2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
32 #include <asm/stacktrace.h>
35 #include <asm/alternative.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/timer.h>
41 #include <asm/unwind.h>
43 #include "perf_event.h"
45 struct x86_pmu x86_pmu __read_mostly
;
47 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
51 struct static_key rdpmc_always_available
= STATIC_KEY_INIT_FALSE
;
53 u64 __read_mostly hw_cache_event_ids
54 [PERF_COUNT_HW_CACHE_MAX
]
55 [PERF_COUNT_HW_CACHE_OP_MAX
]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
57 u64 __read_mostly hw_cache_extra_regs
58 [PERF_COUNT_HW_CACHE_MAX
]
59 [PERF_COUNT_HW_CACHE_OP_MAX
]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
65 * Returns the delta events processed.
67 u64
x86_perf_event_update(struct perf_event
*event
)
69 struct hw_perf_event
*hwc
= &event
->hw
;
70 int shift
= 64 - x86_pmu
.cntval_bits
;
71 u64 prev_raw_count
, new_raw_count
;
75 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
79 * Careful: an NMI might modify the previous event value.
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
83 * count to the generic event atomically:
86 prev_raw_count
= local64_read(&hwc
->prev_count
);
87 rdpmcl(hwc
->event_base_rdpmc
, new_raw_count
);
89 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
90 new_raw_count
) != prev_raw_count
)
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
96 * (event-)time and add that to the generic event.
98 * Careful, not all hw sign-extends above the physical width
101 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
104 local64_add(delta
, &event
->count
);
105 local64_sub(delta
, &hwc
->period_left
);
107 return new_raw_count
;
111 * Find and validate any extra registers to set up.
113 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
115 struct hw_perf_event_extra
*reg
;
116 struct extra_reg
*er
;
118 reg
= &event
->hw
.extra_reg
;
120 if (!x86_pmu
.extra_regs
)
123 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
124 if (er
->event
!= (config
& er
->config_mask
))
126 if (event
->attr
.config1
& ~er
->valid_mask
)
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er
->extra_msr_access
)
133 reg
->config
= event
->attr
.config1
;
140 static atomic_t active_events
;
141 static atomic_t pmc_refcount
;
142 static DEFINE_MUTEX(pmc_reserve_mutex
);
144 #ifdef CONFIG_X86_LOCAL_APIC
146 static bool reserve_pmc_hardware(void)
150 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
155 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
163 for (i
--; i
>= 0; i
--)
164 release_evntsel_nmi(x86_pmu_config_addr(i
));
166 i
= x86_pmu
.num_counters
;
169 for (i
--; i
>= 0; i
--)
170 release_perfctr_nmi(x86_pmu_event_addr(i
));
175 static void release_pmc_hardware(void)
179 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
180 release_perfctr_nmi(x86_pmu_event_addr(i
));
181 release_evntsel_nmi(x86_pmu_config_addr(i
));
187 static bool reserve_pmc_hardware(void) { return true; }
188 static void release_pmc_hardware(void) {}
192 static bool check_hw_exists(void)
194 u64 val
, val_fail
= -1, val_new
= ~0;
195 int i
, reg
, reg_fail
= -1, ret
= 0;
200 * Check to see if the BIOS enabled any of the counters, if so
203 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
204 reg
= x86_pmu_config_addr(i
);
205 ret
= rdmsrl_safe(reg
, &val
);
208 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
) {
217 if (x86_pmu
.num_counters_fixed
) {
218 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
219 ret
= rdmsrl_safe(reg
, &val
);
222 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
223 if (val
& (0x03 << i
*4)) {
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
237 if (reg_safe
== -1) {
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 reg
= x86_pmu_event_addr(reg_safe
);
248 if (rdmsrl_safe(reg
, &val
))
251 ret
= wrmsrl_safe(reg
, val
);
252 ret
|= rdmsrl_safe(reg
, &val_new
);
253 if (ret
|| val
!= val_new
)
257 * We still allow the PMU driver to operate:
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR
)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
279 static void hw_perf_event_destroy(struct perf_event
*event
)
281 x86_release_hardware();
282 atomic_dec(&active_events
);
285 void hw_perf_lbr_event_destroy(struct perf_event
*event
)
287 hw_perf_event_destroy(event
);
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr
);
293 static inline int x86_pmu_initialized(void)
295 return x86_pmu
.handle_irq
!= NULL
;
299 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
301 struct perf_event_attr
*attr
= &event
->attr
;
302 unsigned int cache_type
, cache_op
, cache_result
;
305 config
= attr
->config
;
307 cache_type
= (config
>> 0) & 0xff;
308 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
311 cache_op
= (config
>> 8) & 0xff;
312 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
315 cache_result
= (config
>> 16) & 0xff;
316 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
319 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
328 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
329 return x86_pmu_extra_regs(val
, event
);
332 int x86_reserve_hardware(void)
336 if (!atomic_inc_not_zero(&pmc_refcount
)) {
337 mutex_lock(&pmc_reserve_mutex
);
338 if (atomic_read(&pmc_refcount
) == 0) {
339 if (!reserve_pmc_hardware())
342 reserve_ds_buffers();
345 atomic_inc(&pmc_refcount
);
346 mutex_unlock(&pmc_reserve_mutex
);
352 void x86_release_hardware(void)
354 if (atomic_dec_and_mutex_lock(&pmc_refcount
, &pmc_reserve_mutex
)) {
355 release_pmc_hardware();
356 release_ds_buffers();
357 mutex_unlock(&pmc_reserve_mutex
);
362 * Check if we can create event of a certain type (that no conflicting events
365 int x86_add_exclusive(unsigned int what
)
370 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
371 * LBR and BTS are still mutually exclusive.
