahead size.
1587 static void shrink_readahead_size_eio(struct file *filp,
1588 struct file_ra_state *ra)
1590 ra->ra_pages /= 4;
1594 * do_generic_file_read - generic file read routine
1595 * @filp: the file to read
1596 * @ppos: current file position
1597 * @iter: data destination
1598 * @written: already copied
1600 * This is a generic file read routine, and uses the
1601 * mapping->a_ops->readpage() function for the actual low-level stuff.
1603 * This is really ugly. But the goto's actually try to clarify some
1604 * of the logic when it comes to error handling etc.
1606 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1607 struct iov_iter *iter, ssize_t written)
1609 struct address_space *mapping = filp->f_mapping;
1610 struct inode *inode = mapping->host;
1611 struct file_ra_state *ra = &filp->f_ra;
1612 pgoff_t index;
1613 pgoff_t last_index;
1614 pgoff_t prev_index;
1615 unsigned long offset; /* offset into pagecache page */
1616 unsigned int prev_offset;
1617 int error = 0;
1619 index = *ppos >> PAGE_CACHE_SHIFT;
1620 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1621 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1622 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1623 offset = *ppos & ~PAGE_CACHE_MASK;
1625 for (;;) {
1626 struct page *page;
1627 pgoff_t end_index;
1628 loff_t isize;
1629 unsigned long nr, ret;
1631 cond_resched();
1632 find_page:
1633 page = find_get_page(mapping, index);
1634 if (!page) {
1635 page_cache_sync_readahead(mapping,
1636 ra, filp,
1637 index, last_index - index);
1638 page = find_get_page(mapping, index);
1639 if (unlikely(page == NULL))
1640 goto no_cached_page;
1642 if (PageReadahead(page)) {
1643 page_cache_async_readahead(mapping,
1644 ra, filp, page,
1645 index, last_index - index);
1647 if (!PageUptodate(page)) {
1648 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1649 !mapping->a_ops->is_partially_uptodate)
1650 goto page_not_up_to_date;
1651 if (!trylock_page(page))
1652 goto page_not_up_to_date;
1653 /* Did it get truncated before we got the lock? */
1654 if (!page->mapping)
1655 goto page_not_up_to_date_locked;
1656 if (!mapping->a_ops->is_partially_uptodate(page,
1657 offset, iter->count))
1658 goto page_not_up_to_date_locked;
1659 unlock_page(page);
1661 page_ok:
1663 * i_size must be checked after we know the page is Uptodate.
1665 * Checking i_size after the check allows us to calculate
1666 * the correct value for "nr", which means the zero-filled
1667 * part of the page is not copied back to userspace (unless
1668 * another truncate extends the file - this is desired though).
1671 isize = i_size_read(inode);
1672 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1673 if (unlikely(!isize || index > end_index)) {
1674 page_cache_release(page);
1675 goto out;
1678 /* nr is the maximum number of bytes to copy from this page */
1679 nr = PAGE_CACHE_SIZE;
1680 if (index == end_index) {
1681 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682 if (nr <= offset) {
1683 page_cache_release(page);
1684 goto out;
1687 nr = nr - offset;
1689 /* If users can be writing to this page using arbitrary
1690 * virtual addresses, take care about potential aliasing
1691 * before reading the page on the kernel side.
1693 if (mapping_writably_mapped(mapping))
1694 flush_dcache_page(page);
1697 * When a sequential read accesses a page several times,
1698 * only mark it as accessed the first time.
1700 if (prev_index != index || offset != prev_offset)
1701 mark_page_accessed(page);
1702 prev_index = index;
1705 * Ok, we have the page, and it's up-to-date, so
1706 * now we can copy it to user space...
1709 ret = copy_page_to_iter(page, offset, nr, iter);
1710 offset += ret;
1711 index += offset >> PAGE_CACHE_SHIFT;
1712 offset &= ~PAGE_CACHE_MASK;
1713 prev_offset = offset;
1715 page_cache_release(page);
1716 written += ret;
1717 if (!iov_iter_count(iter))
1718 goto out;
1719 if (ret < nr) {
1720 error = -EFAULT;
1721 goto out;
1723 continue;
1725 page_not_up_to_date:
1726 /* Get exclusive access to the page ... */
1727 error = lock_page_killable(page);
1728 if (unlikely(error))
1729 goto readpage_error;
1731 page_not_up_to_date_locked:
1732 /* Did it get truncated before we got the lock? */
1733 if (!page->mapping) {
1734 unlock_page(page);
1735 page_cache_release(page);
1736 continue;
1739 /* Did somebody else fill it already? */
1740 if (PageUptodate(page)) {
1741 unlock_page(page);
1742 goto page_ok;
1745 readpage:
1747 * A previous I/O error may have been due to temporary
1748 * failures, eg. multipath errors.
