fix O_SYNC|O_APPEND syncing the wrong range on write()
[linux/fpc-iii.git] / fs / xfs / xfs_log.c
blob8497a00e399d0ba5960117c977376ae4a23cbbb3
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
38 kmem_zone_t *xfs_log_ticket_zone;
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 char *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
147 do {
148 int cycle, space;
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
173 do {
174 int tmp;
175 int cycle, space;
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
206 struct xlog_ticket *tic;
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
237 struct xlog_ticket *tic;
238 int need_bytes;
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
250 return true;
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
261 list_add_tail(&tic->t_queue, &head->waiters);
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
271 XFS_STATS_INC(xs_sleep_logspace);
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return XFS_ERROR(EIO);
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
313 int free_bytes;
314 int error = 0;
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
340 return error;
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
368 * Replenish the byte reservation required by moving the grant write head.
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return XFS_ERROR(EIO);
382 XFS_STATS_INC(xs_try_logspace);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
390 tic->t_tid++;
392 xlog_grant_push_ail(log, tic->t_unit_res);
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
397 if (tic->t_cnt > 0)
398 return 0;
400 trace_xfs_log_regrant(log, tic);
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
412 out_error:
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return XFS_ERROR(EIO);
451 XFS_STATS_INC(xs_try_logspace);
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return XFS_ERROR(ENOMEM);
459 tic->t_trans_type = t_type;
460 *ticp = tic;
462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 : tic->t_unit_res);
465 trace_xfs_log_reserve(log, tic);
467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 &need_bytes);
469 if (error)
470 goto out_error;
472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 trace_xfs_log_reserve_exit(log, tic);
475 xlog_verify_grant_tail(log);
476 return 0;
478 out_error:
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
484 tic->t_curr_res = 0;
485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486 return error;
491 * NOTES:
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
511 xfs_lsn_t
512 xfs_log_done(
513 struct xfs_mount *mp,
514 struct xlog_ticket *ticket,
515 struct xlog_in_core **iclog,
516 uint flags)
518 struct xlog *log = mp->m_log;
519 xfs_lsn_t lsn = 0;
521 if (XLOG_FORCED_SHUTDOWN(log) ||
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 lsn = (xfs_lsn_t) -1;
529 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530 flags |= XFS_LOG_REL_PERM_RESERV;
535 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536 (flags & XFS_LOG_REL_PERM_RESERV)) {
537 trace_xfs_log_done_nonperm(log, ticket);
540 * Release ticket if not permanent reservation or a specific
541 * request has been made to release a permanent reservation.
543 xlog_ungrant_log_space(log, ticket);
544 xfs_log_ticket_put(ticket);
545 } else {
546 trace_xfs_log_done_perm(log, ticket);
548 xlog_regrant_reserve_log_space(log, ticket);
549 /* If this ticket was a permanent reservation and we aren't
550 * trying to release it, reset the inited flags; so next time
551 * we write, a start record will be written out.
553 ticket->t_flags |= XLOG_TIC_INITED;
556 return lsn;
560 * Attaches a new iclog I/O completion callback routine during
561 * transaction commit. If the log is in error state, a non-zero
562 * return code is handed back and the caller is responsible for
563 * executing the callback at an appropriate time.
566 xfs_log_notify(
567 struct xfs_mount *mp,
568 struct xlog_in_core *iclog,
569 xfs_log_callback_t *cb)
571 int abortflg;
573 spin_lock(&iclog->ic_callback_lock);
574 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575 if (!abortflg) {
576 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578 cb->cb_next = NULL;
579 *(iclog->ic_callback_tail) = cb;
580 iclog->ic_callback_tail = &(cb->cb_next);
582 spin_unlock(&iclog->ic_callback_lock);
583 return abortflg;
587 xfs_log_release_iclog(
588 struct xfs_mount *mp,
589 struct xlog_in_core *iclog)
591 if (xlog_state_release_iclog(mp->m_log, iclog)) {
592 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593 return EIO;
596 return 0;
600 * Mount a log filesystem
602 * mp - ubiquitous xfs mount point structure
603 * log_target - buftarg of on-disk log device
604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
605 * num_bblocks - Number of BBSIZE blocks in on-disk log
607 * Return error or zero.
610 xfs_log_mount(
611 xfs_mount_t *mp,
612 xfs_buftarg_t *log_target,
613 xfs_daddr_t blk_offset,
614 int num_bblks)
616 int error = 0;
617 int min_logfsbs;
619 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
620 xfs_notice(mp, "Mounting Filesystem");
621 else {
622 xfs_notice(mp,
623 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
624 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
627 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
628 if (IS_ERR(mp->m_log)) {
629 error = -PTR_ERR(mp->m_log);
630 goto out;
634 * Validate the given log space and drop a critical message via syslog
635 * if the log size is too small that would lead to some unexpected
636 * situations in transaction log space reservation stage.
638 * Note: we can't just reject the mount if the validation fails. This
639 * would mean that people would have to downgrade their kernel just to
640 * remedy the situation as there is no way to grow the log (short of
641 * black magic surgery with xfs_db).
643 * We can, however, reject mounts for CRC format filesystems, as the
644 * mkfs binary being used to make the filesystem should never create a
645 * filesystem with a log that is too small.
647 min_logfsbs = xfs_log_calc_minimum_size(mp);
649 if (mp->m_sb.sb_logblocks < min_logfsbs) {
650 xfs_warn(mp,
651 "Log size %d blocks too small, minimum size is %d blocks",
652 mp->m_sb.sb_logblocks, min_logfsbs);
653 error = EINVAL;
654 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
655 xfs_warn(mp,
656 "Log size %d blocks too large, maximum size is %lld blocks",
657 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
658 error = EINVAL;
659 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
660 xfs_warn(mp,
661 "log size %lld bytes too large, maximum size is %lld bytes",
662 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
663 XFS_MAX_LOG_BYTES);
664 error = EINVAL;
666 if (error) {
667 if (xfs_sb_version_hascrc(&mp->m_sb)) {
668 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
669 ASSERT(0);
670 goto out_free_log;
672 xfs_crit(mp,
673 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
674 "experienced then please report this message in the bug report.");
678 * Initialize the AIL now we have a log.
680 error = xfs_trans_ail_init(mp);
681 if (error) {
682 xfs_warn(mp, "AIL initialisation failed: error %d", error);
683 goto out_free_log;
685 mp->m_log->l_ailp = mp->m_ail;
688 * skip log recovery on a norecovery mount. pretend it all
689 * just worked.
691 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
692 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
694 if (readonly)
695 mp->m_flags &= ~XFS_MOUNT_RDONLY;
697 error = xlog_recover(mp->m_log);
699 if (readonly)
700 mp->m_flags |= XFS_MOUNT_RDONLY;
701 if (error) {
702 xfs_warn(mp, "log mount/recovery failed: error %d",
703 error);
704 goto out_destroy_ail;
708 /* Normal transactions can now occur */
709 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
712 * Now the log has been fully initialised and we know were our
713 * space grant counters are, we can initialise the permanent ticket
714 * needed for delayed logging to work.
716 xlog_cil_init_post_recovery(mp->m_log);
718 return 0;
720 out_destroy_ail:
721 xfs_trans_ail_destroy(mp);
722 out_free_log:
723 xlog_dealloc_log(mp->m_log);
724 out:
725 return error;
729 * Finish the recovery of the file system. This is separate from the
730 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
731 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
732 * here.
734 * If we finish recovery successfully, start the background log work. If we are
735 * not doing recovery, then we have a RO filesystem and we don't need to start
736 * it.
739 xfs_log_mount_finish(xfs_mount_t *mp)
741 int error = 0;
743 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
744 error = xlog_recover_finish(mp->m_log);
745 if (!error)
746 xfs_log_work_queue(mp);
747 } else {
748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
752 return error;
756 * Final log writes as part of unmount.
758 * Mark the filesystem clean as unmount happens. Note that during relocation
759 * this routine needs to be executed as part of source-bag while the
760 * deallocation must not be done until source-end.
764 * Unmount record used to have a string "Unmount filesystem--" in the
765 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
766 * We just write the magic number now since that particular field isn't
767 * currently architecture converted and "Unmount" is a bit foo.
768 * As far as I know, there weren't any dependencies on the old behaviour.
772 xfs_log_unmount_write(xfs_mount_t *mp)
774 struct xlog *log = mp->m_log;
775 xlog_in_core_t *iclog;
776 #ifdef DEBUG
777 xlog_in_core_t *first_iclog;
778 #endif
779 xlog_ticket_t *tic = NULL;
780 xfs_lsn_t lsn;
781 int error;
784 * Don't write out unmount record on read-only mounts.
785 * Or, if we are doing a forced umount (typically because of IO errors).
787 if (mp->m_flags & XFS_MOUNT_RDONLY)
788 return 0;
790 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
791 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
793 #ifdef DEBUG
794 first_iclog = iclog = log->l_iclog;
795 do {
796 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
797 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
798 ASSERT(iclog->ic_offset == 0);
800 iclog = iclog->ic_next;
801 } while (iclog != first_iclog);
802 #endif
803 if (! (XLOG_FORCED_SHUTDOWN(log))) {
804 error = xfs_log_reserve(mp, 600, 1, &tic,
805 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
806 if (!error) {
807 /* the data section must be 32 bit size aligned */
808 struct {
809 __uint16_t magic;
810 __uint16_t pad1;
811 __uint32_t pad2; /* may as well make it 64 bits */
812 } magic = {
813 .magic = XLOG_UNMOUNT_TYPE,
815 struct xfs_log_iovec reg = {
816 .i_addr = &magic,
817 .i_len = sizeof(magic),
818 .i_type = XLOG_REG_TYPE_UNMOUNT,
820 struct xfs_log_vec vec = {
821 .lv_niovecs = 1,
822 .lv_iovecp = &reg,
825 /* remove inited flag, and account for space used */
826 tic->t_flags = 0;
827 tic->t_curr_res -= sizeof(magic);
828 error = xlog_write(log, &vec, tic, &lsn,
829 NULL, XLOG_UNMOUNT_TRANS);
831 * At this point, we're umounting anyway,
832 * so there's no point in transitioning log state
833 * to IOERROR. Just continue...
837 if (error)
838 xfs_alert(mp, "%s: unmount record failed", __func__);
841 spin_lock(&log->l_icloglock);
842 iclog = log->l_iclog;
843 atomic_inc(&iclog->ic_refcnt);
844 xlog_state_want_sync(log, iclog);
845 spin_unlock(&log->l_icloglock);
846 error = xlog_state_release_iclog(log, iclog);
848 spin_lock(&log->l_icloglock);
849 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
850 iclog->ic_state == XLOG_STATE_DIRTY)) {
851 if (!XLOG_FORCED_SHUTDOWN(log)) {
852 xlog_wait(&iclog->ic_force_wait,
853 &log->l_icloglock);
854 } else {
855 spin_unlock(&log->l_icloglock);
857 } else {
858 spin_unlock(&log->l_icloglock);
860 if (tic) {
861 trace_xfs_log_umount_write(log, tic);
862 xlog_ungrant_log_space(log, tic);
863 xfs_log_ticket_put(tic);
865 } else {
867 * We're already in forced_shutdown mode, couldn't
868 * even attempt to write out the unmount transaction.
870 * Go through the motions of sync'ing and releasing
871 * the iclog, even though no I/O will actually happen,
872 * we need to wait for other log I/Os that may already
873 * be in progress. Do this as a separate section of
874 * code so we'll know if we ever get stuck here that
875 * we're in this odd situation of trying to unmount
876 * a file system that went into forced_shutdown as
877 * the result of an unmount..
879 spin_lock(&log->l_icloglock);
880 iclog = log->l_iclog;
881 atomic_inc(&iclog->ic_refcnt);
883 xlog_state_want_sync(log, iclog);
884 spin_unlock(&log->l_icloglock);
885 error = xlog_state_release_iclog(log, iclog);
887 spin_lock(&log->l_icloglock);
889 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
890 || iclog->ic_state == XLOG_STATE_DIRTY
891 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
893 xlog_wait(&iclog->ic_force_wait,
894 &log->l_icloglock);
895 } else {
896 spin_unlock(&log->l_icloglock);
900 return error;
901 } /* xfs_log_unmount_write */
904 * Empty the log for unmount/freeze.
906 * To do this, we first need to shut down the background log work so it is not
907 * trying to cover the log as we clean up. We then need to unpin all objects in
908 * the log so we can then flush them out. Once they have completed their IO and
909 * run the callbacks removing themselves from the AIL, we can write the unmount
910 * record.
