2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
38 kmem_zone_t
*xfs_log_ticket_zone
;
40 /* Local miscellaneous function prototypes */
44 struct xlog_ticket
*ticket
,
45 struct xlog_in_core
**iclog
,
46 xfs_lsn_t
*commitlsnp
);
51 struct xfs_buftarg
*log_target
,
52 xfs_daddr_t blk_offset
,
61 struct xlog_in_core
*iclog
);
66 /* local state machine functions */
67 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
69 xlog_state_do_callback(
72 struct xlog_in_core
*iclog
);
74 xlog_state_get_iclog_space(
77 struct xlog_in_core
**iclog
,
78 struct xlog_ticket
*ticket
,
82 xlog_state_release_iclog(
84 struct xlog_in_core
*iclog
);
86 xlog_state_switch_iclogs(
88 struct xlog_in_core
*iclog
,
93 struct xlog_in_core
*iclog
);
100 xlog_regrant_reserve_log_space(
102 struct xlog_ticket
*ticket
);
104 xlog_ungrant_log_space(
106 struct xlog_ticket
*ticket
);
110 xlog_verify_dest_ptr(
114 xlog_verify_grant_tail(
119 struct xlog_in_core
*iclog
,
123 xlog_verify_tail_lsn(
125 struct xlog_in_core
*iclog
,
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
139 xlog_grant_sub_space(
144 int64_t head_val
= atomic64_read(head
);
150 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
154 space
+= log
->l_logsize
;
159 new = xlog_assign_grant_head_val(cycle
, space
);
160 head_val
= atomic64_cmpxchg(head
, old
, new);
161 } while (head_val
!= old
);
165 xlog_grant_add_space(
170 int64_t head_val
= atomic64_read(head
);
177 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
179 tmp
= log
->l_logsize
- space
;
188 new = xlog_assign_grant_head_val(cycle
, space
);
189 head_val
= atomic64_cmpxchg(head
, old
, new);
190 } while (head_val
!= old
);
194 xlog_grant_head_init(
195 struct xlog_grant_head
*head
)
197 xlog_assign_grant_head(&head
->grant
, 1, 0);
198 INIT_LIST_HEAD(&head
->waiters
);
199 spin_lock_init(&head
->lock
);
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head
*head
)
206 struct xlog_ticket
*tic
;
208 spin_lock(&head
->lock
);
209 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
210 wake_up_process(tic
->t_task
);
211 spin_unlock(&head
->lock
);
215 xlog_ticket_reservation(
217 struct xlog_grant_head
*head
,
218 struct xlog_ticket
*tic
)
220 if (head
== &log
->l_write_head
) {
221 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
222 return tic
->t_unit_res
;
224 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
225 return tic
->t_unit_res
* tic
->t_cnt
;
227 return tic
->t_unit_res
;
232 xlog_grant_head_wake(
234 struct xlog_grant_head
*head
,
237 struct xlog_ticket
*tic
;
240 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
241 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
242 if (*free_bytes
< need_bytes
)
245 *free_bytes
-= need_bytes
;
246 trace_xfs_log_grant_wake_up(log
, tic
);
247 wake_up_process(tic
->t_task
);
254 xlog_grant_head_wait(
256 struct xlog_grant_head
*head
,
257 struct xlog_ticket
*tic
,
258 int need_bytes
) __releases(&head
->lock
)
259 __acquires(&head
->lock
)
261 list_add_tail(&tic
->t_queue
, &head
->waiters
);
264 if (XLOG_FORCED_SHUTDOWN(log
))
266 xlog_grant_push_ail(log
, need_bytes
);
268 __set_current_state(TASK_UNINTERRUPTIBLE
);
269 spin_unlock(&head
->lock
);
271 XFS_STATS_INC(xs_sleep_logspace
);
273 trace_xfs_log_grant_sleep(log
, tic
);
275 trace_xfs_log_grant_wake(log
, tic
);
277 spin_lock(&head
->lock
);
278 if (XLOG_FORCED_SHUTDOWN(log
))
280 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
282 list_del_init(&tic
->t_queue
);
285 list_del_init(&tic
->t_queue
);
286 return XFS_ERROR(EIO
);
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
307 xlog_grant_head_check(
309 struct xlog_grant_head
*head
,
310 struct xlog_ticket
*tic
,
316 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
325 free_bytes
= xlog_space_left(log
, &head
->grant
);
326 if (!list_empty_careful(&head
->waiters
)) {
327 spin_lock(&head
->lock
);
328 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
329 free_bytes
< *need_bytes
) {
330 error
= xlog_grant_head_wait(log
, head
, tic
,
333 spin_unlock(&head
->lock
);
334 } else if (free_bytes
< *need_bytes
) {
335 spin_lock(&head
->lock
);
336 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
337 spin_unlock(&head
->lock
);
344 xlog_tic_reset_res(xlog_ticket_t
*tic
)
347 tic
->t_res_arr_sum
= 0;
348 tic
->t_res_num_ophdrs
= 0;
352 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
354 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
355 /* add to overflow and start again */
356 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
358 tic
->t_res_arr_sum
= 0;
361 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
362 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
363 tic
->t_res_arr_sum
+= len
;
368 * Replenish the byte reservation required by moving the grant write head.
372 struct xfs_mount
*mp
,
373 struct xlog_ticket
*tic
)
375 struct xlog
*log
= mp
->m_log
;
379 if (XLOG_FORCED_SHUTDOWN(log
))
380 return XFS_ERROR(EIO
);
382 XFS_STATS_INC(xs_try_logspace
);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
392 xlog_grant_push_ail(log
, tic
->t_unit_res
);
394 tic
->t_curr_res
= tic
->t_unit_res
;
395 xlog_tic_reset_res(tic
);
400 trace_xfs_log_regrant(log
, tic
);
402 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
407 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
408 trace_xfs_log_regrant_exit(log
, tic
);
409 xlog_verify_grant_tail(log
);
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
419 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
433 struct xfs_mount
*mp
,
436 struct xlog_ticket
**ticp
,
441 struct xlog
*log
= mp
->m_log
;
442 struct xlog_ticket
*tic
;
446 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
448 if (XLOG_FORCED_SHUTDOWN(log
))
449 return XFS_ERROR(EIO
);
451 XFS_STATS_INC(xs_try_logspace
);
453 ASSERT(*ticp
== NULL
);
454 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
455 KM_SLEEP
| KM_MAYFAIL
);
457 return XFS_ERROR(ENOMEM
);
459 tic
->t_trans_type
= t_type
;
462 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
465 trace_xfs_log_reserve(log
, tic
);
467 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
472 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
473 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
474 trace_xfs_log_reserve_exit(log
, tic
);
475 xlog_verify_grant_tail(log
);
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
485 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
513 struct xfs_mount
*mp
,
514 struct xlog_ticket
*ticket
,
515 struct xlog_in_core
**iclog
,
518 struct xlog
*log
= mp
->m_log
;
521 if (XLOG_FORCED_SHUTDOWN(log
) ||
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
526 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
527 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
528 lsn
= (xfs_lsn_t
) -1;
529 if (ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) {
530 flags
|= XFS_LOG_REL_PERM_RESERV
;
535 if ((ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) == 0 ||
536 (flags
& XFS_LOG_REL_PERM_RESERV
)) {
537 trace_xfs_log_done_nonperm(log
, ticket
);
540 * Release ticket if not permanent reservation or a specific
541 * request has been made to release a permanent reservation.
543 xlog_ungrant_log_space(log
, ticket
);
544 xfs_log_ticket_put(ticket
);
546 trace_xfs_log_done_perm(log
, ticket
);
548 xlog_regrant_reserve_log_space(log
, ticket
);
549 /* If this ticket was a permanent reservation and we aren't
550 * trying to release it, reset the inited flags; so next time
551 * we write, a start record will be written out.
553 ticket
->t_flags
|= XLOG_TIC_INITED
;
560 * Attaches a new iclog I/O completion callback routine during
561 * transaction commit. If the log is in error state, a non-zero
562 * return code is handed back and the caller is responsible for
563 * executing the callback at an appropriate time.
567 struct xfs_mount
*mp
,
568 struct xlog_in_core
*iclog
,
569 xfs_log_callback_t
*cb
)
573 spin_lock(&iclog
->ic_callback_lock
);
574 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
576 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
577 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
579 *(iclog
->ic_callback_tail
) = cb
;
580 iclog
->ic_callback_tail
= &(cb
->cb_next
);
582 spin_unlock(&iclog
->ic_callback_lock
);
587 xfs_log_release_iclog(
588 struct xfs_mount
*mp
,
589 struct xlog_in_core
*iclog
)
591 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
592 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
600 * Mount a log filesystem
602 * mp - ubiquitous xfs mount point structure
603 * log_target - buftarg of on-disk log device
604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
605 * num_bblocks - Number of BBSIZE blocks in on-disk log
607 * Return error or zero.
612 xfs_buftarg_t
*log_target
,
613 xfs_daddr_t blk_offset
,
619 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
620 xfs_notice(mp
, "Mounting Filesystem");
623 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
624 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
627 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
628 if (IS_ERR(mp
->m_log
)) {
629 error
= -PTR_ERR(mp
->m_log
);
634 * Validate the given log space and drop a critical message via syslog
635 * if the log size is too small that would lead to some unexpected
636 * situations in transaction log space reservation stage.
638 * Note: we can't just reject the mount if the validation fails. This
639 * would mean that people would have to downgrade their kernel just to
640 * remedy the situation as there is no way to grow the log (short of
641 * black magic surgery with xfs_db).
643 * We can, however, reject mounts for CRC format filesystems, as the
644 * mkfs binary being used to make the filesystem should never create a
645 * filesystem with a log that is too small.
647 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
649 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
651 "Log size %d blocks too small, minimum size is %d blocks",
652 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
654 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
656 "Log size %d blocks too large, maximum size is %lld blocks",
657 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
659 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
661 "log size %lld bytes too large, maximum size is %lld bytes",
662 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
667 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
668 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
673 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
674 "experienced then please report this message in the bug report.");
678 * Initialize the AIL now we have a log.
680 error
= xfs_trans_ail_init(mp
);
682 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
685 mp
->m_log
->l_ailp
= mp
->m_ail
;
688 * skip log recovery on a norecovery mount. pretend it all
691 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
692 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
695 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
697 error
= xlog_recover(mp
->m_log
);
700 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
702 xfs_warn(mp
, "log mount/recovery failed: error %d",
704 goto out_destroy_ail
;
708 /* Normal transactions can now occur */
709 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
712 * Now the log has been fully initialised and we know were our
713 * space grant counters are, we can initialise the permanent ticket
714 * needed for delayed logging to work.