1749 * PG_error will be set again if readpage fails.
1751 ClearPageError(page);
1752 /* Start the actual read. The read will unlock the page. */
1753 error = mapping->a_ops->readpage(filp, page);
1755 if (unlikely(error)) {
1756 if (error == AOP_TRUNCATED_PAGE) {
1757 page_cache_release(page);
1758 error = 0;
1759 goto find_page;
1761 goto readpage_error;
1764 if (!PageUptodate(page)) {
1765 error = lock_page_killable(page);
1766 if (unlikely(error))
1767 goto readpage_error;
1768 if (!PageUptodate(page)) {
1769 if (page->mapping == NULL) {
1771 * invalidate_mapping_pages got it
1773 unlock_page(page);
1774 page_cache_release(page);
1775 goto find_page;
1777 unlock_page(page);
1778 shrink_readahead_size_eio(filp, ra);
1779 error = -EIO;
1780 goto readpage_error;
1782 unlock_page(page);
1785 goto page_ok;
1787 readpage_error:
1788 /* UHHUH! A synchronous read error occurred. Report it */
1789 page_cache_release(page);
1790 goto out;
1792 no_cached_page:
1794 * Ok, it wasn't cached, so we need to create a new
1795 * page..
1797 page = page_cache_alloc_cold(mapping);
1798 if (!page) {
1799 error = -ENOMEM;
1800 goto out;
1802 error = add_to_page_cache_lru(page, mapping, index,
1803 mapping_gfp_constraint(mapping, GFP_KERNEL));
1804 if (error) {
1805 page_cache_release(page);
1806 if (error == -EEXIST) {
1807 error = 0;
1808 goto find_page;
1810 goto out;
1812 goto readpage;
1815 out:
1816 ra->prev_pos = prev_index;
1817 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1818 ra->prev_pos |= prev_offset;
1820 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1821 file_accessed(filp);
1822 return written ? written : error;
1826 * generic_file_read_iter - generic filesystem read routine
1827 * @iocb: kernel I/O control block
1828 * @iter: destination for the data read
1830 * This is the "read_iter()" routine for all filesystems
1831 * that can use the page cache directly.
1833 ssize_t
1834 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1836 struct file *file = iocb->ki_filp;
1837 ssize_t retval = 0;
1838 loff_t *ppos = &iocb->ki_pos;
1839 loff_t pos = *ppos;
1841 if (iocb->ki_flags & IOCB_DIRECT) {
1842 struct address_space *mapping = file->f_mapping;
1843 struct inode *inode = mapping->host;
1844 size_t count = iov_iter_count(iter);
1845 loff_t size;
1847 if (!count)
1848 goto out; /* skip atime */
1849 size = i_size_read(inode);
1850 retval = filemap_write_and_wait_range(mapping, pos,
1851 pos + count - 1);
1852 if (!retval) {
1853 struct iov_iter data = *iter;
1854 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1857 if (retval > 0) {
1858 *ppos = pos + retval;
1859 iov_iter_advance(iter, retval);
1863 * Btrfs can have a short DIO read if we encounter
1864 * compressed extents, so if there was an error, or if
1865 * we've already read everything we wanted to, or if
1866 * there was a short read because we hit EOF, go ahead
1867 * and return. Otherwise fallthrough to buffered io for
1868 * the rest of the read. Buffered reads will not work for
1869 * DAX files, so don't bother trying.
1871 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1872 IS_DAX(inode)) {
1873 file_accessed(file);
1874 goto out;
1878 retval = do_generic_file_read(file, ppos, iter, retval);
1879 out:
1880 return retval;
1882 EXPORT_SYMBOL(generic_file_read_iter);
1884 #ifdef CONFIG_MMU
1886 * page_cache_read - adds requested page to the page cache if not already there
1887 * @file: file to read
1888 * @offset: page index
1889 * @gfp_mask: memory allocation flags
1891 * This adds the requested page to the page cache if it isn't already there,
1892 * and schedules an I/O to read in its contents from disk.