373 if (x86_pmu
.lbr_pt_coexist
&& what
== x86_lbr_exclusive_pt
)
376 if (!atomic_inc_not_zero(&x86_pmu
.lbr_exclusive
[what
])) {
377 mutex_lock(&pmc_reserve_mutex
);
378 for (i
= 0; i
< ARRAY_SIZE(x86_pmu
.lbr_exclusive
); i
++) {
379 if (i
!= what
&& atomic_read(&x86_pmu
.lbr_exclusive
[i
]))
382 atomic_inc(&x86_pmu
.lbr_exclusive
[what
]);
383 mutex_unlock(&pmc_reserve_mutex
);
386 atomic_inc(&active_events
);
390 mutex_unlock(&pmc_reserve_mutex
);
394 void x86_del_exclusive(unsigned int what
)
396 if (x86_pmu
.lbr_pt_coexist
&& what
== x86_lbr_exclusive_pt
)
399 atomic_dec(&x86_pmu
.lbr_exclusive
[what
]);
400 atomic_dec(&active_events
);
403 int x86_setup_perfctr(struct perf_event
*event
)
405 struct perf_event_attr
*attr
= &event
->attr
;
406 struct hw_perf_event
*hwc
= &event
->hw
;
409 if (!is_sampling_event(event
)) {
410 hwc
->sample_period
= x86_pmu
.max_period
;
411 hwc
->last_period
= hwc
->sample_period
;
412 local64_set(&hwc
->period_left
, hwc
->sample_period
);
415 if (attr
->type
== PERF_TYPE_RAW
)
416 return x86_pmu_extra_regs(event
->attr
.config
, event
);
418 if (attr
->type
== PERF_TYPE_HW_CACHE
)
419 return set_ext_hw_attr(hwc
, event
);
421 if (attr
->config
>= x86_pmu
.max_events
)
427 config
= x86_pmu
.event_map(attr
->config
);
438 if (attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
&&
439 !attr
->freq
&& hwc
->sample_period
== 1) {
440 /* BTS is not supported by this architecture. */
441 if (!x86_pmu
.bts_active
)
444 /* BTS is currently only allowed for user-mode. */
445 if (!attr
->exclude_kernel
)
448 /* disallow bts if conflicting events are present */
449 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
452 event
->destroy
= hw_perf_lbr_event_destroy
;
455 hwc
->config
|= config
;
461 * check that branch_sample_type is compatible with
462 * settings needed for precise_ip > 1 which implies
463 * using the LBR to capture ALL taken branches at the
464 * priv levels of the measurement
466 static inline int precise_br_compat(struct perf_event
*event
)
468 u64 m
= event
->attr
.branch_sample_type
;
471 /* must capture all branches */
472 if (!(m
& PERF_SAMPLE_BRANCH_ANY
))
475 m
&= PERF_SAMPLE_BRANCH_KERNEL
| PERF_SAMPLE_BRANCH_USER
;
477 if (!event
->attr
.exclude_user
)
478 b
|= PERF_SAMPLE_BRANCH_USER
;
480 if (!event
->attr
.exclude_kernel
)
481 b
|= PERF_SAMPLE_BRANCH_KERNEL
;
484 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
490 int x86_pmu_max_precise(void)
494 /* Support for constant skid */
495 if (x86_pmu
.pebs_active
&& !x86_pmu
.pebs_broken
) {
498 /* Support for IP fixup */
499 if (x86_pmu
.lbr_nr
|| x86_pmu
.intel_cap
.pebs_format
>= 2)
502 if (x86_pmu
.pebs_prec_dist
)
508 int x86_pmu_hw_config(struct perf_event
*event
)
510 if (event
->attr
.precise_ip
) {
511 int precise
= x86_pmu_max_precise();
513 if (event
->attr
.precise_ip
> precise
)
516 /* There's no sense in having PEBS for non sampling events: */
517 if (!is_sampling_event(event
))
521 * check that PEBS LBR correction does not conflict with
522 * whatever the user is asking with attr->branch_sample_type
524 if (event
->attr
.precise_ip
> 1 && x86_pmu
.intel_cap
.pebs_format
< 2) {
525 u64
*br_type
= &event
->attr
.branch_sample_type
;
527 if (has_branch_stack(event
)) {
528 if (!precise_br_compat(event
))
531 /* branch_sample_type is compatible */
