2 * IOMMU API for ARM architected SMMU implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * Copyright (C) 2013 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 48-bit addressing (dependent on VA_BITS)
28 * - Context fault reporting
31 #define pr_fmt(fmt) "arm-smmu: " fmt
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
38 #include <linux/iommu.h>
40 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
47 #include <linux/amba/bus.h>
49 #include <asm/pgalloc.h>
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS 128
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS 128
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
65 * SMMU global address space with conditional offset to access secure
66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
69 #define ARM_SMMU_GR0_NS(smmu) \
71 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
75 #define ARM_SMMU_PTE_XN (((pteval_t)3) << 53)
76 #define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
77 #define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
78 #define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
79 #define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
80 #define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
81 #define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
83 #if PAGE_SIZE == SZ_4K
84 #define ARM_SMMU_PTE_CONT_ENTRIES 16
85 #elif PAGE_SIZE == SZ_64K
86 #define ARM_SMMU_PTE_CONT_ENTRIES 32
88 #define ARM_SMMU_PTE_CONT_ENTRIES 1
91 #define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
92 #define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
95 #define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
96 #define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
97 #define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
98 #define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
101 #define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
102 #define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
103 #define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
104 #define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
105 #define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
106 #define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
108 /* Configuration registers */
109 #define ARM_SMMU_GR0_sCR0 0x0
110 #define sCR0_CLIENTPD (1 << 0)
111 #define sCR0_GFRE (1 << 1)
112 #define sCR0_GFIE (1 << 2)
113 #define sCR0_GCFGFRE (1 << 4)
114 #define sCR0_GCFGFIE (1 << 5)
115 #define sCR0_USFCFG (1 << 10)
116 #define sCR0_VMIDPNE (1 << 11)
117 #define sCR0_PTM (1 << 12)
118 #define sCR0_FB (1 << 13)
119 #define sCR0_BSU_SHIFT 14
120 #define sCR0_BSU_MASK 0x3
122 /* Identification registers */
123 #define ARM_SMMU_GR0_ID0 0x20
124 #define ARM_SMMU_GR0_ID1 0x24
125 #define ARM_SMMU_GR0_ID2 0x28
126 #define ARM_SMMU_GR0_ID3 0x2c
127 #define ARM_SMMU_GR0_ID4 0x30
128 #define ARM_SMMU_GR0_ID5 0x34
129 #define ARM_SMMU_GR0_ID6 0x38
130 #define ARM_SMMU_GR0_ID7 0x3c
131 #define ARM_SMMU_GR0_sGFSR 0x48
132 #define ARM_SMMU_GR0_sGFSYNR0 0x50
133 #define ARM_SMMU_GR0_sGFSYNR1 0x54
134 #define ARM_SMMU_GR0_sGFSYNR2 0x58
135 #define ARM_SMMU_GR0_PIDR0 0xfe0
136 #define ARM_SMMU_GR0_PIDR1 0xfe4
137 #define ARM_SMMU_GR0_PIDR2 0xfe8
139 #define ID0_S1TS (1 << 30)
140 #define ID0_S2TS (1 << 29)
141 #define ID0_NTS (1 << 28)
142 #define ID0_SMS (1 << 27)
143 #define ID0_PTFS_SHIFT 24
144 #define ID0_PTFS_MASK 0x2
145 #define ID0_PTFS_V8_ONLY 0x2
146 #define ID0_CTTW (1 << 14)
147 #define ID0_NUMIRPT_SHIFT 16
148 #define ID0_NUMIRPT_MASK 0xff
149 #define ID0_NUMSIDB_SHIFT 9
150 #define ID0_NUMSIDB_MASK 0xf
151 #define ID0_NUMSMRG_SHIFT 0
152 #define ID0_NUMSMRG_MASK 0xff
154 #define ID1_PAGESIZE (1 << 31)
155 #define ID1_NUMPAGENDXB_SHIFT 28
156 #define ID1_NUMPAGENDXB_MASK 7
157 #define ID1_NUMS2CB_SHIFT 16
158 #define ID1_NUMS2CB_MASK 0xff
159 #define ID1_NUMCB_SHIFT 0
160 #define ID1_NUMCB_MASK 0xff
162 #define ID2_OAS_SHIFT 4
163 #define ID2_OAS_MASK 0xf
164 #define ID2_IAS_SHIFT 0
165 #define ID2_IAS_MASK 0xf
166 #define ID2_UBS_SHIFT 8
167 #define ID2_UBS_MASK 0xf
168 #define ID2_PTFS_4K (1 << 12)
169 #define ID2_PTFS_16K (1 << 13)
170 #define ID2_PTFS_64K (1 << 14)
172 #define PIDR2_ARCH_SHIFT 4
173 #define PIDR2_ARCH_MASK 0xf
175 /* Global TLB invalidation */
176 #define ARM_SMMU_GR0_STLBIALL 0x60
177 #define ARM_SMMU_GR0_TLBIVMID 0x64
178 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
179 #define ARM_SMMU_GR0_TLBIALLH 0x6c
180 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
181 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
182 #define sTLBGSTATUS_GSACTIVE (1 << 0)
183 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
185 /* Stream mapping registers */
186 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
187 #define SMR_VALID (1 << 31)
188 #define SMR_MASK_SHIFT 16
189 #define SMR_MASK_MASK 0x7fff
190 #define SMR_ID_SHIFT 0
191 #define SMR_ID_MASK 0x7fff
193 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
194 #define S2CR_CBNDX_SHIFT 0
195 #define S2CR_CBNDX_MASK 0xff
196 #define S2CR_TYPE_SHIFT 16
197 #define S2CR_TYPE_MASK 0x3
198 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
199 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
200 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
202 /* Context bank attribute registers */
203 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
204 #define CBAR_VMID_SHIFT 0
205 #define CBAR_VMID_MASK 0xff
206 #define CBAR_S1_BPSHCFG_SHIFT 8
207 #define CBAR_S1_BPSHCFG_MASK 3
208 #define CBAR_S1_BPSHCFG_NSH 3
209 #define CBAR_S1_MEMATTR_SHIFT 12
210 #define CBAR_S1_MEMATTR_MASK 0xf
211 #define CBAR_S1_MEMATTR_WB 0xf
212 #define CBAR_TYPE_SHIFT 16
213 #define CBAR_TYPE_MASK 0x3
214 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
215 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
216 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
217 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
218 #define CBAR_IRPTNDX_SHIFT 24
219 #define CBAR_IRPTNDX_MASK 0xff
221 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
222 #define CBA2R_RW64_32BIT (0 << 0)
223 #define CBA2R_RW64_64BIT (1 << 0)
225 /* Translation context bank */
226 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
227 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
229 #define ARM_SMMU_CB_SCTLR 0x0
230 #define ARM_SMMU_CB_RESUME 0x8
231 #define ARM_SMMU_CB_TTBCR2 0x10
232 #define ARM_SMMU_CB_TTBR0_LO 0x20
233 #define ARM_SMMU_CB_TTBR0_HI 0x24
234 #define ARM_SMMU_CB_TTBCR 0x30
235 #define ARM_SMMU_CB_S1_MAIR0 0x38
236 #define ARM_SMMU_CB_FSR 0x58
237 #define ARM_SMMU_CB_FAR_LO 0x60
238 #define ARM_SMMU_CB_FAR_HI 0x64
239 #define ARM_SMMU_CB_FSYNR0 0x68
240 #define ARM_SMMU_CB_S1_TLBIASID 0x610
242 #define SCTLR_S1_ASIDPNE (1 << 12)
243 #define SCTLR_CFCFG (1 << 7)
244 #define SCTLR_CFIE (1 << 6)
245 #define SCTLR_CFRE (1 << 5)
246 #define SCTLR_E (1 << 4)
247 #define SCTLR_AFE (1 << 2)
248 #define SCTLR_TRE (1 << 1)
249 #define SCTLR_M (1 << 0)
250 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
252 #define RESUME_RETRY (0 << 0)
253 #define RESUME_TERMINATE (1 << 0)
255 #define TTBCR_EAE (1 << 31)
257 #define TTBCR_PASIZE_SHIFT 16
258 #define TTBCR_PASIZE_MASK 0x7
260 #define TTBCR_TG0_4K (0 << 14)
261 #define TTBCR_TG0_64K (1 << 14)
263 #define TTBCR_SH0_SHIFT 12
264 #define TTBCR_SH0_MASK 0x3
265 #define TTBCR_SH_NS 0
266 #define TTBCR_SH_OS 2
267 #define TTBCR_SH_IS 3
269 #define TTBCR_ORGN0_SHIFT 10
270 #define TTBCR_IRGN0_SHIFT 8