912 void
913 xfs_log_quiesce(
914 struct xfs_mount *mp)
916 cancel_delayed_work_sync(&mp->m_log->l_work);
917 xfs_log_force(mp, XFS_LOG_SYNC);
920 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
921 * will push it, xfs_wait_buftarg() will not wait for it. Further,
922 * xfs_buf_iowait() cannot be used because it was pushed with the
923 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
924 * the IO to complete.
926 xfs_ail_push_all_sync(mp->m_ail);
927 xfs_wait_buftarg(mp->m_ddev_targp);
928 xfs_buf_lock(mp->m_sb_bp);
929 xfs_buf_unlock(mp->m_sb_bp);
931 xfs_log_unmount_write(mp);
935 * Shut down and release the AIL and Log.
937 * During unmount, we need to ensure we flush all the dirty metadata objects
938 * from the AIL so that the log is empty before we write the unmount record to
939 * the log. Once this is done, we can tear down the AIL and the log.
941 void
942 xfs_log_unmount(
943 struct xfs_mount *mp)
945 xfs_log_quiesce(mp);
947 xfs_trans_ail_destroy(mp);
948 xlog_dealloc_log(mp->m_log);
951 void
952 xfs_log_item_init(
953 struct xfs_mount *mp,
954 struct xfs_log_item *item,
955 int type,
956 const struct xfs_item_ops *ops)
958 item->li_mountp = mp;
959 item->li_ailp = mp->m_ail;
960 item->li_type = type;
961 item->li_ops = ops;
962 item->li_lv = NULL;
964 INIT_LIST_HEAD(&item->li_ail);
965 INIT_LIST_HEAD(&item->li_cil);
969 * Wake up processes waiting for log space after we have moved the log tail.
971 void
972 xfs_log_space_wake(
973 struct xfs_mount *mp)
975 struct xlog *log = mp->m_log;
976 int free_bytes;
978 if (XLOG_FORCED_SHUTDOWN(log))
979 return;
981 if (!list_empty_careful(&log->l_write_head.waiters)) {
982 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
984 spin_lock(&log->l_write_head.lock);
985 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
986 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
987 spin_unlock(&log->l_write_head.lock);
990 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
991 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
993 spin_lock(&log->l_reserve_head.lock);
994 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
995 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
996 spin_unlock(&log->l_reserve_head.lock);
1001 * Determine if we have a transaction that has gone to disk that needs to be
1002 * covered. To begin the transition to the idle state firstly the log needs to
1003 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1004 * we start attempting to cover the log.
1006 * Only if we are then in a state where covering is needed, the caller is
1007 * informed that dummy transactions are required to move the log into the idle
1008 * state.
1010 * If there are any items in the AIl or CIL, then we do not want to attempt to
1011 * cover the log as we may be in a situation where there isn't log space
1012 * available to run a dummy transaction and this can lead to deadlocks when the
1013 * tail of the log is pinned by an item that is modified in the CIL. Hence
1014 * there's no point in running a dummy transaction at this point because we
1015 * can't start trying to idle the log until both the CIL and AIL are empty.
1018 xfs_log_need_covered(xfs_mount_t *mp)
1020 struct xlog *log = mp->m_log;
1021 int needed = 0;
1023 if (!xfs_fs_writable(mp))
1024 return 0;
1026 if (!xlog_cil_empty(log))
1027 return 0;
1029 spin_lock(&log->l_icloglock);
1030 switch (log->l_covered_state) {
1031 case XLOG_STATE_COVER_DONE:
1032 case XLOG_STATE_COVER_DONE2:
1033 case XLOG_STATE_COVER_IDLE:
1034 break;
1035 case XLOG_STATE_COVER_NEED:
1036 case XLOG_STATE_COVER_NEED2:
1037 if (xfs_ail_min_lsn(log->l_ailp))
1038 break;
1039 if (!xlog_iclogs_empty(log))
1040 break;
1042 needed = 1;
1043 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1044 log->l_covered_state = XLOG_STATE_COVER_DONE;
1045 else
1046 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1047 break;
1048 default:
1049 needed = 1;
1050 break;
1052 spin_unlock(&log->l_icloglock);
1053 return needed;
1057 * We may be holding the log iclog lock upon entering this routine.
1059 xfs_lsn_t
1060 xlog_assign_tail_lsn_locked(
1061 struct xfs_mount *mp)
1063 struct xlog *log = mp->m_log;
1064 struct xfs_log_item *lip;
1065 xfs_lsn_t tail_lsn;
1067 assert_spin_locked(&mp->m_ail->xa_lock);
1070 * To make sure we always have a valid LSN for the log tail we keep
1071 * track of the last LSN which was committed in log->l_last_sync_lsn,
1072 * and use that when the AIL was empty.
1074 lip = xfs_ail_min(mp->m_ail);
1075 if (lip)
1076 tail_lsn = lip->li_lsn;
1077 else
1078 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1079 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1080 atomic64_set(&log->l_tail_lsn, tail_lsn);
1081 return tail_lsn;
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn(
1086 struct xfs_mount *mp)
1088 xfs_lsn_t tail_lsn;
1090 spin_lock(&mp->m_ail->xa_lock);
1091 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1092 spin_unlock(&mp->m_ail->xa_lock);
1094 return tail_lsn;
1098 * Return the space in the log between the tail and the head. The head
1099 * is passed in the cycle/bytes formal parms. In the special case where
1100 * the reserve head has wrapped passed the tail, this calculation is no
1101 * longer valid. In this case, just return 0 which means there is no space
1102 * in the log. This works for all places where this function is called
1103 * with the reserve head. Of course, if the write head were to ever
1104 * wrap the tail, we should blow up. Rather than catch this case here,
1105 * we depend on other ASSERTions in other parts of the code. XXXmiken
1107 * This code also handles the case where the reservation head is behind
1108 * the tail. The details of this case are described below, but the end
1109 * result is that we return the size of the log as the amount of space left.
1111 STATIC int
1112 xlog_space_left(
1113 struct xlog *log,
1114 atomic64_t *head)
1116 int free_bytes;
1117 int tail_bytes;
1118 int tail_cycle;
1119 int head_cycle;
1120 int head_bytes;
1122 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1123 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1124 tail_bytes = BBTOB(tail_bytes);
1125 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1126 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1127 else if (tail_cycle + 1 < head_cycle)
1128 return 0;
1129 else if (tail_cycle < head_cycle) {
1130 ASSERT(tail_cycle == (head_cycle - 1));
1131 free_bytes = tail_bytes - head_bytes;
1132 } else {
1134 * The reservation head is behind the tail.
1135 * In this case we just want to return the size of the
1136 * log as the amount of space left.
1138 xfs_alert(log->l_mp,
1139 "xlog_space_left: head behind tail\n"
1140 " tail_cycle = %d, tail_bytes = %d\n"
1141 " GH cycle = %d, GH bytes = %d",
1142 tail_cycle, tail_bytes, head_cycle, head_bytes);
1143 ASSERT(0);
1144 free_bytes = log->l_logsize;
1146 return free_bytes;
1151 * Log function which is called when an io completes.
1153 * The log manager needs its own routine, in order to control what
1154 * happens with the buffer after the write completes.
1156 void
1157 xlog_iodone(xfs_buf_t *bp)
1159 struct xlog_in_core *iclog = bp->b_fspriv;
1160 struct xlog *l = iclog->ic_log;
1161 int aborted = 0;
1164 * Race to shutdown the filesystem if we see an error.
1166 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1167 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1168 xfs_buf_ioerror_alert(bp, __func__);
1169 xfs_buf_stale(bp);
1170 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1172 * This flag will be propagated to the trans-committed
1173 * callback routines to let them know that the log-commit
1174 * didn't succeed.
1176 aborted = XFS_LI_ABORTED;
1177 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1178 aborted = XFS_LI_ABORTED;
1181 /* log I/O is always issued ASYNC */
1182 ASSERT(XFS_BUF_ISASYNC(bp));
1183 xlog_state_done_syncing(iclog, aborted);
1185 * do not reference the buffer (bp) here as we could race
1186 * with it being freed after writing the unmount record to the
1187 * log.
1192 * Return size of each in-core log record buffer.
1194 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1196 * If the filesystem blocksize is too large, we may need to choose a
1197 * larger size since the directory code currently logs entire blocks.
1200 STATIC void
1201 xlog_get_iclog_buffer_size(
1202 struct xfs_mount *mp,
1203 struct xlog *log)
1205 int size;
1206 int xhdrs;
1208 if (mp->m_logbufs <= 0)
1209 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1210 else
1211 log->l_iclog_bufs = mp->m_logbufs;
1214 * Buffer size passed in from mount system call.
1216 if (mp->m_logbsize > 0) {
1217 size = log->l_iclog_size = mp->m_logbsize;
1218 log->l_iclog_size_log = 0;
1219 while (size != 1) {
1220 log->l_iclog_size_log++;
1221 size >>= 1;
1224 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1225 /* # headers = size / 32k
1226 * one header holds cycles from 32k of data
1229 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1230 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1231 xhdrs++;
1232 log->l_iclog_hsize = xhdrs << BBSHIFT;
1233 log->l_iclog_heads = xhdrs;
1234 } else {
1235 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1236 log->l_iclog_hsize = BBSIZE;
1237 log->l_iclog_heads = 1;
1239 goto done;
1242 /* All machines use 32kB buffers by default. */
1243 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1244 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1246 /* the default log size is 16k or 32k which is one header sector */
1247 log->l_iclog_hsize = BBSIZE;
1248 log->l_iclog_heads = 1;
1250 done:
1251 /* are we being asked to make the sizes selected above visible? */
1252 if (mp->m_logbufs == 0)
1253 mp->m_logbufs = log->l_iclog_bufs;
1254 if (mp->m_logbsize == 0)
1255 mp->m_logbsize = log->l_iclog_size;
1256 } /* xlog_get_iclog_buffer_size */
1259 void
1260 xfs_log_work_queue(
1261 struct xfs_mount *mp)
1263 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1264 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1268 * Every sync period we need to unpin all items in the AIL and push them to
1269 * disk. If there is nothing dirty, then we might need to cover the log to
1270 * indicate that the filesystem is idle.
1272 void
1273 xfs_log_worker(
1274 struct work_struct *work)
1276 struct xlog *log = container_of(to_delayed_work(work),
1277 struct xlog, l_work);
1278 struct xfs_mount *mp = log->l_mp;
1280 /* dgc: errors ignored - not fatal and nowhere to report them */
1281 if (xfs_log_need_covered(mp))
1282 xfs_fs_log_dummy(mp);
1283 else
1284 xfs_log_force(mp, 0);
1286 /* start pushing all the metadata that is currently dirty */
1287 xfs_ail_push_all(mp->m_ail);
1289 /* queue us up again */
1290 xfs_log_work_queue(mp);
1294 * This routine initializes some of the log structure for a given mount point.
1295 * Its primary purpose is to fill in enough, so recovery can occur. However,
1296 * some other stuff may be filled in too.
1298 STATIC struct xlog *
1299 xlog_alloc_log(
1300 struct xfs_mount *mp,
1301 struct xfs_buftarg *log_target,
1302 xfs_daddr_t blk_offset,
1303 int num_bblks)
1305 struct xlog *log;
1306 xlog_rec_header_t *head;
1307 xlog_in_core_t **iclogp;
1308 xlog_in_core_t *iclog, *prev_iclog=NULL;
1309 xfs_buf_t *bp;
1310 int i;
1311 int error = ENOMEM;
1312 uint log2_size = 0;
1314 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1315 if (!log) {
1316 xfs_warn(mp, "Log allocation failed: No memory!");
1317 goto out;
1320 log->l_mp = mp;
1321 log->l_targ = log_target;
1322 log->l_logsize = BBTOB(num_bblks);
1323 log->l_logBBstart = blk_offset;
1324 log->l_logBBsize = num_bblks;
1325 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1326 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1327 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1329 log->l_prev_block = -1;
1330 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1331 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1332 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1333 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1335 xlog_grant_head_init(&log->l_reserve_head);
1336 xlog_grant_head_init(&log->l_write_head);
1338 error = EFSCORRUPTED;
1339 if (xfs_sb_version_hassector(&mp->m_sb)) {
1340 log2_size = mp->m_sb.sb_logsectlog;
1341 if (log2_size < BBSHIFT) {
1342 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1343 log2_size, BBSHIFT);
1344 goto out_free_log;
1347 log2_size -= BBSHIFT;
1348 if (log2_size > mp->m_sectbb_log) {
1349 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1350 log2_size, mp->m_sectbb_log);
1351 goto out_free_log;
1354 /* for larger sector sizes, must have v2 or external log */
1355 if (log2_size && log->l_logBBstart > 0 &&
1356 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1357 xfs_warn(mp,
1358 "log sector size (0x%x) invalid for configuration.",
1359 log2_size);
1360 goto out_free_log;
1363 log->l_sectBBsize = 1 << log2_size;
1365 xlog_get_iclog_buffer_size(mp, log);
1367 error = ENOMEM;
1368 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1369 if (!bp)
1370 goto out_free_log;
1371 bp->b_iodone = xlog_iodone;
1372 ASSERT(xfs_buf_islocked(bp));
1373 log->l_xbuf = bp;
1375 spin_lock_init(&log->l_icloglock);
1376 init_waitqueue_head(&log->l_flush_wait);
1378 iclogp = &log->l_iclog;
1380 * The amount of memory to allocate for the iclog structure is
1381 * rather funky due to the way the structure is defined. It is
1382 * done this way so that we can use different sizes for machines
1383 * with different amounts of memory. See the definition of
1384 * xlog_in_core_t in xfs_log_priv.h for details.
