drm: fix trivial coding errors
[linux/fpc-iii.git] / net / ipv4 / ip_output.c
blob04b69896df5fc743021efd4d4a1705b7de146333
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__ void ip_send_check(struct iphdr *iph)
89 iph->check = 0;
90 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 EXPORT_SYMBOL(ip_send_check);
94 int __ip_local_out(struct sk_buff *skb)
96 struct iphdr *iph = ip_hdr(skb);
98 iph->tot_len = htons(skb->len);
99 ip_send_check(iph);
100 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 skb_dst(skb)->dev, dst_output);
104 int ip_local_out(struct sk_buff *skb)
106 int err;
108 err = __ip_local_out(skb);
109 if (likely(err == 1))
110 err = dst_output(skb);
112 return err;
114 EXPORT_SYMBOL_GPL(ip_local_out);
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119 skb_reset_mac_header(newskb);
120 __skb_pull(newskb, skb_network_offset(newskb));
121 newskb->pkt_type = PACKET_LOOPBACK;
122 newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 WARN_ON(!skb_dst(newskb));
124 netif_rx_ni(newskb);
125 return 0;
128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 int ttl = inet->uc_ttl;
132 if (ttl < 0)
133 ttl = dst_metric(dst, RTAX_HOPLIMIT);
134 return ttl;
138 * Add an ip header to a skbuff and send it out.
141 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
142 __be32 saddr, __be32 daddr, struct ip_options *opt)
144 struct inet_sock *inet = inet_sk(sk);
145 struct rtable *rt = skb_rtable(skb);
146 struct iphdr *iph;
148 /* Build the IP header. */
149 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
150 skb_reset_network_header(skb);
151 iph = ip_hdr(skb);
152 iph->version = 4;
153 iph->ihl = 5;
154 iph->tos = inet->tos;
155 if (ip_dont_fragment(sk, &rt->dst))
156 iph->frag_off = htons(IP_DF);
157 else
158 iph->frag_off = 0;
159 iph->ttl = ip_select_ttl(inet, &rt->dst);
160 iph->daddr = rt->rt_dst;
161 iph->saddr = rt->rt_src;
162 iph->protocol = sk->sk_protocol;
163 ip_select_ident(iph, &rt->dst, sk);
165 if (opt && opt->optlen) {
166 iph->ihl += opt->optlen>>2;
167 ip_options_build(skb, opt, daddr, rt, 0);
170 skb->priority = sk->sk_priority;
171 skb->mark = sk->sk_mark;
173 /* Send it out. */
174 return ip_local_out(skb);
176 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178 static inline int ip_finish_output2(struct sk_buff *skb)
180 struct dst_entry *dst = skb_dst(skb);
181 struct rtable *rt = (struct rtable *)dst;
182 struct net_device *dev = dst->dev;
183 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 if (rt->rt_type == RTN_MULTICAST) {
186 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
187 } else if (rt->rt_type == RTN_BROADCAST)
188 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
190 /* Be paranoid, rather than too clever. */
191 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
192 struct sk_buff *skb2;
194 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
195 if (skb2 == NULL) {
196 kfree_skb(skb);
197 return -ENOMEM;
199 if (skb->sk)
200 skb_set_owner_w(skb2, skb->sk);
201 kfree_skb(skb);
202 skb = skb2;
205 if (dst->hh)
206 return neigh_hh_output(dst->hh, skb);
207 else if (dst->neighbour)
208 return dst->neighbour->output(skb);
210 if (net_ratelimit())
211 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
212 kfree_skb(skb);
213 return -EINVAL;
216 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
221 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
224 static int ip_finish_output(struct sk_buff *skb)
226 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
227 /* Policy lookup after SNAT yielded a new policy */
228 if (skb_dst(skb)->xfrm != NULL) {
229 IPCB(skb)->flags |= IPSKB_REROUTED;
230 return dst_output(skb);
232 #endif
233 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
234 return ip_fragment(skb, ip_finish_output2);
235 else
236 return ip_finish_output2(skb);
239 int ip_mc_output(struct sk_buff *skb)
241 struct sock *sk = skb->sk;
242 struct rtable *rt = skb_rtable(skb);
243 struct net_device *dev = rt->dst.dev;
246 * If the indicated interface is up and running, send the packet.
248 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
250 skb->dev = dev;
251 skb->protocol = htons(ETH_P_IP);
254 * Multicasts are looped back for other local users
257 if (rt->rt_flags&RTCF_MULTICAST) {
258 if (sk_mc_loop(sk)
259 #ifdef CONFIG_IP_MROUTE
260 /* Small optimization: do not loopback not local frames,
261 which returned after forwarding; they will be dropped
262 by ip_mr_input in any case.