1894 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1896 struct address_space *mapping = file->f_mapping;
1897 struct page *page;
1898 int ret;
1900 do {
1901 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1902 if (!page)
1903 return -ENOMEM;
1905 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1906 if (ret == 0)
1907 ret = mapping->a_ops->readpage(file, page);
1908 else if (ret == -EEXIST)
1909 ret = 0; /* losing race to add is OK */
1911 page_cache_release(page);
1913 } while (ret == AOP_TRUNCATED_PAGE);
1915 return ret;
1918 #define MMAP_LOTSAMISS (100)
1921 * Synchronous readahead happens when we don't even find
1922 * a page in the page cache at all.
1924 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1925 struct file_ra_state *ra,
1926 struct file *file,
1927 pgoff_t offset)
1929 struct address_space *mapping = file->f_mapping;
1931 /* If we don't want any read-ahead, don't bother */
1932 if (vma->vm_flags & VM_RAND_READ)
1933 return;
1934 if (!ra->ra_pages)
1935 return;
1937 if (vma->vm_flags & VM_SEQ_READ) {
1938 page_cache_sync_readahead(mapping, ra, file, offset,
1939 ra->ra_pages);
1940 return;
1943 /* Avoid banging the cache line if not needed */
1944 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1945 ra->mmap_miss++;
1948 * Do we miss much more than hit in this file? If so,
1949 * stop bothering with read-ahead. It will only hurt.
1951 if (ra->mmap_miss > MMAP_LOTSAMISS)
1952 return;
1955 * mmap read-around
1957 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1958 ra->size = ra->ra_pages;
1959 ra->async_size = ra->ra_pages / 4;
1960 ra_submit(ra, mapping, file);
1964 * Asynchronous readahead happens when we find the page and PG_readahead,
1965 * so we want to possibly extend the readahead further..
1967 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1968 struct file_ra_state *ra,
1969 struct file *file,
1970 struct page *page,
1971 pgoff_t offset)
1973 struct address_space *mapping = file->f_mapping;
1975 /* If we don't want any read-ahead, don't bother */
1976 if (vma->vm_flags & VM_RAND_READ)
1977 return;
1978 if (ra->mmap_miss > 0)
1979 ra->mmap_miss--;
1980 if (PageReadahead(page))
1981 page_cache_async_readahead(mapping, ra, file,
1982 page, offset, ra->ra_pages);
1986 * filemap_fault - read in file data for page fault handling
1987 * @vma: vma in which the fault was taken
1988 * @vmf: struct vm_fault containing details of the fault
1990 * filemap_fault() is invoked via the vma operations vector for a
1991 * mapped memory region to read in file data during a page fault.
1993 * The goto's are kind of ugly, but this streamlines the normal case of having
1994 * it in the page cache, and handles the special cases reasonably without
1995 * having a lot of duplicated code.
1997 * vma->vm_mm->mmap_sem must be held on entry.
1999 * If our return value has VM_FAULT_RETRY set, it's because
2000 * lock_page_or_retry() returned 0.
2001 * The mmap_sem has usually been released in this case.
2002 * See __lock_page_or_retry() for the exception.
2004 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2005 * has not been released.
2007 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2009 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2011 int error;
2012 struct file *file = vma->vm_file;
2013 struct address_space *mapping = file->f_mapping;
2014 struct file_ra_state *ra = &file->f_ra;
2015 struct inode *inode = mapping->host;
2016 pgoff_t offset = vmf->pgoff;
2017 struct page *page;
2018 loff_t size;
2019 int ret = 0;
2021 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2022 if (offset >= size >> PAGE_CACHE_SHIFT)
2023 return VM_FAULT_SIGBUS;
2026 * Do we have something in the page cache already?
2028 page = find_get_page(mapping, offset);
2029 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2031 * We found the page, so try async readahead before
2032 * waiting for the lock.