1386 ASSERT(log->l_iclog_size >= 4096);
1387 for (i=0; i < log->l_iclog_bufs; i++) {
1388 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1389 if (!*iclogp)
1390 goto out_free_iclog;
1392 iclog = *iclogp;
1393 iclog->ic_prev = prev_iclog;
1394 prev_iclog = iclog;
1396 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1397 BTOBB(log->l_iclog_size), 0);
1398 if (!bp)
1399 goto out_free_iclog;
1401 bp->b_iodone = xlog_iodone;
1402 iclog->ic_bp = bp;
1403 iclog->ic_data = bp->b_addr;
1404 #ifdef DEBUG
1405 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1406 #endif
1407 head = &iclog->ic_header;
1408 memset(head, 0, sizeof(xlog_rec_header_t));
1409 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1410 head->h_version = cpu_to_be32(
1411 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1412 head->h_size = cpu_to_be32(log->l_iclog_size);
1413 /* new fields */
1414 head->h_fmt = cpu_to_be32(XLOG_FMT);
1415 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1417 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1418 iclog->ic_state = XLOG_STATE_ACTIVE;
1419 iclog->ic_log = log;
1420 atomic_set(&iclog->ic_refcnt, 0);
1421 spin_lock_init(&iclog->ic_callback_lock);
1422 iclog->ic_callback_tail = &(iclog->ic_callback);
1423 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1425 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1426 init_waitqueue_head(&iclog->ic_force_wait);
1427 init_waitqueue_head(&iclog->ic_write_wait);
1429 iclogp = &iclog->ic_next;
1431 *iclogp = log->l_iclog; /* complete ring */
1432 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1434 error = xlog_cil_init(log);
1435 if (error)
1436 goto out_free_iclog;
1437 return log;
1439 out_free_iclog:
1440 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1441 prev_iclog = iclog->ic_next;
1442 if (iclog->ic_bp)
1443 xfs_buf_free(iclog->ic_bp);
1444 kmem_free(iclog);
1446 spinlock_destroy(&log->l_icloglock);
1447 xfs_buf_free(log->l_xbuf);
1448 out_free_log:
1449 kmem_free(log);
1450 out:
1451 return ERR_PTR(-error);
1452 } /* xlog_alloc_log */
1456 * Write out the commit record of a transaction associated with the given
1457 * ticket. Return the lsn of the commit record.
1459 STATIC int
1460 xlog_commit_record(
1461 struct xlog *log,
1462 struct xlog_ticket *ticket,
1463 struct xlog_in_core **iclog,
1464 xfs_lsn_t *commitlsnp)
1466 struct xfs_mount *mp = log->l_mp;
1467 int error;
1468 struct xfs_log_iovec reg = {
1469 .i_addr = NULL,
1470 .i_len = 0,
1471 .i_type = XLOG_REG_TYPE_COMMIT,
1473 struct xfs_log_vec vec = {
1474 .lv_niovecs = 1,
1475 .lv_iovecp = &reg,
1478 ASSERT_ALWAYS(iclog);
1479 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1480 XLOG_COMMIT_TRANS);
1481 if (error)
1482 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1483 return error;
1487 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1488 * log space. This code pushes on the lsn which would supposedly free up
1489 * the 25% which we want to leave free. We may need to adopt a policy which
1490 * pushes on an lsn which is further along in the log once we reach the high
1491 * water mark. In this manner, we would be creating a low water mark.
1493 STATIC void
1494 xlog_grant_push_ail(
1495 struct xlog *log,
1496 int need_bytes)
1498 xfs_lsn_t threshold_lsn = 0;
1499 xfs_lsn_t last_sync_lsn;
1500 int free_blocks;
1501 int free_bytes;
1502 int threshold_block;
1503 int threshold_cycle;
1504 int free_threshold;
1506 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1508 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1509 free_blocks = BTOBBT(free_bytes);
1512 * Set the threshold for the minimum number of free blocks in the
1513 * log to the maximum of what the caller needs, one quarter of the
1514 * log, and 256 blocks.
1516 free_threshold = BTOBB(need_bytes);
1517 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1518 free_threshold = MAX(free_threshold, 256);
1519 if (free_blocks >= free_threshold)
1520 return;
1522 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1523 &threshold_block);
1524 threshold_block += free_threshold;
1525 if (threshold_block >= log->l_logBBsize) {
1526 threshold_block -= log->l_logBBsize;
1527 threshold_cycle += 1;
1529 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1530 threshold_block);
1532 * Don't pass in an lsn greater than the lsn of the last
1533 * log record known to be on disk. Use a snapshot of the last sync lsn
1534 * so that it doesn't change between the compare and the set.
1536 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1537 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1538 threshold_lsn = last_sync_lsn;
1541 * Get the transaction layer to kick the dirty buffers out to
1542 * disk asynchronously. No point in trying to do this if
1543 * the filesystem is shutting down.
1545 if (!XLOG_FORCED_SHUTDOWN(log))
1546 xfs_ail_push(log->l_ailp, threshold_lsn);
1550 * Stamp cycle number in every block
1552 STATIC void
1553 xlog_pack_data(
1554 struct xlog *log,
1555 struct xlog_in_core *iclog,
1556 int roundoff)
1558 int i, j, k;
1559 int size = iclog->ic_offset + roundoff;
1560 __be32 cycle_lsn;
1561 xfs_caddr_t dp;
1563 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1565 dp = iclog->ic_datap;
1566 for (i = 0; i < BTOBB(size); i++) {
1567 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1568 break;
1569 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1570 *(__be32 *)dp = cycle_lsn;
1571 dp += BBSIZE;
1574 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1575 xlog_in_core_2_t *xhdr = iclog->ic_data;
1577 for ( ; i < BTOBB(size); i++) {
1578 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1579 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1580 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1581 *(__be32 *)dp = cycle_lsn;
1582 dp += BBSIZE;
1585 for (i = 1; i < log->l_iclog_heads; i++)
1586 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1591 * Calculate the checksum for a log buffer.
1593 * This is a little more complicated than it should be because the various
1594 * headers and the actual data are non-contiguous.
1596 __le32
1597 xlog_cksum(
1598 struct xlog *log,
1599 struct xlog_rec_header *rhead,
1600 char *dp,
1601 int size)
1603 __uint32_t crc;
1605 /* first generate the crc for the record header ... */
1606 crc = xfs_start_cksum((char *)rhead,
1607 sizeof(struct xlog_rec_header),
1608 offsetof(struct xlog_rec_header, h_crc));
1610 /* ... then for additional cycle data for v2 logs ... */
1611 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1612 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1613 int i;
1615 for (i = 1; i < log->l_iclog_heads; i++) {
1616 crc = crc32c(crc, &xhdr[i].hic_xheader,
1617 sizeof(struct xlog_rec_ext_header));
1621 /* ... and finally for the payload */
1622 crc = crc32c(crc, dp, size);
1624 return xfs_end_cksum(crc);
1628 * The bdstrat callback function for log bufs. This gives us a central
1629 * place to trap bufs in case we get hit by a log I/O error and need to
1630 * shutdown. Actually, in practice, even when we didn't get a log error,
1631 * we transition the iclogs to IOERROR state *after* flushing all existing
1632 * iclogs to disk. This is because we don't want anymore new transactions to be
1633 * started or completed afterwards.
1635 STATIC int
1636 xlog_bdstrat(
1637 struct xfs_buf *bp)
1639 struct xlog_in_core *iclog = bp->b_fspriv;
1641 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1642 xfs_buf_ioerror(bp, EIO);
1643 xfs_buf_stale(bp);
1644 xfs_buf_ioend(bp, 0);
1646 * It would seem logical to return EIO here, but we rely on
1647 * the log state machine to propagate I/O errors instead of
1648 * doing it here.
1650 return 0;
1653 xfs_buf_iorequest(bp);
1654 return 0;
1658 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1659 * fashion. Previously, we should have moved the current iclog
1660 * ptr in the log to point to the next available iclog. This allows further
1661 * write to continue while this code syncs out an iclog ready to go.
1662 * Before an in-core log can be written out, the data section must be scanned
1663 * to save away the 1st word of each BBSIZE block into the header. We replace
1664 * it with the current cycle count. Each BBSIZE block is tagged with the
1665 * cycle count because there in an implicit assumption that drives will
1666 * guarantee that entire 512 byte blocks get written at once. In other words,
1667 * we can't have part of a 512 byte block written and part not written. By
1668 * tagging each block, we will know which blocks are valid when recovering
1669 * after an unclean shutdown.
1671 * This routine is single threaded on the iclog. No other thread can be in
1672 * this routine with the same iclog. Changing contents of iclog can there-
1673 * fore be done without grabbing the state machine lock. Updating the global
1674 * log will require grabbing the lock though.
1676 * The entire log manager uses a logical block numbering scheme. Only
1677 * log_sync (and then only bwrite()) know about the fact that the log may
1678 * not start with block zero on a given device. The log block start offset
1679 * is added immediately before calling bwrite().
1682 STATIC int
1683 xlog_sync(
1684 struct xlog *log,
1685 struct xlog_in_core *iclog)
1687 xfs_buf_t *bp;
1688 int i;
1689 uint count; /* byte count of bwrite */
1690 uint count_init; /* initial count before roundup */
1691 int roundoff; /* roundoff to BB or stripe */
1692 int split = 0; /* split write into two regions */
1693 int error;
1694 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1695 int size;
1697 XFS_STATS_INC(xs_log_writes);
1698 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1700 /* Add for LR header */
1701 count_init = log->l_iclog_hsize + iclog->ic_offset;
1703 /* Round out the log write size */
1704 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1705 /* we have a v2 stripe unit to use */
1706 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1707 } else {
1708 count = BBTOB(BTOBB(count_init));
1710 roundoff = count - count_init;
1711 ASSERT(roundoff >= 0);
1712 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1713 roundoff < log->l_mp->m_sb.sb_logsunit)
1715 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1716 roundoff < BBTOB(1)));
1718 /* move grant heads by roundoff in sync */
1719 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1720 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1722 /* put cycle number in every block */
1723 xlog_pack_data(log, iclog, roundoff);
1725 /* real byte length */
1726 size = iclog->ic_offset;
1727 if (v2)
1728 size += roundoff;
1729 iclog->ic_header.h_len = cpu_to_be32(size);
1731 bp = iclog->ic_bp;
1732 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1734 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1736 /* Do we need to split this write into 2 parts? */
1737 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1738 char *dptr;
1740 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1741 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1742 iclog->ic_bwritecnt = 2;
1745 * Bump the cycle numbers at the start of each block in the
1746 * part of the iclog that ends up in the buffer that gets
1747 * written to the start of the log.
1749 * Watch out for the header magic number case, though.
1751 dptr = (char *)&iclog->ic_header + count;
1752 for (i = 0; i < split; i += BBSIZE) {
1753 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1754 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1755 cycle++;
1756 *(__be32 *)dptr = cpu_to_be32(cycle);
1758 dptr += BBSIZE;
1760 } else {
1761 iclog->ic_bwritecnt = 1;
1764 /* calculcate the checksum */
1765 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1766 iclog->ic_datap, size);
1768 bp->b_io_length = BTOBB(count);
1769 bp->b_fspriv = iclog;
1770 XFS_BUF_ZEROFLAGS(bp);
1771 XFS_BUF_ASYNC(bp);
1772 bp->b_flags |= XBF_SYNCIO;
1774 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1775 bp->b_flags |= XBF_FUA;
1778 * Flush the data device before flushing the log to make
1779 * sure all meta data written back from the AIL actually made
1780 * it to disk before stamping the new log tail LSN into the
1781 * log buffer. For an external log we need to issue the
1782 * flush explicitly, and unfortunately synchronously here;
1783 * for an internal log we can simply use the block layer
1784 * state machine for preflushes.