716 xlog_cil_init_post_recovery(mp
->m_log
);
721 xfs_trans_ail_destroy(mp
);
723 xlog_dealloc_log(mp
->m_log
);
729 * Finish the recovery of the file system. This is separate from the
730 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
731 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
734 * If we finish recovery successfully, start the background log work. If we are
735 * not doing recovery, then we have a RO filesystem and we don't need to start
739 xfs_log_mount_finish(xfs_mount_t
*mp
)
743 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
744 error
= xlog_recover_finish(mp
->m_log
);
746 xfs_log_work_queue(mp
);
748 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
756 * Final log writes as part of unmount.
758 * Mark the filesystem clean as unmount happens. Note that during relocation
759 * this routine needs to be executed as part of source-bag while the
760 * deallocation must not be done until source-end.
764 * Unmount record used to have a string "Unmount filesystem--" in the
765 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
766 * We just write the magic number now since that particular field isn't
767 * currently architecture converted and "Unmount" is a bit foo.
768 * As far as I know, there weren't any dependencies on the old behaviour.
772 xfs_log_unmount_write(xfs_mount_t
*mp
)
774 struct xlog
*log
= mp
->m_log
;
775 xlog_in_core_t
*iclog
;
777 xlog_in_core_t
*first_iclog
;
779 xlog_ticket_t
*tic
= NULL
;
784 * Don't write out unmount record on read-only mounts.
785 * Or, if we are doing a forced umount (typically because of IO errors).
787 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
790 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
791 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
794 first_iclog
= iclog
= log
->l_iclog
;
796 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
797 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
798 ASSERT(iclog
->ic_offset
== 0);
800 iclog
= iclog
->ic_next
;
801 } while (iclog
!= first_iclog
);
803 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
804 error
= xfs_log_reserve(mp
, 600, 1, &tic
,
805 XFS_LOG
, 0, XLOG_UNMOUNT_REC_TYPE
);
807 /* the data section must be 32 bit size aligned */
811 __uint32_t pad2
; /* may as well make it 64 bits */
813 .magic
= XLOG_UNMOUNT_TYPE
,
815 struct xfs_log_iovec reg
= {
817 .i_len
= sizeof(magic
),
818 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
820 struct xfs_log_vec vec
= {
825 /* remove inited flag, and account for space used */
827 tic
->t_curr_res
-= sizeof(magic
);
828 error
= xlog_write(log
, &vec
, tic
, &lsn
,
829 NULL
, XLOG_UNMOUNT_TRANS
);
831 * At this point, we're umounting anyway,
832 * so there's no point in transitioning log state
833 * to IOERROR. Just continue...
838 xfs_alert(mp
, "%s: unmount record failed", __func__
);
841 spin_lock(&log
->l_icloglock
);
842 iclog
= log
->l_iclog
;
843 atomic_inc(&iclog
->ic_refcnt
);
844 xlog_state_want_sync(log
, iclog
);
845 spin_unlock(&log
->l_icloglock
);
846 error
= xlog_state_release_iclog(log
, iclog
);
848 spin_lock(&log
->l_icloglock
);
849 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
850 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
851 if (!XLOG_FORCED_SHUTDOWN(log
)) {
852 xlog_wait(&iclog
->ic_force_wait
,
855 spin_unlock(&log
->l_icloglock
);
858 spin_unlock(&log
->l_icloglock
);
861 trace_xfs_log_umount_write(log
, tic
);
862 xlog_ungrant_log_space(log
, tic
);
863 xfs_log_ticket_put(tic
);
867 * We're already in forced_shutdown mode, couldn't
868 * even attempt to write out the unmount transaction.
870 * Go through the motions of sync'ing and releasing
871 * the iclog, even though no I/O will actually happen,
872 * we need to wait for other log I/Os that may already
873 * be in progress. Do this as a separate section of
874 * code so we'll know if we ever get stuck here that
875 * we're in this odd situation of trying to unmount
876 * a file system that went into forced_shutdown as
877 * the result of an unmount..
879 spin_lock(&log
->l_icloglock
);
880 iclog
= log
->l_iclog
;
881 atomic_inc(&iclog
->ic_refcnt
);
883 xlog_state_want_sync(log
, iclog
);
884 spin_unlock(&log
->l_icloglock
);
885 error
= xlog_state_release_iclog(log
, iclog
);
887 spin_lock(&log
->l_icloglock
);
889 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
890 || iclog
->ic_state
== XLOG_STATE_DIRTY
891 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
893 xlog_wait(&iclog
->ic_force_wait
,
896 spin_unlock(&log
->l_icloglock
);
901 } /* xfs_log_unmount_write */
904 * Empty the log for unmount/freeze.
906 * To do this, we first need to shut down the background log work so it is not
907 * trying to cover the log as we clean up. We then need to unpin all objects in
908 * the log so we can then flush them out. Once they have completed their IO and
909 * run the callbacks removing themselves from the AIL, we can write the unmount
914 struct xfs_mount
*mp
)
916 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
917 xfs_log_force(mp
, XFS_LOG_SYNC
);
920 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
921 * will push it, xfs_wait_buftarg() will not wait for it. Further,
922 * xfs_buf_iowait() cannot be used because it was pushed with the
923 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
924 * the IO to complete.
926 xfs_ail_push_all_sync(mp
->m_ail
);
927 xfs_wait_buftarg(mp
->m_ddev_targp
);
928 xfs_buf_lock(mp
->m_sb_bp
);
929 xfs_buf_unlock(mp
->m_sb_bp
);
931 xfs_log_unmount_write(mp
);
935 * Shut down and release the AIL and Log.
937 * During unmount, we need to ensure we flush all the dirty metadata objects
938 * from the AIL so that the log is empty before we write the unmount record to
939 * the log. Once this is done, we can tear down the AIL and the log.
943 struct xfs_mount
*mp
)
947 xfs_trans_ail_destroy(mp
);
948 xlog_dealloc_log(mp
->m_log
);
953 struct xfs_mount
*mp
,
954 struct xfs_log_item
*item
,
956 const struct xfs_item_ops
*ops
)
958 item
->li_mountp
= mp
;
959 item
->li_ailp
= mp
->m_ail
;
960 item
->li_type
= type
;
964 INIT_LIST_HEAD(&item
->li_ail
);
965 INIT_LIST_HEAD(&item
->li_cil
);
969 * Wake up processes waiting for log space after we have moved the log tail.
973 struct xfs_mount
*mp
)
975 struct xlog
*log
= mp
->m_log
;
978 if (XLOG_FORCED_SHUTDOWN(log
))
981 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
982 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
984 spin_lock(&log
->l_write_head
.lock
);
985 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
986 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
987 spin_unlock(&log
->l_write_head
.lock
);
990 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
991 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
993 spin_lock(&log
->l_reserve_head
.lock
);
994 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
995 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
996 spin_unlock(&log
->l_reserve_head
.lock
);
1001 * Determine if we have a transaction that has gone to disk that needs to be
1002 * covered. To begin the transition to the idle state firstly the log needs to
1003 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1004 * we start attempting to cover the log.
1006 * Only if we are then in a state where covering is needed, the caller is
1007 * informed that dummy transactions are required to move the log into the idle
1010 * If there are any items in the AIl or CIL, then we do not want to attempt to
1011 * cover the log as we may be in a situation where there isn't log space
1012 * available to run a dummy transaction and this can lead to deadlocks when the
1013 * tail of the log is pinned by an item that is modified in the CIL. Hence
1014 * there's no point in running a dummy transaction at this point because we
1015 * can't start trying to idle the log until both the CIL and AIL are empty.
1018 xfs_log_need_covered(xfs_mount_t
*mp
)
1020 struct xlog
*log
= mp
->m_log
;
1023 if (!xfs_fs_writable(mp
))
1026 if (!xlog_cil_empty(log
))
1029 spin_lock(&log
->l_icloglock
);
1030 switch (log
->l_covered_state
) {
1031 case XLOG_STATE_COVER_DONE
:
1032 case XLOG_STATE_COVER_DONE2
:
1033 case XLOG_STATE_COVER_IDLE
:
1035 case XLOG_STATE_COVER_NEED
:
1036 case XLOG_STATE_COVER_NEED2
:
1037 if (xfs_ail_min_lsn(log
->l_ailp
))
1039 if (!xlog_iclogs_empty(log
))
1043 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1044 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1046 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1052 spin_unlock(&log
->l_icloglock
);
1057 * We may be holding the log iclog lock upon entering this routine.
1060 xlog_assign_tail_lsn_locked(
1061 struct xfs_mount
*mp
)
1063 struct xlog
*log
= mp
->m_log
;
1064 struct xfs_log_item
*lip
;
1067 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1070 * To make sure we always have a valid LSN for the log tail we keep
1071 * track of the last LSN which was committed in log->l_last_sync_lsn,
1072 * and use that when the AIL was empty.
1074 lip
= xfs_ail_min(mp
->m_ail
);
1076 tail_lsn
= lip
->li_lsn
;
1078 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1079 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1080 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1085 xlog_assign_tail_lsn(
1086 struct xfs_mount
*mp
)
1090 spin_lock(&mp
->m_ail
->xa_lock
);
1091 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1092 spin_unlock(&mp
->m_ail
->xa_lock
);
1098 * Return the space in the log between the tail and the head. The head
1099 * is passed in the cycle/bytes formal parms. In the special case where
1100 * the reserve head has wrapped passed the tail, this calculation is no
1101 * longer valid. In this case, just return 0 which means there is no space
1102 * in the log. This works for all places where this function is called
1103 * with the reserve head. Of course, if the write head were to ever
1104 * wrap the tail, we should blow up. Rather than catch this case here,
1105 * we depend on other ASSERTions in other parts of the code. XXXmiken
1107 * This code also handles the case where the reservation head is behind
1108 * the tail. The details of this case are described below, but the end
1109 * result is that we return the size of the log as the amount of space left.
1122 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1123 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1124 tail_bytes
= BBTOB(tail_bytes
);
1125 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1126 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1127 else if (tail_cycle
+ 1 < head_cycle
)
1129 else if (tail_cycle
< head_cycle
) {
1130 ASSERT(tail_cycle
== (head_cycle
- 1));
1131 free_bytes
= tail_bytes
- head_bytes
;
1134 * The reservation head is behind the tail.
1135 * In this case we just want to return the size of the
1136 * log as the amount of space left.
1138 xfs_alert(log
->l_mp
,
1139 "xlog_space_left: head behind tail\n"
1140 " tail_cycle = %d, tail_bytes = %d\n"
1141 " GH cycle = %d, GH bytes = %d",
1142 tail_cycle
, tail_bytes
, head_cycle
, head_bytes
);
1144 free_bytes
= log
->l_logsize
;
1151 * Log function which is called when an io completes.
1153 * The log manager needs its own routine, in order to control what
1154 * happens with the buffer after the write completes.
1157 xlog_iodone(xfs_buf_t
*bp
)
1159 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1160 struct xlog
*l
= iclog
->ic_log
;
1164 * Race to shutdown the filesystem if we see an error.