2034 do_async_mmap_readahead(vma, ra, file, page, offset);
2035 } else if (!page) {
2036 /* No page in the page cache at all */
2037 do_sync_mmap_readahead(vma, ra, file, offset);
2038 count_vm_event(PGMAJFAULT);
2039 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2040 ret = VM_FAULT_MAJOR;
2041 retry_find:
2042 page = find_get_page(mapping, offset);
2043 if (!page)
2044 goto no_cached_page;
2047 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2048 page_cache_release(page);
2049 return ret | VM_FAULT_RETRY;
2052 /* Did it get truncated? */
2053 if (unlikely(page->mapping != mapping)) {
2054 unlock_page(page);
2055 put_page(page);
2056 goto retry_find;
2058 VM_BUG_ON_PAGE(page->index != offset, page);
2061 * We have a locked page in the page cache, now we need to check
2062 * that it's up-to-date. If not, it is going to be due to an error.
2064 if (unlikely(!PageUptodate(page)))
2065 goto page_not_uptodate;
2068 * Found the page and have a reference on it.
2069 * We must recheck i_size under page lock.
2071 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2072 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2073 unlock_page(page);
2074 page_cache_release(page);
2075 return VM_FAULT_SIGBUS;
2078 vmf->page = page;
2079 return ret | VM_FAULT_LOCKED;
2081 no_cached_page:
2083 * We're only likely to ever get here if MADV_RANDOM is in
2084 * effect.
2086 error = page_cache_read(file, offset, vmf->gfp_mask);
2089 * The page we want has now been added to the page cache.
2090 * In the unlikely event that someone removed it in the
2091 * meantime, we'll just come back here and read it again.
2093 if (error >= 0)
2094 goto retry_find;
2097 * An error return from page_cache_read can result if the
2098 * system is low on memory, or a problem occurs while trying
2099 * to schedule I/O.
2101 if (error == -ENOMEM)
2102 return VM_FAULT_OOM;
2103 return VM_FAULT_SIGBUS;
2105 page_not_uptodate:
2107 * Umm, take care of errors if the page isn't up-to-date.
2108 * Try to re-read it _once_. We do this synchronously,
2109 * because there really aren't any performance issues here
2110 * and we need to check for errors.
2112 ClearPageError(page);
2113 error = mapping->a_ops->readpage(file, page);
2114 if (!error) {
2115 wait_on_page_locked(page);
2116 if (!PageUptodate(page))
2117 error = -EIO;
2119 page_cache_release(page);
2121 if (!error || error == AOP_TRUNCATED_PAGE)
2122 goto retry_find;
2124 /* Things didn't work out. Return zero to tell the mm layer so. */
2125 shrink_readahead_size_eio(file, ra);
2126 return VM_FAULT_SIGBUS;
2128 EXPORT_SYMBOL(filemap_fault);
2130 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2132 struct radix_tree_iter iter;
2133 void **slot;
2134 struct file *file = vma->vm_file;
2135 struct address_space *mapping = file->f_mapping;
2136 loff_t size;
2137 struct page *page;
2138 unsigned long address = (unsigned long) vmf->virtual_address;
2139 unsigned long addr;
2140 pte_t *pte;
2142 rcu_read_lock();
2143 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2144 if (iter.index > vmf->max_pgoff)
2145 break;
2146 repeat:
2147 page = radix_tree_deref_slot(slot);
2148 if (unlikely(!page))
2149 goto next;
2150 if (radix_tree_exception(page)) {
2151 if (radix_tree_deref_retry(page))
2152 break;
2153 else
2154 goto next;
2157 if (!page_cache_get_speculative(page))
2158 goto repeat;
2160 /* Has the page moved? */
2161 if (unlikely(page != *slot)) {
2162 page_cache_release(page);
2163 goto repeat;
2166 if (!PageUptodate(page) ||
2167 PageReadahead(page) ||
2168 PageHWPoison(page))
2169 goto skip;
2170 if (!trylock_page(page))
2171 goto skip;
2173 if (page->mapping != mapping || !PageUptodate(page))
2174 goto unlock;
2176 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2177 if (page->index >= size >> PAGE_CACHE_SHIFT)
2178 goto unlock;
2180 pte = vmf->pte + page->index - vmf->pgoff;
2181 if (!pte_none(*pte))
2182 goto unlock;
2184 if (file->f_ra.mmap_miss > 0)
2185 file->f_ra.mmap_miss--;
2186 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2187 do_set_pte(vma, addr, page, pte, false, false);
2188 unlock_page(page);
2189 goto next;
2190 unlock:
2191 unlock_page(page);
2192 skip:
2193 page_cache_release(page);
2194 next:
2195 if (iter.index == vmf->max_pgoff)
2196 break;
2198 rcu_read_unlock();
2200 EXPORT_SYMBOL(filemap_map_pages);
2202 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2204 struct page *page = vmf->page;
2205 struct inode *inode = file_inode(vma->vm_file);
2206 int ret = VM_FAULT_LOCKED;
2208 sb_start_pagefault(inode->i_sb);
2209 file_update_time(vma->vm_file);
2210 lock_page(page);
2211 if (page->mapping != inode->i_mapping) {
2212 unlock_page(page);
2213 ret = VM_FAULT_NOPAGE;
2214 goto out;
2217 * We mark the page dirty already here so that when freeze is in
2218 * progress, we are guaranteed that writeback during freezing will
2219 * see the dirty page and writeprotect it again.
