2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
26 #ifdef CONFIG_HUGETLB_PAGE
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
32 unsigned int HPAGE_SHIFT
;
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
44 u64 gpage_list
[MAX_NUMBER_GPAGES
];
45 unsigned int nr_gpages
;
47 static struct psize_gpages gpage_freearray
[MMU_PAGE_COUNT
];
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray
[MAX_NUMBER_GPAGES
];
51 static unsigned nr_gpages
;
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
58 /* Only called for hugetlbfs pages, hence can ignore THP */
59 return __find_linux_pte_or_hugepte(mm
->pgd
, addr
, NULL
, NULL
);
62 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
63 unsigned long address
, unsigned pdshift
, unsigned pshift
)
65 struct kmem_cache
*cachep
;
68 #ifdef CONFIG_PPC_FSL_BOOK3E
70 int num_hugepd
= 1 << (pshift
- pdshift
);
71 cachep
= hugepte_cache
;
73 cachep
= PGT_CACHE(pdshift
- pshift
);
76 new = kmem_cache_zalloc(cachep
, GFP_KERNEL
);
78 BUG_ON(pshift
> HUGEPD_SHIFT_MASK
);
79 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK
);
85 * Make sure other cpus find the hugepd set only after a
86 * properly initialized page table is visible to them.
87 * For more details look for comment in __pte_alloc().
91 spin_lock(&mm
->page_table_lock
);
92 #ifdef CONFIG_PPC_FSL_BOOK3E
94 * We have multiple higher-level entries that point to the same
95 * actual pte location. Fill in each as we go and backtrack on error.
96 * We need all of these so the DTLB pgtable walk code can find the
97 * right higher-level entry without knowing if it's a hugepage or not.
99 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++) {
100 if (unlikely(!hugepd_none(*hpdp
)))
103 /* We use the old format for PPC_FSL_BOOK3E */
104 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
106 /* If we bailed from the for loop early, an error occurred, clean up */
107 if (i
< num_hugepd
) {
108 for (i
= i
- 1 ; i
>= 0; i
--, hpdp
--)
110 kmem_cache_free(cachep
, new);
113 if (!hugepd_none(*hpdp
))
114 kmem_cache_free(cachep
, new);
116 #ifdef CONFIG_PPC_BOOK3S_64
117 hpdp
->pd
= __pa(new) | (shift_to_mmu_psize(pshift
) << 2);
119 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
123 spin_unlock(&mm
->page_table_lock
);
128 * These macros define how to determine which level of the page table holds
131 #ifdef CONFIG_PPC_FSL_BOOK3E
132 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
133 #define HUGEPD_PUD_SHIFT PUD_SHIFT
135 #define HUGEPD_PGD_SHIFT PUD_SHIFT
136 #define HUGEPD_PUD_SHIFT PMD_SHIFT
139 #ifdef CONFIG_PPC_BOOK3S_64
141 * At this point we do the placement change only for BOOK3S 64. This would
142 * possibly work on other subarchs.
144 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
149 hugepd_t
*hpdp
= NULL
;
150 unsigned pshift
= __ffs(sz
);
151 unsigned pdshift
= PGDIR_SHIFT
;
154 pg
= pgd_offset(mm
, addr
);
156 if (pshift
== PGDIR_SHIFT
)
159 else if (pshift
> PUD_SHIFT
)
161 * We need to use hugepd table
163 hpdp
= (hugepd_t
*)pg
;
166 pu
= pud_alloc(mm
, pg
, addr
);
167 if (pshift
== PUD_SHIFT
)
169 else if (pshift
> PMD_SHIFT
)
170 hpdp
= (hugepd_t
*)pu
;
173 pm
= pmd_alloc(mm
, pu
, addr
);
174 if (pshift
== PMD_SHIFT
)
178 hpdp
= (hugepd_t
*)pm
;
184 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
186 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
189 return hugepte_offset(*hpdp
, addr
, pdshift
);
194 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
199 hugepd_t
*hpdp
= NULL
;
200 unsigned pshift
= __ffs(sz
);
201 unsigned pdshift
= PGDIR_SHIFT
;
205 pg
= pgd_offset(mm
, addr
);
207 if (pshift
>= HUGEPD_PGD_SHIFT
) {
208 hpdp
= (hugepd_t
*)pg
;
211 pu
= pud_alloc(mm
, pg
, addr
);
212 if (pshift
>= HUGEPD_PUD_SHIFT
) {
213 hpdp
= (hugepd_t
*)pu
;
216 pm
= pmd_alloc(mm
, pu
, addr
);
217 hpdp
= (hugepd_t
*)pm
;
224 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
226 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
229 return hugepte_offset(*hpdp
, addr
, pdshift
);
233 #ifdef CONFIG_PPC_FSL_BOOK3E
234 /* Build list of addresses of gigantic pages. This function is used in early
235 * boot before the buddy allocator is setup.