1166 if (XFS_TEST_ERROR((xfs_buf_geterror(bp
)), l
->l_mp
,
1167 XFS_ERRTAG_IODONE_IOERR
, XFS_RANDOM_IODONE_IOERR
)) {
1168 xfs_buf_ioerror_alert(bp
, __func__
);
1170 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1172 * This flag will be propagated to the trans-committed
1173 * callback routines to let them know that the log-commit
1176 aborted
= XFS_LI_ABORTED
;
1177 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1178 aborted
= XFS_LI_ABORTED
;
1181 /* log I/O is always issued ASYNC */
1182 ASSERT(XFS_BUF_ISASYNC(bp
));
1183 xlog_state_done_syncing(iclog
, aborted
);
1185 * do not reference the buffer (bp) here as we could race
1186 * with it being freed after writing the unmount record to the
1192 * Return size of each in-core log record buffer.
1194 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1196 * If the filesystem blocksize is too large, we may need to choose a
1197 * larger size since the directory code currently logs entire blocks.
1201 xlog_get_iclog_buffer_size(
1202 struct xfs_mount
*mp
,
1208 if (mp
->m_logbufs
<= 0)
1209 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1211 log
->l_iclog_bufs
= mp
->m_logbufs
;
1214 * Buffer size passed in from mount system call.
1216 if (mp
->m_logbsize
> 0) {
1217 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1218 log
->l_iclog_size_log
= 0;
1220 log
->l_iclog_size_log
++;
1224 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1225 /* # headers = size / 32k
1226 * one header holds cycles from 32k of data
1229 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1230 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1232 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1233 log
->l_iclog_heads
= xhdrs
;
1235 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1236 log
->l_iclog_hsize
= BBSIZE
;
1237 log
->l_iclog_heads
= 1;
1242 /* All machines use 32kB buffers by default. */
1243 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1244 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1246 /* the default log size is 16k or 32k which is one header sector */
1247 log
->l_iclog_hsize
= BBSIZE
;
1248 log
->l_iclog_heads
= 1;
1251 /* are we being asked to make the sizes selected above visible? */
1252 if (mp
->m_logbufs
== 0)
1253 mp
->m_logbufs
= log
->l_iclog_bufs
;
1254 if (mp
->m_logbsize
== 0)
1255 mp
->m_logbsize
= log
->l_iclog_size
;
1256 } /* xlog_get_iclog_buffer_size */
1261 struct xfs_mount
*mp
)
1263 queue_delayed_work(mp
->m_log_workqueue
, &mp
->m_log
->l_work
,
1264 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1268 * Every sync period we need to unpin all items in the AIL and push them to
1269 * disk. If there is nothing dirty, then we might need to cover the log to
1270 * indicate that the filesystem is idle.
1274 struct work_struct
*work
)
1276 struct xlog
*log
= container_of(to_delayed_work(work
),
1277 struct xlog
, l_work
);
1278 struct xfs_mount
*mp
= log
->l_mp
;
1280 /* dgc: errors ignored - not fatal and nowhere to report them */
1281 if (xfs_log_need_covered(mp
))
1282 xfs_fs_log_dummy(mp
);
1284 xfs_log_force(mp
, 0);
1286 /* start pushing all the metadata that is currently dirty */
1287 xfs_ail_push_all(mp
->m_ail
);
1289 /* queue us up again */
1290 xfs_log_work_queue(mp
);
1294 * This routine initializes some of the log structure for a given mount point.
1295 * Its primary purpose is to fill in enough, so recovery can occur. However,
1296 * some other stuff may be filled in too.
1298 STATIC
struct xlog
*
1300 struct xfs_mount
*mp
,
1301 struct xfs_buftarg
*log_target
,
1302 xfs_daddr_t blk_offset
,
1306 xlog_rec_header_t
*head
;
1307 xlog_in_core_t
**iclogp
;
1308 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1314 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1316 xfs_warn(mp
, "Log allocation failed: No memory!");
1321 log
->l_targ
= log_target
;
1322 log
->l_logsize
= BBTOB(num_bblks
);
1323 log
->l_logBBstart
= blk_offset
;
1324 log
->l_logBBsize
= num_bblks
;
1325 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1326 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1327 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1329 log
->l_prev_block
= -1;
1330 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1331 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1332 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1333 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1335 xlog_grant_head_init(&log
->l_reserve_head
);
1336 xlog_grant_head_init(&log
->l_write_head
);
1338 error
= EFSCORRUPTED
;
1339 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1340 log2_size
= mp
->m_sb
.sb_logsectlog
;
1341 if (log2_size
< BBSHIFT
) {
1342 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1343 log2_size
, BBSHIFT
);
1347 log2_size
-= BBSHIFT
;
1348 if (log2_size
> mp
->m_sectbb_log
) {
1349 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1350 log2_size
, mp
->m_sectbb_log
);
1354 /* for larger sector sizes, must have v2 or external log */
1355 if (log2_size
&& log
->l_logBBstart
> 0 &&
1356 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1358 "log sector size (0x%x) invalid for configuration.",
1363 log
->l_sectBBsize
= 1 << log2_size
;
1365 xlog_get_iclog_buffer_size(mp
, log
);
1368 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, 0, BTOBB(log
->l_iclog_size
), 0);
1371 bp
->b_iodone
= xlog_iodone
;
1372 ASSERT(xfs_buf_islocked(bp
));
1375 spin_lock_init(&log
->l_icloglock
);
1376 init_waitqueue_head(&log
->l_flush_wait
);
1378 iclogp
= &log
->l_iclog
;
1380 * The amount of memory to allocate for the iclog structure is
1381 * rather funky due to the way the structure is defined. It is
1382 * done this way so that we can use different sizes for machines
1383 * with different amounts of memory. See the definition of
1384 * xlog_in_core_t in xfs_log_priv.h for details.
1386 ASSERT(log
->l_iclog_size
>= 4096);
1387 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1388 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1390 goto out_free_iclog
;
1393 iclog
->ic_prev
= prev_iclog
;
1396 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1397 BTOBB(log
->l_iclog_size
), 0);
1399 goto out_free_iclog
;
1401 bp
->b_iodone
= xlog_iodone
;
1403 iclog
->ic_data
= bp
->b_addr
;
1405 log
->l_iclog_bak
[i
] = (xfs_caddr_t
)&(iclog
->ic_header
);
1407 head
= &iclog
->ic_header
;
1408 memset(head
, 0, sizeof(xlog_rec_header_t
));
1409 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1410 head
->h_version
= cpu_to_be32(
1411 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1412 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1414 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1415 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1417 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1418 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1419 iclog
->ic_log
= log
;
1420 atomic_set(&iclog
->ic_refcnt
, 0);
1421 spin_lock_init(&iclog
->ic_callback_lock
);
1422 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1423 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1425 ASSERT(xfs_buf_islocked(iclog
->ic_bp
));
1426 init_waitqueue_head(&iclog
->ic_force_wait
);
1427 init_waitqueue_head(&iclog
->ic_write_wait
);
1429 iclogp
= &iclog
->ic_next
;
1431 *iclogp
= log
->l_iclog
; /* complete ring */
1432 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1434 error
= xlog_cil_init(log
);
1436 goto out_free_iclog
;
1440 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1441 prev_iclog
= iclog
->ic_next
;
1443 xfs_buf_free(iclog
->ic_bp
);
1446 spinlock_destroy(&log
->l_icloglock
);
1447 xfs_buf_free(log
->l_xbuf
);
1451 return ERR_PTR(-error
);
1452 } /* xlog_alloc_log */
1456 * Write out the commit record of a transaction associated with the given
1457 * ticket. Return the lsn of the commit record.
1462 struct xlog_ticket
*ticket
,
1463 struct xlog_in_core
**iclog
,
1464 xfs_lsn_t
*commitlsnp
)
1466 struct xfs_mount
*mp
= log
->l_mp
;
1468 struct xfs_log_iovec reg
= {
1471 .i_type
= XLOG_REG_TYPE_COMMIT
,
1473 struct xfs_log_vec vec
= {
1478 ASSERT_ALWAYS(iclog
);
1479 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1482 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1487 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1488 * log space. This code pushes on the lsn which would supposedly free up
1489 * the 25% which we want to leave free. We may need to adopt a policy which
1490 * pushes on an lsn which is further along in the log once we reach the high
1491 * water mark. In this manner, we would be creating a low water mark.
1494 xlog_grant_push_ail(
1498 xfs_lsn_t threshold_lsn
= 0;
1499 xfs_lsn_t last_sync_lsn
;
1502 int threshold_block
;
1503 int threshold_cycle
;
1506 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1508 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1509 free_blocks
= BTOBBT(free_bytes
);
1512 * Set the threshold for the minimum number of free blocks in the
1513 * log to the maximum of what the caller needs, one quarter of the
1514 * log, and 256 blocks.
1516 free_threshold
= BTOBB(need_bytes
);
1517 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1518 free_threshold
= MAX(free_threshold
, 256);
1519 if (free_blocks
>= free_threshold
)
1522 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1524 threshold_block
+= free_threshold
;
1525 if (threshold_block
>= log
->l_logBBsize
) {
1526 threshold_block
-= log
->l_logBBsize
;
1527 threshold_cycle
+= 1;
1529 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1532 * Don't pass in an lsn greater than the lsn of the last
1533 * log record known to be on disk. Use a snapshot of the last sync lsn
1534 * so that it doesn't change between the compare and the set.
1536 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1537 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1538 threshold_lsn
= last_sync_lsn
;
1541 * Get the transaction layer to kick the dirty buffers out to
1542 * disk asynchronously. No point in trying to do this if
1543 * the filesystem is shutting down.
1545 if (!XLOG_FORCED_SHUTDOWN(log
))
1546 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1550 * Stamp cycle number in every block
1555 struct xlog_in_core
*iclog
,
1559 int size
= iclog
->ic_offset
+ roundoff
;
1563 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1565 dp
= iclog
->ic_datap
;
1566 for (i
= 0; i
< BTOBB(size
); i
++) {
1567 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1569 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1570 *(__be32
*)dp
= cycle_lsn
;
1574 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1575 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1577 for ( ; i
< BTOBB(size
); i
++) {
1578 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1579 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1580 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1581 *(__be32
*)dp
= cycle_lsn
;
1585 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1586 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1591 * Calculate the checksum for a log buffer.
1593 * This is a little more complicated than it should be because the various
1594 * headers and the actual data are non-contiguous.