1786 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1787 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1788 else
1789 bp->b_flags |= XBF_FLUSH;
1792 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1793 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1795 xlog_verify_iclog(log, iclog, count, true);
1797 /* account for log which doesn't start at block #0 */
1798 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1800 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1801 * is shutting down.
1803 XFS_BUF_WRITE(bp);
1805 error = xlog_bdstrat(bp);
1806 if (error) {
1807 xfs_buf_ioerror_alert(bp, "xlog_sync");
1808 return error;
1810 if (split) {
1811 bp = iclog->ic_log->l_xbuf;
1812 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1813 xfs_buf_associate_memory(bp,
1814 (char *)&iclog->ic_header + count, split);
1815 bp->b_fspriv = iclog;
1816 XFS_BUF_ZEROFLAGS(bp);
1817 XFS_BUF_ASYNC(bp);
1818 bp->b_flags |= XBF_SYNCIO;
1819 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1820 bp->b_flags |= XBF_FUA;
1822 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1823 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1825 /* account for internal log which doesn't start at block #0 */
1826 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1827 XFS_BUF_WRITE(bp);
1828 error = xlog_bdstrat(bp);
1829 if (error) {
1830 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1831 return error;
1834 return 0;
1835 } /* xlog_sync */
1838 * Deallocate a log structure
1840 STATIC void
1841 xlog_dealloc_log(
1842 struct xlog *log)
1844 xlog_in_core_t *iclog, *next_iclog;
1845 int i;
1847 xlog_cil_destroy(log);
1850 * always need to ensure that the extra buffer does not point to memory
1851 * owned by another log buffer before we free it.
1853 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1854 xfs_buf_free(log->l_xbuf);
1856 iclog = log->l_iclog;
1857 for (i=0; i<log->l_iclog_bufs; i++) {
1858 xfs_buf_free(iclog->ic_bp);
1859 next_iclog = iclog->ic_next;
1860 kmem_free(iclog);
1861 iclog = next_iclog;
1863 spinlock_destroy(&log->l_icloglock);
1865 log->l_mp->m_log = NULL;
1866 kmem_free(log);
1867 } /* xlog_dealloc_log */
1870 * Update counters atomically now that memcpy is done.
1872 /* ARGSUSED */
1873 static inline void
1874 xlog_state_finish_copy(
1875 struct xlog *log,
1876 struct xlog_in_core *iclog,
1877 int record_cnt,
1878 int copy_bytes)
1880 spin_lock(&log->l_icloglock);
1882 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1883 iclog->ic_offset += copy_bytes;
1885 spin_unlock(&log->l_icloglock);
1886 } /* xlog_state_finish_copy */
1892 * print out info relating to regions written which consume
1893 * the reservation
1895 void
1896 xlog_print_tic_res(
1897 struct xfs_mount *mp,
1898 struct xlog_ticket *ticket)
1900 uint i;
1901 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1903 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1904 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1905 "bformat",
1906 "bchunk",
1907 "efi_format",
1908 "efd_format",
1909 "iformat",
1910 "icore",
1911 "iext",
1912 "ibroot",
1913 "ilocal",
1914 "iattr_ext",
1915 "iattr_broot",
1916 "iattr_local",
1917 "qformat",
1918 "dquot",
1919 "quotaoff",
1920 "LR header",
1921 "unmount",
1922 "commit",
1923 "trans header"
1925 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1926 "SETATTR_NOT_SIZE",
1927 "SETATTR_SIZE",
1928 "INACTIVE",
1929 "CREATE",
1930 "CREATE_TRUNC",
1931 "TRUNCATE_FILE",
1932 "REMOVE",
1933 "LINK",
1934 "RENAME",
1935 "MKDIR",
1936 "RMDIR",
1937 "SYMLINK",
1938 "SET_DMATTRS",
1939 "GROWFS",
1940 "STRAT_WRITE",
1941 "DIOSTRAT",
1942 "WRITE_SYNC",
1943 "WRITEID",
1944 "ADDAFORK",
1945 "ATTRINVAL",
1946 "ATRUNCATE",
1947 "ATTR_SET",
1948 "ATTR_RM",
1949 "ATTR_FLAG",
1950 "CLEAR_AGI_BUCKET",
1951 "QM_SBCHANGE",
1952 "DUMMY1",
1953 "DUMMY2",
1954 "QM_QUOTAOFF",
1955 "QM_DQALLOC",
1956 "QM_SETQLIM",
1957 "QM_DQCLUSTER",
1958 "QM_QINOCREATE",
1959 "QM_QUOTAOFF_END",
1960 "SB_UNIT",
1961 "FSYNC_TS",
1962 "GROWFSRT_ALLOC",
1963 "GROWFSRT_ZERO",
1964 "GROWFSRT_FREE",
1965 "SWAPEXT"
1968 xfs_warn(mp,
1969 "xlog_write: reservation summary:\n"
1970 " trans type = %s (%u)\n"
1971 " unit res = %d bytes\n"
1972 " current res = %d bytes\n"
1973 " total reg = %u bytes (o/flow = %u bytes)\n"
1974 " ophdrs = %u (ophdr space = %u bytes)\n"
1975 " ophdr + reg = %u bytes\n"
1976 " num regions = %u\n",
1977 ((ticket->t_trans_type <= 0 ||
1978 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1979 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1980 ticket->t_trans_type,
1981 ticket->t_unit_res,
1982 ticket->t_curr_res,
1983 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1984 ticket->t_res_num_ophdrs, ophdr_spc,
1985 ticket->t_res_arr_sum +
1986 ticket->t_res_o_flow + ophdr_spc,
1987 ticket->t_res_num);
1989 for (i = 0; i < ticket->t_res_num; i++) {
1990 uint r_type = ticket->t_res_arr[i].r_type;
1991 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
1992 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1993 "bad-rtype" : res_type_str[r_type-1]),
1994 ticket->t_res_arr[i].r_len);
1997 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1998 "xlog_write: reservation ran out. Need to up reservation");
1999 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2003 * Calculate the potential space needed by the log vector. Each region gets
2004 * its own xlog_op_header_t and may need to be double word aligned.
2006 static int
2007 xlog_write_calc_vec_length(
2008 struct xlog_ticket *ticket,
2009 struct xfs_log_vec *log_vector)
2011 struct xfs_log_vec *lv;
2012 int headers = 0;
2013 int len = 0;
2014 int i;
2016 /* acct for start rec of xact */
2017 if (ticket->t_flags & XLOG_TIC_INITED)
2018 headers++;
2020 for (lv = log_vector; lv; lv = lv->lv_next) {
2021 /* we don't write ordered log vectors */
2022 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2023 continue;
2025 headers += lv->lv_niovecs;
2027 for (i = 0; i < lv->lv_niovecs; i++) {
2028 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2030 len += vecp->i_len;
2031 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2035 ticket->t_res_num_ophdrs += headers;
2036 len += headers * sizeof(struct xlog_op_header);
2038 return len;
2042 * If first write for transaction, insert start record We can't be trying to
2043 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2045 static int
2046 xlog_write_start_rec(
2047 struct xlog_op_header *ophdr,
2048 struct xlog_ticket *ticket)
2050 if (!(ticket->t_flags & XLOG_TIC_INITED))
2051 return 0;
2053 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2054 ophdr->oh_clientid = ticket->t_clientid;
2055 ophdr->oh_len = 0;
2056 ophdr->oh_flags = XLOG_START_TRANS;
2057 ophdr->oh_res2 = 0;
2059 ticket->t_flags &= ~XLOG_TIC_INITED;
2061 return sizeof(struct xlog_op_header);
2064 static xlog_op_header_t *
2065 xlog_write_setup_ophdr(
2066 struct xlog *log,
2067 struct xlog_op_header *ophdr,
2068 struct xlog_ticket *ticket,
2069 uint flags)
2071 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2072 ophdr->oh_clientid = ticket->t_clientid;
2073 ophdr->oh_res2 = 0;
2075 /* are we copying a commit or unmount record? */
2076 ophdr->oh_flags = flags;
2079 * We've seen logs corrupted with bad transaction client ids. This
2080 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2081 * and shut down the filesystem.
2083 switch (ophdr->oh_clientid) {
2084 case XFS_TRANSACTION:
2085 case XFS_VOLUME:
2086 case XFS_LOG:
2087 break;
2088 default:
2089 xfs_warn(log->l_mp,
2090 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2091 ophdr->oh_clientid, ticket);
2092 return NULL;
2095 return ophdr;
2099 * Set up the parameters of the region copy into the log. This has
2100 * to handle region write split across multiple log buffers - this
2101 * state is kept external to this function so that this code can
2102 * be written in an obvious, self documenting manner.
2104 static int
2105 xlog_write_setup_copy(
2106 struct xlog_ticket *ticket,
2107 struct xlog_op_header *ophdr,
2108 int space_available,
2109 int space_required,
2110 int *copy_off,
2111 int *copy_len,
2112 int *last_was_partial_copy,
2113 int *bytes_consumed)
2115 int still_to_copy;
2117 still_to_copy = space_required - *bytes_consumed;
2118 *copy_off = *bytes_consumed;
2120 if (still_to_copy <= space_available) {
2121 /* write of region completes here */
2122 *copy_len = still_to_copy;
2123 ophdr->oh_len = cpu_to_be32(*copy_len);
2124 if (*last_was_partial_copy)
2125 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2126 *last_was_partial_copy = 0;
2127 *bytes_consumed = 0;
2128 return 0;
2131 /* partial write of region, needs extra log op header reservation */
2132 *copy_len = space_available;
2133 ophdr->oh_len = cpu_to_be32(*copy_len);
2134 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2135 if (*last_was_partial_copy)
2136 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2137 *bytes_consumed += *copy_len;
2138 (*last_was_partial_copy)++;
2140 /* account for new log op header */
2141 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2142 ticket->t_res_num_ophdrs++;
2144 return sizeof(struct xlog_op_header);
2147 static int
2148 xlog_write_copy_finish(
2149 struct xlog *log,
2150 struct xlog_in_core *iclog,
2151 uint flags,
2152 int *record_cnt,
2153 int *data_cnt,
2154 int *partial_copy,
2155 int *partial_copy_len,
2156 int log_offset,
2157 struct xlog_in_core **commit_iclog)
2159 if (*partial_copy) {
2161 * This iclog has already been marked WANT_SYNC by
2162 * xlog_state_get_iclog_space.
2164 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2165 *record_cnt = 0;
2166 *data_cnt = 0;
2167 return xlog_state_release_iclog(log, iclog);
2170 *partial_copy = 0;
2171 *partial_copy_len = 0;
2173 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2174 /* no more space in this iclog - push it. */
2175 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2176 *record_cnt = 0;
2177 *data_cnt = 0;
2179 spin_lock(&log->l_icloglock);
2180 xlog_state_want_sync(log, iclog);
2181 spin_unlock(&log->l_icloglock);
2183 if (!commit_iclog)
2184 return xlog_state_release_iclog(log, iclog);
2185 ASSERT(flags & XLOG_COMMIT_TRANS);
2186 *commit_iclog = iclog;
2189 return 0;
2193 * Write some region out to in-core log
2195 * This will be called when writing externally provided regions or when
2196 * writing out a commit record for a given transaction.
2198 * General algorithm:
2199 * 1. Find total length of this write. This may include adding to the
2200 * lengths passed in.
2201 * 2. Check whether we violate the tickets reservation.
2202 * 3. While writing to this iclog
2203 * A. Reserve as much space in this iclog as can get
2204 * B. If this is first write, save away start lsn
2205 * C. While writing this region:
2206 * 1. If first write of transaction, write start record
2207 * 2. Write log operation header (header per region)
2208 * 3. Find out if we can fit entire region into this iclog
2209 * 4. Potentially, verify destination memcpy ptr
2210 * 5. Memcpy (partial) region
2211 * 6. If partial copy, release iclog; otherwise, continue
2212 * copying more regions into current iclog
2213 * 4. Mark want sync bit (in simulation mode)
2214 * 5. Release iclog for potential flush to on-disk log.
