pinctrl: cherryview: Prevent possible interrupt storm on resume
[linux/fpc-iii.git] / arch / powerpc / mm / hugetlbpage.c
bloba5d3ecdabc44464e995c9a785e515359d43d4217
1 /*
2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
26 #ifdef CONFIG_HUGETLB_PAGE
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
32 unsigned int HPAGE_SHIFT;
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
58 /* Only called for hugetlbfs pages, hence can ignore THP */
59 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
62 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
63 unsigned long address, unsigned pdshift, unsigned pshift)
65 struct kmem_cache *cachep;
66 pte_t *new;
68 #ifdef CONFIG_PPC_FSL_BOOK3E
69 int i;
70 int num_hugepd = 1 << (pshift - pdshift);
71 cachep = hugepte_cache;
72 #else
73 cachep = PGT_CACHE(pdshift - pshift);
74 #endif
76 new = kmem_cache_zalloc(cachep, GFP_KERNEL);
78 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
79 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
81 if (! new)
82 return -ENOMEM;
85 * Make sure other cpus find the hugepd set only after a
86 * properly initialized page table is visible to them.
87 * For more details look for comment in __pte_alloc().
89 smp_wmb();
91 spin_lock(&mm->page_table_lock);
92 #ifdef CONFIG_PPC_FSL_BOOK3E
94 * We have multiple higher-level entries that point to the same
95 * actual pte location. Fill in each as we go and backtrack on error.
96 * We need all of these so the DTLB pgtable walk code can find the
97 * right higher-level entry without knowing if it's a hugepage or not.
99 for (i = 0; i < num_hugepd; i++, hpdp++) {
100 if (unlikely(!hugepd_none(*hpdp)))
101 break;
102 else
103 /* We use the old format for PPC_FSL_BOOK3E */
104 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
106 /* If we bailed from the for loop early, an error occurred, clean up */
107 if (i < num_hugepd) {
108 for (i = i - 1 ; i >= 0; i--, hpdp--)
109 hpdp->pd = 0;
110 kmem_cache_free(cachep, new);
112 #else
113 if (!hugepd_none(*hpdp))
114 kmem_cache_free(cachep, new);
115 else {
116 #ifdef CONFIG_PPC_BOOK3S_64
117 hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
118 #else
119 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
120 #endif
122 #endif
123 spin_unlock(&mm->page_table_lock);
124 return 0;
128 * These macros define how to determine which level of the page table holds
129 * the hpdp.
131 #ifdef CONFIG_PPC_FSL_BOOK3E
132 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
133 #define HUGEPD_PUD_SHIFT PUD_SHIFT
134 #else
135 #define HUGEPD_PGD_SHIFT PUD_SHIFT
136 #define HUGEPD_PUD_SHIFT PMD_SHIFT
137 #endif
139 #ifdef CONFIG_PPC_BOOK3S_64
141 * At this point we do the placement change only for BOOK3S 64. This would
142 * possibly work on other subarchs.