1599 struct xlog_rec_header
*rhead
,
1605 /* first generate the crc for the record header ... */
1606 crc
= xfs_start_cksum((char *)rhead
,
1607 sizeof(struct xlog_rec_header
),
1608 offsetof(struct xlog_rec_header
, h_crc
));
1610 /* ... then for additional cycle data for v2 logs ... */
1611 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1612 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1615 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
1616 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1617 sizeof(struct xlog_rec_ext_header
));
1621 /* ... and finally for the payload */
1622 crc
= crc32c(crc
, dp
, size
);
1624 return xfs_end_cksum(crc
);
1628 * The bdstrat callback function for log bufs. This gives us a central
1629 * place to trap bufs in case we get hit by a log I/O error and need to
1630 * shutdown. Actually, in practice, even when we didn't get a log error,
1631 * we transition the iclogs to IOERROR state *after* flushing all existing
1632 * iclogs to disk. This is because we don't want anymore new transactions to be
1633 * started or completed afterwards.
1639 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1641 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1642 xfs_buf_ioerror(bp
, EIO
);
1644 xfs_buf_ioend(bp
, 0);
1646 * It would seem logical to return EIO here, but we rely on
1647 * the log state machine to propagate I/O errors instead of
1653 xfs_buf_iorequest(bp
);
1658 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1659 * fashion. Previously, we should have moved the current iclog
1660 * ptr in the log to point to the next available iclog. This allows further
1661 * write to continue while this code syncs out an iclog ready to go.
1662 * Before an in-core log can be written out, the data section must be scanned
1663 * to save away the 1st word of each BBSIZE block into the header. We replace
1664 * it with the current cycle count. Each BBSIZE block is tagged with the
1665 * cycle count because there in an implicit assumption that drives will
1666 * guarantee that entire 512 byte blocks get written at once. In other words,
1667 * we can't have part of a 512 byte block written and part not written. By
1668 * tagging each block, we will know which blocks are valid when recovering
1669 * after an unclean shutdown.
1671 * This routine is single threaded on the iclog. No other thread can be in
1672 * this routine with the same iclog. Changing contents of iclog can there-
1673 * fore be done without grabbing the state machine lock. Updating the global
1674 * log will require grabbing the lock though.
1676 * The entire log manager uses a logical block numbering scheme. Only
1677 * log_sync (and then only bwrite()) know about the fact that the log may
1678 * not start with block zero on a given device. The log block start offset
1679 * is added immediately before calling bwrite().
1685 struct xlog_in_core
*iclog
)
1689 uint count
; /* byte count of bwrite */
1690 uint count_init
; /* initial count before roundup */
1691 int roundoff
; /* roundoff to BB or stripe */
1692 int split
= 0; /* split write into two regions */
1694 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1697 XFS_STATS_INC(xs_log_writes
);
1698 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1700 /* Add for LR header */
1701 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1703 /* Round out the log write size */
1704 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1705 /* we have a v2 stripe unit to use */
1706 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1708 count
= BBTOB(BTOBB(count_init
));
1710 roundoff
= count
- count_init
;
1711 ASSERT(roundoff
>= 0);
1712 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1713 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1715 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1716 roundoff
< BBTOB(1)));
1718 /* move grant heads by roundoff in sync */
1719 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1720 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1722 /* put cycle number in every block */
1723 xlog_pack_data(log
, iclog
, roundoff
);
1725 /* real byte length */
1726 size
= iclog
->ic_offset
;
1729 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1732 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1734 XFS_STATS_ADD(xs_log_blocks
, BTOBB(count
));
1736 /* Do we need to split this write into 2 parts? */
1737 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1740 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1741 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1742 iclog
->ic_bwritecnt
= 2;
1745 * Bump the cycle numbers at the start of each block in the
1746 * part of the iclog that ends up in the buffer that gets
1747 * written to the start of the log.
1749 * Watch out for the header magic number case, though.
1751 dptr
= (char *)&iclog
->ic_header
+ count
;
1752 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1753 __uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1754 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1756 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1761 iclog
->ic_bwritecnt
= 1;
1764 /* calculcate the checksum */
1765 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1766 iclog
->ic_datap
, size
);
1768 bp
->b_io_length
= BTOBB(count
);
1769 bp
->b_fspriv
= iclog
;
1770 XFS_BUF_ZEROFLAGS(bp
);
1772 bp
->b_flags
|= XBF_SYNCIO
;
1774 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
) {
1775 bp
->b_flags
|= XBF_FUA
;
1778 * Flush the data device before flushing the log to make
1779 * sure all meta data written back from the AIL actually made
1780 * it to disk before stamping the new log tail LSN into the
1781 * log buffer. For an external log we need to issue the
1782 * flush explicitly, and unfortunately synchronously here;
1783 * for an internal log we can simply use the block layer
1784 * state machine for preflushes.
1786 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1787 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1789 bp
->b_flags
|= XBF_FLUSH
;
1792 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1793 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1795 xlog_verify_iclog(log
, iclog
, count
, true);
1797 /* account for log which doesn't start at block #0 */
1798 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1800 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1805 error
= xlog_bdstrat(bp
);
1807 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1811 bp
= iclog
->ic_log
->l_xbuf
;
1812 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1813 xfs_buf_associate_memory(bp
,
1814 (char *)&iclog
->ic_header
+ count
, split
);
1815 bp
->b_fspriv
= iclog
;
1816 XFS_BUF_ZEROFLAGS(bp
);
1818 bp
->b_flags
|= XBF_SYNCIO
;
1819 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1820 bp
->b_flags
|= XBF_FUA
;
1822 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1823 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1825 /* account for internal log which doesn't start at block #0 */
1826 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1828 error
= xlog_bdstrat(bp
);
1830 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1838 * Deallocate a log structure
1844 xlog_in_core_t
*iclog
, *next_iclog
;
1847 xlog_cil_destroy(log
);
1850 * always need to ensure that the extra buffer does not point to memory
1851 * owned by another log buffer before we free it.
1853 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
1854 xfs_buf_free(log
->l_xbuf
);
1856 iclog
= log
->l_iclog
;
1857 for (i
=0; i
<log
->l_iclog_bufs
; i
++) {
1858 xfs_buf_free(iclog
->ic_bp
);
1859 next_iclog
= iclog
->ic_next
;
1863 spinlock_destroy(&log
->l_icloglock
);
1865 log
->l_mp
->m_log
= NULL
;
1867 } /* xlog_dealloc_log */
1870 * Update counters atomically now that memcpy is done.
1874 xlog_state_finish_copy(
1876 struct xlog_in_core
*iclog
,
1880 spin_lock(&log
->l_icloglock
);
1882 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1883 iclog
->ic_offset
+= copy_bytes
;
1885 spin_unlock(&log
->l_icloglock
);
1886 } /* xlog_state_finish_copy */
1892 * print out info relating to regions written which consume
1897 struct xfs_mount
*mp
,
1898 struct xlog_ticket
*ticket
)
1901 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1903 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1904 static char *res_type_str
[XLOG_REG_TYPE_MAX
] = {
1925 static char *trans_type_str
[XFS_TRANS_TYPE_MAX
] = {
1969 "xlog_write: reservation summary:\n"
1970 " trans type = %s (%u)\n"
1971 " unit res = %d bytes\n"
1972 " current res = %d bytes\n"
1973 " total reg = %u bytes (o/flow = %u bytes)\n"
1974 " ophdrs = %u (ophdr space = %u bytes)\n"
1975 " ophdr + reg = %u bytes\n"
1976 " num regions = %u\n",
1977 ((ticket
->t_trans_type
<= 0 ||
1978 ticket
->t_trans_type
> XFS_TRANS_TYPE_MAX
) ?
1979 "bad-trans-type" : trans_type_str
[ticket
->t_trans_type
-1]),
1980 ticket
->t_trans_type
,
1983 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
,
1984 ticket
->t_res_num_ophdrs
, ophdr_spc
,
1985 ticket
->t_res_arr_sum
+
1986 ticket
->t_res_o_flow
+ ophdr_spc
,
1989 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
1990 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
1991 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
1992 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
1993 "bad-rtype" : res_type_str
[r_type
-1]),
1994 ticket
->t_res_arr
[i
].r_len
);
1997 xfs_alert_tag(mp
, XFS_PTAG_LOGRES
,
1998 "xlog_write: reservation ran out. Need to up reservation");
1999 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
2003 * Calculate the potential space needed by the log vector. Each region gets
2004 * its own xlog_op_header_t and may need to be double word aligned.
2007 xlog_write_calc_vec_length(
2008 struct xlog_ticket
*ticket
,
2009 struct xfs_log_vec
*log_vector
)
2011 struct xfs_log_vec
*lv
;
2016 /* acct for start rec of xact */
2017 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2020 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2021 /* we don't write ordered log vectors */
2022 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2025 headers
+= lv
->lv_niovecs
;
2027 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2028 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2031 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2035 ticket
->t_res_num_ophdrs
+= headers
;
2036 len
+= headers
* sizeof(struct xlog_op_header
);
2042 * If first write for transaction, insert start record We can't be trying to
2043 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2046 xlog_write_start_rec(
2047 struct xlog_op_header
*ophdr
,
2048 struct xlog_ticket
*ticket
)
2050 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2053 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2054 ophdr
->oh_clientid
= ticket
->t_clientid
;
2056 ophdr
->oh_flags
= XLOG_START_TRANS
;
2059 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2061 return sizeof(struct xlog_op_header
);
2064 static xlog_op_header_t
*
2065 xlog_write_setup_ophdr(
2067 struct xlog_op_header
*ophdr
,
2068 struct xlog_ticket
*ticket
,
2071 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2072 ophdr
->oh_clientid
= ticket
->t_clientid
;
2075 /* are we copying a commit or unmount record? */
2076 ophdr
->oh_flags
= flags
;
2079 * We've seen logs corrupted with bad transaction client ids. This
2080 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2081 * and shut down the filesystem.
2083 switch (ophdr
->oh_clientid
) {
2084 case XFS_TRANSACTION
:
2090 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2091 ophdr
->oh_clientid
, ticket
);
2099 * Set up the parameters of the region copy into the log. This has
2100 * to handle region write split across multiple log buffers - this
2101 * state is kept external to this function so that this code can
2102 * be written in an obvious, self documenting manner.
2105 xlog_write_setup_copy(
2106 struct xlog_ticket
*ticket
,
2107 struct xlog_op_header
*ophdr
,
2108 int space_available
,
2112 int *last_was_partial_copy
,
2113 int *bytes_consumed
)
2117 still_to_copy
= space_required
- *bytes_consumed
;
2118 *copy_off
= *bytes_consumed
;
2120 if (still_to_copy
<= space_available
) {
2121 /* write of region completes here */
2122 *copy_len
= still_to_copy
;
2123 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2124 if (*last_was_partial_copy
)
2125 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2126 *last_was_partial_copy
= 0;
2127 *bytes_consumed
= 0;
2131 /* partial write of region, needs extra log op header reservation */
2132 *copy_len
= space_available
;
2133 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2134 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2135 if (*last_was_partial_copy
)
2136 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2137 *bytes_consumed
+= *copy_len
;
2138 (*last_was_partial_copy
)++;
2140 /* account for new log op header */
2141 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2142 ticket
->t_res_num_ophdrs
++;
2144 return sizeof(struct xlog_op_header
);
2148 xlog_write_copy_finish(
2150 struct xlog_in_core
*iclog
,
2155 int *partial_copy_len
,
2157 struct xlog_in_core
**commit_iclog
)
2159 if (*partial_copy
) {
2161 * This iclog has already been marked WANT_SYNC by
2162 * xlog_state_get_iclog_space.