2216 * ERRORS:
2217 * 1. Panic if reservation is overrun. This should never happen since
2218 * reservation amounts are generated internal to the filesystem.
2219 * NOTES:
2220 * 1. Tickets are single threaded data structures.
2221 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2222 * syncing routine. When a single log_write region needs to span
2223 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2224 * on all log operation writes which don't contain the end of the
2225 * region. The XLOG_END_TRANS bit is used for the in-core log
2226 * operation which contains the end of the continued log_write region.
2227 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2228 * we don't really know exactly how much space will be used. As a result,
2229 * we don't update ic_offset until the end when we know exactly how many
2230 * bytes have been written out.
2233 xlog_write(
2234 struct xlog *log,
2235 struct xfs_log_vec *log_vector,
2236 struct xlog_ticket *ticket,
2237 xfs_lsn_t *start_lsn,
2238 struct xlog_in_core **commit_iclog,
2239 uint flags)
2241 struct xlog_in_core *iclog = NULL;
2242 struct xfs_log_iovec *vecp;
2243 struct xfs_log_vec *lv;
2244 int len;
2245 int index;
2246 int partial_copy = 0;
2247 int partial_copy_len = 0;
2248 int contwr = 0;
2249 int record_cnt = 0;
2250 int data_cnt = 0;
2251 int error;
2253 *start_lsn = 0;
2255 len = xlog_write_calc_vec_length(ticket, log_vector);
2258 * Region headers and bytes are already accounted for.
2259 * We only need to take into account start records and
2260 * split regions in this function.
2262 if (ticket->t_flags & XLOG_TIC_INITED)
2263 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2266 * Commit record headers need to be accounted for. These
2267 * come in as separate writes so are easy to detect.
2269 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2270 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2272 if (ticket->t_curr_res < 0)
2273 xlog_print_tic_res(log->l_mp, ticket);
2275 index = 0;
2276 lv = log_vector;
2277 vecp = lv->lv_iovecp;
2278 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2279 void *ptr;
2280 int log_offset;
2282 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2283 &contwr, &log_offset);
2284 if (error)
2285 return error;
2287 ASSERT(log_offset <= iclog->ic_size - 1);
2288 ptr = iclog->ic_datap + log_offset;
2290 /* start_lsn is the first lsn written to. That's all we need. */
2291 if (!*start_lsn)
2292 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2295 * This loop writes out as many regions as can fit in the amount
2296 * of space which was allocated by xlog_state_get_iclog_space().
2298 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2299 struct xfs_log_iovec *reg;
2300 struct xlog_op_header *ophdr;
2301 int start_rec_copy;
2302 int copy_len;
2303 int copy_off;
2304 bool ordered = false;
2306 /* ordered log vectors have no regions to write */
2307 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2308 ASSERT(lv->lv_niovecs == 0);
2309 ordered = true;
2310 goto next_lv;
2313 reg = &vecp[index];
2314 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2315 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2317 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2318 if (start_rec_copy) {
2319 record_cnt++;
2320 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2321 start_rec_copy);
2324 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2325 if (!ophdr)
2326 return XFS_ERROR(EIO);
2328 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2329 sizeof(struct xlog_op_header));
2331 len += xlog_write_setup_copy(ticket, ophdr,
2332 iclog->ic_size-log_offset,
2333 reg->i_len,
2334 &copy_off, &copy_len,
2335 &partial_copy,
2336 &partial_copy_len);
2337 xlog_verify_dest_ptr(log, ptr);
2339 /* copy region */
2340 ASSERT(copy_len >= 0);
2341 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2342 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2344 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2345 record_cnt++;
2346 data_cnt += contwr ? copy_len : 0;
2348 error = xlog_write_copy_finish(log, iclog, flags,
2349 &record_cnt, &data_cnt,
2350 &partial_copy,
2351 &partial_copy_len,
2352 log_offset,
2353 commit_iclog);
2354 if (error)
2355 return error;
2358 * if we had a partial copy, we need to get more iclog
2359 * space but we don't want to increment the region
2360 * index because there is still more is this region to
2361 * write.
2363 * If we completed writing this region, and we flushed
2364 * the iclog (indicated by resetting of the record
2365 * count), then we also need to get more log space. If
2366 * this was the last record, though, we are done and
2367 * can just return.
2369 if (partial_copy)
2370 break;
2372 if (++index == lv->lv_niovecs) {
2373 next_lv:
2374 lv = lv->lv_next;
2375 index = 0;
2376 if (lv)
2377 vecp = lv->lv_iovecp;
2379 if (record_cnt == 0 && ordered == false) {
2380 if (!lv)
2381 return 0;
2382 break;
2387 ASSERT(len == 0);
2389 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2390 if (!commit_iclog)
2391 return xlog_state_release_iclog(log, iclog);
2393 ASSERT(flags & XLOG_COMMIT_TRANS);
2394 *commit_iclog = iclog;
2395 return 0;
2399 /*****************************************************************************
2401 * State Machine functions
2403 *****************************************************************************
2406 /* Clean iclogs starting from the head. This ordering must be
2407 * maintained, so an iclog doesn't become ACTIVE beyond one that
2408 * is SYNCING. This is also required to maintain the notion that we use
2409 * a ordered wait queue to hold off would be writers to the log when every
2410 * iclog is trying to sync to disk.
2412 * State Change: DIRTY -> ACTIVE
2414 STATIC void
2415 xlog_state_clean_log(
2416 struct xlog *log)
2418 xlog_in_core_t *iclog;
2419 int changed = 0;
2421 iclog = log->l_iclog;
2422 do {
2423 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2424 iclog->ic_state = XLOG_STATE_ACTIVE;
2425 iclog->ic_offset = 0;
2426 ASSERT(iclog->ic_callback == NULL);
2428 * If the number of ops in this iclog indicate it just
2429 * contains the dummy transaction, we can
2430 * change state into IDLE (the second time around).
2431 * Otherwise we should change the state into
2432 * NEED a dummy.
2433 * We don't need to cover the dummy.
2435 if (!changed &&
2436 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2437 XLOG_COVER_OPS)) {
2438 changed = 1;
2439 } else {
2441 * We have two dirty iclogs so start over
2442 * This could also be num of ops indicates
2443 * this is not the dummy going out.
2445 changed = 2;
2447 iclog->ic_header.h_num_logops = 0;
2448 memset(iclog->ic_header.h_cycle_data, 0,
2449 sizeof(iclog->ic_header.h_cycle_data));
2450 iclog->ic_header.h_lsn = 0;
2451 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2452 /* do nothing */;
2453 else
2454 break; /* stop cleaning */
2455 iclog = iclog->ic_next;
2456 } while (iclog != log->l_iclog);
2458 /* log is locked when we are called */
2460 * Change state for the dummy log recording.
2461 * We usually go to NEED. But we go to NEED2 if the changed indicates
2462 * we are done writing the dummy record.
2463 * If we are done with the second dummy recored (DONE2), then
2464 * we go to IDLE.
2466 if (changed) {
2467 switch (log->l_covered_state) {
2468 case XLOG_STATE_COVER_IDLE:
2469 case XLOG_STATE_COVER_NEED:
2470 case XLOG_STATE_COVER_NEED2:
2471 log->l_covered_state = XLOG_STATE_COVER_NEED;
2472 break;
2474 case XLOG_STATE_COVER_DONE:
2475 if (changed == 1)
2476 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2477 else
2478 log->l_covered_state = XLOG_STATE_COVER_NEED;
2479 break;
2481 case XLOG_STATE_COVER_DONE2:
2482 if (changed == 1)
2483 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2484 else
2485 log->l_covered_state = XLOG_STATE_COVER_NEED;
2486 break;
2488 default:
2489 ASSERT(0);
2492 } /* xlog_state_clean_log */
2494 STATIC xfs_lsn_t
2495 xlog_get_lowest_lsn(
2496 struct xlog *log)
2498 xlog_in_core_t *lsn_log;
2499 xfs_lsn_t lowest_lsn, lsn;
2501 lsn_log = log->l_iclog;
2502 lowest_lsn = 0;
2503 do {
2504 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2505 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2506 if ((lsn && !lowest_lsn) ||
2507 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2508 lowest_lsn = lsn;
2511 lsn_log = lsn_log->ic_next;
2512 } while (lsn_log != log->l_iclog);
2513 return lowest_lsn;
2517 STATIC void
2518 xlog_state_do_callback(
2519 struct xlog *log,
2520 int aborted,
2521 struct xlog_in_core *ciclog)
2523 xlog_in_core_t *iclog;
2524 xlog_in_core_t *first_iclog; /* used to know when we've
2525 * processed all iclogs once */
2526 xfs_log_callback_t *cb, *cb_next;
2527 int flushcnt = 0;
2528 xfs_lsn_t lowest_lsn;
2529 int ioerrors; /* counter: iclogs with errors */
2530 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2531 int funcdidcallbacks; /* flag: function did callbacks */
2532 int repeats; /* for issuing console warnings if
2533 * looping too many times */
2534 int wake = 0;
2536 spin_lock(&log->l_icloglock);
2537 first_iclog = iclog = log->l_iclog;
2538 ioerrors = 0;
2539 funcdidcallbacks = 0;
2540 repeats = 0;
2542 do {
2544 * Scan all iclogs starting with the one pointed to by the
2545 * log. Reset this starting point each time the log is
2546 * unlocked (during callbacks).
2548 * Keep looping through iclogs until one full pass is made
2549 * without running any callbacks.
2551 first_iclog = log->l_iclog;
2552 iclog = log->l_iclog;
2553 loopdidcallbacks = 0;
2554 repeats++;
2556 do {
2558 /* skip all iclogs in the ACTIVE & DIRTY states */
2559 if (iclog->ic_state &
2560 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2561 iclog = iclog->ic_next;
2562 continue;
2566 * Between marking a filesystem SHUTDOWN and stopping
2567 * the log, we do flush all iclogs to disk (if there
2568 * wasn't a log I/O error). So, we do want things to
2569 * go smoothly in case of just a SHUTDOWN w/o a
2570 * LOG_IO_ERROR.
2572 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2574 * Can only perform callbacks in order. Since
2575 * this iclog is not in the DONE_SYNC/
2576 * DO_CALLBACK state, we skip the rest and
2577 * just try to clean up. If we set our iclog
2578 * to DO_CALLBACK, we will not process it when
2579 * we retry since a previous iclog is in the
2580 * CALLBACK and the state cannot change since
2581 * we are holding the l_icloglock.
2583 if (!(iclog->ic_state &
2584 (XLOG_STATE_DONE_SYNC |
2585 XLOG_STATE_DO_CALLBACK))) {
2586 if (ciclog && (ciclog->ic_state ==
2587 XLOG_STATE_DONE_SYNC)) {
2588 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2590 break;
2593 * We now have an iclog that is in either the
2594 * DO_CALLBACK or DONE_SYNC states. The other
2595 * states (WANT_SYNC, SYNCING, or CALLBACK were
2596 * caught by the above if and are going to
2597 * clean (i.e. we aren't doing their callbacks)
2598 * see the above if.
2602 * We will do one more check here to see if we
2603 * have chased our tail around.
2606 lowest_lsn = xlog_get_lowest_lsn(log);
2607 if (lowest_lsn &&
2608 XFS_LSN_CMP(lowest_lsn,
2609 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2610 iclog = iclog->ic_next;
2611 continue; /* Leave this iclog for
2612 * another thread */
2615 iclog->ic_state = XLOG_STATE_CALLBACK;
2619 * Completion of a iclog IO does not imply that
2620 * a transaction has completed, as transactions
2621 * can be large enough to span many iclogs. We
2622 * cannot change the tail of the log half way
2623 * through a transaction as this may be the only
2624 * transaction in the log and moving th etail to
2625 * point to the middle of it will prevent
2626 * recovery from finding the start of the
2627 * transaction. Hence we should only update the
2628 * last_sync_lsn if this iclog contains
2629 * transaction completion callbacks on it.
2631 * We have to do this before we drop the
2632 * icloglock to ensure we are the only one that
2633 * can update it.
2635 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2636 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2637 if (iclog->ic_callback)
2638 atomic64_set(&log->l_last_sync_lsn,
2639 be64_to_cpu(iclog->ic_header.h_lsn));
2641 } else
2642 ioerrors++;
2644 spin_unlock(&log->l_icloglock);
2647 * Keep processing entries in the callback list until
2648 * we come around and it is empty. We need to
2649 * atomically see that the list is empty and change the
2650 * state to DIRTY so that we don't miss any more
2651 * callbacks being added.