237 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
239 unsigned int idx
= shift_to_mmu_psize(__ffs(page_size
));
245 gpage_freearray
[idx
].nr_gpages
= number_of_pages
;
247 for (i
= 0; i
< number_of_pages
; i
++) {
248 gpage_freearray
[idx
].gpage_list
[i
] = addr
;
254 * Moves the gigantic page addresses from the temporary list to the
255 * huge_boot_pages list.
257 int alloc_bootmem_huge_page(struct hstate
*hstate
)
259 struct huge_bootmem_page
*m
;
260 int idx
= shift_to_mmu_psize(huge_page_shift(hstate
));
261 int nr_gpages
= gpage_freearray
[idx
].nr_gpages
;
266 #ifdef CONFIG_HIGHMEM
268 * If gpages can be in highmem we can't use the trick of storing the
269 * data structure in the page; allocate space for this
271 m
= memblock_virt_alloc(sizeof(struct huge_bootmem_page
), 0);
272 m
->phys
= gpage_freearray
[idx
].gpage_list
[--nr_gpages
];
274 m
= phys_to_virt(gpage_freearray
[idx
].gpage_list
[--nr_gpages
]);
277 list_add(&m
->list
, &huge_boot_pages
);
278 gpage_freearray
[idx
].nr_gpages
= nr_gpages
;
279 gpage_freearray
[idx
].gpage_list
[nr_gpages
] = 0;
285 * Scan the command line hugepagesz= options for gigantic pages; store those in
286 * a list that we use to allocate the memory once all options are parsed.
289 unsigned long gpage_npages
[MMU_PAGE_COUNT
];
291 static int __init
do_gpage_early_setup(char *param
, char *val
,
292 const char *unused
, void *arg
)
294 static phys_addr_t size
;
295 unsigned long npages
;
298 * The hugepagesz and hugepages cmdline options are interleaved. We
299 * use the size variable to keep track of whether or not this was done
300 * properly and skip over instances where it is incorrect. Other
301 * command-line parsing code will issue warnings, so we don't need to.
304 if ((strcmp(param
, "default_hugepagesz") == 0) ||
305 (strcmp(param
, "hugepagesz") == 0)) {
306 size
= memparse(val
, NULL
);
307 } else if (strcmp(param
, "hugepages") == 0) {
309 if (sscanf(val
, "%lu", &npages
) <= 0)
311 if (npages
> MAX_NUMBER_GPAGES
) {
312 pr_warn("MMU: %lu pages requested for page "
313 "size %llu KB, limiting to "
314 __stringify(MAX_NUMBER_GPAGES
) "\n",
315 npages
, size
/ 1024);
316 npages
= MAX_NUMBER_GPAGES
;
318 gpage_npages
[shift_to_mmu_psize(__ffs(size
))] = npages
;
327 * This function allocates physical space for pages that are larger than the
328 * buddy allocator can handle. We want to allocate these in highmem because
329 * the amount of lowmem is limited. This means that this function MUST be
330 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
331 * allocate to grab highmem.
333 void __init
reserve_hugetlb_gpages(void)
335 static __initdata
char cmdline
[COMMAND_LINE_SIZE
];
336 phys_addr_t size
, base
;
339 strlcpy(cmdline
, boot_command_line
, COMMAND_LINE_SIZE
);
340 parse_args("hugetlb gpages", cmdline
, NULL
, 0, 0, 0,
341 NULL
, &do_gpage_early_setup
);
344 * Walk gpage list in reverse, allocating larger page sizes first.
345 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
346 * When we reach the point in the list where pages are no longer
347 * considered gpages, we're done.