2164 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2167 return xlog_state_release_iclog(log
, iclog
);
2171 *partial_copy_len
= 0;
2173 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2174 /* no more space in this iclog - push it. */
2175 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2179 spin_lock(&log
->l_icloglock
);
2180 xlog_state_want_sync(log
, iclog
);
2181 spin_unlock(&log
->l_icloglock
);
2184 return xlog_state_release_iclog(log
, iclog
);
2185 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2186 *commit_iclog
= iclog
;
2193 * Write some region out to in-core log
2195 * This will be called when writing externally provided regions or when
2196 * writing out a commit record for a given transaction.
2198 * General algorithm:
2199 * 1. Find total length of this write. This may include adding to the
2200 * lengths passed in.
2201 * 2. Check whether we violate the tickets reservation.
2202 * 3. While writing to this iclog
2203 * A. Reserve as much space in this iclog as can get
2204 * B. If this is first write, save away start lsn
2205 * C. While writing this region:
2206 * 1. If first write of transaction, write start record
2207 * 2. Write log operation header (header per region)
2208 * 3. Find out if we can fit entire region into this iclog
2209 * 4. Potentially, verify destination memcpy ptr
2210 * 5. Memcpy (partial) region
2211 * 6. If partial copy, release iclog; otherwise, continue
2212 * copying more regions into current iclog
2213 * 4. Mark want sync bit (in simulation mode)
2214 * 5. Release iclog for potential flush to on-disk log.
2217 * 1. Panic if reservation is overrun. This should never happen since
2218 * reservation amounts are generated internal to the filesystem.
2220 * 1. Tickets are single threaded data structures.
2221 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2222 * syncing routine. When a single log_write region needs to span
2223 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2224 * on all log operation writes which don't contain the end of the
2225 * region. The XLOG_END_TRANS bit is used for the in-core log
2226 * operation which contains the end of the continued log_write region.
2227 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2228 * we don't really know exactly how much space will be used. As a result,
2229 * we don't update ic_offset until the end when we know exactly how many
2230 * bytes have been written out.
2235 struct xfs_log_vec
*log_vector
,
2236 struct xlog_ticket
*ticket
,
2237 xfs_lsn_t
*start_lsn
,
2238 struct xlog_in_core
**commit_iclog
,
2241 struct xlog_in_core
*iclog
= NULL
;
2242 struct xfs_log_iovec
*vecp
;
2243 struct xfs_log_vec
*lv
;
2246 int partial_copy
= 0;
2247 int partial_copy_len
= 0;
2255 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2258 * Region headers and bytes are already accounted for.
2259 * We only need to take into account start records and
2260 * split regions in this function.
2262 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2263 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2266 * Commit record headers need to be accounted for. These
2267 * come in as separate writes so are easy to detect.
2269 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2270 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2272 if (ticket
->t_curr_res
< 0)
2273 xlog_print_tic_res(log
->l_mp
, ticket
);
2277 vecp
= lv
->lv_iovecp
;
2278 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2282 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2283 &contwr
, &log_offset
);
2287 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2288 ptr
= iclog
->ic_datap
+ log_offset
;
2290 /* start_lsn is the first lsn written to. That's all we need. */
2292 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2295 * This loop writes out as many regions as can fit in the amount
2296 * of space which was allocated by xlog_state_get_iclog_space().
2298 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2299 struct xfs_log_iovec
*reg
;
2300 struct xlog_op_header
*ophdr
;
2304 bool ordered
= false;
2306 /* ordered log vectors have no regions to write */
2307 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2308 ASSERT(lv
->lv_niovecs
== 0);
2314 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
2315 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
2317 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2318 if (start_rec_copy
) {
2320 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2324 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2326 return XFS_ERROR(EIO
);
2328 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2329 sizeof(struct xlog_op_header
));
2331 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2332 iclog
->ic_size
-log_offset
,
2334 ©_off
, ©_len
,
2337 xlog_verify_dest_ptr(log
, ptr
);
2340 ASSERT(copy_len
>= 0);
2341 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2342 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
, copy_len
);
2344 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2346 data_cnt
+= contwr
? copy_len
: 0;
2348 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2349 &record_cnt
, &data_cnt
,
2358 * if we had a partial copy, we need to get more iclog
2359 * space but we don't want to increment the region
2360 * index because there is still more is this region to
2363 * If we completed writing this region, and we flushed
2364 * the iclog (indicated by resetting of the record
2365 * count), then we also need to get more log space. If
2366 * this was the last record, though, we are done and
2372 if (++index
== lv
->lv_niovecs
) {
2377 vecp
= lv
->lv_iovecp
;
2379 if (record_cnt
== 0 && ordered
== false) {
2389 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2391 return xlog_state_release_iclog(log
, iclog
);
2393 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2394 *commit_iclog
= iclog
;
2399 /*****************************************************************************
2401 * State Machine functions
2403 *****************************************************************************
2406 /* Clean iclogs starting from the head. This ordering must be
2407 * maintained, so an iclog doesn't become ACTIVE beyond one that
2408 * is SYNCING. This is also required to maintain the notion that we use
2409 * a ordered wait queue to hold off would be writers to the log when every
2410 * iclog is trying to sync to disk.
2412 * State Change: DIRTY -> ACTIVE
2415 xlog_state_clean_log(
2418 xlog_in_core_t
*iclog
;
2421 iclog
= log
->l_iclog
;
2423 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2424 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2425 iclog
->ic_offset
= 0;
2426 ASSERT(iclog
->ic_callback
== NULL
);
2428 * If the number of ops in this iclog indicate it just
2429 * contains the dummy transaction, we can
2430 * change state into IDLE (the second time around).
2431 * Otherwise we should change the state into
2433 * We don't need to cover the dummy.
2436 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2441 * We have two dirty iclogs so start over
2442 * This could also be num of ops indicates
2443 * this is not the dummy going out.
2447 iclog
->ic_header
.h_num_logops
= 0;
2448 memset(iclog
->ic_header
.h_cycle_data
, 0,
2449 sizeof(iclog
->ic_header
.h_cycle_data
));
2450 iclog
->ic_header
.h_lsn
= 0;
2451 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2454 break; /* stop cleaning */
2455 iclog
= iclog
->ic_next
;
2456 } while (iclog
!= log
->l_iclog
);
2458 /* log is locked when we are called */
2460 * Change state for the dummy log recording.
2461 * We usually go to NEED. But we go to NEED2 if the changed indicates
2462 * we are done writing the dummy record.
2463 * If we are done with the second dummy recored (DONE2), then
2467 switch (log
->l_covered_state
) {
2468 case XLOG_STATE_COVER_IDLE
:
2469 case XLOG_STATE_COVER_NEED
:
2470 case XLOG_STATE_COVER_NEED2
:
2471 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2474 case XLOG_STATE_COVER_DONE
:
2476 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2478 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2481 case XLOG_STATE_COVER_DONE2
:
2483 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2485 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2492 } /* xlog_state_clean_log */
2495 xlog_get_lowest_lsn(
2498 xlog_in_core_t
*lsn_log
;
2499 xfs_lsn_t lowest_lsn
, lsn
;
2501 lsn_log
= log
->l_iclog
;
2504 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2505 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2506 if ((lsn
&& !lowest_lsn
) ||
2507 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2511 lsn_log
= lsn_log
->ic_next
;
2512 } while (lsn_log
!= log
->l_iclog
);
2518 xlog_state_do_callback(
2521 struct xlog_in_core
*ciclog
)
2523 xlog_in_core_t
*iclog
;
2524 xlog_in_core_t
*first_iclog
; /* used to know when we've
2525 * processed all iclogs once */
2526 xfs_log_callback_t
*cb
, *cb_next
;
2528 xfs_lsn_t lowest_lsn
;
2529 int ioerrors
; /* counter: iclogs with errors */
2530 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2531 int funcdidcallbacks
; /* flag: function did callbacks */
2532 int repeats
; /* for issuing console warnings if
2533 * looping too many times */
2536 spin_lock(&log
->l_icloglock
);
2537 first_iclog
= iclog
= log
->l_iclog
;
2539 funcdidcallbacks
= 0;
2544 * Scan all iclogs starting with the one pointed to by the
2545 * log. Reset this starting point each time the log is
2546 * unlocked (during callbacks).
2548 * Keep looping through iclogs until one full pass is made
2549 * without running any callbacks.
2551 first_iclog
= log
->l_iclog
;
2552 iclog
= log
->l_iclog
;
2553 loopdidcallbacks
= 0;
2558 /* skip all iclogs in the ACTIVE & DIRTY states */
2559 if (iclog
->ic_state
&
2560 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2561 iclog
= iclog
->ic_next
;
2566 * Between marking a filesystem SHUTDOWN and stopping
2567 * the log, we do flush all iclogs to disk (if there
2568 * wasn't a log I/O error). So, we do want things to
2569 * go smoothly in case of just a SHUTDOWN w/o a
2572 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2574 * Can only perform callbacks in order. Since
2575 * this iclog is not in the DONE_SYNC/
2576 * DO_CALLBACK state, we skip the rest and
2577 * just try to clean up. If we set our iclog
2578 * to DO_CALLBACK, we will not process it when
2579 * we retry since a previous iclog is in the
2580 * CALLBACK and the state cannot change since
2581 * we are holding the l_icloglock.
2583 if (!(iclog
->ic_state
&
2584 (XLOG_STATE_DONE_SYNC
|
2585 XLOG_STATE_DO_CALLBACK
))) {
2586 if (ciclog
&& (ciclog
->ic_state
==
2587 XLOG_STATE_DONE_SYNC
)) {
2588 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2593 * We now have an iclog that is in either the
2594 * DO_CALLBACK or DONE_SYNC states. The other
2595 * states (WANT_SYNC, SYNCING, or CALLBACK were
2596 * caught by the above if and are going to
2597 * clean (i.e. we aren't doing their callbacks)
2602 * We will do one more check here to see if we
2603 * have chased our tail around.
2606 lowest_lsn
= xlog_get_lowest_lsn(log
);
2608 XFS_LSN_CMP(lowest_lsn
,
2609 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2610 iclog
= iclog
->ic_next
;
2611 continue; /* Leave this iclog for
2615 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2619 * Completion of a iclog IO does not imply that
2620 * a transaction has completed, as transactions
2621 * can be large enough to span many iclogs. We
2622 * cannot change the tail of the log half way
2623 * through a transaction as this may be the only
2624 * transaction in the log and moving th etail to
2625 * point to the middle of it will prevent
2626 * recovery from finding the start of the
2627 * transaction. Hence we should only update the
2628 * last_sync_lsn if this iclog contains
2629 * transaction completion callbacks on it.