2653 spin_lock(&iclog->ic_callback_lock);
2654 cb = iclog->ic_callback;
2655 while (cb) {
2656 iclog->ic_callback_tail = &(iclog->ic_callback);
2657 iclog->ic_callback = NULL;
2658 spin_unlock(&iclog->ic_callback_lock);
2660 /* perform callbacks in the order given */
2661 for (; cb; cb = cb_next) {
2662 cb_next = cb->cb_next;
2663 cb->cb_func(cb->cb_arg, aborted);
2665 spin_lock(&iclog->ic_callback_lock);
2666 cb = iclog->ic_callback;
2669 loopdidcallbacks++;
2670 funcdidcallbacks++;
2672 spin_lock(&log->l_icloglock);
2673 ASSERT(iclog->ic_callback == NULL);
2674 spin_unlock(&iclog->ic_callback_lock);
2675 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2676 iclog->ic_state = XLOG_STATE_DIRTY;
2679 * Transition from DIRTY to ACTIVE if applicable.
2680 * NOP if STATE_IOERROR.
2682 xlog_state_clean_log(log);
2684 /* wake up threads waiting in xfs_log_force() */
2685 wake_up_all(&iclog->ic_force_wait);
2687 iclog = iclog->ic_next;
2688 } while (first_iclog != iclog);
2690 if (repeats > 5000) {
2691 flushcnt += repeats;
2692 repeats = 0;
2693 xfs_warn(log->l_mp,
2694 "%s: possible infinite loop (%d iterations)",
2695 __func__, flushcnt);
2697 } while (!ioerrors && loopdidcallbacks);
2700 * make one last gasp attempt to see if iclogs are being left in
2701 * limbo..
2703 #ifdef DEBUG
2704 if (funcdidcallbacks) {
2705 first_iclog = iclog = log->l_iclog;
2706 do {
2707 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2709 * Terminate the loop if iclogs are found in states
2710 * which will cause other threads to clean up iclogs.
2712 * SYNCING - i/o completion will go through logs
2713 * DONE_SYNC - interrupt thread should be waiting for
2714 * l_icloglock
2715 * IOERROR - give up hope all ye who enter here
2717 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2718 iclog->ic_state == XLOG_STATE_SYNCING ||
2719 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2720 iclog->ic_state == XLOG_STATE_IOERROR )
2721 break;
2722 iclog = iclog->ic_next;
2723 } while (first_iclog != iclog);
2725 #endif
2727 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2728 wake = 1;
2729 spin_unlock(&log->l_icloglock);
2731 if (wake)
2732 wake_up_all(&log->l_flush_wait);
2737 * Finish transitioning this iclog to the dirty state.
2739 * Make sure that we completely execute this routine only when this is
2740 * the last call to the iclog. There is a good chance that iclog flushes,
2741 * when we reach the end of the physical log, get turned into 2 separate
2742 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2743 * routine. By using the reference count bwritecnt, we guarantee that only
2744 * the second completion goes through.
2746 * Callbacks could take time, so they are done outside the scope of the
2747 * global state machine log lock.
2749 STATIC void
2750 xlog_state_done_syncing(
2751 xlog_in_core_t *iclog,
2752 int aborted)
2754 struct xlog *log = iclog->ic_log;
2756 spin_lock(&log->l_icloglock);
2758 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2759 iclog->ic_state == XLOG_STATE_IOERROR);
2760 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2761 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2765 * If we got an error, either on the first buffer, or in the case of
2766 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2767 * and none should ever be attempted to be written to disk
2768 * again.
2770 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2771 if (--iclog->ic_bwritecnt == 1) {
2772 spin_unlock(&log->l_icloglock);
2773 return;
2775 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2779 * Someone could be sleeping prior to writing out the next
2780 * iclog buffer, we wake them all, one will get to do the
2781 * I/O, the others get to wait for the result.
2783 wake_up_all(&iclog->ic_write_wait);
2784 spin_unlock(&log->l_icloglock);
2785 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2786 } /* xlog_state_done_syncing */
2790 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2791 * sleep. We wait on the flush queue on the head iclog as that should be
2792 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2793 * we will wait here and all new writes will sleep until a sync completes.
2795 * The in-core logs are used in a circular fashion. They are not used
2796 * out-of-order even when an iclog past the head is free.
2798 * return:
2799 * * log_offset where xlog_write() can start writing into the in-core
2800 * log's data space.
2801 * * in-core log pointer to which xlog_write() should write.
2802 * * boolean indicating this is a continued write to an in-core log.
2803 * If this is the last write, then the in-core log's offset field
2804 * needs to be incremented, depending on the amount of data which
2805 * is copied.
2807 STATIC int
2808 xlog_state_get_iclog_space(
2809 struct xlog *log,
2810 int len,
2811 struct xlog_in_core **iclogp,
2812 struct xlog_ticket *ticket,
2813 int *continued_write,
2814 int *logoffsetp)
2816 int log_offset;
2817 xlog_rec_header_t *head;
2818 xlog_in_core_t *iclog;
2819 int error;
2821 restart:
2822 spin_lock(&log->l_icloglock);
2823 if (XLOG_FORCED_SHUTDOWN(log)) {
2824 spin_unlock(&log->l_icloglock);
2825 return XFS_ERROR(EIO);
2828 iclog = log->l_iclog;
2829 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2830 XFS_STATS_INC(xs_log_noiclogs);
2832 /* Wait for log writes to have flushed */
2833 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2834 goto restart;
2837 head = &iclog->ic_header;
2839 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2840 log_offset = iclog->ic_offset;
2842 /* On the 1st write to an iclog, figure out lsn. This works
2843 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2844 * committing to. If the offset is set, that's how many blocks
2845 * must be written.
2847 if (log_offset == 0) {
2848 ticket->t_curr_res -= log->l_iclog_hsize;
2849 xlog_tic_add_region(ticket,
2850 log->l_iclog_hsize,
2851 XLOG_REG_TYPE_LRHEADER);
2852 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2853 head->h_lsn = cpu_to_be64(
2854 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2855 ASSERT(log->l_curr_block >= 0);
2858 /* If there is enough room to write everything, then do it. Otherwise,
2859 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2860 * bit is on, so this will get flushed out. Don't update ic_offset
2861 * until you know exactly how many bytes get copied. Therefore, wait
2862 * until later to update ic_offset.
2864 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2865 * can fit into remaining data section.
2867 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2868 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2871 * If I'm the only one writing to this iclog, sync it to disk.
2872 * We need to do an atomic compare and decrement here to avoid
2873 * racing with concurrent atomic_dec_and_lock() calls in
2874 * xlog_state_release_iclog() when there is more than one
2875 * reference to the iclog.
2877 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2878 /* we are the only one */
2879 spin_unlock(&log->l_icloglock);
2880 error = xlog_state_release_iclog(log, iclog);
2881 if (error)
2882 return error;
2883 } else {
2884 spin_unlock(&log->l_icloglock);
2886 goto restart;
2889 /* Do we have enough room to write the full amount in the remainder
2890 * of this iclog? Or must we continue a write on the next iclog and
2891 * mark this iclog as completely taken? In the case where we switch
2892 * iclogs (to mark it taken), this particular iclog will release/sync
2893 * to disk in xlog_write().
2895 if (len <= iclog->ic_size - iclog->ic_offset) {
2896 *continued_write = 0;
2897 iclog->ic_offset += len;
2898 } else {
2899 *continued_write = 1;
2900 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2902 *iclogp = iclog;
2904 ASSERT(iclog->ic_offset <= iclog->ic_size);
2905 spin_unlock(&log->l_icloglock);
2907 *logoffsetp = log_offset;
2908 return 0;
2909 } /* xlog_state_get_iclog_space */
2911 /* The first cnt-1 times through here we don't need to
2912 * move the grant write head because the permanent
2913 * reservation has reserved cnt times the unit amount.
2914 * Release part of current permanent unit reservation and
2915 * reset current reservation to be one units worth. Also
2916 * move grant reservation head forward.
2918 STATIC void
2919 xlog_regrant_reserve_log_space(
2920 struct xlog *log,
2921 struct xlog_ticket *ticket)
2923 trace_xfs_log_regrant_reserve_enter(log, ticket);
2925 if (ticket->t_cnt > 0)
2926 ticket->t_cnt--;
2928 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2929 ticket->t_curr_res);
2930 xlog_grant_sub_space(log, &log->l_write_head.grant,
2931 ticket->t_curr_res);
2932 ticket->t_curr_res = ticket->t_unit_res;
2933 xlog_tic_reset_res(ticket);
2935 trace_xfs_log_regrant_reserve_sub(log, ticket);
2937 /* just return if we still have some of the pre-reserved space */
2938 if (ticket->t_cnt > 0)
2939 return;
2941 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2942 ticket->t_unit_res);
2944 trace_xfs_log_regrant_reserve_exit(log, ticket);
2946 ticket->t_curr_res = ticket->t_unit_res;
2947 xlog_tic_reset_res(ticket);
2948 } /* xlog_regrant_reserve_log_space */
2952 * Give back the space left from a reservation.
2954 * All the information we need to make a correct determination of space left
2955 * is present. For non-permanent reservations, things are quite easy. The
2956 * count should have been decremented to zero. We only need to deal with the
2957 * space remaining in the current reservation part of the ticket. If the
2958 * ticket contains a permanent reservation, there may be left over space which
2959 * needs to be released. A count of N means that N-1 refills of the current
2960 * reservation can be done before we need to ask for more space. The first
2961 * one goes to fill up the first current reservation. Once we run out of
2962 * space, the count will stay at zero and the only space remaining will be
2963 * in the current reservation field.
2965 STATIC void
2966 xlog_ungrant_log_space(
2967 struct xlog *log,
2968 struct xlog_ticket *ticket)
2970 int bytes;
2972 if (ticket->t_cnt > 0)
2973 ticket->t_cnt--;
2975 trace_xfs_log_ungrant_enter(log, ticket);
2976 trace_xfs_log_ungrant_sub(log, ticket);
2979 * If this is a permanent reservation ticket, we may be able to free
2980 * up more space based on the remaining count.
2982 bytes = ticket->t_curr_res;
2983 if (ticket->t_cnt > 0) {
2984 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2985 bytes += ticket->t_unit_res*ticket->t_cnt;
2988 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2989 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2991 trace_xfs_log_ungrant_exit(log, ticket);
2993 xfs_log_space_wake(log->l_mp);
2997 * Flush iclog to disk if this is the last reference to the given iclog and
2998 * the WANT_SYNC bit is set.
3000 * When this function is entered, the iclog is not necessarily in the
3001 * WANT_SYNC state. It may be sitting around waiting to get filled.
3005 STATIC int
3006 xlog_state_release_iclog(
3007 struct xlog *log,
3008 struct xlog_in_core *iclog)
3010 int sync = 0; /* do we sync? */
3012 if (iclog->ic_state & XLOG_STATE_IOERROR)
3013 return XFS_ERROR(EIO);
3015 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3016 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3017 return 0;
3019 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3020 spin_unlock(&log->l_icloglock);
3021 return XFS_ERROR(EIO);
3023 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3024 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3026 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3027 /* update tail before writing to iclog */
3028 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3029 sync++;
3030 iclog->ic_state = XLOG_STATE_SYNCING;
3031 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3032 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3033 /* cycle incremented when incrementing curr_block */
3035 spin_unlock(&log->l_icloglock);
3038 * We let the log lock go, so it's possible that we hit a log I/O
3039 * error or some other SHUTDOWN condition that marks the iclog
3040 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3041 * this iclog has consistent data, so we ignore IOERROR
3042 * flags after this point.
3044 if (sync)
3045 return xlog_sync(log, iclog);
3046 return 0;
3047 } /* xlog_state_release_iclog */
3051 * This routine will mark the current iclog in the ring as WANT_SYNC
3052 * and move the current iclog pointer to the next iclog in the ring.
3053 * When this routine is called from xlog_state_get_iclog_space(), the
3054 * exact size of the iclog has not yet been determined. All we know is
3055 * that every data block. We have run out of space in this log record.