263 Note, that local frames are looped back to be delivered
264 to local recipients.
266 This check is duplicated in ip_mr_input at the moment.
269 ((rt->rt_flags & RTCF_LOCAL) ||
270 !(IPCB(skb)->flags & IPSKB_FORWARDED))
271 #endif
273 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
274 if (newskb)
275 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
276 newskb, NULL, newskb->dev,
277 ip_dev_loopback_xmit);
280 /* Multicasts with ttl 0 must not go beyond the host */
282 if (ip_hdr(skb)->ttl == 0) {
283 kfree_skb(skb);
284 return 0;
288 if (rt->rt_flags&RTCF_BROADCAST) {
289 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
290 if (newskb)
291 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
292 NULL, newskb->dev, ip_dev_loopback_xmit);
295 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
296 skb->dev, ip_finish_output,
297 !(IPCB(skb)->flags & IPSKB_REROUTED));
300 int ip_output(struct sk_buff *skb)
302 struct net_device *dev = skb_dst(skb)->dev;
304 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
306 skb->dev = dev;
307 skb->protocol = htons(ETH_P_IP);
309 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
310 ip_finish_output,
311 !(IPCB(skb)->flags & IPSKB_REROUTED));
314 int ip_queue_xmit(struct sk_buff *skb)
316 struct sock *sk = skb->sk;
317 struct inet_sock *inet = inet_sk(sk);
318 struct ip_options *opt = inet->opt;
319 struct rtable *rt;
320 struct iphdr *iph;
321 int res;
323 /* Skip all of this if the packet is already routed,
324 * f.e. by something like SCTP.
326 rcu_read_lock();
327 rt = skb_rtable(skb);
328 if (rt != NULL)
329 goto packet_routed;
331 /* Make sure we can route this packet. */
332 rt = (struct rtable *)__sk_dst_check(sk, 0);
333 if (rt == NULL) {
334 __be32 daddr;
336 /* Use correct destination address if we have options. */
337 daddr = inet->inet_daddr;
338 if(opt && opt->srr)
339 daddr = opt->faddr;
342 struct flowi fl = { .oif = sk->sk_bound_dev_if,
343 .mark = sk->sk_mark,
344 .nl_u = { .ip4_u =
345 { .daddr = daddr,
346 .saddr = inet->inet_saddr,
347 .tos = RT_CONN_FLAGS(sk) } },
348 .proto = sk->sk_protocol,
349 .flags = inet_sk_flowi_flags(sk),
350 .uli_u = { .ports =
351 { .sport = inet->inet_sport,
352 .dport = inet->inet_dport } } };
354 /* If this fails, retransmit mechanism of transport layer will
355 * keep trying until route appears or the connection times
356 * itself out.
358 security_sk_classify_flow(sk, &fl);
359 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
360 goto no_route;
362 sk_setup_caps(sk, &rt->dst);
364 skb_dst_set_noref(skb, &rt->dst);
366 packet_routed:
367 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
368 goto no_route;
370 /* OK, we know where to send it, allocate and build IP header. */
371 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
372 skb_reset_network_header(skb);
373 iph = ip_hdr(skb);
374 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
375 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
376 iph->frag_off = htons(IP_DF);
377 else
378 iph->frag_off = 0;
379 iph->ttl = ip_select_ttl(inet, &rt->dst);
380 iph->protocol = sk->sk_protocol;
381 iph->saddr = rt->rt_src;
382 iph->daddr = rt->rt_dst;
383 /* Transport layer set skb->h.foo itself. */
385 if (opt && opt->optlen) {
386 iph->ihl += opt->optlen >> 2;
387 ip_options_build(skb, opt, inet->inet_daddr, rt, 0);
390 ip_select_ident_more(iph, &rt->dst, sk,
391 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
393 skb->priority = sk->sk_priority;
394 skb->mark = sk->sk_mark;
396 res = ip_local_out(skb);
397 rcu_read_unlock();
398 return res;
400 no_route:
401 rcu_read_unlock();
402 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
403 kfree_skb(skb);
404 return -EHOSTUNREACH;
406 EXPORT_SYMBOL(ip_queue_xmit);
409 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
411 to->pkt_type = from->pkt_type;
412 to->priority = from->priority;
413 to->protocol = from->protocol;
414 skb_dst_drop(to);
415 skb_dst_copy(to, from);
416 to->dev = from->dev;
417 to->mark = from->mark;
419 /* Copy the flags to each fragment. */
420 IPCB(to)->flags = IPCB(from)->flags;
422 #ifdef CONFIG_NET_SCHED
423 to->tc_index = from->tc_index;
424 #endif
425 nf_copy(to, from);
426 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
427 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
428 to->nf_trace = from->nf_trace;
429 #endif
430 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
431 to->ipvs_property = from->ipvs_property;
432 #endif
433 skb_copy_secmark(to, from);
437 * This IP datagram is too large to be sent in one piece. Break it up into
438 * smaller pieces (each of size equal to IP header plus
439 * a block of the data of the original IP data part) that will yet fit in a
440 * single device frame, and queue such a frame for sending.