271 #define TTBCR_RGN_MASK 0x3
272 #define TTBCR_RGN_NC 0
273 #define TTBCR_RGN_WBWA 1
274 #define TTBCR_RGN_WT 2
275 #define TTBCR_RGN_WB 3
277 #define TTBCR_SL0_SHIFT 6
278 #define TTBCR_SL0_MASK 0x3
279 #define TTBCR_SL0_LVL_2 0
280 #define TTBCR_SL0_LVL_1 1
282 #define TTBCR_T1SZ_SHIFT 16
283 #define TTBCR_T0SZ_SHIFT 0
284 #define TTBCR_SZ_MASK 0xf
286 #define TTBCR2_SEP_SHIFT 15
287 #define TTBCR2_SEP_MASK 0x7
289 #define TTBCR2_PASIZE_SHIFT 0
290 #define TTBCR2_PASIZE_MASK 0x7
292 /* Common definitions for PASize and SEP fields */
293 #define TTBCR2_ADDR_32 0
294 #define TTBCR2_ADDR_36 1
295 #define TTBCR2_ADDR_40 2
296 #define TTBCR2_ADDR_42 3
297 #define TTBCR2_ADDR_44 4
298 #define TTBCR2_ADDR_48 5
300 #define TTBRn_HI_ASID_SHIFT 16
302 #define MAIR_ATTR_SHIFT(n) ((n) << 3)
303 #define MAIR_ATTR_MASK 0xff
304 #define MAIR_ATTR_DEVICE 0x04
305 #define MAIR_ATTR_NC 0x44
306 #define MAIR_ATTR_WBRWA 0xff
307 #define MAIR_ATTR_IDX_NC 0
308 #define MAIR_ATTR_IDX_CACHE 1
309 #define MAIR_ATTR_IDX_DEV 2
311 #define FSR_MULTI (1 << 31)
312 #define FSR_SS (1 << 30)
313 #define FSR_UUT (1 << 8)
314 #define FSR_ASF (1 << 7)
315 #define FSR_TLBLKF (1 << 6)
316 #define FSR_TLBMCF (1 << 5)
317 #define FSR_EF (1 << 4)
318 #define FSR_PF (1 << 3)
319 #define FSR_AFF (1 << 2)
320 #define FSR_TF (1 << 1)
322 #define FSR_IGN (FSR_AFF | FSR_ASF | \
323 FSR_TLBMCF | FSR_TLBLKF)
324 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
325 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
327 #define FSYNR0_WNR (1 << 4)
329 static int force_stage
;
330 module_param_named(force_stage
, force_stage
, int, S_IRUGO
| S_IWUSR
);
331 MODULE_PARM_DESC(force_stage
,
332 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
334 enum arm_smmu_arch_version
{
339 struct arm_smmu_smr
{
345 struct arm_smmu_master_cfg
{
347 u16 streamids
[MAX_MASTER_STREAMIDS
];
348 struct arm_smmu_smr
*smrs
;
351 struct arm_smmu_master
{
352 struct device_node
*of_node
;
354 struct arm_smmu_master_cfg cfg
;
357 struct arm_smmu_device
{
362 unsigned long pgshift
;
364 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
365 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
366 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
367 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
368 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
371 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
373 enum arm_smmu_arch_version version
;
375 u32 num_context_banks
;
376 u32 num_s2_context_banks
;
377 DECLARE_BITMAP(context_map
, ARM_SMMU_MAX_CBS
);
380 u32 num_mapping_groups
;
381 DECLARE_BITMAP(smr_map
, ARM_SMMU_MAX_SMRS
);
383 unsigned long s1_input_size
;
384 unsigned long s1_output_size
;
385 unsigned long s2_input_size
;
386 unsigned long s2_output_size
;
389 u32 num_context_irqs
;
392 struct list_head list
;
393 struct rb_root masters
;
396 struct arm_smmu_cfg
{
402 #define INVALID_IRPTNDX 0xff
404 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
405 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
407 enum arm_smmu_domain_stage
{
408 ARM_SMMU_DOMAIN_S1
= 0,
410 ARM_SMMU_DOMAIN_NESTED
,
413 struct arm_smmu_domain
{
414 struct arm_smmu_device
*smmu
;
415 struct arm_smmu_cfg cfg
;
416 enum arm_smmu_domain_stage stage
;
420 static DEFINE_SPINLOCK(arm_smmu_devices_lock
);
421 static LIST_HEAD(arm_smmu_devices
);
423 struct arm_smmu_option_prop
{
428 static struct arm_smmu_option_prop arm_smmu_options
[] = {
429 { ARM_SMMU_OPT_SECURE_CFG_ACCESS
, "calxeda,smmu-secure-config-access" },
433 static void parse_driver_options(struct arm_smmu_device
*smmu
)
438 if (of_property_read_bool(smmu
->dev
->of_node
,
439 arm_smmu_options
[i
].prop
)) {
440 smmu
->options
|= arm_smmu_options
[i
].opt
;
441 dev_notice(smmu
->dev
, "option %s\n",
442 arm_smmu_options
[i
].prop
);
444 } while (arm_smmu_options
[++i
].opt
);
447 static struct device_node
*dev_get_dev_node(struct device
*dev
)
449 if (dev_is_pci(dev
)) {
450 struct pci_bus
*bus
= to_pci_dev(dev
)->bus
;
452 while (!pci_is_root_bus(bus
))
454 return bus
->bridge
->parent
->of_node
;
460 static struct arm_smmu_master
*find_smmu_master(struct arm_smmu_device
*smmu
,
461 struct device_node
*dev_node
)
463 struct rb_node
*node
= smmu
->masters
.rb_node
;
466 struct arm_smmu_master
*master
;
468 master
= container_of(node
, struct arm_smmu_master
, node
);
470 if (dev_node
< master
->of_node
)
471 node
= node
->rb_left
;
472 else if (dev_node
> master
->of_node
)
473 node
= node
->rb_right
;
481 static struct arm_smmu_master_cfg
*
482 find_smmu_master_cfg(struct device
*dev
)
484 struct arm_smmu_master_cfg
*cfg
= NULL
;
485 struct iommu_group
*group
= iommu_group_get(dev
);
488 cfg
= iommu_group_get_iommudata(group
);
489 iommu_group_put(group
);
495 static int insert_smmu_master(struct arm_smmu_device
*smmu
,
496 struct arm_smmu_master
*master
)
498 struct rb_node
**new, *parent
;
500 new = &smmu
->masters
.rb_node
;
503 struct arm_smmu_master
*this
504 = container_of(*new, struct arm_smmu_master
, node
);
507 if (master
->of_node
< this->of_node
)
508 new = &((*new)->rb_left
);
509 else if (master
->of_node
> this->of_node
)
510 new = &((*new)->rb_right
);
515 rb_link_node(&master
->node
, parent
, new);
516 rb_insert_color(&master
->node
, &smmu
->masters
);
520 static int register_smmu_master(struct arm_smmu_device
*smmu
,
522 struct of_phandle_args
*masterspec
)
525 struct arm_smmu_master
*master
;
527 master
= find_smmu_master(smmu
, masterspec
->np
);
530 "rejecting multiple registrations for master device %s\n",
531 masterspec
->np
->name
);
535 if (masterspec
->args_count
> MAX_MASTER_STREAMIDS
) {
537 "reached maximum number (%d) of stream IDs for master device %s\n",
538 MAX_MASTER_STREAMIDS
, masterspec
->np
->name
);
542 master
= devm_kzalloc(dev
, sizeof(*master
), GFP_KERNEL
);
546 master
->of_node
= masterspec
->np
;
547 master
->cfg
.num_streamids
= masterspec
->args_count
;
549 for (i
= 0; i
< master
->cfg
.num_streamids
; ++i
) {
550 u16 streamid
= masterspec
->args
[i
];
552 if (!(smmu
->features
& ARM_SMMU_FEAT_STREAM_MATCH
) &&
553 (streamid
>= smmu
->num_mapping_groups
)) {
555 "stream ID for master device %s greater than maximum allowed (%d)\n",
556 masterspec
->np
->name
, smmu
->num_mapping_groups
);
559 master
->cfg
.streamids
[i
] = streamid
;
561 return insert_smmu_master(smmu
, master
);
564 static struct arm_smmu_device
*find_smmu_for_device(struct device
*dev
)
566 struct arm_smmu_device
*smmu
;
567 struct arm_smmu_master
*master
= NULL
;
568 struct device_node
*dev_node
= dev_get_dev_node(dev
);
570 spin_lock(&arm_smmu_devices_lock
);
571 list_for_each_entry(smmu
, &arm_smmu_devices
, list
) {
572 master
= find_smmu_master(smmu
, dev_node
);
576 spin_unlock(&arm_smmu_devices_lock
);
578 return master
? smmu
: NULL
;
581 static int __arm_smmu_alloc_bitmap(unsigned long *map
, int start
, int end
)
586 idx
= find_next_zero_bit(map
, end
, start
);
589 } while (test_and_set_bit(idx
, map
));
594 static void __arm_smmu_free_bitmap(unsigned long *map
, int idx
)
599 /* Wait for any pending TLB invalidations to complete */
600 static void arm_smmu_tlb_sync(struct arm_smmu_device
*smmu
)
603 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
605 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_sTLBGSYNC
);
606 while (readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sTLBGSTATUS
)
607 & sTLBGSTATUS_GSACTIVE
) {
609 if (++count
== TLB_LOOP_TIMEOUT
) {
610 dev_err_ratelimited(smmu
->dev
,