349 for (i
= MMU_PAGE_COUNT
-1; i
>= 0; i
--) {
350 if (mmu_psize_defs
[i
].shift
== 0 || gpage_npages
[i
] == 0)
352 else if (mmu_psize_to_shift(i
) < (MAX_ORDER
+ PAGE_SHIFT
))
355 size
= (phys_addr_t
)(1ULL << mmu_psize_to_shift(i
));
356 base
= memblock_alloc_base(size
* gpage_npages
[i
], size
,
357 MEMBLOCK_ALLOC_ANYWHERE
);
358 add_gpage(base
, size
, gpage_npages
[i
]);
362 #else /* !PPC_FSL_BOOK3E */
364 /* Build list of addresses of gigantic pages. This function is used in early
365 * boot before the buddy allocator is setup.
367 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
371 while (number_of_pages
> 0) {
372 gpage_freearray
[nr_gpages
] = addr
;
379 /* Moves the gigantic page addresses from the temporary list to the
380 * huge_boot_pages list.
382 int alloc_bootmem_huge_page(struct hstate
*hstate
)
384 struct huge_bootmem_page
*m
;
387 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
388 gpage_freearray
[nr_gpages
] = 0;
389 list_add(&m
->list
, &huge_boot_pages
);
395 #ifdef CONFIG_PPC_FSL_BOOK3E
396 #define HUGEPD_FREELIST_SIZE \
397 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
399 struct hugepd_freelist
{
405 static DEFINE_PER_CPU(struct hugepd_freelist
*, hugepd_freelist_cur
);
407 static void hugepd_free_rcu_callback(struct rcu_head
*head
)
409 struct hugepd_freelist
*batch
=
410 container_of(head
, struct hugepd_freelist
, rcu
);
413 for (i
= 0; i
< batch
->index
; i
++)
414 kmem_cache_free(hugepte_cache
, batch
->ptes
[i
]);
416 free_page((unsigned long)batch
);
419 static void hugepd_free(struct mmu_gather
*tlb
, void *hugepte
)
421 struct hugepd_freelist
**batchp
;
423 batchp
= &get_cpu_var(hugepd_freelist_cur
);
425 if (atomic_read(&tlb
->mm
->mm_users
) < 2 ||
426 cpumask_equal(mm_cpumask(tlb
->mm
),
427 cpumask_of(smp_processor_id()))) {
428 kmem_cache_free(hugepte_cache
, hugepte
);
429 put_cpu_var(hugepd_freelist_cur
);
433 if (*batchp
== NULL
) {
434 *batchp
= (struct hugepd_freelist
*)__get_free_page(GFP_ATOMIC
);
435 (*batchp
)->index
= 0;
438 (*batchp
)->ptes
[(*batchp
)->index
++] = hugepte
;
439 if ((*batchp
)->index
== HUGEPD_FREELIST_SIZE
) {
440 call_rcu_sched(&(*batchp
)->rcu
, hugepd_free_rcu_callback
);
443 put_cpu_var(hugepd_freelist_cur
);
447 static void free_hugepd_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
, int pdshift
,
448 unsigned long start
, unsigned long end
,
449 unsigned long floor
, unsigned long ceiling
)
451 pte_t
*hugepte
= hugepd_page(*hpdp
);
454 unsigned long pdmask
= ~((1UL << pdshift
) - 1);
455 unsigned int num_hugepd
= 1;
457 #ifdef CONFIG_PPC_FSL_BOOK3E
458 /* Note: On fsl the hpdp may be the first of several */
459 num_hugepd
= (1 << (hugepd_shift(*hpdp
) - pdshift
));
461 unsigned int shift
= hugepd_shift(*hpdp
);
472 if (end
- 1 > ceiling
- 1)
475 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++)
478 #ifdef CONFIG_PPC_FSL_BOOK3E
479 hugepd_free(tlb
, hugepte
);
481 pgtable_free_tlb(tlb
, hugepte
, pdshift
- shift
);
485 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
486 unsigned long addr
, unsigned long end
,
487 unsigned long floor
, unsigned long ceiling
)
495 pmd
= pmd_offset(pud
, addr
);
496 next
= pmd_addr_end(addr
, end
);
497 if (!is_hugepd(__hugepd(pmd_val(*pmd
)))) {
499 * if it is not hugepd pointer, we should already find
502 WARN_ON(!pmd_none_or_clear_bad(pmd
));
505 #ifdef CONFIG_PPC_FSL_BOOK3E
507 * Increment next by the size of the huge mapping since
508 * there may be more than one entry at this level for a
509 * single hugepage, but all of them point to
510 * the same kmem cache that holds the hugepte.