2221 set_page_dirty(page);
2222 wait_for_stable_page(page);
2223 out:
2224 sb_end_pagefault(inode->i_sb);
2225 return ret;
2227 EXPORT_SYMBOL(filemap_page_mkwrite);
2229 const struct vm_operations_struct generic_file_vm_ops = {
2230 .fault = filemap_fault,
2231 .map_pages = filemap_map_pages,
2232 .page_mkwrite = filemap_page_mkwrite,
2235 /* This is used for a general mmap of a disk file */
2237 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2239 struct address_space *mapping = file->f_mapping;
2241 if (!mapping->a_ops->readpage)
2242 return -ENOEXEC;
2243 file_accessed(file);
2244 vma->vm_ops = &generic_file_vm_ops;
2245 return 0;
2249 * This is for filesystems which do not implement ->writepage.
2251 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2253 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2254 return -EINVAL;
2255 return generic_file_mmap(file, vma);
2257 #else
2258 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2260 return -ENOSYS;
2262 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2264 return -ENOSYS;
2266 #endif /* CONFIG_MMU */
2268 EXPORT_SYMBOL(generic_file_mmap);
2269 EXPORT_SYMBOL(generic_file_readonly_mmap);
2271 static struct page *wait_on_page_read(struct page *page)
2273 if (!IS_ERR(page)) {
2274 wait_on_page_locked(page);
2275 if (!PageUptodate(page)) {
2276 page_cache_release(page);
2277 page = ERR_PTR(-EIO);
2280 return page;
2283 static struct page *__read_cache_page(struct address_space *mapping,
2284 pgoff_t index,
2285 int (*filler)(void *, struct page *),
2286 void *data,
2287 gfp_t gfp)
2289 struct page *page;
2290 int err;
2291 repeat:
2292 page = find_get_page(mapping, index);
2293 if (!page) {
2294 page = __page_cache_alloc(gfp | __GFP_COLD);
2295 if (!page)
2296 return ERR_PTR(-ENOMEM);
2297 err = add_to_page_cache_lru(page, mapping, index, gfp);
2298 if (unlikely(err)) {
2299 page_cache_release(page);
2300 if (err == -EEXIST)
2301 goto repeat;
2302 /* Presumably ENOMEM for radix tree node */
2303 return ERR_PTR(err);
2305 err = filler(data, page);
2306 if (err < 0) {
2307 page_cache_release(page);
2308 page = ERR_PTR(err);
2309 } else {
2310 page = wait_on_page_read(page);
2313 return page;
2316 static struct page *do_read_cache_page(struct address_space *mapping,
2317 pgoff_t index,
2318 int (*filler)(void *, struct page *),
2319 void *data,
2320 gfp_t gfp)
2323 struct page *page;
2324 int err;
2326 retry:
2327 page = __read_cache_page(mapping, index, filler, data, gfp);
2328 if (IS_ERR(page))
2329 return page;
2330 if (PageUptodate(page))
2331 goto out;
2333 lock_page(page);
2334 if (!page->mapping) {
2335 unlock_page(page);
2336 page_cache_release(page);
2337 goto retry;
2339 if (PageUptodate(page)) {
2340 unlock_page(page);
2341 goto out;
2343 err = filler(data, page);
2344 if (err < 0) {
2345 page_cache_release(page);
2346 return ERR_PTR(err);
2347 } else {
2348 page = wait_on_page_read(page);
2349 if (IS_ERR(page))
2350 return page;
2352 out:
2353 mark_page_accessed(page);
2354 return page;
2358 * read_cache_page - read into page cache, fill it if needed
2359 * @mapping: the page's address_space
2360 * @index: the page index
2361 * @filler: function to perform the read
2362 * @data: first arg to filler(data, page) function, often left as NULL
2364 * Read into the page cache. If a page already exists, and PageUptodate() is
2365 * not set, try to fill the page and wait for it to become unlocked.