611 "TLB sync timed out -- SMMU may be deadlocked\n");
618 static void arm_smmu_tlb_inv_context(struct arm_smmu_domain
*smmu_domain
)
620 struct arm_smmu_cfg
*cfg
= &smmu_domain
->cfg
;
621 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
622 void __iomem
*base
= ARM_SMMU_GR0(smmu
);
623 bool stage1
= cfg
->cbar
!= CBAR_TYPE_S2_TRANS
;
626 base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, cfg
->cbndx
);
627 writel_relaxed(ARM_SMMU_CB_ASID(cfg
),
628 base
+ ARM_SMMU_CB_S1_TLBIASID
);
630 base
= ARM_SMMU_GR0(smmu
);
631 writel_relaxed(ARM_SMMU_CB_VMID(cfg
),
632 base
+ ARM_SMMU_GR0_TLBIVMID
);
635 arm_smmu_tlb_sync(smmu
);
638 static irqreturn_t
arm_smmu_context_fault(int irq
, void *dev
)
641 u32 fsr
, far
, fsynr
, resume
;
643 struct iommu_domain
*domain
= dev
;
644 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
645 struct arm_smmu_cfg
*cfg
= &smmu_domain
->cfg
;
646 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
647 void __iomem
*cb_base
;
649 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, cfg
->cbndx
);
650 fsr
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FSR
);
652 if (!(fsr
& FSR_FAULT
))
656 dev_err_ratelimited(smmu
->dev
,
657 "Unexpected context fault (fsr 0x%x)\n",
660 fsynr
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FSYNR0
);
661 flags
= fsynr
& FSYNR0_WNR
? IOMMU_FAULT_WRITE
: IOMMU_FAULT_READ
;
663 far
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FAR_LO
);
666 far
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FAR_HI
);
667 iova
|= ((unsigned long)far
<< 32);
670 if (!report_iommu_fault(domain
, smmu
->dev
, iova
, flags
)) {
672 resume
= RESUME_RETRY
;
674 dev_err_ratelimited(smmu
->dev
,
675 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
676 iova
, fsynr
, cfg
->cbndx
);
678 resume
= RESUME_TERMINATE
;
681 /* Clear the faulting FSR */
682 writel(fsr
, cb_base
+ ARM_SMMU_CB_FSR
);
684 /* Retry or terminate any stalled transactions */
686 writel_relaxed(resume
, cb_base
+ ARM_SMMU_CB_RESUME
);
691 static irqreturn_t
arm_smmu_global_fault(int irq
, void *dev
)
693 u32 gfsr
, gfsynr0
, gfsynr1
, gfsynr2
;
694 struct arm_smmu_device
*smmu
= dev
;
695 void __iomem
*gr0_base
= ARM_SMMU_GR0_NS(smmu
);
697 gfsr
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSR
);
698 gfsynr0
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR0
);
699 gfsynr1
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR1
);
700 gfsynr2
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR2
);
705 dev_err_ratelimited(smmu
->dev
,
706 "Unexpected global fault, this could be serious\n");
707 dev_err_ratelimited(smmu
->dev
,
708 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
709 gfsr
, gfsynr0
, gfsynr1
, gfsynr2
);
711 writel(gfsr
, gr0_base
+ ARM_SMMU_GR0_sGFSR
);
715 static void arm_smmu_flush_pgtable(struct arm_smmu_device
*smmu
, void *addr
,
718 unsigned long offset
= (unsigned long)addr
& ~PAGE_MASK
;
721 /* Ensure new page tables are visible to the hardware walker */
722 if (smmu
->features
& ARM_SMMU_FEAT_COHERENT_WALK
) {
726 * If the SMMU can't walk tables in the CPU caches, treat them
727 * like non-coherent DMA since we need to flush the new entries
728 * all the way out to memory. There's no possibility of
729 * recursion here as the SMMU table walker will not be wired
730 * through another SMMU.
732 dma_map_page(smmu
->dev
, virt_to_page(addr
), offset
, size
,
737 static void arm_smmu_init_context_bank(struct arm_smmu_domain
*smmu_domain
)
741 struct arm_smmu_cfg
*cfg
= &smmu_domain
->cfg
;
742 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
743 void __iomem
*cb_base
, *gr0_base
, *gr1_base
;
745 gr0_base
= ARM_SMMU_GR0(smmu
);
746 gr1_base
= ARM_SMMU_GR1(smmu
);
747 stage1
= cfg
->cbar
!= CBAR_TYPE_S2_TRANS
;
748 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, cfg
->cbndx
);
752 if (smmu
->version
== ARM_SMMU_V1
)
753 reg
|= cfg
->irptndx
<< CBAR_IRPTNDX_SHIFT
;
756 * Use the weakest shareability/memory types, so they are
757 * overridden by the ttbcr/pte.
760 reg
|= (CBAR_S1_BPSHCFG_NSH
<< CBAR_S1_BPSHCFG_SHIFT
) |
761 (CBAR_S1_MEMATTR_WB
<< CBAR_S1_MEMATTR_SHIFT
);
763 reg
|= ARM_SMMU_CB_VMID(cfg
) << CBAR_VMID_SHIFT
;
765 writel_relaxed(reg
, gr1_base
+ ARM_SMMU_GR1_CBAR(cfg
->cbndx
));
767 if (smmu
->version
> ARM_SMMU_V1
) {
770 reg
= CBA2R_RW64_64BIT
;
772 reg
= CBA2R_RW64_32BIT
;
775 gr1_base
+ ARM_SMMU_GR1_CBA2R(cfg
->cbndx
));
778 switch (smmu
->s1_input_size
) {
780 reg
= (TTBCR2_ADDR_32
<< TTBCR2_SEP_SHIFT
);
783 reg
= (TTBCR2_ADDR_36
<< TTBCR2_SEP_SHIFT
);
787 reg
= (TTBCR2_ADDR_40
<< TTBCR2_SEP_SHIFT
);
790 reg
= (TTBCR2_ADDR_42
<< TTBCR2_SEP_SHIFT
);
793 reg
= (TTBCR2_ADDR_44
<< TTBCR2_SEP_SHIFT
);
796 reg
= (TTBCR2_ADDR_48
<< TTBCR2_SEP_SHIFT
);
800 switch (smmu
->s1_output_size
) {
802 reg
|= (TTBCR2_ADDR_32
<< TTBCR2_PASIZE_SHIFT
);
805 reg
|= (TTBCR2_ADDR_36
<< TTBCR2_PASIZE_SHIFT
);
809 reg
|= (TTBCR2_ADDR_40
<< TTBCR2_PASIZE_SHIFT
);
812 reg
|= (TTBCR2_ADDR_42
<< TTBCR2_PASIZE_SHIFT
);
815 reg
|= (TTBCR2_ADDR_44
<< TTBCR2_PASIZE_SHIFT
);
818 reg
|= (TTBCR2_ADDR_48
<< TTBCR2_PASIZE_SHIFT
);
823 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBCR2
);
827 arm_smmu_flush_pgtable(smmu
, cfg
->pgd
,
828 PTRS_PER_PGD
* sizeof(pgd_t
));
829 reg
= __pa(cfg
->pgd
);
830 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBR0_LO
);
831 reg
= (phys_addr_t
)__pa(cfg
->pgd
) >> 32;
833 reg
|= ARM_SMMU_CB_ASID(cfg
) << TTBRn_HI_ASID_SHIFT
;
834 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBR0_HI
);
838 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
840 if (smmu
->version
> ARM_SMMU_V1
) {
841 if (PAGE_SIZE
== SZ_4K
)
847 reg
|= (64 - smmu
->s2_input_size
) << TTBCR_T0SZ_SHIFT
;
849 switch (smmu
->s2_output_size
) {
851 reg
|= (TTBCR2_ADDR_32
<< TTBCR_PASIZE_SHIFT
);
854 reg
|= (TTBCR2_ADDR_36
<< TTBCR_PASIZE_SHIFT
);
857 reg
|= (TTBCR2_ADDR_40
<< TTBCR_PASIZE_SHIFT
);
860 reg
|= (TTBCR2_ADDR_42
<< TTBCR_PASIZE_SHIFT
);
863 reg
|= (TTBCR2_ADDR_44
<< TTBCR_PASIZE_SHIFT
);
866 reg
|= (TTBCR2_ADDR_48
<< TTBCR_PASIZE_SHIFT
);
870 reg
|= (64 - smmu
->s1_input_size
) << TTBCR_T0SZ_SHIFT
;
877 (TTBCR_SH_IS
<< TTBCR_SH0_SHIFT
) |
878 (TTBCR_RGN_WBWA
<< TTBCR_ORGN0_SHIFT
) |
879 (TTBCR_RGN_WBWA
<< TTBCR_IRGN0_SHIFT
);
882 reg
|= (TTBCR_SL0_LVL_1
<< TTBCR_SL0_SHIFT
);
884 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBCR
);
886 /* MAIR0 (stage-1 only) */
888 reg
= (MAIR_ATTR_NC
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC
)) |
889 (MAIR_ATTR_WBRWA
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE
)) |
890 (MAIR_ATTR_DEVICE
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV
));
891 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_S1_MAIR0
);
895 reg
= SCTLR_CFCFG
| SCTLR_CFIE
| SCTLR_CFRE
| SCTLR_M
| SCTLR_EAE_SBOP
;
897 reg
|= SCTLR_S1_ASIDPNE
;
901 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_SCTLR
);
904 static int arm_smmu_init_domain_context(struct iommu_domain
*domain
,
905 struct arm_smmu_device
*smmu
)
907 int irq
, start
, ret
= 0;
909 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
910 struct arm_smmu_cfg
*cfg
= &smmu_domain
->cfg
;
912 spin_lock_irqsave(&smmu_domain
->lock
, flags
);
913 if (smmu_domain
->smmu
)
917 * Mapping the requested stage onto what we support is surprisingly
918 * complicated, mainly because the spec allows S1+S2 SMMUs without
919 * support for nested translation. That means we end up with the
922 * Requested Supported Actual
932 * Note that you can't actually request stage-2 mappings.