443 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
445 struct iphdr *iph;
446 int ptr;
447 struct net_device *dev;
448 struct sk_buff *skb2;
449 unsigned int mtu, hlen, left, len, ll_rs;
450 int offset;
451 __be16 not_last_frag;
452 struct rtable *rt = skb_rtable(skb);
453 int err = 0;
455 dev = rt->dst.dev;
458 * Point into the IP datagram header.
461 iph = ip_hdr(skb);
463 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
464 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
465 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
466 htonl(ip_skb_dst_mtu(skb)));
467 kfree_skb(skb);
468 return -EMSGSIZE;
472 * Setup starting values.
475 hlen = iph->ihl * 4;
476 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
477 #ifdef CONFIG_BRIDGE_NETFILTER
478 if (skb->nf_bridge)
479 mtu -= nf_bridge_mtu_reduction(skb);
480 #endif
481 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
483 /* When frag_list is given, use it. First, check its validity:
484 * some transformers could create wrong frag_list or break existing
485 * one, it is not prohibited. In this case fall back to copying.
487 * LATER: this step can be merged to real generation of fragments,
488 * we can switch to copy when see the first bad fragment.
490 if (skb_has_frags(skb)) {
491 struct sk_buff *frag;
492 int first_len = skb_pagelen(skb);
493 int truesizes = 0;
495 if (first_len - hlen > mtu ||
496 ((first_len - hlen) & 7) ||
497 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
498 skb_cloned(skb))
499 goto slow_path;
501 skb_walk_frags(skb, frag) {
502 /* Correct geometry. */
503 if (frag->len > mtu ||
504 ((frag->len & 7) && frag->next) ||
505 skb_headroom(frag) < hlen)
506 goto slow_path;
508 /* Partially cloned skb? */
509 if (skb_shared(frag))
510 goto slow_path;
512 BUG_ON(frag->sk);
513 if (skb->sk) {
514 frag->sk = skb->sk;
515 frag->destructor = sock_wfree;
517 truesizes += frag->truesize;
520 /* Everything is OK. Generate! */
522 err = 0;
523 offset = 0;
524 frag = skb_shinfo(skb)->frag_list;
525 skb_frag_list_init(skb);
526 skb->data_len = first_len - skb_headlen(skb);
527 skb->truesize -= truesizes;
528 skb->len = first_len;
529 iph->tot_len = htons(first_len);
530 iph->frag_off = htons(IP_MF);
531 ip_send_check(iph);
533 for (;;) {
534 /* Prepare header of the next frame,
535 * before previous one went down. */
536 if (frag) {
537 frag->ip_summed = CHECKSUM_NONE;
538 skb_reset_transport_header(frag);
539 __skb_push(frag, hlen);
540 skb_reset_network_header(frag);
541 memcpy(skb_network_header(frag), iph, hlen);
542 iph = ip_hdr(frag);
543 iph->tot_len = htons(frag->len);
544 ip_copy_metadata(frag, skb);
545 if (offset == 0)
546 ip_options_fragment(frag);
547 offset += skb->len - hlen;
548 iph->frag_off = htons(offset>>3);
549 if (frag->next != NULL)
550 iph->frag_off |= htons(IP_MF);
551 /* Ready, complete checksum */
552 ip_send_check(iph);
555 err = output(skb);
557 if (!err)
558 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
559 if (err || !frag)
560 break;
562 skb = frag;
563 frag = skb->next;
564 skb->next = NULL;
567 if (err == 0) {
568 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
569 return 0;
572 while (frag) {
573 skb = frag->next;
574 kfree_skb(frag);
575 frag = skb;
577 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
578 return err;
581 slow_path:
582 left = skb->len - hlen; /* Space per frame */
583 ptr = hlen; /* Where to start from */
585 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
586 * we need to make room for the encapsulating header
588 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
591 * Fragment the datagram.
594 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
595 not_last_frag = iph->frag_off & htons(IP_MF);
598 * Keep copying data until we run out.
601 while (left > 0) {
602 len = left;
603 /* IF: it doesn't fit, use 'mtu' - the data space left */
604 if (len > mtu)
605 len = mtu;
606 /* IF: we are not sending upto and including the packet end
607 then align the next start on an eight byte boundary */
608 if (len < left) {
609 len &= ~7;
612 * Allocate buffer.