535 * user did not specify branch_sample_type
537 * For PEBS fixups, we capture all
538 * the branches at the priv level of the
541 *br_type
= PERF_SAMPLE_BRANCH_ANY
;
543 if (!event
->attr
.exclude_user
)
544 *br_type
|= PERF_SAMPLE_BRANCH_USER
;
546 if (!event
->attr
.exclude_kernel
)
547 *br_type
|= PERF_SAMPLE_BRANCH_KERNEL
;
551 if (event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_CALL_STACK
)
552 event
->attach_state
|= PERF_ATTACH_TASK_DATA
;
556 * (keep 'enabled' bit clear for now)
558 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
561 * Count user and OS events unless requested not to
563 if (!event
->attr
.exclude_user
)
564 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
565 if (!event
->attr
.exclude_kernel
)
566 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
568 if (event
->attr
.type
== PERF_TYPE_RAW
)
569 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
571 if (event
->attr
.sample_period
&& x86_pmu
.limit_period
) {
572 if (x86_pmu
.limit_period(event
, event
->attr
.sample_period
) >
573 event
->attr
.sample_period
)
577 return x86_setup_perfctr(event
);
581 * Setup the hardware configuration for a given attr_type
583 static int __x86_pmu_event_init(struct perf_event
*event
)
587 if (!x86_pmu_initialized())
590 err
= x86_reserve_hardware();
594 atomic_inc(&active_events
);
595 event
->destroy
= hw_perf_event_destroy
;
598 event
->hw
.last_cpu
= -1;
599 event
->hw
.last_tag
= ~0ULL;
602 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
603 event
->hw
.branch_reg
.idx
= EXTRA_REG_NONE
;
605 return x86_pmu
.hw_config(event
);
608 void x86_pmu_disable_all(void)
610 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
613 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
616 if (!test_bit(idx
, cpuc
->active_mask
))
618 rdmsrl(x86_pmu_config_addr(idx
), val
);
619 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
621 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
622 wrmsrl(x86_pmu_config_addr(idx
), val
);
627 * There may be PMI landing after enabled=0. The PMI hitting could be before or
630 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
631 * It will not be re-enabled in the NMI handler again, because enabled=0. After
632 * handling the NMI, disable_all will be called, which will not change the
633 * state either. If PMI hits after disable_all, the PMU is already disabled
634 * before entering NMI handler. The NMI handler will not change the state
637 * So either situation is harmless.
639 static void x86_pmu_disable(struct pmu
*pmu
)
641 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
643 if (!x86_pmu_initialized())
653 x86_pmu
.disable_all();
656 void x86_pmu_enable_all(int added
)
658 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
661 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
662 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
664 if (!test_bit(idx
, cpuc
->active_mask
))
667 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
671 static struct pmu pmu
;
673 static inline int is_x86_event(struct perf_event
*event
)
675 return event
->pmu
== &pmu
;
679 * Event scheduler state:
681 * Assign events iterating over all events and counters, beginning
682 * with events with least weights first. Keep the current iterator
683 * state in struct sched_state.