934 if (!(smmu
->features
& ARM_SMMU_FEAT_TRANS_S1
))
935 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S2
;
936 if (!(smmu
->features
& ARM_SMMU_FEAT_TRANS_S2
))
937 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S1
;
939 switch (smmu_domain
->stage
) {
940 case ARM_SMMU_DOMAIN_S1
:
941 cfg
->cbar
= CBAR_TYPE_S1_TRANS_S2_BYPASS
;
942 start
= smmu
->num_s2_context_banks
;
944 case ARM_SMMU_DOMAIN_NESTED
:
946 * We will likely want to change this if/when KVM gets
949 case ARM_SMMU_DOMAIN_S2
:
950 cfg
->cbar
= CBAR_TYPE_S2_TRANS
;
958 ret
= __arm_smmu_alloc_bitmap(smmu
->context_map
, start
,
959 smmu
->num_context_banks
);
960 if (IS_ERR_VALUE(ret
))
964 if (smmu
->version
== ARM_SMMU_V1
) {
965 cfg
->irptndx
= atomic_inc_return(&smmu
->irptndx
);
966 cfg
->irptndx
%= smmu
->num_context_irqs
;
968 cfg
->irptndx
= cfg
->cbndx
;
971 ACCESS_ONCE(smmu_domain
->smmu
) = smmu
;
972 arm_smmu_init_context_bank(smmu_domain
);
973 spin_unlock_irqrestore(&smmu_domain
->lock
, flags
);
975 irq
= smmu
->irqs
[smmu
->num_global_irqs
+ cfg
->irptndx
];
976 ret
= request_irq(irq
, arm_smmu_context_fault
, IRQF_SHARED
,
977 "arm-smmu-context-fault", domain
);
978 if (IS_ERR_VALUE(ret
)) {
979 dev_err(smmu
->dev
, "failed to request context IRQ %d (%u)\n",
981 cfg
->irptndx
= INVALID_IRPTNDX
;
987 spin_unlock_irqrestore(&smmu_domain
->lock
, flags
);
991 static void arm_smmu_destroy_domain_context(struct iommu_domain
*domain
)
993 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
994 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
995 struct arm_smmu_cfg
*cfg
= &smmu_domain
->cfg
;
996 void __iomem
*cb_base
;
1002 /* Disable the context bank and nuke the TLB before freeing it. */
1003 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, cfg
->cbndx
);
1004 writel_relaxed(0, cb_base
+ ARM_SMMU_CB_SCTLR
);
1005 arm_smmu_tlb_inv_context(smmu_domain
);
1007 if (cfg
->irptndx
!= INVALID_IRPTNDX
) {
1008 irq
= smmu
->irqs
[smmu
->num_global_irqs
+ cfg
->irptndx
];
1009 free_irq(irq
, domain
);
1012 __arm_smmu_free_bitmap(smmu
->context_map
, cfg
->cbndx
);
1015 static int arm_smmu_domain_init(struct iommu_domain
*domain
)
1017 struct arm_smmu_domain
*smmu_domain
;
1021 * Allocate the domain and initialise some of its data structures.
1022 * We can't really do anything meaningful until we've added a
1025 smmu_domain
= kzalloc(sizeof(*smmu_domain
), GFP_KERNEL
);
1029 pgd
= kcalloc(PTRS_PER_PGD
, sizeof(pgd_t
), GFP_KERNEL
);
1031 goto out_free_domain
;
1032 smmu_domain
->cfg
.pgd
= pgd
;
1034 spin_lock_init(&smmu_domain
->lock
);
1035 domain
->priv
= smmu_domain
;
1043 static void arm_smmu_free_ptes(pmd_t
*pmd
)
1045 pgtable_t table
= pmd_pgtable(*pmd
);
1050 static void arm_smmu_free_pmds(pud_t
*pud
)
1053 pmd_t
*pmd
, *pmd_base
= pmd_offset(pud
, 0);
1056 for (i
= 0; i
< PTRS_PER_PMD
; ++i
) {
1060 arm_smmu_free_ptes(pmd
);
1064 pmd_free(NULL
, pmd_base
);
1067 static void arm_smmu_free_puds(pgd_t
*pgd
)
1070 pud_t
*pud
, *pud_base
= pud_offset(pgd
, 0);
1073 for (i
= 0; i
< PTRS_PER_PUD
; ++i
) {
1077 arm_smmu_free_pmds(pud
);
1081 pud_free(NULL
, pud_base
);
1084 static void arm_smmu_free_pgtables(struct arm_smmu_domain
*smmu_domain
)
1087 struct arm_smmu_cfg
*cfg
= &smmu_domain
->cfg
;
1088 pgd_t
*pgd
, *pgd_base
= cfg
->pgd
;
1091 * Recursively free the page tables for this domain. We don't
1092 * care about speculative TLB filling because the tables should
1093 * not be active in any context bank at this point (SCTLR.M is 0).
1096 for (i
= 0; i
< PTRS_PER_PGD
; ++i
) {
1099 arm_smmu_free_puds(pgd
);
1106 static void arm_smmu_domain_destroy(struct iommu_domain
*domain
)
1108 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1111 * Free the domain resources. We assume that all devices have
1112 * already been detached.