144 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
146 pgd_t *pg;
147 pud_t *pu;
148 pmd_t *pm;
149 hugepd_t *hpdp = NULL;
150 unsigned pshift = __ffs(sz);
151 unsigned pdshift = PGDIR_SHIFT;
153 addr &= ~(sz-1);
154 pg = pgd_offset(mm, addr);
156 if (pshift == PGDIR_SHIFT)
157 /* 16GB huge page */
158 return (pte_t *) pg;
159 else if (pshift > PUD_SHIFT)
161 * We need to use hugepd table
163 hpdp = (hugepd_t *)pg;
164 else {
165 pdshift = PUD_SHIFT;
166 pu = pud_alloc(mm, pg, addr);
167 if (pshift == PUD_SHIFT)
168 return (pte_t *)pu;
169 else if (pshift > PMD_SHIFT)
170 hpdp = (hugepd_t *)pu;
171 else {
172 pdshift = PMD_SHIFT;
173 pm = pmd_alloc(mm, pu, addr);
174 if (pshift == PMD_SHIFT)
175 /* 16MB hugepage */
176 return (pte_t *)pm;
177 else
178 hpdp = (hugepd_t *)pm;
181 if (!hpdp)
182 return NULL;
184 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
186 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
187 return NULL;
189 return hugepte_offset(*hpdp, addr, pdshift);
192 #else
194 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
196 pgd_t *pg;
197 pud_t *pu;
198 pmd_t *pm;
199 hugepd_t *hpdp = NULL;
200 unsigned pshift = __ffs(sz);
201 unsigned pdshift = PGDIR_SHIFT;
203 addr &= ~(sz-1);
205 pg = pgd_offset(mm, addr);
207 if (pshift >= HUGEPD_PGD_SHIFT) {
208 hpdp = (hugepd_t *)pg;
209 } else {
210 pdshift = PUD_SHIFT;
211 pu = pud_alloc(mm, pg, addr);
212 if (pshift >= HUGEPD_PUD_SHIFT) {
213 hpdp = (hugepd_t *)pu;
214 } else {
215 pdshift = PMD_SHIFT;
216 pm = pmd_alloc(mm, pu, addr);
217 hpdp = (hugepd_t *)pm;
221 if (!hpdp)
222 return NULL;
224 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
226 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
227 return NULL;
229 return hugepte_offset(*hpdp, addr, pdshift);
231 #endif
233 #ifdef CONFIG_PPC_FSL_BOOK3E
234 /* Build list of addresses of gigantic pages. This function is used in early
235 * boot before the buddy allocator is setup.
237 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
239 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
240 int i;
242 if (addr == 0)
243 return;
245 gpage_freearray[idx].nr_gpages = number_of_pages;
247 for (i = 0; i < number_of_pages; i++) {
248 gpage_freearray[idx].gpage_list[i] = addr;
249 addr += page_size;
254 * Moves the gigantic page addresses from the temporary list to the
255 * huge_boot_pages list.
257 int alloc_bootmem_huge_page(struct hstate *hstate)
259 struct huge_bootmem_page *m;
260 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
261 int nr_gpages = gpage_freearray[idx].nr_gpages;
263 if (nr_gpages == 0)
264 return 0;
266 #ifdef CONFIG_HIGHMEM
268 * If gpages can be in highmem we can't use the trick of storing the
269 * data structure in the page; allocate space for this
271 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
272 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
273 #else
274 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
275 #endif
277 list_add(&m->list, &huge_boot_pages);
278 gpage_freearray[idx].nr_gpages = nr_gpages;
279 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
280 m->hstate = hstate;
282 return 1;
285 * Scan the command line hugepagesz= options for gigantic pages; store those in
286 * a list that we use to allocate the memory once all options are parsed.
289 unsigned long gpage_npages[MMU_PAGE_COUNT];
291 static int __init do_gpage_early_setup(char *param, char *val,
292 const char *unused, void *arg)
294 static phys_addr_t size;
295 unsigned long npages;
298 * The hugepagesz and hugepages cmdline options are interleaved. We
299 * use the size variable to keep track of whether or not this was done
300 * properly and skip over instances where it is incorrect. Other
301 * command-line parsing code will issue warnings, so we don't need to.
304 if ((strcmp(param, "default_hugepagesz") == 0) ||
305 (strcmp(param, "hugepagesz") == 0)) {
306 size = memparse(val, NULL);
307 } else if (strcmp(param, "hugepages") == 0) {
308 if (size != 0) {
309 if (sscanf(val, "%lu", &npages) <= 0)
310 npages = 0;
311 if (npages > MAX_NUMBER_GPAGES) {
312 pr_warn("MMU: %lu pages requested for page "
313 "size %llu KB, limiting to "
314 __stringify(MAX_NUMBER_GPAGES) "\n",
315 npages, size / 1024);
316 npages = MAX_NUMBER_GPAGES;
318 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
319 size = 0;
322 return 0;
327 * This function allocates physical space for pages that are larger than the
328 * buddy allocator can handle. We want to allocate these in highmem because
329 * the amount of lowmem is limited. This means that this function MUST be
330 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
331 * allocate to grab highmem.