3057 STATIC void
3058 xlog_state_switch_iclogs(
3059 struct xlog *log,
3060 struct xlog_in_core *iclog,
3061 int eventual_size)
3063 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3064 if (!eventual_size)
3065 eventual_size = iclog->ic_offset;
3066 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3067 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3068 log->l_prev_block = log->l_curr_block;
3069 log->l_prev_cycle = log->l_curr_cycle;
3071 /* roll log?: ic_offset changed later */
3072 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3074 /* Round up to next log-sunit */
3075 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3076 log->l_mp->m_sb.sb_logsunit > 1) {
3077 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3078 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3081 if (log->l_curr_block >= log->l_logBBsize) {
3082 log->l_curr_cycle++;
3083 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3084 log->l_curr_cycle++;
3085 log->l_curr_block -= log->l_logBBsize;
3086 ASSERT(log->l_curr_block >= 0);
3088 ASSERT(iclog == log->l_iclog);
3089 log->l_iclog = iclog->ic_next;
3090 } /* xlog_state_switch_iclogs */
3093 * Write out all data in the in-core log as of this exact moment in time.
3095 * Data may be written to the in-core log during this call. However,
3096 * we don't guarantee this data will be written out. A change from past
3097 * implementation means this routine will *not* write out zero length LRs.
3099 * Basically, we try and perform an intelligent scan of the in-core logs.
3100 * If we determine there is no flushable data, we just return. There is no
3101 * flushable data if:
3103 * 1. the current iclog is active and has no data; the previous iclog
3104 * is in the active or dirty state.
3105 * 2. the current iclog is drity, and the previous iclog is in the
3106 * active or dirty state.
3108 * We may sleep if:
3110 * 1. the current iclog is not in the active nor dirty state.
3111 * 2. the current iclog dirty, and the previous iclog is not in the
3112 * active nor dirty state.
3113 * 3. the current iclog is active, and there is another thread writing
3114 * to this particular iclog.
3115 * 4. a) the current iclog is active and has no other writers
3116 * b) when we return from flushing out this iclog, it is still
3117 * not in the active nor dirty state.
3120 _xfs_log_force(
3121 struct xfs_mount *mp,
3122 uint flags,
3123 int *log_flushed)
3125 struct xlog *log = mp->m_log;
3126 struct xlog_in_core *iclog;
3127 xfs_lsn_t lsn;
3129 XFS_STATS_INC(xs_log_force);
3131 xlog_cil_force(log);
3133 spin_lock(&log->l_icloglock);
3135 iclog = log->l_iclog;
3136 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3137 spin_unlock(&log->l_icloglock);
3138 return XFS_ERROR(EIO);
3141 /* If the head iclog is not active nor dirty, we just attach
3142 * ourselves to the head and go to sleep.
3144 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3145 iclog->ic_state == XLOG_STATE_DIRTY) {
3147 * If the head is dirty or (active and empty), then
3148 * we need to look at the previous iclog. If the previous
3149 * iclog is active or dirty we are done. There is nothing
3150 * to sync out. Otherwise, we attach ourselves to the
3151 * previous iclog and go to sleep.
3153 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3154 (atomic_read(&iclog->ic_refcnt) == 0
3155 && iclog->ic_offset == 0)) {
3156 iclog = iclog->ic_prev;
3157 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3158 iclog->ic_state == XLOG_STATE_DIRTY)
3159 goto no_sleep;
3160 else
3161 goto maybe_sleep;
3162 } else {
3163 if (atomic_read(&iclog->ic_refcnt) == 0) {
3164 /* We are the only one with access to this
3165 * iclog. Flush it out now. There should
3166 * be a roundoff of zero to show that someone
3167 * has already taken care of the roundoff from
3168 * the previous sync.
3170 atomic_inc(&iclog->ic_refcnt);
3171 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3172 xlog_state_switch_iclogs(log, iclog, 0);
3173 spin_unlock(&log->l_icloglock);
3175 if (xlog_state_release_iclog(log, iclog))
3176 return XFS_ERROR(EIO);
3178 if (log_flushed)
3179 *log_flushed = 1;
3180 spin_lock(&log->l_icloglock);
3181 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3182 iclog->ic_state != XLOG_STATE_DIRTY)
3183 goto maybe_sleep;
3184 else
3185 goto no_sleep;
3186 } else {
3187 /* Someone else is writing to this iclog.
3188 * Use its call to flush out the data. However,
3189 * the other thread may not force out this LR,
3190 * so we mark it WANT_SYNC.
3192 xlog_state_switch_iclogs(log, iclog, 0);
3193 goto maybe_sleep;
3198 /* By the time we come around again, the iclog could've been filled
3199 * which would give it another lsn. If we have a new lsn, just
3200 * return because the relevant data has been flushed.
3202 maybe_sleep:
3203 if (flags & XFS_LOG_SYNC) {
3205 * We must check if we're shutting down here, before
3206 * we wait, while we're holding the l_icloglock.
3207 * Then we check again after waking up, in case our
3208 * sleep was disturbed by a bad news.
3210 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3211 spin_unlock(&log->l_icloglock);
3212 return XFS_ERROR(EIO);
3214 XFS_STATS_INC(xs_log_force_sleep);
3215 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3217 * No need to grab the log lock here since we're
3218 * only deciding whether or not to return EIO
3219 * and the memory read should be atomic.
3221 if (iclog->ic_state & XLOG_STATE_IOERROR)
3222 return XFS_ERROR(EIO);
3223 if (log_flushed)
3224 *log_flushed = 1;
3225 } else {
3227 no_sleep:
3228 spin_unlock(&log->l_icloglock);
3230 return 0;
3234 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3235 * about errors or whether the log was flushed or not. This is the normal
3236 * interface to use when trying to unpin items or move the log forward.
3238 void
3239 xfs_log_force(
3240 xfs_mount_t *mp,
3241 uint flags)
3243 int error;
3245 trace_xfs_log_force(mp, 0);
3246 error = _xfs_log_force(mp, flags, NULL);
3247 if (error)
3248 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3252 * Force the in-core log to disk for a specific LSN.
3254 * Find in-core log with lsn.
3255 * If it is in the DIRTY state, just return.
3256 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3257 * state and go to sleep or return.
3258 * If it is in any other state, go to sleep or return.
3260 * Synchronous forces are implemented with a signal variable. All callers
3261 * to force a given lsn to disk will wait on a the sv attached to the
3262 * specific in-core log. When given in-core log finally completes its
3263 * write to disk, that thread will wake up all threads waiting on the
3264 * sv.
3267 _xfs_log_force_lsn(
3268 struct xfs_mount *mp,
3269 xfs_lsn_t lsn,
3270 uint flags,
3271 int *log_flushed)
3273 struct xlog *log = mp->m_log;
3274 struct xlog_in_core *iclog;
3275 int already_slept = 0;
3277 ASSERT(lsn != 0);
3279 XFS_STATS_INC(xs_log_force);
3281 lsn = xlog_cil_force_lsn(log, lsn);
3282 if (lsn == NULLCOMMITLSN)
3283 return 0;
3285 try_again:
3286 spin_lock(&log->l_icloglock);
3287 iclog = log->l_iclog;
3288 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3289 spin_unlock(&log->l_icloglock);
3290 return XFS_ERROR(EIO);
3293 do {
3294 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3295 iclog = iclog->ic_next;
3296 continue;
3299 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3300 spin_unlock(&log->l_icloglock);
3301 return 0;
3304 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3306 * We sleep here if we haven't already slept (e.g.
3307 * this is the first time we've looked at the correct
3308 * iclog buf) and the buffer before us is going to
3309 * be sync'ed. The reason for this is that if we
3310 * are doing sync transactions here, by waiting for
3311 * the previous I/O to complete, we can allow a few
3312 * more transactions into this iclog before we close
3313 * it down.
3315 * Otherwise, we mark the buffer WANT_SYNC, and bump
3316 * up the refcnt so we can release the log (which
3317 * drops the ref count). The state switch keeps new
3318 * transaction commits from using this buffer. When
3319 * the current commits finish writing into the buffer,
3320 * the refcount will drop to zero and the buffer will
3321 * go out then.
3323 if (!already_slept &&
3324 (iclog->ic_prev->ic_state &
3325 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3326 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3328 XFS_STATS_INC(xs_log_force_sleep);
3330 xlog_wait(&iclog->ic_prev->ic_write_wait,
3331 &log->l_icloglock);
3332 if (log_flushed)
3333 *log_flushed = 1;
3334 already_slept = 1;
3335 goto try_again;
3337 atomic_inc(&iclog->ic_refcnt);
3338 xlog_state_switch_iclogs(log, iclog, 0);
3339 spin_unlock(&log->l_icloglock);
3340 if (xlog_state_release_iclog(log, iclog))
3341 return XFS_ERROR(EIO);
3342 if (log_flushed)
3343 *log_flushed = 1;
3344 spin_lock(&log->l_icloglock);
3347 if ((flags & XFS_LOG_SYNC) && /* sleep */
3348 !(iclog->ic_state &
3349 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3351 * Don't wait on completion if we know that we've
3352 * gotten a log write error.
3354 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3355 spin_unlock(&log->l_icloglock);
3356 return XFS_ERROR(EIO);
3358 XFS_STATS_INC(xs_log_force_sleep);
3359 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3361 * No need to grab the log lock here since we're
3362 * only deciding whether or not to return EIO
3363 * and the memory read should be atomic.
3365 if (iclog->ic_state & XLOG_STATE_IOERROR)
3366 return XFS_ERROR(EIO);
3368 if (log_flushed)
3369 *log_flushed = 1;
3370 } else { /* just return */
3371 spin_unlock(&log->l_icloglock);
3374 return 0;
3375 } while (iclog != log->l_iclog);
3377 spin_unlock(&log->l_icloglock);
3378 return 0;
3382 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3383 * about errors or whether the log was flushed or not. This is the normal
3384 * interface to use when trying to unpin items or move the log forward.
3386 void
3387 xfs_log_force_lsn(
3388 xfs_mount_t *mp,
3389 xfs_lsn_t lsn,
3390 uint flags)
3392 int error;
3394 trace_xfs_log_force(mp, lsn);
3395 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3396 if (error)
3397 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3401 * Called when we want to mark the current iclog as being ready to sync to
3402 * disk.
3404 STATIC void
3405 xlog_state_want_sync(
3406 struct xlog *log,
3407 struct xlog_in_core *iclog)
3409 assert_spin_locked(&log->l_icloglock);
3411 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3412 xlog_state_switch_iclogs(log, iclog, 0);
3413 } else {
3414 ASSERT(iclog->ic_state &
3415 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3420 /*****************************************************************************
3422 * TICKET functions
3424 *****************************************************************************
3428 * Free a used ticket when its refcount falls to zero.
3430 void
3431 xfs_log_ticket_put(
3432 xlog_ticket_t *ticket)
3434 ASSERT(atomic_read(&ticket->t_ref) > 0);
3435 if (atomic_dec_and_test(&ticket->t_ref))
3436 kmem_zone_free(xfs_log_ticket_zone, ticket);
3439 xlog_ticket_t *
3440 xfs_log_ticket_get(
3441 xlog_ticket_t *ticket)
3443 ASSERT(atomic_read(&ticket->t_ref) > 0);
3444 atomic_inc(&ticket->t_ref);
3445 return ticket;
3449 * Figure out the total log space unit (in bytes) that would be
3450 * required for a log ticket.
3453 xfs_log_calc_unit_res(
3454 struct xfs_mount *mp,
3455 int unit_bytes)
3457 struct xlog *log = mp->m_log;
3458 int iclog_space;
3459 uint num_headers;
3462 * Permanent reservations have up to 'cnt'-1 active log operations
3463 * in the log. A unit in this case is the amount of space for one
3464 * of these log operations. Normal reservations have a cnt of 1
3465 * and their unit amount is the total amount of space required.
3467 * The following lines of code account for non-transaction data
3468 * which occupy space in the on-disk log.
3470 * Normal form of a transaction is:
3471 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3472 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3474 * We need to account for all the leadup data and trailer data
3475 * around the transaction data.
3476 * And then we need to account for the worst case in terms of using
3477 * more space.
3478 * The worst case will happen if:
3479 * - the placement of the transaction happens to be such that the
3480 * roundoff is at its maximum
3481 * - the transaction data is synced before the commit record is synced
3482 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3483 * Therefore the commit record is in its own Log Record.
3484 * This can happen as the commit record is called with its
3485 * own region to xlog_write().
3486 * This then means that in the worst case, roundoff can happen for
3487 * the commit-rec as well.
3488 * The commit-rec is smaller than padding in this scenario and so it is
3489 * not added separately.
3492 /* for trans header */
3493 unit_bytes += sizeof(xlog_op_header_t);
3494 unit_bytes += sizeof(xfs_trans_header_t);
3496 /* for start-rec */
3497 unit_bytes += sizeof(xlog_op_header_t);
3500 * for LR headers - the space for data in an iclog is the size minus
3501 * the space used for the headers. If we use the iclog size, then we
3502 * undercalculate the number of headers required.