615 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
616 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
617 err = -ENOMEM;
618 goto fail;
622 * Set up data on packet
625 ip_copy_metadata(skb2, skb);
626 skb_reserve(skb2, ll_rs);
627 skb_put(skb2, len + hlen);
628 skb_reset_network_header(skb2);
629 skb2->transport_header = skb2->network_header + hlen;
632 * Charge the memory for the fragment to any owner
633 * it might possess
636 if (skb->sk)
637 skb_set_owner_w(skb2, skb->sk);
640 * Copy the packet header into the new buffer.
643 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
646 * Copy a block of the IP datagram.
648 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
649 BUG();
650 left -= len;
653 * Fill in the new header fields.
655 iph = ip_hdr(skb2);
656 iph->frag_off = htons((offset >> 3));
658 /* ANK: dirty, but effective trick. Upgrade options only if
659 * the segment to be fragmented was THE FIRST (otherwise,
660 * options are already fixed) and make it ONCE
661 * on the initial skb, so that all the following fragments
662 * will inherit fixed options.
664 if (offset == 0)
665 ip_options_fragment(skb);
668 * Added AC : If we are fragmenting a fragment that's not the
669 * last fragment then keep MF on each bit
671 if (left > 0 || not_last_frag)
672 iph->frag_off |= htons(IP_MF);
673 ptr += len;
674 offset += len;
677 * Put this fragment into the sending queue.
679 iph->tot_len = htons(len + hlen);
681 ip_send_check(iph);
683 err = output(skb2);
684 if (err)
685 goto fail;
687 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
689 kfree_skb(skb);
690 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
691 return err;
693 fail:
694 kfree_skb(skb);
695 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
696 return err;
698 EXPORT_SYMBOL(ip_fragment);
701 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
703 struct iovec *iov = from;
705 if (skb->ip_summed == CHECKSUM_PARTIAL) {
706 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
707 return -EFAULT;
708 } else {
709 __wsum csum = 0;
710 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
711 return -EFAULT;
712 skb->csum = csum_block_add(skb->csum, csum, odd);
714 return 0;
716 EXPORT_SYMBOL(ip_generic_getfrag);
718 static inline __wsum
719 csum_page(struct page *page, int offset, int copy)
721 char *kaddr;
722 __wsum csum;
723 kaddr = kmap(page);
724 csum = csum_partial(kaddr + offset, copy, 0);
725 kunmap(page);
726 return csum;
729 static inline int ip_ufo_append_data(struct sock *sk,
730 int getfrag(void *from, char *to, int offset, int len,
731 int odd, struct sk_buff *skb),
732 void *from, int length, int hh_len, int fragheaderlen,
733 int transhdrlen, int mtu, unsigned int flags)
735 struct sk_buff *skb;
736 int err;
738 /* There is support for UDP fragmentation offload by network
739 * device, so create one single skb packet containing complete
740 * udp datagram
742 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
743 skb = sock_alloc_send_skb(sk,
744 hh_len + fragheaderlen + transhdrlen + 20,
745 (flags & MSG_DONTWAIT), &err);
747 if (skb == NULL)
748 return err;
750 /* reserve space for Hardware header */
751 skb_reserve(skb, hh_len);
753 /* create space for UDP/IP header */
754 skb_put(skb, fragheaderlen + transhdrlen);
756 /* initialize network header pointer */
757 skb_reset_network_header(skb);
759 /* initialize protocol header pointer */
760 skb->transport_header = skb->network_header + fragheaderlen;
762 skb->ip_summed = CHECKSUM_PARTIAL;
763 skb->csum = 0;
764 sk->sk_sndmsg_off = 0;
766 /* specify the length of each IP datagram fragment */
767 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
768 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
769 __skb_queue_tail(&sk->sk_write_queue, skb);
772 return skb_append_datato_frags(sk, skb, getfrag, from,
773 (length - transhdrlen));
777 * ip_append_data() and ip_append_page() can make one large IP datagram
778 * from many pieces of data. Each pieces will be holded on the socket
779 * until ip_push_pending_frames() is called. Each piece can be a page
780 * or non-page data.
782 * Not only UDP, other transport protocols - e.g. raw sockets - can use
783 * this interface potentially.
785 * LATER: length must be adjusted by pad at tail, when it is required.
787 int ip_append_data(struct sock *sk,
788 int getfrag(void *from, char *to, int offset, int len,
789 int odd, struct sk_buff *skb),
790 void *from, int length, int transhdrlen,
791 struct ipcm_cookie *ipc, struct rtable **rtp,
792 unsigned int flags)
794 struct inet_sock *inet = inet_sk(sk);
795 struct sk_buff *skb;
797 struct ip_options *opt = NULL;
798 int hh_len;
799 int exthdrlen;
800 int mtu;
801 int copy;
802 int err;
803 int offset = 0;
804 unsigned int maxfraglen, fragheaderlen;
805 int csummode = CHECKSUM_NONE;
806 struct rtable *rt;
808 if (flags&MSG_PROBE)
809 return 0;
811 if (skb_queue_empty(&sk->sk_write_queue)) {
813 * setup for corking.