687 int event
; /* event index */
688 int counter
; /* counter index */
689 int unassigned
; /* number of events to be assigned left */
690 int nr_gp
; /* number of GP counters used */
691 unsigned long used
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
694 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
695 #define SCHED_STATES_MAX 2
702 struct event_constraint
**constraints
;
703 struct sched_state state
;
704 struct sched_state saved
[SCHED_STATES_MAX
];
708 * Initialize interator that runs through all events and counters.
710 static void perf_sched_init(struct perf_sched
*sched
, struct event_constraint
**constraints
,
711 int num
, int wmin
, int wmax
, int gpmax
)
715 memset(sched
, 0, sizeof(*sched
));
716 sched
->max_events
= num
;
717 sched
->max_weight
= wmax
;
718 sched
->max_gp
= gpmax
;
719 sched
->constraints
= constraints
;
721 for (idx
= 0; idx
< num
; idx
++) {
722 if (constraints
[idx
]->weight
== wmin
)
726 sched
->state
.event
= idx
; /* start with min weight */
727 sched
->state
.weight
= wmin
;
728 sched
->state
.unassigned
= num
;
731 static void perf_sched_save_state(struct perf_sched
*sched
)
733 if (WARN_ON_ONCE(sched
->saved_states
>= SCHED_STATES_MAX
))
736 sched
->saved
[sched
->saved_states
] = sched
->state
;
737 sched
->saved_states
++;
740 static bool perf_sched_restore_state(struct perf_sched
*sched
)
742 if (!sched
->saved_states
)
745 sched
->saved_states
--;
746 sched
->state
= sched
->saved
[sched
->saved_states
];
748 /* continue with next counter: */
749 clear_bit(sched
->state
.counter
++, sched
->state
.used
);
755 * Select a counter for the current event to schedule. Return true on
758 static bool __perf_sched_find_counter(struct perf_sched
*sched
)
760 struct event_constraint
*c
;
763 if (!sched
->state
.unassigned
)
766 if (sched
->state
.event
>= sched
->max_events
)
769 c
= sched
->constraints
[sched
->state
.event
];
770 /* Prefer fixed purpose counters */
771 if (c
->idxmsk64
& (~0ULL << INTEL_PMC_IDX_FIXED
)) {
772 idx
= INTEL_PMC_IDX_FIXED
;
773 for_each_set_bit_from(idx
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
774 if (!__test_and_set_bit(idx
, sched
->state
.used
))
779 /* Grab the first unused counter starting with idx */
780 idx
= sched
->state
.counter
;
781 for_each_set_bit_from(idx
, c
->idxmsk
, INTEL_PMC_IDX_FIXED
) {
782 if (!__test_and_set_bit(idx
, sched
->state
.used
)) {
783 if (sched
->state
.nr_gp
++ >= sched
->max_gp
)
793 sched
->state
.counter
= idx
;
796 perf_sched_save_state(sched
);
801 static bool perf_sched_find_counter(struct perf_sched
*sched
)
803 while (!__perf_sched_find_counter(sched
)) {
804 if (!perf_sched_restore_state(sched
))
812 * Go through all unassigned events and find the next one to schedule.
813 * Take events with the least weight first. Return true on success.
815 static bool perf_sched_next_event(struct perf_sched
*sched
)
817 struct event_constraint
*c
;
819 if (!sched
->state
.unassigned
|| !--sched
->state
.unassigned
)
824 sched
->state
.event
++;
825 if (sched
->state
.event
>= sched
->max_events
) {
827 sched
->state
.event
= 0;
828 sched
->state
.weight
++;
829 if (sched
->state
.weight
> sched
->max_weight
)
832 c
= sched
->constraints
[sched
->state
.event
];
833 } while (c
->weight
!= sched
->state
.weight
);
835 sched
->state
.counter
= 0; /* start with first counter */
841 * Assign a counter for each event.