2631 * We have to do this before we drop the
2632 * icloglock to ensure we are the only one that
2635 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2636 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2637 if (iclog
->ic_callback
)
2638 atomic64_set(&log
->l_last_sync_lsn
,
2639 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2644 spin_unlock(&log
->l_icloglock
);
2647 * Keep processing entries in the callback list until
2648 * we come around and it is empty. We need to
2649 * atomically see that the list is empty and change the
2650 * state to DIRTY so that we don't miss any more
2651 * callbacks being added.
2653 spin_lock(&iclog
->ic_callback_lock
);
2654 cb
= iclog
->ic_callback
;
2656 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2657 iclog
->ic_callback
= NULL
;
2658 spin_unlock(&iclog
->ic_callback_lock
);
2660 /* perform callbacks in the order given */
2661 for (; cb
; cb
= cb_next
) {
2662 cb_next
= cb
->cb_next
;
2663 cb
->cb_func(cb
->cb_arg
, aborted
);
2665 spin_lock(&iclog
->ic_callback_lock
);
2666 cb
= iclog
->ic_callback
;
2672 spin_lock(&log
->l_icloglock
);
2673 ASSERT(iclog
->ic_callback
== NULL
);
2674 spin_unlock(&iclog
->ic_callback_lock
);
2675 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2676 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2679 * Transition from DIRTY to ACTIVE if applicable.
2680 * NOP if STATE_IOERROR.
2682 xlog_state_clean_log(log
);
2684 /* wake up threads waiting in xfs_log_force() */
2685 wake_up_all(&iclog
->ic_force_wait
);
2687 iclog
= iclog
->ic_next
;
2688 } while (first_iclog
!= iclog
);
2690 if (repeats
> 5000) {
2691 flushcnt
+= repeats
;
2694 "%s: possible infinite loop (%d iterations)",
2695 __func__
, flushcnt
);
2697 } while (!ioerrors
&& loopdidcallbacks
);
2700 * make one last gasp attempt to see if iclogs are being left in
2704 if (funcdidcallbacks
) {
2705 first_iclog
= iclog
= log
->l_iclog
;
2707 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2709 * Terminate the loop if iclogs are found in states
2710 * which will cause other threads to clean up iclogs.
2712 * SYNCING - i/o completion will go through logs
2713 * DONE_SYNC - interrupt thread should be waiting for
2715 * IOERROR - give up hope all ye who enter here
2717 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2718 iclog
->ic_state
== XLOG_STATE_SYNCING
||
2719 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2720 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2722 iclog
= iclog
->ic_next
;
2723 } while (first_iclog
!= iclog
);
2727 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2729 spin_unlock(&log
->l_icloglock
);
2732 wake_up_all(&log
->l_flush_wait
);
2737 * Finish transitioning this iclog to the dirty state.
2739 * Make sure that we completely execute this routine only when this is
2740 * the last call to the iclog. There is a good chance that iclog flushes,
2741 * when we reach the end of the physical log, get turned into 2 separate
2742 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2743 * routine. By using the reference count bwritecnt, we guarantee that only
2744 * the second completion goes through.
2746 * Callbacks could take time, so they are done outside the scope of the
2747 * global state machine log lock.
2750 xlog_state_done_syncing(
2751 xlog_in_core_t
*iclog
,
2754 struct xlog
*log
= iclog
->ic_log
;
2756 spin_lock(&log
->l_icloglock
);
2758 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2759 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2760 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2761 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2765 * If we got an error, either on the first buffer, or in the case of
2766 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2767 * and none should ever be attempted to be written to disk
2770 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2771 if (--iclog
->ic_bwritecnt
== 1) {
2772 spin_unlock(&log
->l_icloglock
);
2775 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2779 * Someone could be sleeping prior to writing out the next
2780 * iclog buffer, we wake them all, one will get to do the
2781 * I/O, the others get to wait for the result.
2783 wake_up_all(&iclog
->ic_write_wait
);
2784 spin_unlock(&log
->l_icloglock
);
2785 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2786 } /* xlog_state_done_syncing */
2790 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2791 * sleep. We wait on the flush queue on the head iclog as that should be
2792 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2793 * we will wait here and all new writes will sleep until a sync completes.
2795 * The in-core logs are used in a circular fashion. They are not used
2796 * out-of-order even when an iclog past the head is free.
2799 * * log_offset where xlog_write() can start writing into the in-core
2801 * * in-core log pointer to which xlog_write() should write.
2802 * * boolean indicating this is a continued write to an in-core log.
2803 * If this is the last write, then the in-core log's offset field
2804 * needs to be incremented, depending on the amount of data which
2808 xlog_state_get_iclog_space(
2811 struct xlog_in_core
**iclogp
,
2812 struct xlog_ticket
*ticket
,
2813 int *continued_write
,
2817 xlog_rec_header_t
*head
;
2818 xlog_in_core_t
*iclog
;
2822 spin_lock(&log
->l_icloglock
);
2823 if (XLOG_FORCED_SHUTDOWN(log
)) {
2824 spin_unlock(&log
->l_icloglock
);
2825 return XFS_ERROR(EIO
);
2828 iclog
= log
->l_iclog
;
2829 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2830 XFS_STATS_INC(xs_log_noiclogs
);
2832 /* Wait for log writes to have flushed */
2833 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2837 head
= &iclog
->ic_header
;
2839 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2840 log_offset
= iclog
->ic_offset
;
2842 /* On the 1st write to an iclog, figure out lsn. This works
2843 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2844 * committing to. If the offset is set, that's how many blocks
2847 if (log_offset
== 0) {
2848 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2849 xlog_tic_add_region(ticket
,
2851 XLOG_REG_TYPE_LRHEADER
);
2852 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2853 head
->h_lsn
= cpu_to_be64(
2854 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2855 ASSERT(log
->l_curr_block
>= 0);
2858 /* If there is enough room to write everything, then do it. Otherwise,
2859 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2860 * bit is on, so this will get flushed out. Don't update ic_offset
2861 * until you know exactly how many bytes get copied. Therefore, wait
2862 * until later to update ic_offset.
2864 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2865 * can fit into remaining data section.
2867 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2868 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2871 * If I'm the only one writing to this iclog, sync it to disk.
2872 * We need to do an atomic compare and decrement here to avoid
2873 * racing with concurrent atomic_dec_and_lock() calls in
2874 * xlog_state_release_iclog() when there is more than one
2875 * reference to the iclog.
2877 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2878 /* we are the only one */
2879 spin_unlock(&log
->l_icloglock
);
2880 error
= xlog_state_release_iclog(log
, iclog
);
2884 spin_unlock(&log
->l_icloglock
);
2889 /* Do we have enough room to write the full amount in the remainder
2890 * of this iclog? Or must we continue a write on the next iclog and
2891 * mark this iclog as completely taken? In the case where we switch
2892 * iclogs (to mark it taken), this particular iclog will release/sync
2893 * to disk in xlog_write().
2895 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2896 *continued_write
= 0;
2897 iclog
->ic_offset
+= len
;
2899 *continued_write
= 1;
2900 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2904 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2905 spin_unlock(&log
->l_icloglock
);
2907 *logoffsetp
= log_offset
;
2909 } /* xlog_state_get_iclog_space */
2911 /* The first cnt-1 times through here we don't need to
2912 * move the grant write head because the permanent
2913 * reservation has reserved cnt times the unit amount.
2914 * Release part of current permanent unit reservation and
2915 * reset current reservation to be one units worth. Also
2916 * move grant reservation head forward.
2919 xlog_regrant_reserve_log_space(
2921 struct xlog_ticket
*ticket
)
2923 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
2925 if (ticket
->t_cnt
> 0)
2928 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
2929 ticket
->t_curr_res
);
2930 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
2931 ticket
->t_curr_res
);
2932 ticket
->t_curr_res
= ticket
->t_unit_res
;
2933 xlog_tic_reset_res(ticket
);
2935 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
2937 /* just return if we still have some of the pre-reserved space */
2938 if (ticket
->t_cnt
> 0)
2941 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
2942 ticket
->t_unit_res
);
2944 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
2946 ticket
->t_curr_res
= ticket
->t_unit_res
;
2947 xlog_tic_reset_res(ticket
);
2948 } /* xlog_regrant_reserve_log_space */
2952 * Give back the space left from a reservation.
2954 * All the information we need to make a correct determination of space left
2955 * is present. For non-permanent reservations, things are quite easy. The
2956 * count should have been decremented to zero. We only need to deal with the
2957 * space remaining in the current reservation part of the ticket. If the
2958 * ticket contains a permanent reservation, there may be left over space which
2959 * needs to be released. A count of N means that N-1 refills of the current
2960 * reservation can be done before we need to ask for more space. The first
2961 * one goes to fill up the first current reservation. Once we run out of
2962 * space, the count will stay at zero and the only space remaining will be
2963 * in the current reservation field.
2966 xlog_ungrant_log_space(
2968 struct xlog_ticket
*ticket
)
2972 if (ticket
->t_cnt
> 0)
2975 trace_xfs_log_ungrant_enter(log
, ticket
);
2976 trace_xfs_log_ungrant_sub(log
, ticket
);
2979 * If this is a permanent reservation ticket, we may be able to free
2980 * up more space based on the remaining count.
2982 bytes
= ticket
->t_curr_res
;
2983 if (ticket
->t_cnt
> 0) {
2984 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
2985 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
2988 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
2989 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
2991 trace_xfs_log_ungrant_exit(log
, ticket
);
2993 xfs_log_space_wake(log
->l_mp
);
2997 * Flush iclog to disk if this is the last reference to the given iclog and
2998 * the WANT_SYNC bit is set.
3000 * When this function is entered, the iclog is not necessarily in the
3001 * WANT_SYNC state. It may be sitting around waiting to get filled.
3006 xlog_state_release_iclog(
3008 struct xlog_in_core
*iclog
)
3010 int sync
= 0; /* do we sync? */
3012 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3013 return XFS_ERROR(EIO
);
3015 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3016 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3019 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3020 spin_unlock(&log
->l_icloglock
);
3021 return XFS_ERROR(EIO
);
3023 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3024 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3026 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3027 /* update tail before writing to iclog */
3028 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3030 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3031 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3032 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3033 /* cycle incremented when incrementing curr_block */
3035 spin_unlock(&log
->l_icloglock
);
3038 * We let the log lock go, so it's possible that we hit a log I/O
3039 * error or some other SHUTDOWN condition that marks the iclog
3040 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3041 * this iclog has consistent data, so we ignore IOERROR
3042 * flags after this point.