815 opt = ipc->opt;
816 if (opt) {
817 if (inet->cork.opt == NULL) {
818 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
819 if (unlikely(inet->cork.opt == NULL))
820 return -ENOBUFS;
822 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
823 inet->cork.flags |= IPCORK_OPT;
824 inet->cork.addr = ipc->addr;
826 rt = *rtp;
827 if (unlikely(!rt))
828 return -EFAULT;
830 * We steal reference to this route, caller should not release it
832 *rtp = NULL;
833 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
834 rt->dst.dev->mtu :
835 dst_mtu(rt->dst.path);
836 inet->cork.dst = &rt->dst;
837 inet->cork.length = 0;
838 sk->sk_sndmsg_page = NULL;
839 sk->sk_sndmsg_off = 0;
840 if ((exthdrlen = rt->dst.header_len) != 0) {
841 length += exthdrlen;
842 transhdrlen += exthdrlen;
844 } else {
845 rt = (struct rtable *)inet->cork.dst;
846 if (inet->cork.flags & IPCORK_OPT)
847 opt = inet->cork.opt;
849 transhdrlen = 0;
850 exthdrlen = 0;
851 mtu = inet->cork.fragsize;
853 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
855 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
856 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
858 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
859 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
860 mtu-exthdrlen);
861 return -EMSGSIZE;
865 * transhdrlen > 0 means that this is the first fragment and we wish
866 * it won't be fragmented in the future.
868 if (transhdrlen &&
869 length + fragheaderlen <= mtu &&
870 rt->dst.dev->features & NETIF_F_V4_CSUM &&
871 !exthdrlen)
872 csummode = CHECKSUM_PARTIAL;
874 skb = skb_peek_tail(&sk->sk_write_queue);
876 inet->cork.length += length;
877 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
878 (sk->sk_protocol == IPPROTO_UDP) &&
879 (rt->dst.dev->features & NETIF_F_UFO)) {
880 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
881 fragheaderlen, transhdrlen, mtu,
882 flags);
883 if (err)
884 goto error;
885 return 0;
888 /* So, what's going on in the loop below?
890 * We use calculated fragment length to generate chained skb,
891 * each of segments is IP fragment ready for sending to network after
892 * adding appropriate IP header.
895 if (!skb)
896 goto alloc_new_skb;
898 while (length > 0) {
899 /* Check if the remaining data fits into current packet. */
900 copy = mtu - skb->len;
901 if (copy < length)
902 copy = maxfraglen - skb->len;
903 if (copy <= 0) {
904 char *data;
905 unsigned int datalen;
906 unsigned int fraglen;
907 unsigned int fraggap;
908 unsigned int alloclen;
909 struct sk_buff *skb_prev;
910 alloc_new_skb:
911 skb_prev = skb;
912 if (skb_prev)
913 fraggap = skb_prev->len - maxfraglen;
914 else
915 fraggap = 0;
918 * If remaining data exceeds the mtu,
919 * we know we need more fragment(s).
921 datalen = length + fraggap;
922 if (datalen > mtu - fragheaderlen)
923 datalen = maxfraglen - fragheaderlen;
924 fraglen = datalen + fragheaderlen;
926 if ((flags & MSG_MORE) &&
927 !(rt->dst.dev->features&NETIF_F_SG))
928 alloclen = mtu;
929 else
930 alloclen = datalen + fragheaderlen;
932 /* The last fragment gets additional space at tail.
933 * Note, with MSG_MORE we overallocate on fragments,
934 * because we have no idea what fragment will be
935 * the last.
937 if (datalen == length + fraggap)
938 alloclen += rt->dst.trailer_len;
940 if (transhdrlen) {
941 skb = sock_alloc_send_skb(sk,
942 alloclen + hh_len + 15,
943 (flags & MSG_DONTWAIT), &err);
944 } else {
945 skb = NULL;
946 if (atomic_read(&sk->sk_wmem_alloc) <=
947 2 * sk->sk_sndbuf)
948 skb = sock_wmalloc(sk,
949 alloclen + hh_len + 15, 1,
950 sk->sk_allocation);
951 if (unlikely(skb == NULL))
952 err = -ENOBUFS;
953 else
954 /* only the initial fragment is
955 time stamped */
956 ipc->shtx.flags = 0;
958 if (skb == NULL)
959 goto error;
962 * Fill in the control structures
964 skb->ip_summed = csummode;
965 skb->csum = 0;
966 skb_reserve(skb, hh_len);
967 *skb_tx(skb) = ipc->shtx;
970 * Find where to start putting bytes.