843 int perf_assign_events(struct event_constraint
**constraints
, int n
,
844 int wmin
, int wmax
, int gpmax
, int *assign
)
846 struct perf_sched sched
;
848 perf_sched_init(&sched
, constraints
, n
, wmin
, wmax
, gpmax
);
851 if (!perf_sched_find_counter(&sched
))
854 assign
[sched
.state
.event
] = sched
.state
.counter
;
855 } while (perf_sched_next_event(&sched
));
857 return sched
.state
.unassigned
;
859 EXPORT_SYMBOL_GPL(perf_assign_events
);
861 int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
863 struct event_constraint
*c
;
864 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
865 struct perf_event
*e
;
866 int i
, wmin
, wmax
, unsched
= 0;
867 struct hw_perf_event
*hwc
;
869 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
871 if (x86_pmu
.start_scheduling
)
872 x86_pmu
.start_scheduling(cpuc
);
874 for (i
= 0, wmin
= X86_PMC_IDX_MAX
, wmax
= 0; i
< n
; i
++) {
875 cpuc
->event_constraint
[i
] = NULL
;
876 c
= x86_pmu
.get_event_constraints(cpuc
, i
, cpuc
->event_list
[i
]);
877 cpuc
->event_constraint
[i
] = c
;
879 wmin
= min(wmin
, c
->weight
);
880 wmax
= max(wmax
, c
->weight
);
884 * fastpath, try to reuse previous register
886 for (i
= 0; i
< n
; i
++) {
887 hwc
= &cpuc
->event_list
[i
]->hw
;
888 c
= cpuc
->event_constraint
[i
];
894 /* constraint still honored */
895 if (!test_bit(hwc
->idx
, c
->idxmsk
))
898 /* not already used */
899 if (test_bit(hwc
->idx
, used_mask
))
902 __set_bit(hwc
->idx
, used_mask
);
904 assign
[i
] = hwc
->idx
;
909 int gpmax
= x86_pmu
.num_counters
;
912 * Do not allow scheduling of more than half the available
915 * This helps avoid counter starvation of sibling thread by
916 * ensuring at most half the counters cannot be in exclusive
917 * mode. There is no designated counters for the limits. Any
918 * N/2 counters can be used. This helps with events with
919 * specific counter constraints.
921 if (is_ht_workaround_enabled() && !cpuc
->is_fake
&&
922 READ_ONCE(cpuc
->excl_cntrs
->exclusive_present
))
925 unsched
= perf_assign_events(cpuc
->event_constraint
, n
, wmin
,
926 wmax
, gpmax
, assign
);
930 * In case of success (unsched = 0), mark events as committed,
931 * so we do not put_constraint() in case new events are added
932 * and fail to be scheduled
934 * We invoke the lower level commit callback to lock the resource
936 * We do not need to do all of this in case we are called to
937 * validate an event group (assign == NULL)
939 if (!unsched
&& assign
) {
940 for (i
= 0; i
< n
; i
++) {
941 e
= cpuc
->event_list
[i
];
942 e
->hw
.flags
|= PERF_X86_EVENT_COMMITTED
;
943 if (x86_pmu
.commit_scheduling
)
944 x86_pmu
.commit_scheduling(cpuc
, i
, assign
[i
]);
947 for (i
= 0; i
< n
; i
++) {
948 e
= cpuc
->event_list
[i
];
950 * do not put_constraint() on comitted events,
951 * because they are good to go
953 if ((e
->hw
.flags
& PERF_X86_EVENT_COMMITTED
))
957 * release events that failed scheduling
959 if (x86_pmu
.put_event_constraints
)
960 x86_pmu
.put_event_constraints(cpuc
, e
);
964 if (x86_pmu
.stop_scheduling
)
965 x86_pmu
.stop_scheduling(cpuc
);
967 return unsched
? -EINVAL
: 0;
971 * dogrp: true if must collect siblings events (group)
972 * returns total number of events and error code
974 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
976 struct perf_event
*event
;
979 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
981 /* current number of events already accepted */
984 if (is_x86_event(leader
)) {
987 cpuc
->event_list
[n
] = leader
;
993 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
994 if (!is_x86_event(event
) ||
995 event
->state
<= PERF_EVENT_STATE_OFF
)
1001 cpuc
->event_list
[n
] = event
;
1007 static inline void x86_assign_hw_event(struct perf_event
*event
,
1008 struct cpu_hw_events
*cpuc
, int i
)
1010 struct hw_perf_event
*hwc
= &event
->hw
;
1012 hwc
->idx
= cpuc
->assign
[i
];
1013 hwc
->last_cpu
= smp_processor_id();
1014 hwc
->last_tag
= ++cpuc
->tags
[i
];
1016 if (hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
) {
1017 hwc
->config_base
= 0;
1018 hwc
->event_base
= 0;
1019 } else if (hwc
->idx
>= INTEL_PMC_IDX_FIXED
) {
1020 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
1021 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- INTEL_PMC_IDX_FIXED
);
1022 hwc
->event_base_rdpmc
= (hwc
->idx
- INTEL_PMC_IDX_FIXED
) | 1<<30;
1024 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