2367 * If the page does not get brought uptodate, return -EIO.
2369 struct page *read_cache_page(struct address_space *mapping,
2370 pgoff_t index,
2371 int (*filler)(void *, struct page *),
2372 void *data)
2374 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2376 EXPORT_SYMBOL(read_cache_page);
2379 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2380 * @mapping: the page's address_space
2381 * @index: the page index
2382 * @gfp: the page allocator flags to use if allocating
2384 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2385 * any new page allocations done using the specified allocation flags.
2387 * If the page does not get brought uptodate, return -EIO.
2389 struct page *read_cache_page_gfp(struct address_space *mapping,
2390 pgoff_t index,
2391 gfp_t gfp)
2393 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2395 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2397 EXPORT_SYMBOL(read_cache_page_gfp);
2400 * Performs necessary checks before doing a write
2402 * Can adjust writing position or amount of bytes to write.
2403 * Returns appropriate error code that caller should return or
2404 * zero in case that write should be allowed.
2406 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2408 struct file *file = iocb->ki_filp;
2409 struct inode *inode = file->f_mapping->host;
2410 unsigned long limit = rlimit(RLIMIT_FSIZE);
2411 loff_t pos;
2413 if (!iov_iter_count(from))
2414 return 0;
2416 /* FIXME: this is for backwards compatibility with 2.4 */
2417 if (iocb->ki_flags & IOCB_APPEND)
2418 iocb->ki_pos = i_size_read(inode);
2420 pos = iocb->ki_pos;
2422 if (limit != RLIM_INFINITY) {
2423 if (iocb->ki_pos >= limit) {
2424 send_sig(SIGXFSZ, current, 0);
2425 return -EFBIG;
2427 iov_iter_truncate(from, limit - (unsigned long)pos);
2431 * LFS rule
2433 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2434 !(file->f_flags & O_LARGEFILE))) {
2435 if (pos >= MAX_NON_LFS)
2436 return -EFBIG;
2437 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2441 * Are we about to exceed the fs block limit ?
2443 * If we have written data it becomes a short write. If we have
2444 * exceeded without writing data we send a signal and return EFBIG.
2445 * Linus frestrict idea will clean these up nicely..
2447 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2448 return -EFBIG;
2450 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2451 return iov_iter_count(from);
2453 EXPORT_SYMBOL(generic_write_checks);
2455 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2456 loff_t pos, unsigned len, unsigned flags,
2457 struct page **pagep, void **fsdata)
2459 const struct address_space_operations *aops = mapping->a_ops;
2461 return aops->write_begin(file, mapping, pos, len, flags,
2462 pagep, fsdata);
2464 EXPORT_SYMBOL(pagecache_write_begin);
2466 int pagecache_write_end(struct file *file, struct address_space *mapping,
2467 loff_t pos, unsigned len, unsigned copied,
2468 struct page *page, void *fsdata)
2470 const struct address_space_operations *aops = mapping->a_ops;
2472 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2474 EXPORT_SYMBOL(pagecache_write_end);
2476 ssize_t
2477 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2479 struct file *file = iocb->ki_filp;
2480 struct address_space *mapping = file->f_mapping;
2481 struct inode *inode = mapping->host;
2482 ssize_t written;
2483 size_t write_len;
2484 pgoff_t end;
2485 struct iov_iter data;
2487 write_len = iov_iter_count(from);
2488 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2490 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2491 if (written)
2492 goto out;
2495 * After a write we want buffered reads to be sure to go to disk to get
2496 * the new data. We invalidate clean cached page from the region we're
2497 * about to write. We do this *before* the write so that we can return
2498 * without clobbering -EIOCBQUEUED from ->direct_IO().
2500 if (mapping->nrpages) {
2501 written = invalidate_inode_pages2_range(mapping,
2502 pos >> PAGE_CACHE_SHIFT, end);
2504 * If a page can not be invalidated, return 0 to fall back
2505 * to buffered write.