3504 * Furthermore - the addition of op headers for split-recs might
3505 * increase the space required enough to require more log and op
3506 * headers, so take that into account too.
3508 * IMPORTANT: This reservation makes the assumption that if this
3509 * transaction is the first in an iclog and hence has the LR headers
3510 * accounted to it, then the remaining space in the iclog is
3511 * exclusively for this transaction. i.e. if the transaction is larger
3512 * than the iclog, it will be the only thing in that iclog.
3513 * Fundamentally, this means we must pass the entire log vector to
3514 * xlog_write to guarantee this.
3516 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3517 num_headers = howmany(unit_bytes, iclog_space);
3519 /* for split-recs - ophdrs added when data split over LRs */
3520 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3522 /* add extra header reservations if we overrun */
3523 while (!num_headers ||
3524 howmany(unit_bytes, iclog_space) > num_headers) {
3525 unit_bytes += sizeof(xlog_op_header_t);
3526 num_headers++;
3528 unit_bytes += log->l_iclog_hsize * num_headers;
3530 /* for commit-rec LR header - note: padding will subsume the ophdr */
3531 unit_bytes += log->l_iclog_hsize;
3533 /* for roundoff padding for transaction data and one for commit record */
3534 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3535 /* log su roundoff */
3536 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3537 } else {
3538 /* BB roundoff */
3539 unit_bytes += 2 * BBSIZE;
3542 return unit_bytes;
3546 * Allocate and initialise a new log ticket.
3548 struct xlog_ticket *
3549 xlog_ticket_alloc(
3550 struct xlog *log,
3551 int unit_bytes,
3552 int cnt,
3553 char client,
3554 bool permanent,
3555 xfs_km_flags_t alloc_flags)
3557 struct xlog_ticket *tic;
3558 int unit_res;
3560 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3561 if (!tic)
3562 return NULL;
3564 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3566 atomic_set(&tic->t_ref, 1);
3567 tic->t_task = current;
3568 INIT_LIST_HEAD(&tic->t_queue);
3569 tic->t_unit_res = unit_res;
3570 tic->t_curr_res = unit_res;
3571 tic->t_cnt = cnt;
3572 tic->t_ocnt = cnt;
3573 tic->t_tid = prandom_u32();
3574 tic->t_clientid = client;
3575 tic->t_flags = XLOG_TIC_INITED;
3576 tic->t_trans_type = 0;
3577 if (permanent)
3578 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3580 xlog_tic_reset_res(tic);
3582 return tic;
3586 /******************************************************************************
3588 * Log debug routines
3590 ******************************************************************************
3592 #if defined(DEBUG)
3594 * Make sure that the destination ptr is within the valid data region of
3595 * one of the iclogs. This uses backup pointers stored in a different
3596 * part of the log in case we trash the log structure.
3598 void
3599 xlog_verify_dest_ptr(
3600 struct xlog *log,
3601 char *ptr)
3603 int i;
3604 int good_ptr = 0;
3606 for (i = 0; i < log->l_iclog_bufs; i++) {
3607 if (ptr >= log->l_iclog_bak[i] &&
3608 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3609 good_ptr++;
3612 if (!good_ptr)
3613 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3617 * Check to make sure the grant write head didn't just over lap the tail. If
3618 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3619 * the cycles differ by exactly one and check the byte count.
3621 * This check is run unlocked, so can give false positives. Rather than assert
3622 * on failures, use a warn-once flag and a panic tag to allow the admin to
3623 * determine if they want to panic the machine when such an error occurs. For
3624 * debug kernels this will have the same effect as using an assert but, unlinke
3625 * an assert, it can be turned off at runtime.
3627 STATIC void
3628 xlog_verify_grant_tail(
3629 struct xlog *log)
3631 int tail_cycle, tail_blocks;
3632 int cycle, space;
3634 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3635 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3636 if (tail_cycle != cycle) {
3637 if (cycle - 1 != tail_cycle &&
3638 !(log->l_flags & XLOG_TAIL_WARN)) {
3639 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3640 "%s: cycle - 1 != tail_cycle", __func__);
3641 log->l_flags |= XLOG_TAIL_WARN;
3644 if (space > BBTOB(tail_blocks) &&
3645 !(log->l_flags & XLOG_TAIL_WARN)) {
3646 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3647 "%s: space > BBTOB(tail_blocks)", __func__);
3648 log->l_flags |= XLOG_TAIL_WARN;
3653 /* check if it will fit */
3654 STATIC void
3655 xlog_verify_tail_lsn(
3656 struct xlog *log,
3657 struct xlog_in_core *iclog,
3658 xfs_lsn_t tail_lsn)
3660 int blocks;
3662 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3663 blocks =
3664 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3665 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3666 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3667 } else {
3668 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3670 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3671 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3673 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3674 if (blocks < BTOBB(iclog->ic_offset) + 1)
3675 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3677 } /* xlog_verify_tail_lsn */
3680 * Perform a number of checks on the iclog before writing to disk.
3682 * 1. Make sure the iclogs are still circular
3683 * 2. Make sure we have a good magic number
3684 * 3. Make sure we don't have magic numbers in the data
3685 * 4. Check fields of each log operation header for:
3686 * A. Valid client identifier
3687 * B. tid ptr value falls in valid ptr space (user space code)
3688 * C. Length in log record header is correct according to the
3689 * individual operation headers within record.
3690 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3691 * log, check the preceding blocks of the physical log to make sure all
3692 * the cycle numbers agree with the current cycle number.
3694 STATIC void
3695 xlog_verify_iclog(
3696 struct xlog *log,
3697 struct xlog_in_core *iclog,
3698 int count,
3699 bool syncing)
3701 xlog_op_header_t *ophead;
3702 xlog_in_core_t *icptr;
3703 xlog_in_core_2_t *xhdr;
3704 xfs_caddr_t ptr;
3705 xfs_caddr_t base_ptr;
3706 __psint_t field_offset;
3707 __uint8_t clientid;
3708 int len, i, j, k, op_len;
3709 int idx;
3711 /* check validity of iclog pointers */
3712 spin_lock(&log->l_icloglock);
3713 icptr = log->l_iclog;
3714 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3715 ASSERT(icptr);
3717 if (icptr != log->l_iclog)
3718 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3719 spin_unlock(&log->l_icloglock);
3721 /* check log magic numbers */
3722 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3723 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3725 ptr = (xfs_caddr_t) &iclog->ic_header;
3726 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3727 ptr += BBSIZE) {
3728 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3729 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3730 __func__);
3733 /* check fields */
3734 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3735 ptr = iclog->ic_datap;
3736 base_ptr = ptr;
3737 ophead = (xlog_op_header_t *)ptr;
3738 xhdr = iclog->ic_data;
3739 for (i = 0; i < len; i++) {
3740 ophead = (xlog_op_header_t *)ptr;
3742 /* clientid is only 1 byte */
3743 field_offset = (__psint_t)
3744 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3745 if (!syncing || (field_offset & 0x1ff)) {
3746 clientid = ophead->oh_clientid;
3747 } else {
3748 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3749 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3750 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3751 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3752 clientid = xlog_get_client_id(
3753 xhdr[j].hic_xheader.xh_cycle_data[k]);
3754 } else {
3755 clientid = xlog_get_client_id(
3756 iclog->ic_header.h_cycle_data[idx]);
3759 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3760 xfs_warn(log->l_mp,
3761 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3762 __func__, clientid, ophead,
3763 (unsigned long)field_offset);
3765 /* check length */
3766 field_offset = (__psint_t)
3767 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3768 if (!syncing || (field_offset & 0x1ff)) {
3769 op_len = be32_to_cpu(ophead->oh_len);
3770 } else {
3771 idx = BTOBBT((__psint_t)&ophead->oh_len -
3772 (__psint_t)iclog->ic_datap);
3773 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3774 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3775 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3776 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3777 } else {
3778 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3781 ptr += sizeof(xlog_op_header_t) + op_len;
3783 } /* xlog_verify_iclog */
3784 #endif
3787 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3789 STATIC int
3790 xlog_state_ioerror(
3791 struct xlog *log)
3793 xlog_in_core_t *iclog, *ic;
3795 iclog = log->l_iclog;
3796 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3798 * Mark all the incore logs IOERROR.
3799 * From now on, no log flushes will result.
3801 ic = iclog;
3802 do {
3803 ic->ic_state = XLOG_STATE_IOERROR;
3804 ic = ic->ic_next;
3805 } while (ic != iclog);
3806 return 0;
3809 * Return non-zero, if state transition has already happened.
3811 return 1;
3815 * This is called from xfs_force_shutdown, when we're forcibly
3816 * shutting down the filesystem, typically because of an IO error.
3817 * Our main objectives here are to make sure that:
3818 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3819 * parties to find out, 'atomically'.
3820 * b. those who're sleeping on log reservations, pinned objects and
3821 * other resources get woken up, and be told the bad news.
3822 * c. nothing new gets queued up after (a) and (b) are done.
3823 * d. if !logerror, flush the iclogs to disk, then seal them off
3824 * for business.
3826 * Note: for delayed logging the !logerror case needs to flush the regions
3827 * held in memory out to the iclogs before flushing them to disk. This needs
3828 * to be done before the log is marked as shutdown, otherwise the flush to the
3829 * iclogs will fail.
3832 xfs_log_force_umount(
3833 struct xfs_mount *mp,
3834 int logerror)
3836 struct xlog *log;
3837 int retval;
3839 log = mp->m_log;
3842 * If this happens during log recovery, don't worry about
3843 * locking; the log isn't open for business yet.
3845 if (!log ||
3846 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3847 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3848 if (mp->m_sb_bp)
3849 XFS_BUF_DONE(mp->m_sb_bp);
3850 return 0;
3854 * Somebody could've already done the hard work for us.
3855 * No need to get locks for this.
3857 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3858 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3859 return 1;
3861 retval = 0;
3864 * Flush the in memory commit item list before marking the log as
3865 * being shut down. We need to do it in this order to ensure all the
3866 * completed transactions are flushed to disk with the xfs_log_force()
3867 * call below.
3869 if (!logerror)
3870 xlog_cil_force(log);
3873 * mark the filesystem and the as in a shutdown state and wake
3874 * everybody up to tell them the bad news.
3876 spin_lock(&log->l_icloglock);
3877 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3878 if (mp->m_sb_bp)
3879 XFS_BUF_DONE(mp->m_sb_bp);
3882 * This flag is sort of redundant because of the mount flag, but
3883 * it's good to maintain the separation between the log and the rest
3884 * of XFS.
3886 log->l_flags |= XLOG_IO_ERROR;
3889 * If we hit a log error, we want to mark all the iclogs IOERROR
3890 * while we're still holding the loglock.
3892 if (logerror)
3893 retval = xlog_state_ioerror(log);
3894 spin_unlock(&log->l_icloglock);
3897 * We don't want anybody waiting for log reservations after this. That
3898 * means we have to wake up everybody queued up on reserveq as well as
3899 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3900 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3901 * action is protected by the grant locks.
3903 xlog_grant_head_wake_all(&log->l_reserve_head);
3904 xlog_grant_head_wake_all(&log->l_write_head);
3906 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3907 ASSERT(!logerror);
3909 * Force the incore logs to disk before shutting the
3910 * log down completely.
3912 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3914 spin_lock(&log->l_icloglock);
3915 retval = xlog_state_ioerror(log);
3916 spin_unlock(&log->l_icloglock);
3919 * Wake up everybody waiting on xfs_log_force.
3920 * Callback all log item committed functions as if the
3921 * log writes were completed.
3923 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3925 #ifdef XFSERRORDEBUG
3927 xlog_in_core_t *iclog;
3929 spin_lock(&log->l_icloglock);
3930 iclog = log->l_iclog;
3931 do {
3932 ASSERT(iclog->ic_callback == 0);
3933 iclog = iclog->ic_next;
3934 } while (iclog != log->l_iclog);
3935 spin_unlock(&log->l_icloglock);
3937 #endif
3938 /* return non-zero if log IOERROR transition had already happened */
3939 return retval;
3942 STATIC int
3943 xlog_iclogs_empty(
3944 struct xlog *log)
3946 xlog_in_core_t *iclog;
3948 iclog = log->l_iclog;
3949 do {
3950 /* endianness does not matter here, zero is zero in
3951 * any language.
3953 if (iclog->ic_header.h_num_logops)
3954 return 0;
3955 iclog = iclog->ic_next;
3956 } while (iclog != log->l_iclog);
3957 return 1;