1114 arm_smmu_destroy_domain_context(domain
);
1115 arm_smmu_free_pgtables(smmu_domain
);
1119 static int arm_smmu_master_configure_smrs(struct arm_smmu_device
*smmu
,
1120 struct arm_smmu_master_cfg
*cfg
)
1123 struct arm_smmu_smr
*smrs
;
1124 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1126 if (!(smmu
->features
& ARM_SMMU_FEAT_STREAM_MATCH
))
1132 smrs
= kmalloc_array(cfg
->num_streamids
, sizeof(*smrs
), GFP_KERNEL
);
1134 dev_err(smmu
->dev
, "failed to allocate %d SMRs\n",
1135 cfg
->num_streamids
);
1139 /* Allocate the SMRs on the SMMU */
1140 for (i
= 0; i
< cfg
->num_streamids
; ++i
) {
1141 int idx
= __arm_smmu_alloc_bitmap(smmu
->smr_map
, 0,
1142 smmu
->num_mapping_groups
);
1143 if (IS_ERR_VALUE(idx
)) {
1144 dev_err(smmu
->dev
, "failed to allocate free SMR\n");
1148 smrs
[i
] = (struct arm_smmu_smr
) {
1150 .mask
= 0, /* We don't currently share SMRs */
1151 .id
= cfg
->streamids
[i
],
1155 /* It worked! Now, poke the actual hardware */
1156 for (i
= 0; i
< cfg
->num_streamids
; ++i
) {
1157 u32 reg
= SMR_VALID
| smrs
[i
].id
<< SMR_ID_SHIFT
|
1158 smrs
[i
].mask
<< SMR_MASK_SHIFT
;
1159 writel_relaxed(reg
, gr0_base
+ ARM_SMMU_GR0_SMR(smrs
[i
].idx
));
1167 __arm_smmu_free_bitmap(smmu
->smr_map
, smrs
[i
].idx
);
1172 static void arm_smmu_master_free_smrs(struct arm_smmu_device
*smmu
,
1173 struct arm_smmu_master_cfg
*cfg
)
1176 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1177 struct arm_smmu_smr
*smrs
= cfg
->smrs
;
1182 /* Invalidate the SMRs before freeing back to the allocator */
1183 for (i
= 0; i
< cfg
->num_streamids
; ++i
) {
1184 u8 idx
= smrs
[i
].idx
;
1186 writel_relaxed(~SMR_VALID
, gr0_base
+ ARM_SMMU_GR0_SMR(idx
));
1187 __arm_smmu_free_bitmap(smmu
->smr_map
, idx
);
1194 static int arm_smmu_domain_add_master(struct arm_smmu_domain
*smmu_domain
,
1195 struct arm_smmu_master_cfg
*cfg
)
1198 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1199 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1201 /* Devices in an IOMMU group may already be configured */
1202 ret
= arm_smmu_master_configure_smrs(smmu
, cfg
);
1204 return ret
== -EEXIST
? 0 : ret
;
1206 for (i
= 0; i
< cfg
->num_streamids
; ++i
) {
1209 idx
= cfg
->smrs
? cfg
->smrs
[i
].idx
: cfg
->streamids
[i
];
1210 s2cr
= S2CR_TYPE_TRANS
|
1211 (smmu_domain
->cfg
.cbndx
<< S2CR_CBNDX_SHIFT
);
1212 writel_relaxed(s2cr
, gr0_base
+ ARM_SMMU_GR0_S2CR(idx
));
1218 static void arm_smmu_domain_remove_master(struct arm_smmu_domain
*smmu_domain
,
1219 struct arm_smmu_master_cfg
*cfg
)
1222 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1223 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1225 /* An IOMMU group is torn down by the first device to be removed */
1226 if ((smmu
->features
& ARM_SMMU_FEAT_STREAM_MATCH
) && !cfg
->smrs
)
1230 * We *must* clear the S2CR first, because freeing the SMR means
1231 * that it can be re-allocated immediately.
1233 for (i
= 0; i
< cfg
->num_streamids
; ++i
) {
1234 u32 idx
= cfg
->smrs
? cfg
->smrs
[i
].idx
: cfg
->streamids
[i
];
1236 writel_relaxed(S2CR_TYPE_BYPASS
,
1237 gr0_base
+ ARM_SMMU_GR0_S2CR(idx
));
1240 arm_smmu_master_free_smrs(smmu
, cfg
);
1243 static int arm_smmu_attach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1246 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1247 struct arm_smmu_device
*smmu
, *dom_smmu
;
1248 struct arm_smmu_master_cfg
*cfg
;
1250 smmu
= find_smmu_for_device(dev
);
1252 dev_err(dev
, "cannot attach to SMMU, is it on the same bus?\n");
1256 if (dev
->archdata
.iommu
) {
1257 dev_err(dev
, "already attached to IOMMU domain\n");
1262 * Sanity check the domain. We don't support domains across
1265 dom_smmu
= ACCESS_ONCE(smmu_domain
->smmu
);
1267 /* Now that we have a master, we can finalise the domain */
1268 ret
= arm_smmu_init_domain_context(domain
, smmu
);
1269 if (IS_ERR_VALUE(ret
))
1272 dom_smmu
= smmu_domain
->smmu
;
1275 if (dom_smmu
!= smmu
) {
1277 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1278 dev_name(smmu_domain
->smmu
->dev
), dev_name(smmu
->dev
));
1282 /* Looks ok, so add the device to the domain */
1283 cfg
= find_smmu_master_cfg(dev
);
1287 ret
= arm_smmu_domain_add_master(smmu_domain
, cfg
);
1289 dev
->archdata
.iommu
= domain
;
1293 static void arm_smmu_detach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1295 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1296 struct arm_smmu_master_cfg
*cfg
;
1298 cfg
= find_smmu_master_cfg(dev
);
1302 dev
->archdata
.iommu
= NULL
;
1303 arm_smmu_domain_remove_master(smmu_domain
, cfg
);
1306 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr
,
1309 return !(addr
& ~ARM_SMMU_PTE_CONT_MASK
) &&
1310 (addr
+ ARM_SMMU_PTE_CONT_SIZE
<= end
);
1313 static int arm_smmu_alloc_init_pte(struct arm_smmu_device
*smmu
, pmd_t
*pmd
,
1314 unsigned long addr
, unsigned long end
,
1315 unsigned long pfn
, int prot
, int stage
)
1318 pteval_t pteval
= ARM_SMMU_PTE_PAGE
| ARM_SMMU_PTE_AF
;
1320 if (pmd_none(*pmd
)) {
1321 /* Allocate a new set of tables */
1322 pgtable_t table
= alloc_page(GFP_ATOMIC
|__GFP_ZERO
);
1327 arm_smmu_flush_pgtable(smmu
, page_address(table
), PAGE_SIZE
);
1328 pmd_populate(NULL
, pmd
, table
);
1329 arm_smmu_flush_pgtable(smmu
, pmd
, sizeof(*pmd
));
1333 pteval
|= ARM_SMMU_PTE_AP_UNPRIV
| ARM_SMMU_PTE_nG
;
1334 if (!(prot
& IOMMU_WRITE
) && (prot
& IOMMU_READ
))
1335 pteval
|= ARM_SMMU_PTE_AP_RDONLY
;
1337 if (prot
& IOMMU_CACHE
)
1338 pteval
|= (MAIR_ATTR_IDX_CACHE
<<
1339 ARM_SMMU_PTE_ATTRINDX_SHIFT
);
1341 pteval
|= ARM_SMMU_PTE_HAP_FAULT
;
1342 if (prot
& IOMMU_READ
)
1343 pteval
|= ARM_SMMU_PTE_HAP_READ
;
1344 if (prot
& IOMMU_WRITE
)
1345 pteval
|= ARM_SMMU_PTE_HAP_WRITE
;
1346 if (prot
& IOMMU_CACHE
)
1347 pteval
|= ARM_SMMU_PTE_MEMATTR_OIWB
;
1349 pteval
|= ARM_SMMU_PTE_MEMATTR_NC
;
1352 if (prot
& IOMMU_NOEXEC
)
1353 pteval
|= ARM_SMMU_PTE_XN
;
1355 /* If no access, create a faulting entry to avoid TLB fills */
1356 if (!(prot
& (IOMMU_READ
| IOMMU_WRITE
)))
1357 pteval
&= ~ARM_SMMU_PTE_PAGE
;
1359 pteval
|= ARM_SMMU_PTE_SH_IS
;
1360 start
= pmd_page_vaddr(*pmd
) + pte_index(addr
);
1364 * Install the page table entries. This is fairly complicated
1365 * since we attempt to make use of the contiguous hint in the
1366 * ptes where possible. The contiguous hint indicates a series
1367 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1368 * contiguous region with the following constraints:
1370 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1371 * - Each pte in the region has the contiguous hint bit set
1373 * This complicates unmapping (also handled by this code, when
1374 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1375 * possible, yet highly unlikely, that a client may unmap only
1376 * part of a contiguous range. This requires clearing of the
1377 * contiguous hint bits in the range before installing the new
1380 * Note that re-mapping an address range without first unmapping
1381 * it is not supported, so TLB invalidation is not required here
1382 * and is instead performed at unmap and domain-init time.