1025 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
1026 hwc
->event_base_rdpmc
= x86_pmu_rdpmc_index(hwc
->idx
);
1030 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
1031 struct cpu_hw_events
*cpuc
,
1034 return hwc
->idx
== cpuc
->assign
[i
] &&
1035 hwc
->last_cpu
== smp_processor_id() &&
1036 hwc
->last_tag
== cpuc
->tags
[i
];
1039 static void x86_pmu_start(struct perf_event
*event
, int flags
);
1041 static void x86_pmu_enable(struct pmu
*pmu
)
1043 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1044 struct perf_event
*event
;
1045 struct hw_perf_event
*hwc
;
1046 int i
, added
= cpuc
->n_added
;
1048 if (!x86_pmu_initialized())
1054 if (cpuc
->n_added
) {
1055 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
1057 * apply assignment obtained either from
1058 * hw_perf_group_sched_in() or x86_pmu_enable()
1060 * step1: save events moving to new counters
1062 for (i
= 0; i
< n_running
; i
++) {
1063 event
= cpuc
->event_list
[i
];
1067 * we can avoid reprogramming counter if:
1068 * - assigned same counter as last time
1069 * - running on same CPU as last time
1070 * - no other event has used the counter since
1072 if (hwc
->idx
== -1 ||
1073 match_prev_assignment(hwc
, cpuc
, i
))
1077 * Ensure we don't accidentally enable a stopped
1078 * counter simply because we rescheduled.
1080 if (hwc
->state
& PERF_HES_STOPPED
)
1081 hwc
->state
|= PERF_HES_ARCH
;
1083 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1087 * step2: reprogram moved events into new counters
1089 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1090 event
= cpuc
->event_list
[i
];
1093 if (!match_prev_assignment(hwc
, cpuc
, i
))
1094 x86_assign_hw_event(event
, cpuc
, i
);
1095 else if (i
< n_running
)
1098 if (hwc
->state
& PERF_HES_ARCH
)
1101 x86_pmu_start(event
, PERF_EF_RELOAD
);
1104 perf_events_lapic_init();
1110 x86_pmu
.enable_all(added
);
1113 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
1116 * Set the next IRQ period, based on the hwc->period_left value.
1117 * To be called with the event disabled in hw:
1119 int x86_perf_event_set_period(struct perf_event
*event
)
1121 struct hw_perf_event
*hwc
= &event
->hw
;
1122 s64 left
= local64_read(&hwc
->period_left
);
1123 s64 period
= hwc
->sample_period
;
1124 int ret
= 0, idx
= hwc
->idx
;
1126 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
1130 * If we are way outside a reasonable range then just skip forward:
1132 if (unlikely(left
<= -period
)) {
1134 local64_set(&hwc
->period_left
, left
);
1135 hwc
->last_period
= period
;
1139 if (unlikely(left
<= 0)) {
1141 local64_set(&hwc
->period_left
, left
);
1142 hwc
->last_period
= period
;
1146 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1148 if (unlikely(left
< 2))
1151 if (left
> x86_pmu
.max_period
)
1152 left
= x86_pmu
.max_period
;
1154 if (x86_pmu
.limit_period
)
1155 left
= x86_pmu
.limit_period(event
, left
);
1157 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
1160 * The hw event starts counting from this event offset,
1161 * mark it to be able to extra future deltas:
1163 local64_set(&hwc
->prev_count
, (u64
)-left
);
1165 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
1168 * Due to erratum on certan cpu we need
1169 * a second write to be sure the register
1170 * is updated properly
1172 if (x86_pmu
.perfctr_second_write
) {
1173 wrmsrl(hwc
->event_base
,
1174 (u64
)(-left
) & x86_pmu
.cntval_mask
);
1177 perf_event_update_userpage(event
);
1182 void x86_pmu_enable_event(struct perf_event
*event
)
1184 if (__this_cpu_read(cpu_hw_events
.enabled
))
1185 __x86_pmu_enable_event(&event
->hw
,
1186 ARCH_PERFMON_EVENTSEL_ENABLE
);
1190 * Add a single event to the PMU.
1192 * The event is added to the group of enabled events
1193 * but only if it can be scehduled with existing events.
1195 static int x86_pmu_add(struct perf_event
*event
, int flags
)
1197 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1198 struct hw_perf_event
*hwc
;
1199 int assign
[X86_PMC_IDX_MAX
];
1204 n0
= cpuc
->n_events
;
1205 ret
= n
= collect_events(cpuc
, event
, false);
1209 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1210 if (!(flags
& PERF_EF_START
))
1211 hwc
->state
|= PERF_HES_ARCH
;
1214 * If group events scheduling transaction was started,
1215 * skip the schedulability test here, it will be performed
1216 * at commit time (->commit_txn) as a whole.