3045 return xlog_sync(log
, iclog
);
3047 } /* xlog_state_release_iclog */
3051 * This routine will mark the current iclog in the ring as WANT_SYNC
3052 * and move the current iclog pointer to the next iclog in the ring.
3053 * When this routine is called from xlog_state_get_iclog_space(), the
3054 * exact size of the iclog has not yet been determined. All we know is
3055 * that every data block. We have run out of space in this log record.
3058 xlog_state_switch_iclogs(
3060 struct xlog_in_core
*iclog
,
3063 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3065 eventual_size
= iclog
->ic_offset
;
3066 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3067 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3068 log
->l_prev_block
= log
->l_curr_block
;
3069 log
->l_prev_cycle
= log
->l_curr_cycle
;
3071 /* roll log?: ic_offset changed later */
3072 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3074 /* Round up to next log-sunit */
3075 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3076 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3077 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3078 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3081 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3082 log
->l_curr_cycle
++;
3083 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3084 log
->l_curr_cycle
++;
3085 log
->l_curr_block
-= log
->l_logBBsize
;
3086 ASSERT(log
->l_curr_block
>= 0);
3088 ASSERT(iclog
== log
->l_iclog
);
3089 log
->l_iclog
= iclog
->ic_next
;
3090 } /* xlog_state_switch_iclogs */
3093 * Write out all data in the in-core log as of this exact moment in time.
3095 * Data may be written to the in-core log during this call. However,
3096 * we don't guarantee this data will be written out. A change from past
3097 * implementation means this routine will *not* write out zero length LRs.
3099 * Basically, we try and perform an intelligent scan of the in-core logs.
3100 * If we determine there is no flushable data, we just return. There is no
3101 * flushable data if:
3103 * 1. the current iclog is active and has no data; the previous iclog
3104 * is in the active or dirty state.
3105 * 2. the current iclog is drity, and the previous iclog is in the
3106 * active or dirty state.
3110 * 1. the current iclog is not in the active nor dirty state.
3111 * 2. the current iclog dirty, and the previous iclog is not in the
3112 * active nor dirty state.
3113 * 3. the current iclog is active, and there is another thread writing
3114 * to this particular iclog.
3115 * 4. a) the current iclog is active and has no other writers
3116 * b) when we return from flushing out this iclog, it is still
3117 * not in the active nor dirty state.
3121 struct xfs_mount
*mp
,
3125 struct xlog
*log
= mp
->m_log
;
3126 struct xlog_in_core
*iclog
;
3129 XFS_STATS_INC(xs_log_force
);
3131 xlog_cil_force(log
);
3133 spin_lock(&log
->l_icloglock
);
3135 iclog
= log
->l_iclog
;
3136 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3137 spin_unlock(&log
->l_icloglock
);
3138 return XFS_ERROR(EIO
);
3141 /* If the head iclog is not active nor dirty, we just attach
3142 * ourselves to the head and go to sleep.
3144 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3145 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3147 * If the head is dirty or (active and empty), then
3148 * we need to look at the previous iclog. If the previous
3149 * iclog is active or dirty we are done. There is nothing
3150 * to sync out. Otherwise, we attach ourselves to the
3151 * previous iclog and go to sleep.
3153 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3154 (atomic_read(&iclog
->ic_refcnt
) == 0
3155 && iclog
->ic_offset
== 0)) {
3156 iclog
= iclog
->ic_prev
;
3157 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3158 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3163 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3164 /* We are the only one with access to this
3165 * iclog. Flush it out now. There should
3166 * be a roundoff of zero to show that someone
3167 * has already taken care of the roundoff from
3168 * the previous sync.
3170 atomic_inc(&iclog
->ic_refcnt
);
3171 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3172 xlog_state_switch_iclogs(log
, iclog
, 0);
3173 spin_unlock(&log
->l_icloglock
);
3175 if (xlog_state_release_iclog(log
, iclog
))
3176 return XFS_ERROR(EIO
);
3180 spin_lock(&log
->l_icloglock
);
3181 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3182 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3187 /* Someone else is writing to this iclog.
3188 * Use its call to flush out the data. However,
3189 * the other thread may not force out this LR,
3190 * so we mark it WANT_SYNC.
3192 xlog_state_switch_iclogs(log
, iclog
, 0);
3198 /* By the time we come around again, the iclog could've been filled
3199 * which would give it another lsn. If we have a new lsn, just
3200 * return because the relevant data has been flushed.
3203 if (flags
& XFS_LOG_SYNC
) {
3205 * We must check if we're shutting down here, before
3206 * we wait, while we're holding the l_icloglock.
3207 * Then we check again after waking up, in case our
3208 * sleep was disturbed by a bad news.
3210 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3211 spin_unlock(&log
->l_icloglock
);
3212 return XFS_ERROR(EIO
);
3214 XFS_STATS_INC(xs_log_force_sleep
);
3215 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3217 * No need to grab the log lock here since we're
3218 * only deciding whether or not to return EIO
3219 * and the memory read should be atomic.
3221 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3222 return XFS_ERROR(EIO
);
3228 spin_unlock(&log
->l_icloglock
);
3234 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3235 * about errors or whether the log was flushed or not. This is the normal
3236 * interface to use when trying to unpin items or move the log forward.
3245 trace_xfs_log_force(mp
, 0);
3246 error
= _xfs_log_force(mp
, flags
, NULL
);
3248 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3252 * Force the in-core log to disk for a specific LSN.
3254 * Find in-core log with lsn.
3255 * If it is in the DIRTY state, just return.
3256 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3257 * state and go to sleep or return.
3258 * If it is in any other state, go to sleep or return.
3260 * Synchronous forces are implemented with a signal variable. All callers
3261 * to force a given lsn to disk will wait on a the sv attached to the
3262 * specific in-core log. When given in-core log finally completes its
3263 * write to disk, that thread will wake up all threads waiting on the
3268 struct xfs_mount
*mp
,
3273 struct xlog
*log
= mp
->m_log
;
3274 struct xlog_in_core
*iclog
;
3275 int already_slept
= 0;
3279 XFS_STATS_INC(xs_log_force
);
3281 lsn
= xlog_cil_force_lsn(log
, lsn
);
3282 if (lsn
== NULLCOMMITLSN
)
3286 spin_lock(&log
->l_icloglock
);
3287 iclog
= log
->l_iclog
;
3288 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3289 spin_unlock(&log
->l_icloglock
);
3290 return XFS_ERROR(EIO
);
3294 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3295 iclog
= iclog
->ic_next
;
3299 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3300 spin_unlock(&log
->l_icloglock
);
3304 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3306 * We sleep here if we haven't already slept (e.g.
3307 * this is the first time we've looked at the correct
3308 * iclog buf) and the buffer before us is going to
3309 * be sync'ed. The reason for this is that if we
3310 * are doing sync transactions here, by waiting for
3311 * the previous I/O to complete, we can allow a few
3312 * more transactions into this iclog before we close
3315 * Otherwise, we mark the buffer WANT_SYNC, and bump
3316 * up the refcnt so we can release the log (which
3317 * drops the ref count). The state switch keeps new
3318 * transaction commits from using this buffer. When
3319 * the current commits finish writing into the buffer,
3320 * the refcount will drop to zero and the buffer will
3323 if (!already_slept
&&
3324 (iclog
->ic_prev
->ic_state
&
3325 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3326 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3328 XFS_STATS_INC(xs_log_force_sleep
);
3330 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3337 atomic_inc(&iclog
->ic_refcnt
);
3338 xlog_state_switch_iclogs(log
, iclog
, 0);
3339 spin_unlock(&log
->l_icloglock
);
3340 if (xlog_state_release_iclog(log
, iclog
))
3341 return XFS_ERROR(EIO
);
3344 spin_lock(&log
->l_icloglock
);
3347 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3349 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3351 * Don't wait on completion if we know that we've
3352 * gotten a log write error.
3354 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3355 spin_unlock(&log
->l_icloglock
);
3356 return XFS_ERROR(EIO
);
3358 XFS_STATS_INC(xs_log_force_sleep
);
3359 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3361 * No need to grab the log lock here since we're
3362 * only deciding whether or not to return EIO
3363 * and the memory read should be atomic.
3365 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3366 return XFS_ERROR(EIO
);
3370 } else { /* just return */
3371 spin_unlock(&log
->l_icloglock
);
3375 } while (iclog
!= log
->l_iclog
);
3377 spin_unlock(&log
->l_icloglock
);
3382 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3383 * about errors or whether the log was flushed or not. This is the normal
3384 * interface to use when trying to unpin items or move the log forward.
3394 trace_xfs_log_force(mp
, lsn
);
3395 error
= _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3397 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3401 * Called when we want to mark the current iclog as being ready to sync to
3405 xlog_state_want_sync(
3407 struct xlog_in_core
*iclog
)
3409 assert_spin_locked(&log
->l_icloglock
);
3411 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3412 xlog_state_switch_iclogs(log
, iclog
, 0);
3414 ASSERT(iclog
->ic_state
&
3415 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3420 /*****************************************************************************
3424 *****************************************************************************
3428 * Free a used ticket when its refcount falls to zero.
3432 xlog_ticket_t
*ticket
)
3434 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3435 if (atomic_dec_and_test(&ticket
->t_ref
))
3436 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3441 xlog_ticket_t
*ticket
)
3443 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3444 atomic_inc(&ticket
->t_ref
);
3449 * Figure out the total log space unit (in bytes) that would be
3450 * required for a log ticket.
3453 xfs_log_calc_unit_res(
3454 struct xfs_mount
*mp
,
3457 struct xlog
*log
= mp
->m_log
;
3462 * Permanent reservations have up to 'cnt'-1 active log operations
3463 * in the log. A unit in this case is the amount of space for one
3464 * of these log operations. Normal reservations have a cnt of 1
3465 * and their unit amount is the total amount of space required.
3467 * The following lines of code account for non-transaction data
3468 * which occupy space in the on-disk log.
3470 * Normal form of a transaction is:
3471 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3472 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3474 * We need to account for all the leadup data and trailer data
3475 * around the transaction data.
3476 * And then we need to account for the worst case in terms of using
3478 * The worst case will happen if:
3479 * - the placement of the transaction happens to be such that the
3480 * roundoff is at its maximum
3481 * - the transaction data is synced before the commit record is synced
3482 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3483 * Therefore the commit record is in its own Log Record.
3484 * This can happen as the commit record is called with its
3485 * own region to xlog_write().
3486 * This then means that in the worst case, roundoff can happen for
3487 * the commit-rec as well.
3488 * The commit-rec is smaller than padding in this scenario and so it is
3489 * not added separately.