1387 pteval
&= ~ARM_SMMU_PTE_CONT
;
1389 if (arm_smmu_pte_is_contiguous_range(addr
, end
)) {
1390 i
= ARM_SMMU_PTE_CONT_ENTRIES
;
1391 pteval
|= ARM_SMMU_PTE_CONT
;
1392 } else if (pte_val(*pte
) &
1393 (ARM_SMMU_PTE_CONT
| ARM_SMMU_PTE_PAGE
)) {
1396 unsigned long idx
= pte_index(addr
);
1398 idx
&= ~(ARM_SMMU_PTE_CONT_ENTRIES
- 1);
1399 cont_start
= pmd_page_vaddr(*pmd
) + idx
;
1400 for (j
= 0; j
< ARM_SMMU_PTE_CONT_ENTRIES
; ++j
)
1401 pte_val(*(cont_start
+ j
)) &=
1404 arm_smmu_flush_pgtable(smmu
, cont_start
,
1406 ARM_SMMU_PTE_CONT_ENTRIES
);
1410 *pte
= pfn_pte(pfn
, __pgprot(pteval
));
1411 } while (pte
++, pfn
++, addr
+= PAGE_SIZE
, --i
);
1412 } while (addr
!= end
);
1414 arm_smmu_flush_pgtable(smmu
, start
, sizeof(*pte
) * (pte
- start
));
1418 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device
*smmu
, pud_t
*pud
,
1419 unsigned long addr
, unsigned long end
,
1420 phys_addr_t phys
, int prot
, int stage
)
1424 unsigned long next
, pfn
= __phys_to_pfn(phys
);
1426 #ifndef __PAGETABLE_PMD_FOLDED
1427 if (pud_none(*pud
)) {
1428 pmd
= (pmd_t
*)get_zeroed_page(GFP_ATOMIC
);
1432 arm_smmu_flush_pgtable(smmu
, pmd
, PAGE_SIZE
);
1433 pud_populate(NULL
, pud
, pmd
);
1434 arm_smmu_flush_pgtable(smmu
, pud
, sizeof(*pud
));
1436 pmd
+= pmd_index(addr
);
1439 pmd
= pmd_offset(pud
, addr
);
1442 next
= pmd_addr_end(addr
, end
);
1443 ret
= arm_smmu_alloc_init_pte(smmu
, pmd
, addr
, next
, pfn
,
1445 phys
+= next
- addr
;
1446 pfn
= __phys_to_pfn(phys
);
1447 } while (pmd
++, addr
= next
, addr
< end
);
1452 static int arm_smmu_alloc_init_pud(struct arm_smmu_device
*smmu
, pgd_t
*pgd
,
1453 unsigned long addr
, unsigned long end
,
1454 phys_addr_t phys
, int prot
, int stage
)
1460 #ifndef __PAGETABLE_PUD_FOLDED
1461 if (pgd_none(*pgd
)) {
1462 pud
= (pud_t
*)get_zeroed_page(GFP_ATOMIC
);
1466 arm_smmu_flush_pgtable(smmu
, pud
, PAGE_SIZE
);
1467 pgd_populate(NULL
, pgd
, pud
);
1468 arm_smmu_flush_pgtable(smmu
, pgd
, sizeof(*pgd
));
1470 pud
+= pud_index(addr
);
1473 pud
= pud_offset(pgd
, addr
);
1476 next
= pud_addr_end(addr
, end
);
1477 ret
= arm_smmu_alloc_init_pmd(smmu
, pud
, addr
, next
, phys
,
1479 phys
+= next
- addr
;
1480 } while (pud
++, addr
= next
, addr
< end
);
1485 static int arm_smmu_handle_mapping(struct arm_smmu_domain
*smmu_domain
,
1486 unsigned long iova
, phys_addr_t paddr
,
1487 size_t size
, int prot
)
1491 phys_addr_t input_mask
, output_mask
;
1492 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1493 struct arm_smmu_cfg
*cfg
= &smmu_domain
->cfg
;
1494 pgd_t
*pgd
= cfg
->pgd
;
1495 unsigned long flags
;
1497 if (cfg
->cbar
== CBAR_TYPE_S2_TRANS
) {
1499 input_mask
= (1ULL << smmu
->s2_input_size
) - 1;
1500 output_mask
= (1ULL << smmu
->s2_output_size
) - 1;
1503 input_mask
= (1ULL << smmu
->s1_input_size
) - 1;
1504 output_mask
= (1ULL << smmu
->s1_output_size
) - 1;
1510 if (size
& ~PAGE_MASK
)
1513 if ((phys_addr_t
)iova
& ~input_mask
)
1516 if (paddr
& ~output_mask
)
1519 spin_lock_irqsave(&smmu_domain
->lock
, flags
);
1520 pgd
+= pgd_index(iova
);
1523 unsigned long next
= pgd_addr_end(iova
, end
);
1525 ret
= arm_smmu_alloc_init_pud(smmu
, pgd
, iova
, next
, paddr
,
1530 paddr
+= next
- iova
;
1532 } while (pgd
++, iova
!= end
);
1535 spin_unlock_irqrestore(&smmu_domain
->lock
, flags
);
1540 static int arm_smmu_map(struct iommu_domain
*domain
, unsigned long iova
,
1541 phys_addr_t paddr
, size_t size
, int prot
)
1543 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1548 return arm_smmu_handle_mapping(smmu_domain
, iova
, paddr
, size
, prot
);
1551 static size_t arm_smmu_unmap(struct iommu_domain
*domain
, unsigned long iova
,
1555 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1557 ret
= arm_smmu_handle_mapping(smmu_domain
, iova
, 0, size
, 0);
1558 arm_smmu_tlb_inv_context(smmu_domain
);
1559 return ret
? 0 : size
;
1562 static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain
*domain
,
1569 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1570 struct arm_smmu_cfg
*cfg
= &smmu_domain
->cfg
;
1576 pgd
= *(pgdp
+ pgd_index(iova
));
1580 pud
= *pud_offset(&pgd
, iova
);
1584 pmd
= *pmd_offset(&pud
, iova
);
1588 pte
= *(pmd_page_vaddr(pmd
) + pte_index(iova
));
1592 return __pfn_to_phys(pte_pfn(pte
)) | (iova
& ~PAGE_MASK
);
1595 static bool arm_smmu_capable(enum iommu_cap cap
)
1598 case IOMMU_CAP_CACHE_COHERENCY
:
1600 * Return true here as the SMMU can always send out coherent
1604 case IOMMU_CAP_INTR_REMAP
:
1605 return true; /* MSIs are just memory writes */
1606 case IOMMU_CAP_NOEXEC
:
1613 static int __arm_smmu_get_pci_sid(struct pci_dev
*pdev
, u16 alias
, void *data
)
1615 *((u16
*)data
) = alias
;
1616 return 0; /* Continue walking */
1619 static void __arm_smmu_release_pci_iommudata(void *data
)
1624 static int arm_smmu_add_device(struct device
*dev
)
1626 struct arm_smmu_device
*smmu
;
1627 struct arm_smmu_master_cfg
*cfg
;
1628 struct iommu_group
*group
;
1629 void (*releasefn
)(void *) = NULL
;
1632 smmu
= find_smmu_for_device(dev
);
1636 group
= iommu_group_alloc();
1637 if (IS_ERR(group
)) {
1638 dev_err(dev
, "Failed to allocate IOMMU group\n");
1639 return PTR_ERR(group
);
1642 if (dev_is_pci(dev
)) {
1643 struct pci_dev
*pdev
= to_pci_dev(dev
);
1645 cfg
= kzalloc(sizeof(*cfg
), GFP_KERNEL
);
1651 cfg
->num_streamids
= 1;
1653 * Assume Stream ID == Requester ID for now.
1654 * We need a way to describe the ID mappings in FDT.