1218 * If commit fails, we'll call ->del() on all events
1219 * for which ->add() was called.
1221 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1224 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1228 * copy new assignment, now we know it is possible
1229 * will be used by hw_perf_enable()
1231 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1235 * Commit the collect_events() state. See x86_pmu_del() and
1239 cpuc
->n_added
+= n
- n0
;
1240 cpuc
->n_txn
+= n
- n0
;
1244 * This is before x86_pmu_enable() will call x86_pmu_start(),
1245 * so we enable LBRs before an event needs them etc..
1255 static void x86_pmu_start(struct perf_event
*event
, int flags
)
1257 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1258 int idx
= event
->hw
.idx
;
1260 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1263 if (WARN_ON_ONCE(idx
== -1))
1266 if (flags
& PERF_EF_RELOAD
) {
1267 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1268 x86_perf_event_set_period(event
);
1271 event
->hw
.state
= 0;
1273 cpuc
->events
[idx
] = event
;
1274 __set_bit(idx
, cpuc
->active_mask
);
1275 __set_bit(idx
, cpuc
->running
);
1276 x86_pmu
.enable(event
);
1277 perf_event_update_userpage(event
);
1280 void perf_event_print_debug(void)
1282 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1284 struct cpu_hw_events
*cpuc
;
1285 unsigned long flags
;
1288 if (!x86_pmu
.num_counters
)
1291 local_irq_save(flags
);
1293 cpu
= smp_processor_id();
1294 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1296 if (x86_pmu
.version
>= 2) {
1297 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1298 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1299 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1300 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1303 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1304 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1305 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1306 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1307 if (x86_pmu
.pebs_constraints
) {
1308 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1309 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1311 if (x86_pmu
.lbr_nr
) {
1312 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
1313 pr_info("CPU#%d: debugctl: %016llx\n", cpu
, debugctl
);
1316 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1318 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1319 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1320 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1322 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1324 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1325 cpu
, idx
, pmc_ctrl
);
1326 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1327 cpu
, idx
, pmc_count
);
1328 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1329 cpu
, idx
, prev_left
);
1331 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1332 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1334 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1335 cpu
, idx
, pmc_count
);
1337 local_irq_restore(flags
);
1340 void x86_pmu_stop(struct perf_event
*event
, int flags
)
1342 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1343 struct hw_perf_event
*hwc
= &event
->hw
;
1345 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1346 x86_pmu
.disable(event
);
1347 cpuc
->events
[hwc
->idx
] = NULL
;
1348 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1349 hwc
->state
|= PERF_HES_STOPPED
;
1352 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1354 * Drain the remaining delta count out of a event
1355 * that we are disabling:
1357 x86_perf_event_update(event
);
1358 hwc
->state
|= PERF_HES_UPTODATE
;
1362 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1364 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1368 * event is descheduled
1370 event
->hw
.flags
&= ~PERF_X86_EVENT_COMMITTED
;
1373 * If we're called during a txn, we only need to undo x86_pmu.add.
1374 * The events never got scheduled and ->cancel_txn will truncate
1377 * XXX assumes any ->del() called during a TXN will only be on
1378 * an event added during that same TXN.
1380 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1384 * Not a TXN, therefore cleanup properly.
1386 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1388 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1389 if (event
== cpuc
->event_list
[i
])
1393 if (WARN_ON_ONCE(i
== cpuc
->n_events
)) /* called ->del() without ->add() ? */
1396 /* If we have a newly added event; make sure to decrease n_added. */
1397 if (i
>= cpuc
->n_events
- cpuc
->n_added
)
1400 if (x86_pmu
.put_event_constraints
)
1401 x86_pmu
.put_event_constraints(cpuc
, event
);
1403 /* Delete the array entry. */
1404 while (++i
< cpuc
->n_events
) {
1405 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1406 cpuc
->event_constraint
[i
-1] = cpuc
->event_constraint
[i
];
1410 perf_event_update_userpage(event
);
1415 * This is after x86_pmu_stop(); so we disable LBRs after any
1416 * event can need them etc..