512 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pmd
));
514 free_hugepd_range(tlb
, (hugepd_t
*)pmd
, PMD_SHIFT
,
515 addr
, next
, floor
, ceiling
);
516 } while (addr
= next
, addr
!= end
);
526 if (end
- 1 > ceiling
- 1)
529 pmd
= pmd_offset(pud
, start
);
531 pmd_free_tlb(tlb
, pmd
, start
);
532 mm_dec_nr_pmds(tlb
->mm
);
535 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
536 unsigned long addr
, unsigned long end
,
537 unsigned long floor
, unsigned long ceiling
)
545 pud
= pud_offset(pgd
, addr
);
546 next
= pud_addr_end(addr
, end
);
547 if (!is_hugepd(__hugepd(pud_val(*pud
)))) {
548 if (pud_none_or_clear_bad(pud
))
550 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
553 #ifdef CONFIG_PPC_FSL_BOOK3E
555 * Increment next by the size of the huge mapping since
556 * there may be more than one entry at this level for a
557 * single hugepage, but all of them point to
558 * the same kmem cache that holds the hugepte.
560 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pud
));
562 free_hugepd_range(tlb
, (hugepd_t
*)pud
, PUD_SHIFT
,
563 addr
, next
, floor
, ceiling
);
565 } while (addr
= next
, addr
!= end
);
571 ceiling
&= PGDIR_MASK
;
575 if (end
- 1 > ceiling
- 1)
578 pud
= pud_offset(pgd
, start
);
580 pud_free_tlb(tlb
, pud
, start
);
584 * This function frees user-level page tables of a process.
586 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
587 unsigned long addr
, unsigned long end
,
588 unsigned long floor
, unsigned long ceiling
)
594 * Because there are a number of different possible pagetable
595 * layouts for hugepage ranges, we limit knowledge of how
596 * things should be laid out to the allocation path
597 * (huge_pte_alloc(), above). Everything else works out the
598 * structure as it goes from information in the hugepd
599 * pointers. That means that we can't here use the
600 * optimization used in the normal page free_pgd_range(), of
601 * checking whether we're actually covering a large enough
602 * range to have to do anything at the top level of the walk
603 * instead of at the bottom.
605 * To make sense of this, you should probably go read the big
606 * block comment at the top of the normal free_pgd_range(),
611 next
= pgd_addr_end(addr
, end
);
612 pgd
= pgd_offset(tlb
->mm
, addr
);
613 if (!is_hugepd(__hugepd(pgd_val(*pgd
)))) {
614 if (pgd_none_or_clear_bad(pgd
))
616 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
618 #ifdef CONFIG_PPC_FSL_BOOK3E
620 * Increment next by the size of the huge mapping since
621 * there may be more than one entry at the pgd level
622 * for a single hugepage, but all of them point to the
623 * same kmem cache that holds the hugepte.
625 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pgd
));
627 free_hugepd_range(tlb
, (hugepd_t
*)pgd
, PGDIR_SHIFT
,
628 addr
, next
, floor
, ceiling
);
630 } while (addr
= next
, addr
!= end
);
634 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
635 * To prevent hugepage split, disable irq.
638 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
643 unsigned long mask
, flags
;
644 struct page
*page
= ERR_PTR(-EINVAL
);
646 local_irq_save(flags
);
647 ptep
= find_linux_pte_or_hugepte(mm
->pgd
, address
, &is_thp
, &shift
);
650 pte
= READ_ONCE(*ptep
);
652 * Verify it is a huge page else bail.