972 data = skb_put(skb, fraglen);
973 skb_set_network_header(skb, exthdrlen);
974 skb->transport_header = (skb->network_header +
975 fragheaderlen);
976 data += fragheaderlen;
978 if (fraggap) {
979 skb->csum = skb_copy_and_csum_bits(
980 skb_prev, maxfraglen,
981 data + transhdrlen, fraggap, 0);
982 skb_prev->csum = csum_sub(skb_prev->csum,
983 skb->csum);
984 data += fraggap;
985 pskb_trim_unique(skb_prev, maxfraglen);
988 copy = datalen - transhdrlen - fraggap;
989 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
990 err = -EFAULT;
991 kfree_skb(skb);
992 goto error;
995 offset += copy;
996 length -= datalen - fraggap;
997 transhdrlen = 0;
998 exthdrlen = 0;
999 csummode = CHECKSUM_NONE;
1002 * Put the packet on the pending queue.
1004 __skb_queue_tail(&sk->sk_write_queue, skb);
1005 continue;
1008 if (copy > length)
1009 copy = length;
1011 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1012 unsigned int off;
1014 off = skb->len;
1015 if (getfrag(from, skb_put(skb, copy),
1016 offset, copy, off, skb) < 0) {
1017 __skb_trim(skb, off);
1018 err = -EFAULT;
1019 goto error;
1021 } else {
1022 int i = skb_shinfo(skb)->nr_frags;
1023 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1024 struct page *page = sk->sk_sndmsg_page;
1025 int off = sk->sk_sndmsg_off;
1026 unsigned int left;
1028 if (page && (left = PAGE_SIZE - off) > 0) {
1029 if (copy >= left)
1030 copy = left;
1031 if (page != frag->page) {
1032 if (i == MAX_SKB_FRAGS) {
1033 err = -EMSGSIZE;
1034 goto error;
1036 get_page(page);
1037 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1038 frag = &skb_shinfo(skb)->frags[i];
1040 } else if (i < MAX_SKB_FRAGS) {
1041 if (copy > PAGE_SIZE)
1042 copy = PAGE_SIZE;
1043 page = alloc_pages(sk->sk_allocation, 0);
1044 if (page == NULL) {
1045 err = -ENOMEM;
1046 goto error;
1048 sk->sk_sndmsg_page = page;
1049 sk->sk_sndmsg_off = 0;
1051 skb_fill_page_desc(skb, i, page, 0, 0);
1052 frag = &skb_shinfo(skb)->frags[i];
1053 } else {
1054 err = -EMSGSIZE;
1055 goto error;
1057 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1058 err = -EFAULT;
1059 goto error;
1061 sk->sk_sndmsg_off += copy;
1062 frag->size += copy;
1063 skb->len += copy;
1064 skb->data_len += copy;
1065 skb->truesize += copy;
1066 atomic_add(copy, &sk->sk_wmem_alloc);
1068 offset += copy;
1069 length -= copy;
1072 return 0;
1074 error:
1075 inet->cork.length -= length;
1076 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1077 return err;
1080 ssize_t ip_append_page(struct sock *sk, struct page *page,
1081 int offset, size_t size, int flags)
1083 struct inet_sock *inet = inet_sk(sk);
1084 struct sk_buff *skb;
1085 struct rtable *rt;
1086 struct ip_options *opt = NULL;
1087 int hh_len;
1088 int mtu;
1089 int len;
1090 int err;
1091 unsigned int maxfraglen, fragheaderlen, fraggap;
1093 if (inet->hdrincl)
1094 return -EPERM;
1096 if (flags&MSG_PROBE)
1097 return 0;
1099 if (skb_queue_empty(&sk->sk_write_queue))
1100 return -EINVAL;
1102 rt = (struct rtable *)inet->cork.dst;
1103 if (inet->cork.flags & IPCORK_OPT)
1104 opt = inet->cork.opt;
1106 if (!(rt->dst.dev->features&NETIF_F_SG))
1107 return -EOPNOTSUPP;
1109 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1110 mtu = inet->cork.fragsize;
1112 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1113 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1115 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1116 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1117 return -EMSGSIZE;
1120 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1121 return -EINVAL;
1123 inet->cork.length += size;
1124 if ((size + skb->len > mtu) &&
1125 (sk->sk_protocol == IPPROTO_UDP) &&
1126 (rt->dst.dev->features & NETIF_F_UFO)) {
1127 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1128 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1132 while (size > 0) {
1133 int i;
1135 if (skb_is_gso(skb))
1136 len = size;
1137 else {
1139 /* Check if the remaining data fits into current packet. */
1140 len = mtu - skb->len;
1141 if (len < size)
1142 len = maxfraglen - skb->len;
1144 if (len <= 0) {
1145 struct sk_buff *skb_prev;
1146 int alloclen;
1148 skb_prev = skb;
1149 fraggap = skb_prev->len - maxfraglen;
1151 alloclen = fragheaderlen + hh_len + fraggap + 15;
1152 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1153 if (unlikely(!skb)) {
1154 err = -ENOBUFS;
1155 goto error;
1159 * Fill in the control structures
1161 skb->ip_summed = CHECKSUM_NONE;
1162 skb->csum = 0;
1163 skb_reserve(skb, hh_len);
1166 * Find where to start putting bytes.