333 void __init reserve_hugetlb_gpages(void)
335 static __initdata char cmdline[COMMAND_LINE_SIZE];
336 phys_addr_t size, base;
337 int i;
339 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
340 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
341 NULL, &do_gpage_early_setup);
344 * Walk gpage list in reverse, allocating larger page sizes first.
345 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
346 * When we reach the point in the list where pages are no longer
347 * considered gpages, we're done.
349 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
350 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
351 continue;
352 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
353 break;
355 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
356 base = memblock_alloc_base(size * gpage_npages[i], size,
357 MEMBLOCK_ALLOC_ANYWHERE);
358 add_gpage(base, size, gpage_npages[i]);
362 #else /* !PPC_FSL_BOOK3E */
364 /* Build list of addresses of gigantic pages. This function is used in early
365 * boot before the buddy allocator is setup.
367 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
369 if (!addr)
370 return;
371 while (number_of_pages > 0) {
372 gpage_freearray[nr_gpages] = addr;
373 nr_gpages++;
374 number_of_pages--;
375 addr += page_size;
379 /* Moves the gigantic page addresses from the temporary list to the
380 * huge_boot_pages list.
382 int alloc_bootmem_huge_page(struct hstate *hstate)
384 struct huge_bootmem_page *m;
385 if (nr_gpages == 0)
386 return 0;
387 m = phys_to_virt(gpage_freearray[--nr_gpages]);
388 gpage_freearray[nr_gpages] = 0;
389 list_add(&m->list, &huge_boot_pages);
390 m->hstate = hstate;
391 return 1;
393 #endif
395 #ifdef CONFIG_PPC_FSL_BOOK3E
396 #define HUGEPD_FREELIST_SIZE \
397 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
399 struct hugepd_freelist {
400 struct rcu_head rcu;
401 unsigned int index;
402 void *ptes[0];
405 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
407 static void hugepd_free_rcu_callback(struct rcu_head *head)
409 struct hugepd_freelist *batch =
410 container_of(head, struct hugepd_freelist, rcu);
411 unsigned int i;
413 for (i = 0; i < batch->index; i++)
414 kmem_cache_free(hugepte_cache, batch->ptes[i]);
416 free_page((unsigned long)batch);
419 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
421 struct hugepd_freelist **batchp;
423 batchp = &get_cpu_var(hugepd_freelist_cur);
425 if (atomic_read(&tlb->mm->mm_users) < 2 ||
426 cpumask_equal(mm_cpumask(tlb->mm),
427 cpumask_of(smp_processor_id()))) {
428 kmem_cache_free(hugepte_cache, hugepte);
429 put_cpu_var(hugepd_freelist_cur);
430 return;
433 if (*batchp == NULL) {
434 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
435 (*batchp)->index = 0;
438 (*batchp)->ptes[(*batchp)->index++] = hugepte;
439 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
440 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
441 *batchp = NULL;
443 put_cpu_var(hugepd_freelist_cur);
445 #endif
447 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
448 unsigned long start, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
451 pte_t *hugepte = hugepd_page(*hpdp);
452 int i;
454 unsigned long pdmask = ~((1UL << pdshift) - 1);
455 unsigned int num_hugepd = 1;
457 #ifdef CONFIG_PPC_FSL_BOOK3E
458 /* Note: On fsl the hpdp may be the first of several */
459 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
460 #else
461 unsigned int shift = hugepd_shift(*hpdp);
462 #endif
464 start &= pdmask;
465 if (start < floor)
466 return;
467 if (ceiling) {
468 ceiling &= pdmask;
469 if (! ceiling)
470 return;
472 if (end - 1 > ceiling - 1)
473 return;
475 for (i = 0; i < num_hugepd; i++, hpdp++)
476 hpdp->pd = 0;
478 #ifdef CONFIG_PPC_FSL_BOOK3E
479 hugepd_free(tlb, hugepte);
480 #else
481 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
482 #endif
485 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
486 unsigned long addr, unsigned long end,
487 unsigned long floor, unsigned long ceiling)
489 pmd_t *pmd;
490 unsigned long next;
491 unsigned long start;
493 start = addr;
494 do {
495 pmd = pmd_offset(pud, addr);
496 next = pmd_addr_end(addr, end);
497 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
499 * if it is not hugepd pointer, we should already find
500 * it cleared.