3492 /* for trans header */
3493 unit_bytes
+= sizeof(xlog_op_header_t
);
3494 unit_bytes
+= sizeof(xfs_trans_header_t
);
3497 unit_bytes
+= sizeof(xlog_op_header_t
);
3500 * for LR headers - the space for data in an iclog is the size minus
3501 * the space used for the headers. If we use the iclog size, then we
3502 * undercalculate the number of headers required.
3504 * Furthermore - the addition of op headers for split-recs might
3505 * increase the space required enough to require more log and op
3506 * headers, so take that into account too.
3508 * IMPORTANT: This reservation makes the assumption that if this
3509 * transaction is the first in an iclog and hence has the LR headers
3510 * accounted to it, then the remaining space in the iclog is
3511 * exclusively for this transaction. i.e. if the transaction is larger
3512 * than the iclog, it will be the only thing in that iclog.
3513 * Fundamentally, this means we must pass the entire log vector to
3514 * xlog_write to guarantee this.
3516 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3517 num_headers
= howmany(unit_bytes
, iclog_space
);
3519 /* for split-recs - ophdrs added when data split over LRs */
3520 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3522 /* add extra header reservations if we overrun */
3523 while (!num_headers
||
3524 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3525 unit_bytes
+= sizeof(xlog_op_header_t
);
3528 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3530 /* for commit-rec LR header - note: padding will subsume the ophdr */
3531 unit_bytes
+= log
->l_iclog_hsize
;
3533 /* for roundoff padding for transaction data and one for commit record */
3534 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3535 /* log su roundoff */
3536 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3539 unit_bytes
+= 2 * BBSIZE
;
3546 * Allocate and initialise a new log ticket.
3548 struct xlog_ticket
*
3555 xfs_km_flags_t alloc_flags
)
3557 struct xlog_ticket
*tic
;
3560 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3564 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3566 atomic_set(&tic
->t_ref
, 1);
3567 tic
->t_task
= current
;
3568 INIT_LIST_HEAD(&tic
->t_queue
);
3569 tic
->t_unit_res
= unit_res
;
3570 tic
->t_curr_res
= unit_res
;
3573 tic
->t_tid
= prandom_u32();
3574 tic
->t_clientid
= client
;
3575 tic
->t_flags
= XLOG_TIC_INITED
;
3576 tic
->t_trans_type
= 0;
3578 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3580 xlog_tic_reset_res(tic
);
3586 /******************************************************************************
3588 * Log debug routines
3590 ******************************************************************************
3594 * Make sure that the destination ptr is within the valid data region of
3595 * one of the iclogs. This uses backup pointers stored in a different
3596 * part of the log in case we trash the log structure.
3599 xlog_verify_dest_ptr(
3606 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3607 if (ptr
>= log
->l_iclog_bak
[i
] &&
3608 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3613 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3617 * Check to make sure the grant write head didn't just over lap the tail. If
3618 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3619 * the cycles differ by exactly one and check the byte count.
3621 * This check is run unlocked, so can give false positives. Rather than assert
3622 * on failures, use a warn-once flag and a panic tag to allow the admin to
3623 * determine if they want to panic the machine when such an error occurs. For
3624 * debug kernels this will have the same effect as using an assert but, unlinke
3625 * an assert, it can be turned off at runtime.
3628 xlog_verify_grant_tail(
3631 int tail_cycle
, tail_blocks
;
3634 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3635 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3636 if (tail_cycle
!= cycle
) {
3637 if (cycle
- 1 != tail_cycle
&&
3638 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3639 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3640 "%s: cycle - 1 != tail_cycle", __func__
);
3641 log
->l_flags
|= XLOG_TAIL_WARN
;
3644 if (space
> BBTOB(tail_blocks
) &&
3645 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3646 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3647 "%s: space > BBTOB(tail_blocks)", __func__
);
3648 log
->l_flags
|= XLOG_TAIL_WARN
;
3653 /* check if it will fit */
3655 xlog_verify_tail_lsn(
3657 struct xlog_in_core
*iclog
,
3662 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3664 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3665 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3666 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3668 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3670 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3671 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3673 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3674 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3675 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3677 } /* xlog_verify_tail_lsn */
3680 * Perform a number of checks on the iclog before writing to disk.
3682 * 1. Make sure the iclogs are still circular
3683 * 2. Make sure we have a good magic number
3684 * 3. Make sure we don't have magic numbers in the data
3685 * 4. Check fields of each log operation header for:
3686 * A. Valid client identifier
3687 * B. tid ptr value falls in valid ptr space (user space code)
3688 * C. Length in log record header is correct according to the
3689 * individual operation headers within record.
3690 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3691 * log, check the preceding blocks of the physical log to make sure all
3692 * the cycle numbers agree with the current cycle number.
3697 struct xlog_in_core
*iclog
,
3701 xlog_op_header_t
*ophead
;
3702 xlog_in_core_t
*icptr
;
3703 xlog_in_core_2_t
*xhdr
;
3705 xfs_caddr_t base_ptr
;
3706 __psint_t field_offset
;
3708 int len
, i
, j
, k
, op_len
;
3711 /* check validity of iclog pointers */
3712 spin_lock(&log
->l_icloglock
);
3713 icptr
= log
->l_iclog
;
3714 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3717 if (icptr
!= log
->l_iclog
)
3718 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3719 spin_unlock(&log
->l_icloglock
);
3721 /* check log magic numbers */
3722 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3723 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3725 ptr
= (xfs_caddr_t
) &iclog
->ic_header
;
3726 for (ptr
+= BBSIZE
; ptr
< ((xfs_caddr_t
)&iclog
->ic_header
) + count
;
3728 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3729 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3734 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3735 ptr
= iclog
->ic_datap
;
3737 ophead
= (xlog_op_header_t
*)ptr
;
3738 xhdr
= iclog
->ic_data
;
3739 for (i
= 0; i
< len
; i
++) {
3740 ophead
= (xlog_op_header_t
*)ptr
;
3742 /* clientid is only 1 byte */
3743 field_offset
= (__psint_t
)
3744 ((xfs_caddr_t
)&(ophead
->oh_clientid
) - base_ptr
);
3745 if (!syncing
|| (field_offset
& 0x1ff)) {
3746 clientid
= ophead
->oh_clientid
;
3748 idx
= BTOBBT((xfs_caddr_t
)&(ophead
->oh_clientid
) - iclog
->ic_datap
);
3749 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3750 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3751 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3752 clientid
= xlog_get_client_id(
3753 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3755 clientid
= xlog_get_client_id(
3756 iclog
->ic_header
.h_cycle_data
[idx
]);
3759 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3761 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3762 __func__
, clientid
, ophead
,
3763 (unsigned long)field_offset
);
3766 field_offset
= (__psint_t
)
3767 ((xfs_caddr_t
)&(ophead
->oh_len
) - base_ptr
);
3768 if (!syncing
|| (field_offset
& 0x1ff)) {
3769 op_len
= be32_to_cpu(ophead
->oh_len
);
3771 idx
= BTOBBT((__psint_t
)&ophead
->oh_len
-
3772 (__psint_t
)iclog
->ic_datap
);
3773 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3774 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3775 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3776 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3778 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3781 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3783 } /* xlog_verify_iclog */
3787 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3793 xlog_in_core_t
*iclog
, *ic
;
3795 iclog
= log
->l_iclog
;
3796 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3798 * Mark all the incore logs IOERROR.
3799 * From now on, no log flushes will result.
3803 ic
->ic_state
= XLOG_STATE_IOERROR
;
3805 } while (ic
!= iclog
);
3809 * Return non-zero, if state transition has already happened.
3815 * This is called from xfs_force_shutdown, when we're forcibly
3816 * shutting down the filesystem, typically because of an IO error.
3817 * Our main objectives here are to make sure that:
3818 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3819 * parties to find out, 'atomically'.
3820 * b. those who're sleeping on log reservations, pinned objects and
3821 * other resources get woken up, and be told the bad news.
3822 * c. nothing new gets queued up after (a) and (b) are done.
3823 * d. if !logerror, flush the iclogs to disk, then seal them off
3826 * Note: for delayed logging the !logerror case needs to flush the regions
3827 * held in memory out to the iclogs before flushing them to disk. This needs
3828 * to be done before the log is marked as shutdown, otherwise the flush to the
3832 xfs_log_force_umount(
3833 struct xfs_mount
*mp
,
3842 * If this happens during log recovery, don't worry about
3843 * locking; the log isn't open for business yet.
3846 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3847 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3849 XFS_BUF_DONE(mp
->m_sb_bp
);
3854 * Somebody could've already done the hard work for us.
3855 * No need to get locks for this.
3857 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3858 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3864 * Flush the in memory commit item list before marking the log as
3865 * being shut down. We need to do it in this order to ensure all the
3866 * completed transactions are flushed to disk with the xfs_log_force()
3870 xlog_cil_force(log
);
3873 * mark the filesystem and the as in a shutdown state and wake
3874 * everybody up to tell them the bad news.
3876 spin_lock(&log
->l_icloglock
);
3877 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3879 XFS_BUF_DONE(mp
->m_sb_bp
);
3882 * This flag is sort of redundant because of the mount flag, but
3883 * it's good to maintain the separation between the log and the rest
3886 log
->l_flags
|= XLOG_IO_ERROR
;
3889 * If we hit a log error, we want to mark all the iclogs IOERROR
3890 * while we're still holding the loglock.
3893 retval
= xlog_state_ioerror(log
);
3894 spin_unlock(&log
->l_icloglock
);
3897 * We don't want anybody waiting for log reservations after this. That
3898 * means we have to wake up everybody queued up on reserveq as well as
3899 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3900 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3901 * action is protected by the grant locks.
3903 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3904 xlog_grant_head_wake_all(&log
->l_write_head
);
3906 if (!(log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3909 * Force the incore logs to disk before shutting the
3910 * log down completely.
3912 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3914 spin_lock(&log
->l_icloglock
);
3915 retval
= xlog_state_ioerror(log
);
3916 spin_unlock(&log
->l_icloglock
);
3919 * Wake up everybody waiting on xfs_log_force.
3920 * Callback all log item committed functions as if the
3921 * log writes were completed.
3923 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
3925 #ifdef XFSERRORDEBUG
3927 xlog_in_core_t
*iclog
;
3929 spin_lock(&log
->l_icloglock
);
3930 iclog
= log
->l_iclog
;
3932 ASSERT(iclog
->ic_callback
== 0);
3933 iclog
= iclog
->ic_next
;
3934 } while (iclog
!= log
->l_iclog
);
3935 spin_unlock(&log
->l_icloglock
);
3938 /* return non-zero if log IOERROR transition had already happened */
3946 xlog_in_core_t
*iclog
;
3948 iclog
= log
->l_iclog
;
3950 /* endianness does not matter here, zero is zero in
3953 if (iclog
->ic_header
.h_num_logops
)
3955 iclog
= iclog
->ic_next
;
3956 } while (iclog
!= log
->l_iclog
);