2507 if (written) {
2508 if (written == -EBUSY)
2509 return 0;
2510 goto out;
2514 data = *from;
2515 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2518 * Finally, try again to invalidate clean pages which might have been
2519 * cached by non-direct readahead, or faulted in by get_user_pages()
2520 * if the source of the write was an mmap'ed region of the file
2521 * we're writing. Either one is a pretty crazy thing to do,
2522 * so we don't support it 100%. If this invalidation
2523 * fails, tough, the write still worked...
2525 if (mapping->nrpages) {
2526 invalidate_inode_pages2_range(mapping,
2527 pos >> PAGE_CACHE_SHIFT, end);
2530 if (written > 0) {
2531 pos += written;
2532 iov_iter_advance(from, written);
2533 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2534 i_size_write(inode, pos);
2535 mark_inode_dirty(inode);
2537 iocb->ki_pos = pos;
2539 out:
2540 return written;
2542 EXPORT_SYMBOL(generic_file_direct_write);
2545 * Find or create a page at the given pagecache position. Return the locked
2546 * page. This function is specifically for buffered writes.
2548 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2549 pgoff_t index, unsigned flags)
2551 struct page *page;
2552 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2554 if (flags & AOP_FLAG_NOFS)
2555 fgp_flags |= FGP_NOFS;
2557 page = pagecache_get_page(mapping, index, fgp_flags,
2558 mapping_gfp_mask(mapping));
2559 if (page)
2560 wait_for_stable_page(page);
2562 return page;
2564 EXPORT_SYMBOL(grab_cache_page_write_begin);
2566 ssize_t generic_perform_write(struct file *file,
2567 struct iov_iter *i, loff_t pos)
2569 struct address_space *mapping = file->f_mapping;
2570 const struct address_space_operations *a_ops = mapping->a_ops;
2571 long status = 0;
2572 ssize_t written = 0;
2573 unsigned int flags = 0;
2576 * Copies from kernel address space cannot fail (NFSD is a big user).
2578 if (!iter_is_iovec(i))
2579 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2581 do {
2582 struct page *page;
2583 unsigned long offset; /* Offset into pagecache page */
2584 unsigned long bytes; /* Bytes to write to page */
2585 size_t copied; /* Bytes copied from user */
2586 void *fsdata;
2588 offset = (pos & (PAGE_CACHE_SIZE - 1));
2589 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2590 iov_iter_count(i));
2592 again:
2594 * Bring in the user page that we will copy from _first_.
2595 * Otherwise there's a nasty deadlock on copying from the
2596 * same page as we're writing to, without it being marked
2597 * up-to-date.
2599 * Not only is this an optimisation, but it is also required
2600 * to check that the address is actually valid, when atomic
2601 * usercopies are used, below.
2603 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2604 status = -EFAULT;
2605 break;
2608 if (fatal_signal_pending(current)) {
2609 status = -EINTR;
2610 break;
2613 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2614 &page, &fsdata);
2615 if (unlikely(status < 0))
2616 break;
2618 if (mapping_writably_mapped(mapping))
2619 flush_dcache_page(page);
2621 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2622 flush_dcache_page(page);
2624 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2625 page, fsdata);
2626 if (unlikely(status < 0))
2627 break;
2628 copied = status;
2630 cond_resched();
2632 iov_iter_advance(i, copied);
2633 if (unlikely(copied == 0)) {
2635 * If we were unable to copy any data at all, we must
2636 * fall back to a single segment length write.
2638 * If we didn't fallback here, we could livelock
2639 * because not all segments in the iov can be copied at
2640 * once without a pagefault.
2642 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2643 iov_iter_single_seg_count(i));
2644 goto again;
2646 pos += copied;
2647 written += copied;
2649 balance_dirty_pages_ratelimited(mapping);
2650 } while (iov_iter_count(i));
2652 return written ? written : status;
2654 EXPORT_SYMBOL(generic_perform_write);
2657 * __generic_file_write_iter - write data to a file
2658 * @iocb: IO state structure (file, offset, etc.)
2659 * @from: iov_iter with data to write
2661 * This function does all the work needed for actually writing data to a
2662 * file. It does all basic checks, removes SUID from the file, updates
2663 * modification times and calls proper subroutines depending on whether we
2664 * do direct IO or a standard buffered write.