653 * Transparent hugepages are handled by generic code. We can skip them
656 if (!shift
|| is_thp
)
659 if (!pte_present(pte
)) {
663 mask
= (1UL << shift
) - 1;
664 page
= pte_page(pte
);
666 page
+= (address
& mask
) / PAGE_SIZE
;
669 local_irq_restore(flags
);
674 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
675 pmd_t
*pmd
, int write
)
682 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
683 pud_t
*pud
, int write
)
689 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
692 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
693 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
696 int gup_huge_pd(hugepd_t hugepd
, unsigned long addr
, unsigned pdshift
,
697 unsigned long end
, int write
, struct page
**pages
, int *nr
)
700 unsigned long sz
= 1UL << hugepd_shift(hugepd
);
703 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
705 next
= hugepte_addr_end(addr
, end
, sz
);
706 if (!gup_hugepte(ptep
, sz
, addr
, end
, write
, pages
, nr
))
708 } while (ptep
++, addr
= next
, addr
!= end
);
713 #ifdef CONFIG_PPC_MM_SLICES
714 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
715 unsigned long len
, unsigned long pgoff
,
718 struct hstate
*hstate
= hstate_file(file
);
719 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
722 return radix__hugetlb_get_unmapped_area(file
, addr
, len
,
724 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1);
728 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
730 #ifdef CONFIG_PPC_MM_SLICES
731 unsigned int psize
= get_slice_psize(vma
->vm_mm
, vma
->vm_start
);
732 /* With radix we don't use slice, so derive it from vma*/
733 if (!radix_enabled())
734 return 1UL << mmu_psize_to_shift(psize
);
736 if (!is_vm_hugetlb_page(vma
))
739 return huge_page_size(hstate_vma(vma
));
742 static inline bool is_power_of_4(unsigned long x
)
744 if (is_power_of_2(x
))
745 return (__ilog2(x
) % 2) ? false : true;
749 static int __init
add_huge_page_size(unsigned long long size
)
751 int shift
= __ffs(size
);
754 /* Check that it is a page size supported by the hardware and
755 * that it fits within pagetable and slice limits. */
756 #ifdef CONFIG_PPC_FSL_BOOK3E
757 if ((size
< PAGE_SIZE
) || !is_power_of_4(size
))
760 if (!is_power_of_2(size
)
761 || (shift
> SLICE_HIGH_SHIFT
) || (shift
<= PAGE_SHIFT
))
765 if ((mmu_psize
= shift_to_mmu_psize(shift
)) < 0)
768 BUG_ON(mmu_psize_defs
[mmu_psize
].shift
!= shift
);
770 /* Return if huge page size has already been setup */
771 if (size_to_hstate(size
))
774 hugetlb_add_hstate(shift
- PAGE_SHIFT
);
779 static int __init
hugepage_setup_sz(char *str
)
781 unsigned long long size
;
783 size
= memparse(str
, &str
);
785 if (add_huge_page_size(size
) != 0) {
787 pr_err("Invalid huge page size specified(%llu)\n", size
);
792 __setup("hugepagesz=", hugepage_setup_sz
);
794 #ifdef CONFIG_PPC_FSL_BOOK3E
795 struct kmem_cache
*hugepte_cache
;
796 static int __init
hugetlbpage_init(void)
800 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
803 if (!mmu_psize_defs
[psize
].shift
)
806 shift
= mmu_psize_to_shift(psize
);
808 /* Don't treat normal page sizes as huge... */
809 if (shift
!= PAGE_SHIFT
)
810 if (add_huge_page_size(1ULL << shift
) < 0)
815 * Create a kmem cache for hugeptes. The bottom bits in the pte have
816 * size information encoded in them, so align them to allow this
818 hugepte_cache
= kmem_cache_create("hugepte-cache", sizeof(pte_t
),
819 HUGEPD_SHIFT_MASK
+ 1, 0, NULL
);
820 if (hugepte_cache
== NULL
)
821 panic("%s: Unable to create kmem cache for hugeptes\n",
824 /* Default hpage size = 4M */
825 if (mmu_psize_defs
[MMU_PAGE_4M
].shift
)
826 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_4M
].shift
;
828 panic("%s: Unable to set default huge page size\n", __func__
);
834 static int __init
hugetlbpage_init(void)
838 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE
))
841 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
845 if (!mmu_psize_defs
[psize
].shift
)
848 shift
= mmu_psize_to_shift(psize
);
850 if (add_huge_page_size(1ULL << shift
) < 0)
853 if (shift
< PMD_SHIFT
)
855 else if (shift
< PUD_SHIFT
)
858 pdshift
= PGDIR_SHIFT
;
860 * if we have pdshift and shift value same, we don't
861 * use pgt cache for hugepd.