502 WARN_ON(!pmd_none_or_clear_bad(pmd));
503 continue;
505 #ifdef CONFIG_PPC_FSL_BOOK3E
507 * Increment next by the size of the huge mapping since
508 * there may be more than one entry at this level for a
509 * single hugepage, but all of them point to
510 * the same kmem cache that holds the hugepte.
512 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
513 #endif
514 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
515 addr, next, floor, ceiling);
516 } while (addr = next, addr != end);
518 start &= PUD_MASK;
519 if (start < floor)
520 return;
521 if (ceiling) {
522 ceiling &= PUD_MASK;
523 if (!ceiling)
524 return;
526 if (end - 1 > ceiling - 1)
527 return;
529 pmd = pmd_offset(pud, start);
530 pud_clear(pud);
531 pmd_free_tlb(tlb, pmd, start);
532 mm_dec_nr_pmds(tlb->mm);
535 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
536 unsigned long addr, unsigned long end,
537 unsigned long floor, unsigned long ceiling)
539 pud_t *pud;
540 unsigned long next;
541 unsigned long start;
543 start = addr;
544 do {
545 pud = pud_offset(pgd, addr);
546 next = pud_addr_end(addr, end);
547 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
548 if (pud_none_or_clear_bad(pud))
549 continue;
550 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
551 ceiling);
552 } else {
553 #ifdef CONFIG_PPC_FSL_BOOK3E
555 * Increment next by the size of the huge mapping since
556 * there may be more than one entry at this level for a
557 * single hugepage, but all of them point to
558 * the same kmem cache that holds the hugepte.
560 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
561 #endif
562 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
563 addr, next, floor, ceiling);
565 } while (addr = next, addr != end);
567 start &= PGDIR_MASK;
568 if (start < floor)
569 return;
570 if (ceiling) {
571 ceiling &= PGDIR_MASK;
572 if (!ceiling)
573 return;
575 if (end - 1 > ceiling - 1)
576 return;
578 pud = pud_offset(pgd, start);
579 pgd_clear(pgd);
580 pud_free_tlb(tlb, pud, start);
584 * This function frees user-level page tables of a process.
586 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
587 unsigned long addr, unsigned long end,
588 unsigned long floor, unsigned long ceiling)
590 pgd_t *pgd;
591 unsigned long next;
594 * Because there are a number of different possible pagetable
595 * layouts for hugepage ranges, we limit knowledge of how
596 * things should be laid out to the allocation path
597 * (huge_pte_alloc(), above). Everything else works out the
598 * structure as it goes from information in the hugepd
599 * pointers. That means that we can't here use the
600 * optimization used in the normal page free_pgd_range(), of
601 * checking whether we're actually covering a large enough
602 * range to have to do anything at the top level of the walk
603 * instead of at the bottom.
605 * To make sense of this, you should probably go read the big
606 * block comment at the top of the normal free_pgd_range(),
607 * too.