1168 skb_put(skb, fragheaderlen + fraggap);
1169 skb_reset_network_header(skb);
1170 skb->transport_header = (skb->network_header +
1171 fragheaderlen);
1172 if (fraggap) {
1173 skb->csum = skb_copy_and_csum_bits(skb_prev,
1174 maxfraglen,
1175 skb_transport_header(skb),
1176 fraggap, 0);
1177 skb_prev->csum = csum_sub(skb_prev->csum,
1178 skb->csum);
1179 pskb_trim_unique(skb_prev, maxfraglen);
1183 * Put the packet on the pending queue.
1185 __skb_queue_tail(&sk->sk_write_queue, skb);
1186 continue;
1189 i = skb_shinfo(skb)->nr_frags;
1190 if (len > size)
1191 len = size;
1192 if (skb_can_coalesce(skb, i, page, offset)) {
1193 skb_shinfo(skb)->frags[i-1].size += len;
1194 } else if (i < MAX_SKB_FRAGS) {
1195 get_page(page);
1196 skb_fill_page_desc(skb, i, page, offset, len);
1197 } else {
1198 err = -EMSGSIZE;
1199 goto error;
1202 if (skb->ip_summed == CHECKSUM_NONE) {
1203 __wsum csum;
1204 csum = csum_page(page, offset, len);
1205 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1208 skb->len += len;
1209 skb->data_len += len;
1210 skb->truesize += len;
1211 atomic_add(len, &sk->sk_wmem_alloc);
1212 offset += len;
1213 size -= len;
1215 return 0;
1217 error:
1218 inet->cork.length -= size;
1219 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1220 return err;
1223 static void ip_cork_release(struct inet_sock *inet)
1225 inet->cork.flags &= ~IPCORK_OPT;
1226 kfree(inet->cork.opt);
1227 inet->cork.opt = NULL;
1228 dst_release(inet->cork.dst);
1229 inet->cork.dst = NULL;
1233 * Combined all pending IP fragments on the socket as one IP datagram
1234 * and push them out.
1236 int ip_push_pending_frames(struct sock *sk)
1238 struct sk_buff *skb, *tmp_skb;
1239 struct sk_buff **tail_skb;
1240 struct inet_sock *inet = inet_sk(sk);
1241 struct net *net = sock_net(sk);
1242 struct ip_options *opt = NULL;
1243 struct rtable *rt = (struct rtable *)inet->cork.dst;
1244 struct iphdr *iph;
1245 __be16 df = 0;
1246 __u8 ttl;
1247 int err = 0;
1249 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1250 goto out;
1251 tail_skb = &(skb_shinfo(skb)->frag_list);
1253 /* move skb->data to ip header from ext header */
1254 if (skb->data < skb_network_header(skb))
1255 __skb_pull(skb, skb_network_offset(skb));
1256 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1257 __skb_pull(tmp_skb, skb_network_header_len(skb));
1258 *tail_skb = tmp_skb;
1259 tail_skb = &(tmp_skb->next);
1260 skb->len += tmp_skb->len;
1261 skb->data_len += tmp_skb->len;
1262 skb->truesize += tmp_skb->truesize;
1263 tmp_skb->destructor = NULL;
1264 tmp_skb->sk = NULL;
1267 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1268 * to fragment the frame generated here. No matter, what transforms
1269 * how transforms change size of the packet, it will come out.
1271 if (inet->pmtudisc < IP_PMTUDISC_DO)
1272 skb->local_df = 1;
1274 /* DF bit is set when we want to see DF on outgoing frames.