863 if (pdshift
!= shift
) {
864 pgtable_cache_add(pdshift
- shift
, NULL
);
865 if (!PGT_CACHE(pdshift
- shift
))
866 panic("hugetlbpage_init(): could not create "
867 "pgtable cache for %d bit pagesize\n", shift
);
871 /* Set default large page size. Currently, we pick 16M or 1M
872 * depending on what is available
874 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
875 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_16M
].shift
;
876 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
877 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_1M
].shift
;
878 else if (mmu_psize_defs
[MMU_PAGE_2M
].shift
)
879 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_2M
].shift
;
885 arch_initcall(hugetlbpage_init
);
887 void flush_dcache_icache_hugepage(struct page
*page
)
892 BUG_ON(!PageCompound(page
));
894 for (i
= 0; i
< (1UL << compound_order(page
)); i
++) {
895 if (!PageHighMem(page
)) {
896 __flush_dcache_icache(page_address(page
+i
));
898 start
= kmap_atomic(page
+i
);
899 __flush_dcache_icache(start
);
900 kunmap_atomic(start
);
905 #endif /* CONFIG_HUGETLB_PAGE */
908 * We have 4 cases for pgds and pmds:
909 * (1) invalid (all zeroes)
910 * (2) pointer to next table, as normal; bottom 6 bits == 0
911 * (3) leaf pte for huge page _PAGE_PTE set
912 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
914 * So long as we atomically load page table pointers we are safe against teardown,
915 * we can follow the address down to the the page and take a ref on it.
916 * This function need to be called with interrupts disabled. We use this variant
917 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
920 pte_t
*__find_linux_pte_or_hugepte(pgd_t
*pgdir
, unsigned long ea
,
921 bool *is_thp
, unsigned *shift
)
927 hugepd_t
*hpdp
= NULL
;
928 unsigned pdshift
= PGDIR_SHIFT
;
936 pgdp
= pgdir
+ pgd_index(ea
);
937 pgd
= READ_ONCE(*pgdp
);
939 * Always operate on the local stack value. This make sure the
940 * value don't get updated by a parallel THP split/collapse,
941 * page fault or a page unmap. The return pte_t * is still not
942 * stable. So should be checked there for above conditions.
946 else if (pgd_huge(pgd
)) {
947 ret_pte
= (pte_t
*) pgdp
;
949 } else if (is_hugepd(__hugepd(pgd_val(pgd
))))
950 hpdp
= (hugepd_t
*)&pgd
;
953 * Even if we end up with an unmap, the pgtable will not
954 * be freed, because we do an rcu free and here we are
958 pudp
= pud_offset(&pgd
, ea
);
959 pud
= READ_ONCE(*pudp
);
963 else if (pud_huge(pud
)) {
964 ret_pte
= (pte_t
*) pudp
;
966 } else if (is_hugepd(__hugepd(pud_val(pud
))))
967 hpdp
= (hugepd_t
*)&pud
;
970 pmdp
= pmd_offset(&pud
, ea
);
971 pmd
= READ_ONCE(*pmdp
);
973 * A hugepage collapse is captured by pmd_none, because
974 * it mark the pmd none and do a hpte invalidate.
979 if (pmd_trans_huge(pmd
)) {
982 ret_pte
= (pte_t
*) pmdp
;
987 ret_pte
= (pte_t
*) pmdp
;
989 } else if (is_hugepd(__hugepd(pmd_val(pmd
))))
990 hpdp
= (hugepd_t
*)&pmd
;
992 return pte_offset_kernel(&pmd
, ea
);
998 ret_pte
= hugepte_offset(*hpdp
, ea
, pdshift
);
999 pdshift
= hugepd_shift(*hpdp
);
1005 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte
);
1007 int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
1008 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1011 unsigned long pte_end
;
1012 struct page
*head
, *page
;
1016 pte_end
= (addr
+ sz
) & ~(sz
-1);
1020 pte
= READ_ONCE(*ptep
);
1021 mask
= _PAGE_PRESENT
| _PAGE_READ
;
1024 * On some CPUs like the 8xx, _PAGE_RW hence _PAGE_WRITE is defined
1025 * as 0 and _PAGE_RO has to be set when a page is not writable
1028 mask
|= _PAGE_WRITE
;
1032 if ((pte_val(pte
) & mask
) != mask
)
1035 /* hugepages are never "special" */
1036 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1039 head
= pte_page(pte
);
1041 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
1043 VM_BUG_ON(compound_head(page
) != head
);
1048 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1050 if (!page_cache_add_speculative(head
, refs
)) {
1055 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1056 /* Could be optimized better */