610 do {
611 next = pgd_addr_end(addr, end);
612 pgd = pgd_offset(tlb->mm, addr);
613 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
614 if (pgd_none_or_clear_bad(pgd))
615 continue;
616 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
617 } else {
618 #ifdef CONFIG_PPC_FSL_BOOK3E
620 * Increment next by the size of the huge mapping since
621 * there may be more than one entry at the pgd level
622 * for a single hugepage, but all of them point to the
623 * same kmem cache that holds the hugepte.
625 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
626 #endif
627 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
628 addr, next, floor, ceiling);
630 } while (addr = next, addr != end);
634 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
635 * To prevent hugepage split, disable irq.
637 struct page *
638 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
640 bool is_thp;
641 pte_t *ptep, pte;
642 unsigned shift;
643 unsigned long mask, flags;
644 struct page *page = ERR_PTR(-EINVAL);
646 local_irq_save(flags);
647 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
648 if (!ptep)
649 goto no_page;
650 pte = READ_ONCE(*ptep);
652 * Verify it is a huge page else bail.
653 * Transparent hugepages are handled by generic code. We can skip them
654 * here.
656 if (!shift || is_thp)
657 goto no_page;
659 if (!pte_present(pte)) {
660 page = NULL;
661 goto no_page;
663 mask = (1UL << shift) - 1;
664 page = pte_page(pte);
665 if (page)
666 page += (address & mask) / PAGE_SIZE;
668 no_page:
669 local_irq_restore(flags);
670 return page;
673 struct page *
674 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
675 pmd_t *pmd, int write)
677 BUG();
678 return NULL;
681 struct page *
682 follow_huge_pud(struct mm_struct *mm, unsigned long address,
683 pud_t *pud, int write)
685 BUG();
686 return NULL;
689 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
690 unsigned long sz)
692 unsigned long __boundary = (addr + sz) & ~(sz-1);
693 return (__boundary - 1 < end - 1) ? __boundary : end;
696 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
697 unsigned long end, int write, struct page **pages, int *nr)
699 pte_t *ptep;
700 unsigned long sz = 1UL << hugepd_shift(hugepd);
701 unsigned long next;
703 ptep = hugepte_offset(hugepd, addr, pdshift);
704 do {
705 next = hugepte_addr_end(addr, end, sz);
706 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
707 return 0;
708 } while (ptep++, addr = next, addr != end);
710 return 1;
713 #ifdef CONFIG_PPC_MM_SLICES
714 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
715 unsigned long len, unsigned long pgoff,
716 unsigned long flags)
718 struct hstate *hstate = hstate_file(file);
719 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
721 if (radix_enabled())
722 return radix__hugetlb_get_unmapped_area(file, addr, len,
723 pgoff, flags);
724 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
726 #endif
728 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
730 #ifdef CONFIG_PPC_MM_SLICES
731 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
732 /* With radix we don't use slice, so derive it from vma*/
733 if (!radix_enabled())
734 return 1UL << mmu_psize_to_shift(psize);
735 #endif
736 if (!is_vm_hugetlb_page(vma))
737 return PAGE_SIZE;
739 return huge_page_size(hstate_vma(vma));
742 static inline bool is_power_of_4(unsigned long x)
744 if (is_power_of_2(x))
745 return (__ilog2(x) % 2) ? false : true;
746 return false;
749 static int __init add_huge_page_size(unsigned long long size)
751 int shift = __ffs(size);
752 int mmu_psize;
754 /* Check that it is a page size supported by the hardware and
755 * that it fits within pagetable and slice limits. */
756 #ifdef CONFIG_PPC_FSL_BOOK3E
757 if ((size < PAGE_SIZE) || !is_power_of_4(size))
758 return -EINVAL;
759 #else
760 if (!is_power_of_2(size)