2666 * It expects i_mutex to be grabbed unless we work on a block device or similar
2667 * object which does not need locking at all.
2669 * This function does *not* take care of syncing data in case of O_SYNC write.
2670 * A caller has to handle it. This is mainly due to the fact that we want to
2671 * avoid syncing under i_mutex.
2673 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2675 struct file *file = iocb->ki_filp;
2676 struct address_space * mapping = file->f_mapping;
2677 struct inode *inode = mapping->host;
2678 ssize_t written = 0;
2679 ssize_t err;
2680 ssize_t status;
2682 /* We can write back this queue in page reclaim */
2683 current->backing_dev_info = inode_to_bdi(inode);
2684 err = file_remove_privs(file);
2685 if (err)
2686 goto out;
2688 err = file_update_time(file);
2689 if (err)
2690 goto out;
2692 if (iocb->ki_flags & IOCB_DIRECT) {
2693 loff_t pos, endbyte;
2695 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2697 * If the write stopped short of completing, fall back to
2698 * buffered writes. Some filesystems do this for writes to
2699 * holes, for example. For DAX files, a buffered write will
2700 * not succeed (even if it did, DAX does not handle dirty
2701 * page-cache pages correctly).
2703 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2704 goto out;
2706 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2708 * If generic_perform_write() returned a synchronous error
2709 * then we want to return the number of bytes which were
2710 * direct-written, or the error code if that was zero. Note
2711 * that this differs from normal direct-io semantics, which
2712 * will return -EFOO even if some bytes were written.
2714 if (unlikely(status < 0)) {
2715 err = status;
2716 goto out;
2719 * We need to ensure that the page cache pages are written to
2720 * disk and invalidated to preserve the expected O_DIRECT
2721 * semantics.
2723 endbyte = pos + status - 1;
2724 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2725 if (err == 0) {
2726 iocb->ki_pos = endbyte + 1;
2727 written += status;
2728 invalidate_mapping_pages(mapping,
2729 pos >> PAGE_CACHE_SHIFT,
2730 endbyte >> PAGE_CACHE_SHIFT);
2731 } else {
2733 * We don't know how much we wrote, so just return
2734 * the number of bytes which were direct-written
2737 } else {
2738 written = generic_perform_write(file, from, iocb->ki_pos);
2739 if (likely(written > 0))
2740 iocb->ki_pos += written;
2742 out:
2743 current->backing_dev_info = NULL;
2744 return written ? written : err;
2746 EXPORT_SYMBOL(__generic_file_write_iter);
2749 * generic_file_write_iter - write data to a file
2750 * @iocb: IO state structure
2751 * @from: iov_iter with data to write
2753 * This is a wrapper around __generic_file_write_iter() to be used by most
2754 * filesystems. It takes care of syncing the file in case of O_SYNC file
2755 * and acquires i_mutex as needed.
2757 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2759 struct file *file = iocb->ki_filp;
2760 struct inode *inode = file->f_mapping->host;
2761 ssize_t ret;
2763 inode_lock(inode);
2764 ret = generic_write_checks(iocb, from);
2765 if (ret > 0)
2766 ret = __generic_file_write_iter(iocb, from);
2767 inode_unlock(inode);
2769 if (ret > 0) {
2770 ssize_t err;
2772 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2773 if (err < 0)
2774 ret = err;
2776 return ret;
2778 EXPORT_SYMBOL(generic_file_write_iter);
2781 * try_to_release_page() - release old fs-specific metadata on a page
2783 * @page: the page which the kernel is trying to free
2784 * @gfp_mask: memory allocation flags (and I/O mode)
2786 * The address_space is to try to release any data against the page
2787 * (presumably at page->private). If the release was successful, return `1'.
2788 * Otherwise return zero.
2790 * This may also be called if PG_fscache is set on a page, indicating that the
2791 * page is known to the local caching routines.
2793 * The @gfp_mask argument specifies whether I/O may be performed to release
2794 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2797 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2799 struct address_space * const mapping = page->mapping;
2801 BUG_ON(!PageLocked(page));
2802 if (PageWriteback(page))
2803 return 0;
2805 if (mapping && mapping->a_ops->releasepage)
2806 return mapping->a_ops->releasepage(page, gfp_mask);
2807 return try_to_free_buffers(page);
2810 EXPORT_SYMBOL(try_to_release_page);