1656 pci_for_each_dma_alias(pdev
, __arm_smmu_get_pci_sid
,
1657 &cfg
->streamids
[0]);
1658 releasefn
= __arm_smmu_release_pci_iommudata
;
1660 struct arm_smmu_master
*master
;
1662 master
= find_smmu_master(smmu
, dev
->of_node
);
1671 iommu_group_set_iommudata(group
, cfg
, releasefn
);
1672 ret
= iommu_group_add_device(group
, dev
);
1675 iommu_group_put(group
);
1679 static void arm_smmu_remove_device(struct device
*dev
)
1681 iommu_group_remove_device(dev
);
1684 static int arm_smmu_domain_get_attr(struct iommu_domain
*domain
,
1685 enum iommu_attr attr
, void *data
)
1687 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1690 case DOMAIN_ATTR_NESTING
:
1691 *(int *)data
= (smmu_domain
->stage
== ARM_SMMU_DOMAIN_NESTED
);
1698 static int arm_smmu_domain_set_attr(struct iommu_domain
*domain
,
1699 enum iommu_attr attr
, void *data
)
1701 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1704 case DOMAIN_ATTR_NESTING
:
1705 if (smmu_domain
->smmu
)
1708 smmu_domain
->stage
= ARM_SMMU_DOMAIN_NESTED
;
1710 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S1
;
1718 static const struct iommu_ops arm_smmu_ops
= {
1719 .capable
= arm_smmu_capable
,
1720 .domain_init
= arm_smmu_domain_init
,
1721 .domain_destroy
= arm_smmu_domain_destroy
,
1722 .attach_dev
= arm_smmu_attach_dev
,
1723 .detach_dev
= arm_smmu_detach_dev
,
1724 .map
= arm_smmu_map
,
1725 .unmap
= arm_smmu_unmap
,
1726 .map_sg
= default_iommu_map_sg
,
1727 .iova_to_phys
= arm_smmu_iova_to_phys
,
1728 .add_device
= arm_smmu_add_device
,
1729 .remove_device
= arm_smmu_remove_device
,
1730 .domain_get_attr
= arm_smmu_domain_get_attr
,
1731 .domain_set_attr
= arm_smmu_domain_set_attr
,
1732 .pgsize_bitmap
= (SECTION_SIZE
|
1733 ARM_SMMU_PTE_CONT_SIZE
|
1737 static void arm_smmu_device_reset(struct arm_smmu_device
*smmu
)
1739 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1740 void __iomem
*cb_base
;
1744 /* clear global FSR */
1745 reg
= readl_relaxed(ARM_SMMU_GR0_NS(smmu
) + ARM_SMMU_GR0_sGFSR
);
1746 writel(reg
, ARM_SMMU_GR0_NS(smmu
) + ARM_SMMU_GR0_sGFSR
);
1748 /* Mark all SMRn as invalid and all S2CRn as bypass */
1749 for (i
= 0; i
< smmu
->num_mapping_groups
; ++i
) {
1750 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_SMR(i
));
1751 writel_relaxed(S2CR_TYPE_BYPASS
,
1752 gr0_base
+ ARM_SMMU_GR0_S2CR(i
));
1755 /* Make sure all context banks are disabled and clear CB_FSR */
1756 for (i
= 0; i
< smmu
->num_context_banks
; ++i
) {
1757 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, i
);
1758 writel_relaxed(0, cb_base
+ ARM_SMMU_CB_SCTLR
);
1759 writel_relaxed(FSR_FAULT
, cb_base
+ ARM_SMMU_CB_FSR
);
1762 /* Invalidate the TLB, just in case */
1763 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_STLBIALL
);
1764 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_TLBIALLH
);
1765 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_TLBIALLNSNH
);
1767 reg
= readl_relaxed(ARM_SMMU_GR0_NS(smmu
) + ARM_SMMU_GR0_sCR0
);
1769 /* Enable fault reporting */
1770 reg
|= (sCR0_GFRE
| sCR0_GFIE
| sCR0_GCFGFRE
| sCR0_GCFGFIE
);
1772 /* Disable TLB broadcasting. */
1773 reg
|= (sCR0_VMIDPNE
| sCR0_PTM
);
1775 /* Enable client access, but bypass when no mapping is found */
1776 reg
&= ~(sCR0_CLIENTPD
| sCR0_USFCFG
);
1778 /* Disable forced broadcasting */
1781 /* Don't upgrade barriers */
1782 reg
&= ~(sCR0_BSU_MASK
<< sCR0_BSU_SHIFT
);
1784 /* Push the button */
1785 arm_smmu_tlb_sync(smmu
);
1786 writel(reg
, ARM_SMMU_GR0_NS(smmu
) + ARM_SMMU_GR0_sCR0
);
1789 static int arm_smmu_id_size_to_bits(int size
)
1808 static int arm_smmu_device_cfg_probe(struct arm_smmu_device
*smmu
)
1811 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1814 dev_notice(smmu
->dev
, "probing hardware configuration...\n");
1815 dev_notice(smmu
->dev
, "SMMUv%d with:\n", smmu
->version
);
1818 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID0
);
1819 #ifndef CONFIG_64BIT
1820 if (((id
>> ID0_PTFS_SHIFT
) & ID0_PTFS_MASK
) == ID0_PTFS_V8_ONLY
) {
1821 dev_err(smmu
->dev
, "\tno v7 descriptor support!\n");
1826 /* Restrict available stages based on module parameter */
1827 if (force_stage
== 1)
1828 id
&= ~(ID0_S2TS
| ID0_NTS
);
1829 else if (force_stage
== 2)
1830 id
&= ~(ID0_S1TS
| ID0_NTS
);
1832 if (id
& ID0_S1TS
) {
1833 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S1
;
1834 dev_notice(smmu
->dev
, "\tstage 1 translation\n");
1837 if (id
& ID0_S2TS
) {
1838 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S2
;
1839 dev_notice(smmu
->dev
, "\tstage 2 translation\n");
1843 smmu
->features
|= ARM_SMMU_FEAT_TRANS_NESTED
;
1844 dev_notice(smmu
->dev
, "\tnested translation\n");
1847 if (!(smmu
->features
&
1848 (ARM_SMMU_FEAT_TRANS_S1
| ARM_SMMU_FEAT_TRANS_S2
))) {
1849 dev_err(smmu
->dev
, "\tno translation support!\n");
1853 if (id
& ID0_CTTW
) {
1854 smmu
->features
|= ARM_SMMU_FEAT_COHERENT_WALK
;
1855 dev_notice(smmu
->dev
, "\tcoherent table walk\n");
1861 smmu
->features
|= ARM_SMMU_FEAT_STREAM_MATCH
;
1862 smmu
->num_mapping_groups
= (id
>> ID0_NUMSMRG_SHIFT
) &
1864 if (smmu
->num_mapping_groups
== 0) {
1866 "stream-matching supported, but no SMRs present!\n");
1870 smr
= SMR_MASK_MASK
<< SMR_MASK_SHIFT
;
1871 smr
|= (SMR_ID_MASK
<< SMR_ID_SHIFT
);
1872 writel_relaxed(smr
, gr0_base
+ ARM_SMMU_GR0_SMR(0));
1873 smr
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_SMR(0));
1875 mask
= (smr
>> SMR_MASK_SHIFT
) & SMR_MASK_MASK
;
1876 sid
= (smr
>> SMR_ID_SHIFT
) & SMR_ID_MASK
;
1877 if ((mask
& sid
) != sid
) {
1879 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1884 dev_notice(smmu
->dev
,
1885 "\tstream matching with %u register groups, mask 0x%x",
1886 smmu
->num_mapping_groups
, mask
);
1888 smmu
->num_mapping_groups
= (id
>> ID0_NUMSIDB_SHIFT
) &
1893 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID1
);
1894 smmu
->pgshift
= (id
& ID1_PAGESIZE
) ? 16 : 12;
1896 /* Check for size mismatch of SMMU address space from mapped region */
1898 (((id
>> ID1_NUMPAGENDXB_SHIFT
) & ID1_NUMPAGENDXB_MASK
) + 1);
1899 size
*= 2 << smmu
->pgshift
;
1900 if (smmu
->size
!= size
)
1902 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1905 smmu
->num_s2_context_banks
= (id
>> ID1_NUMS2CB_SHIFT
) &
1907 smmu
->num_context_banks
= (id
>> ID1_NUMCB_SHIFT
) & ID1_NUMCB_MASK
;
1908 if (smmu
->num_s2_context_banks
> smmu
->num_context_banks
) {
1909 dev_err(smmu
->dev
, "impossible number of S2 context banks!\n");
1912 dev_notice(smmu
->dev
, "\t%u context banks (%u stage-2 only)\n",
1913 smmu
->num_context_banks
, smmu
->num_s2_context_banks
);
1916 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID2
);
1917 size
= arm_smmu_id_size_to_bits((id
>> ID2_IAS_SHIFT
) & ID2_IAS_MASK
);
1918 smmu
->s1_output_size
= min_t(unsigned long, PHYS_MASK_SHIFT
, size