761 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
762 return -EINVAL;
763 #endif
765 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
766 return -EINVAL;
768 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
770 /* Return if huge page size has already been setup */
771 if (size_to_hstate(size))
772 return 0;
774 hugetlb_add_hstate(shift - PAGE_SHIFT);
776 return 0;
779 static int __init hugepage_setup_sz(char *str)
781 unsigned long long size;
783 size = memparse(str, &str);
785 if (add_huge_page_size(size) != 0) {
786 hugetlb_bad_size();
787 pr_err("Invalid huge page size specified(%llu)\n", size);
790 return 1;
792 __setup("hugepagesz=", hugepage_setup_sz);
794 #ifdef CONFIG_PPC_FSL_BOOK3E
795 struct kmem_cache *hugepte_cache;
796 static int __init hugetlbpage_init(void)
798 int psize;
800 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
801 unsigned shift;
803 if (!mmu_psize_defs[psize].shift)
804 continue;
806 shift = mmu_psize_to_shift(psize);
808 /* Don't treat normal page sizes as huge... */
809 if (shift != PAGE_SHIFT)
810 if (add_huge_page_size(1ULL << shift) < 0)
811 continue;
815 * Create a kmem cache for hugeptes. The bottom bits in the pte have
816 * size information encoded in them, so align them to allow this
818 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
819 HUGEPD_SHIFT_MASK + 1, 0, NULL);
820 if (hugepte_cache == NULL)
821 panic("%s: Unable to create kmem cache for hugeptes\n",
822 __func__);
824 /* Default hpage size = 4M */
825 if (mmu_psize_defs[MMU_PAGE_4M].shift)
826 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
827 else
828 panic("%s: Unable to set default huge page size\n", __func__);
831 return 0;
833 #else
834 static int __init hugetlbpage_init(void)
836 int psize;
838 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
839 return -ENODEV;
841 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
842 unsigned shift;
843 unsigned pdshift;
845 if (!mmu_psize_defs[psize].shift)
846 continue;
848 shift = mmu_psize_to_shift(psize);
850 if (add_huge_page_size(1ULL << shift) < 0)
851 continue;
853 if (shift < PMD_SHIFT)
854 pdshift = PMD_SHIFT;
855 else if (shift < PUD_SHIFT)
856 pdshift = PUD_SHIFT;
857 else
858 pdshift = PGDIR_SHIFT;
860 * if we have pdshift and shift value same, we don't
861 * use pgt cache for hugepd.
863 if (pdshift != shift) {
864 pgtable_cache_add(pdshift - shift, NULL);
865 if (!PGT_CACHE(pdshift - shift))
866 panic("hugetlbpage_init(): could not create "
867 "pgtable cache for %d bit pagesize\n", shift);
871 /* Set default large page size. Currently, we pick 16M or 1M
872 * depending on what is available
874 if (mmu_psize_defs[MMU_PAGE_16M].shift)
875 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
876 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
877 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
878 else if (mmu_psize_defs[MMU_PAGE_2M].shift)
879 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
882 return 0;
884 #endif
885 arch_initcall(hugetlbpage_init);
887 void flush_dcache_icache_hugepage(struct page *page)
889 int i;
890 void *start;
892 BUG_ON(!PageCompound(page));
894 for (i = 0; i < (1UL << compound_order(page)); i++) {
895 if (!PageHighMem(page)) {
896 __flush_dcache_icache(page_address(page+i));
897 } else {
898 start = kmap_atomic(page+i);
899 __flush_dcache_icache(start);
900 kunmap_atomic(start);
905 #endif /* CONFIG_HUGETLB_PAGE */
908 * We have 4 cases for pgds and pmds:
909 * (1) invalid (all zeroes)
910 * (2) pointer to next table, as normal; bottom 6 bits == 0
911 * (3) leaf pte for huge page _PAGE_PTE set
912 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
914 * So long as we atomically load page table pointers we are safe against teardown,
915 * we can follow the address down to the the page and take a ref on it.