1275 * If local_df is set too, we still allow to fragment this frame
1276 * locally. */
1277 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1278 (skb->len <= dst_mtu(&rt->dst) &&
1279 ip_dont_fragment(sk, &rt->dst)))
1280 df = htons(IP_DF);
1282 if (inet->cork.flags & IPCORK_OPT)
1283 opt = inet->cork.opt;
1285 if (rt->rt_type == RTN_MULTICAST)
1286 ttl = inet->mc_ttl;
1287 else
1288 ttl = ip_select_ttl(inet, &rt->dst);
1290 iph = (struct iphdr *)skb->data;
1291 iph->version = 4;
1292 iph->ihl = 5;
1293 if (opt) {
1294 iph->ihl += opt->optlen>>2;
1295 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1297 iph->tos = inet->tos;
1298 iph->frag_off = df;
1299 ip_select_ident(iph, &rt->dst, sk);
1300 iph->ttl = ttl;
1301 iph->protocol = sk->sk_protocol;
1302 iph->saddr = rt->rt_src;
1303 iph->daddr = rt->rt_dst;
1305 skb->priority = sk->sk_priority;
1306 skb->mark = sk->sk_mark;
1308 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1309 * on dst refcount
1311 inet->cork.dst = NULL;
1312 skb_dst_set(skb, &rt->dst);
1314 if (iph->protocol == IPPROTO_ICMP)
1315 icmp_out_count(net, ((struct icmphdr *)
1316 skb_transport_header(skb))->type);
1318 /* Netfilter gets whole the not fragmented skb. */
1319 err = ip_local_out(skb);
1320 if (err) {
1321 if (err > 0)
1322 err = net_xmit_errno(err);
1323 if (err)
1324 goto error;
1327 out:
1328 ip_cork_release(inet);
1329 return err;
1331 error:
1332 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1333 goto out;
1337 * Throw away all pending data on the socket.
1339 void ip_flush_pending_frames(struct sock *sk)
1341 struct sk_buff *skb;
1343 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1344 kfree_skb(skb);
1346 ip_cork_release(inet_sk(sk));
1351 * Fetch data from kernel space and fill in checksum if needed.
1353 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1354 int len, int odd, struct sk_buff *skb)
1356 __wsum csum;
1358 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1359 skb->csum = csum_block_add(skb->csum, csum, odd);
1360 return 0;
1364 * Generic function to send a packet as reply to another packet.
1365 * Used to send TCP resets so far. ICMP should use this function too.
1367 * Should run single threaded per socket because it uses the sock
1368 * structure to pass arguments.
1370 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1371 unsigned int len)
1373 struct inet_sock *inet = inet_sk(sk);
1374 struct {
1375 struct ip_options opt;
1376 char data[40];
1377 } replyopts;
1378 struct ipcm_cookie ipc;
1379 __be32 daddr;
1380 struct rtable *rt = skb_rtable(skb);
1382 if (ip_options_echo(&replyopts.opt, skb))
1383 return;
1385 daddr = ipc.addr = rt->rt_src;
1386 ipc.opt = NULL;
1387 ipc.shtx.flags = 0;
1389 if (replyopts.opt.optlen) {
1390 ipc.opt = &replyopts.opt;
1392 if (ipc.opt->srr)
1393 daddr = replyopts.opt.faddr;
1397 struct flowi fl = { .oif = arg->bound_dev_if,
1398 .nl_u = { .ip4_u =
1399 { .daddr = daddr,
1400 .saddr = rt->rt_spec_dst,
1401 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1402 /* Not quite clean, but right. */
1403 .uli_u = { .ports =
1404 { .sport = tcp_hdr(skb)->dest,
1405 .dport = tcp_hdr(skb)->source } },
1406 .proto = sk->sk_protocol,
1407 .flags = ip_reply_arg_flowi_flags(arg) };
1408 security_skb_classify_flow(skb, &fl);
1409 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1410 return;
1413 /* And let IP do all the hard work.
1415 This chunk is not reenterable, hence spinlock.
1416 Note that it uses the fact, that this function is called
1417 with locally disabled BH and that sk cannot be already spinlocked.
1419 bh_lock_sock(sk);
1420 inet->tos = ip_hdr(skb)->tos;
1421 sk->sk_priority = skb->priority;
1422 sk->sk_protocol = ip_hdr(skb)->protocol;
1423 sk->sk_bound_dev_if = arg->bound_dev_if;
1424 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1425 &ipc, &rt, MSG_DONTWAIT);
1426 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1427 if (arg->csumoffset >= 0)
1428 *((__sum16 *)skb_transport_header(skb) +
1429 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1430 arg->csum));
1431 skb->ip_summed = CHECKSUM_NONE;
1432 ip_push_pending_frames(sk);
1435 bh_unlock_sock(sk);
1437 ip_rt_put(rt);
1440 void __init ip_init(void)
1442 ip_rt_init();
1443 inet_initpeers();
1445 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1446 igmp_mc_proc_init();
1447 #endif