);
1920 /* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
1922 smmu
->s2_input_size
= min_t(unsigned long, VA_BITS
, size
);
1924 smmu
->s2_input_size
= min(32UL, size
);
1927 /* The stage-2 output mask is also applied for bypass */
1928 size
= arm_smmu_id_size_to_bits((id
>> ID2_OAS_SHIFT
) & ID2_OAS_MASK
);
1929 smmu
->s2_output_size
= min_t(unsigned long, PHYS_MASK_SHIFT
, size
);
1931 if (smmu
->version
== ARM_SMMU_V1
) {
1932 smmu
->s1_input_size
= 32;
1935 size
= (id
>> ID2_UBS_SHIFT
) & ID2_UBS_MASK
;
1936 size
= min(VA_BITS
, arm_smmu_id_size_to_bits(size
));
1940 smmu
->s1_input_size
= size
;
1942 if ((PAGE_SIZE
== SZ_4K
&& !(id
& ID2_PTFS_4K
)) ||
1943 (PAGE_SIZE
== SZ_64K
&& !(id
& ID2_PTFS_64K
)) ||
1944 (PAGE_SIZE
!= SZ_4K
&& PAGE_SIZE
!= SZ_64K
)) {
1945 dev_err(smmu
->dev
, "CPU page size 0x%lx unsupported\n",
1951 if (smmu
->features
& ARM_SMMU_FEAT_TRANS_S1
)
1952 dev_notice(smmu
->dev
, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1953 smmu
->s1_input_size
, smmu
->s1_output_size
);
1955 if (smmu
->features
& ARM_SMMU_FEAT_TRANS_S2
)
1956 dev_notice(smmu
->dev
, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1957 smmu
->s2_input_size
, smmu
->s2_output_size
);
1962 static const struct of_device_id arm_smmu_of_match
[] = {
1963 { .compatible
= "arm,smmu-v1", .data
= (void *)ARM_SMMU_V1
},
1964 { .compatible
= "arm,smmu-v2", .data
= (void *)ARM_SMMU_V2
},
1965 { .compatible
= "arm,mmu-400", .data
= (void *)ARM_SMMU_V1
},
1966 { .compatible
= "arm,mmu-401", .data
= (void *)ARM_SMMU_V1
},
1967 { .compatible
= "arm,mmu-500", .data
= (void *)ARM_SMMU_V2
},
1970 MODULE_DEVICE_TABLE(of
, arm_smmu_of_match
);
1972 static int arm_smmu_device_dt_probe(struct platform_device
*pdev
)
1974 const struct of_device_id
*of_id
;
1975 struct resource
*res
;
1976 struct arm_smmu_device
*smmu
;
1977 struct device
*dev
= &pdev
->dev
;
1978 struct rb_node
*node
;
1979 struct of_phandle_args masterspec
;
1980 int num_irqs
, i
, err
;
1982 smmu
= devm_kzalloc(dev
, sizeof(*smmu
), GFP_KERNEL
);
1984 dev_err(dev
, "failed to allocate arm_smmu_device\n");
1989 of_id
= of_match_node(arm_smmu_of_match
, dev
->of_node
);
1990 smmu
->version
= (enum arm_smmu_arch_version
)of_id
->data
;
1992 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1993 smmu
->base
= devm_ioremap_resource(dev
, res
);
1994 if (IS_ERR(smmu
->base
))
1995 return PTR_ERR(smmu
->base
);
1996 smmu
->size
= resource_size(res
);
1998 if (of_property_read_u32(dev
->of_node
, "#global-interrupts",
1999 &smmu
->num_global_irqs
)) {
2000 dev_err(dev
, "missing #global-interrupts property\n");
2005 while ((res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, num_irqs
))) {
2007 if (num_irqs
> smmu
->num_global_irqs
)
2008 smmu
->num_context_irqs
++;
2011 if (!smmu
->num_context_irqs
) {
2012 dev_err(dev
, "found %d interrupts but expected at least %d\n",
2013 num_irqs
, smmu
->num_global_irqs
+ 1);
2017 smmu
->irqs
= devm_kzalloc(dev
, sizeof(*smmu
->irqs
) * num_irqs
,
2020 dev_err(dev
, "failed to allocate %d irqs\n", num_irqs
);
2024 for (i
= 0; i
< num_irqs
; ++i
) {
2025 int irq
= platform_get_irq(pdev
, i
);
2028 dev_err(dev
, "failed to get irq index %d\n", i
);
2031 smmu
->irqs
[i
] = irq
;
2034 err
= arm_smmu_device_cfg_probe(smmu
);
2039 smmu
->masters
= RB_ROOT
;
2040 while (!of_parse_phandle_with_args(dev
->of_node
, "mmu-masters",
2041 "#stream-id-cells", i
,
2043 err
= register_smmu_master(smmu
, dev
, &masterspec
);
2045 dev_err(dev
, "failed to add master %s\n",
2046 masterspec
.np
->name
);
2047 goto out_put_masters
;
2052 dev_notice(dev
, "registered %d master devices\n", i
);
2054 parse_driver_options(smmu
);
2056 if (smmu
->version
> ARM_SMMU_V1
&&
2057 smmu
->num_context_banks
!= smmu
->num_context_irqs
) {
2059 "found only %d context interrupt(s) but %d required\n",
2060 smmu
->num_context_irqs
, smmu
->num_context_banks
);
2062 goto out_put_masters
;
2065 for (i
= 0; i
< smmu
->num_global_irqs
; ++i
) {
2066 err
= request_irq(smmu
->irqs
[i
],
2067 arm_smmu_global_fault
,
2069 "arm-smmu global fault",
2072 dev_err(dev
, "failed to request global IRQ %d (%u)\n",
2078 INIT_LIST_HEAD(&smmu
->list
);
2079 spin_lock(&arm_smmu_devices_lock
);
2080 list_add(&smmu
->list
, &arm_smmu_devices
);
2081 spin_unlock(&arm_smmu_devices_lock
);
2083 arm_smmu_device_reset(smmu
);
2088 free_irq(smmu
->irqs
[i
], smmu
);
2091 for (node
= rb_first(&smmu
->masters
); node
; node
= rb_next(node
)) {
2092 struct arm_smmu_master
*master
2093 = container_of(node
, struct arm_smmu_master
, node
);
2094 of_node_put(master
->of_node
);
2100 static int arm_smmu_device_remove(struct platform_device
*pdev
)
2103 struct device
*dev
= &pdev
->dev
;
2104 struct arm_smmu_device
*curr
, *smmu
= NULL
;
2105 struct rb_node
*node
;
2107 spin_lock(&arm_smmu_devices_lock
);
2108 list_for_each_entry(curr
, &arm_smmu_devices
, list
) {
2109 if (curr
->dev
== dev
) {
2111 list_del(&smmu
->list
);
2115 spin_unlock(&arm_smmu_devices_lock
);
2120 for (node
= rb_first(&smmu
->masters
); node
; node
= rb_next(node
)) {
2121 struct arm_smmu_master
*master
2122 = container_of(node
, struct arm_smmu_master
, node
);
2123 of_node_put(master
->of_node
);
2126 if (!bitmap_empty(smmu
->context_map
, ARM_SMMU_MAX_CBS
))
2127 dev_err(dev
, "removing device with active domains!\n");
2129 for (i
= 0; i
< smmu
->num_global_irqs
; ++i
)
2130 free_irq(smmu
->irqs
[i
], smmu
);
2132 /* Turn the thing off */
2133 writel(sCR0_CLIENTPD
, ARM_SMMU_GR0_NS(smmu
) + ARM_SMMU_GR0_sCR0
);
2137 static struct platform_driver arm_smmu_driver
= {
2140 .of_match_table
= of_match_ptr(arm_smmu_of_match
),
2142 .probe
= arm_smmu_device_dt_probe
,
2143 .remove
= arm_smmu_device_remove
,
2146 static int __init
arm_smmu_init(void)
2148 struct device_node
*np
;
2152 * Play nice with systems that don't have an ARM SMMU by checking that
2153 * an ARM SMMU exists in the system before proceeding with the driver
2154 * and IOMMU bus operation registration.
2156 np
= of_find_matching_node(NULL
, arm_smmu_of_match
);
2162 ret
= platform_driver_register(&arm_smmu_driver
);
2166 /* Oh, for a proper bus abstraction */
2167 if (!iommu_present(&platform_bus_type
))
2168 bus_set_iommu(&platform_bus_type
, &arm_smmu_ops
);
2170 #ifdef CONFIG_ARM_AMBA
2171 if (!iommu_present(&amba_bustype
))
2172 bus_set_iommu(&amba_bustype
, &arm_smmu_ops
);
2176 if (!iommu_present(&pci_bus_type
))
2177 bus_set_iommu(&pci_bus_type
, &arm_smmu_ops
);
2183 static void __exit
arm_smmu_exit(void)
2185 return platform_driver_unregister(&arm_smmu_driver
);
2188 subsys_initcall(arm_smmu_init
);
2189 module_exit(arm_smmu_exit
);
2191 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2192 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2193 MODULE_LICENSE("GPL v2");