916 * This function need to be called with interrupts disabled. We use this variant
917 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
920 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
921 bool *is_thp, unsigned *shift)
923 pgd_t pgd, *pgdp;
924 pud_t pud, *pudp;
925 pmd_t pmd, *pmdp;
926 pte_t *ret_pte;
927 hugepd_t *hpdp = NULL;
928 unsigned pdshift = PGDIR_SHIFT;
930 if (shift)
931 *shift = 0;
933 if (is_thp)
934 *is_thp = false;
936 pgdp = pgdir + pgd_index(ea);
937 pgd = READ_ONCE(*pgdp);
939 * Always operate on the local stack value. This make sure the
940 * value don't get updated by a parallel THP split/collapse,
941 * page fault or a page unmap. The return pte_t * is still not
942 * stable. So should be checked there for above conditions.
944 if (pgd_none(pgd))
945 return NULL;
946 else if (pgd_huge(pgd)) {
947 ret_pte = (pte_t *) pgdp;
948 goto out;
949 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
950 hpdp = (hugepd_t *)&pgd;
951 else {
953 * Even if we end up with an unmap, the pgtable will not
954 * be freed, because we do an rcu free and here we are
955 * irq disabled
957 pdshift = PUD_SHIFT;
958 pudp = pud_offset(&pgd, ea);
959 pud = READ_ONCE(*pudp);
961 if (pud_none(pud))
962 return NULL;
963 else if (pud_huge(pud)) {
964 ret_pte = (pte_t *) pudp;
965 goto out;
966 } else if (is_hugepd(__hugepd(pud_val(pud))))
967 hpdp = (hugepd_t *)&pud;
968 else {
969 pdshift = PMD_SHIFT;
970 pmdp = pmd_offset(&pud, ea);
971 pmd = READ_ONCE(*pmdp);
973 * A hugepage collapse is captured by pmd_none, because
974 * it mark the pmd none and do a hpte invalidate.
976 if (pmd_none(pmd))
977 return NULL;
979 if (pmd_trans_huge(pmd)) {
980 if (is_thp)
981 *is_thp = true;
982 ret_pte = (pte_t *) pmdp;
983 goto out;
986 if (pmd_huge(pmd)) {
987 ret_pte = (pte_t *) pmdp;
988 goto out;
989 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
990 hpdp = (hugepd_t *)&pmd;
991 else
992 return pte_offset_kernel(&pmd, ea);
995 if (!hpdp)
996 return NULL;
998 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
999 pdshift = hugepd_shift(*hpdp);
1000 out:
1001 if (shift)
1002 *shift = pdshift;
1003 return ret_pte;
1005 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1007 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1008 unsigned long end, int write, struct page **pages, int *nr)
1010 unsigned long mask;
1011 unsigned long pte_end;
1012 struct page *head, *page;
1013 pte_t pte;
1014 int refs;
1016 pte_end = (addr + sz) & ~(sz-1);
1017 if (pte_end < end)
1018 end = pte_end;
1020 pte = READ_ONCE(*ptep);
1021 mask = _PAGE_PRESENT | _PAGE_READ;
1024 * On some CPUs like the 8xx, _PAGE_RW hence _PAGE_WRITE is defined
1025 * as 0 and _PAGE_RO has to be set when a page is not writable
1027 if (write)
1028 mask |= _PAGE_WRITE;
1029 else
1030 mask |= _PAGE_RO;
1032 if ((pte_val(pte) & mask) != mask)
1033 return 0;
1035 /* hugepages are never "special" */
1036 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1038 refs = 0;
1039 head = pte_page(pte);
1041 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1042 do {
1043 VM_BUG_ON(compound_head(page) != head);
1044 pages[*nr] = page;
1045 (*nr)++;
1046 page++;
1047 refs++;
1048 } while (addr += PAGE_SIZE, addr != end);
1050 if (!page_cache_add_speculative(head, refs)) {
1051 *nr -= refs;
1052 return 0;
1055 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1056 /* Could be optimized better */
1057 *nr -= refs;
1058 while (refs--)
1059 put_page(head);
1060 return 0;
1063 return 1;