1422 int x86_pmu_handle_irq(struct pt_regs
*regs
)
1424 struct perf_sample_data data
;
1425 struct cpu_hw_events
*cpuc
;
1426 struct perf_event
*event
;
1427 int idx
, handled
= 0;
1430 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1433 * Some chipsets need to unmask the LVTPC in a particular spot
1434 * inside the nmi handler. As a result, the unmasking was pushed
1435 * into all the nmi handlers.
1437 * This generic handler doesn't seem to have any issues where the
1438 * unmasking occurs so it was left at the top.
1440 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1442 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1443 if (!test_bit(idx
, cpuc
->active_mask
)) {
1445 * Though we deactivated the counter some cpus
1446 * might still deliver spurious interrupts still
1447 * in flight. Catch them:
1449 if (__test_and_clear_bit(idx
, cpuc
->running
))
1454 event
= cpuc
->events
[idx
];
1456 val
= x86_perf_event_update(event
);
1457 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1464 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1466 if (!x86_perf_event_set_period(event
))
1469 if (perf_event_overflow(event
, &data
, regs
))
1470 x86_pmu_stop(event
, 0);
1474 inc_irq_stat(apic_perf_irqs
);
1479 void perf_events_lapic_init(void)
1481 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1485 * Always use NMI for PMU
1487 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1491 perf_event_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
1498 * All PMUs/events that share this PMI handler should make sure to
1499 * increment active_events for their events.
1501 if (!atomic_read(&active_events
))
1504 start_clock
= sched_clock();
1505 ret
= x86_pmu
.handle_irq(regs
);
1506 finish_clock
= sched_clock();
1508 perf_sample_event_took(finish_clock
- start_clock
);
1512 NOKPROBE_SYMBOL(perf_event_nmi_handler
);
1514 struct event_constraint emptyconstraint
;
1515 struct event_constraint unconstrained
;
1517 static int x86_pmu_prepare_cpu(unsigned int cpu
)
1519 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1522 for (i
= 0 ; i
< X86_PERF_KFREE_MAX
; i
++)
1523 cpuc
->kfree_on_online
[i
] = NULL
;
1524 if (x86_pmu
.cpu_prepare
)
1525 return x86_pmu
.cpu_prepare(cpu
);
1529 static int x86_pmu_dead_cpu(unsigned int cpu
)
1531 if (x86_pmu
.cpu_dead
)
1532 x86_pmu
.cpu_dead(cpu
);
1536 static int x86_pmu_online_cpu(unsigned int cpu
)
1538 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1541 for (i
= 0 ; i
< X86_PERF_KFREE_MAX
; i
++) {
1542 kfree(cpuc
->kfree_on_online
[i
]);
1543 cpuc
->kfree_on_online
[i
] = NULL
;
1548 static int x86_pmu_starting_cpu(unsigned int cpu
)
1550 if (x86_pmu
.cpu_starting
)
1551 x86_pmu
.cpu_starting(cpu
);
1555 static int x86_pmu_dying_cpu(unsigned int cpu
)
1557 if (x86_pmu
.cpu_dying
)
1558 x86_pmu
.cpu_dying(cpu
);
1562 static void __init
pmu_check_apic(void)
1564 if (boot_cpu_has(X86_FEATURE_APIC
))
1568 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1569 pr_info("no hardware sampling interrupt available.\n");
1572 * If we have a PMU initialized but no APIC
1573 * interrupts, we cannot sample hardware
1574 * events (user-space has to fall back and
1575 * sample via a hrtimer based software event):
1577 pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
1581 static struct attribute_group x86_pmu_format_group
= {
1587 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1588 * out of events_attr attributes.
1590 static void __init
filter_events(struct attribute
**attrs
)
1592 struct device_attribute
*d
;
1593 struct perf_pmu_events_attr
*pmu_attr
;
1597 for (i
= 0; attrs
[i
]; i
++) {
1598 d
= (struct device_attribute
*)attrs
[i
];
1599 pmu_attr
= container_of(d
, struct perf_pmu_events_attr
, attr
);
1601 if (pmu_attr
->event_str
)
1603 if (x86_pmu
.event_map(i
+ offset
))
1606 for (j
= i
; attrs
[j
]; j
++)
1607 attrs
[j
] = attrs
[j
+ 1];
1609 /* Check the shifted attr. */
1613 * event_map() is index based, the attrs array is organized
1614 * by increasing event index. If we shift the events, then
1615 * we need to compensate for the event_map(), otherwise
1616 * we are looking up the wrong event in the map
1622 /* Merge two pointer arrays */
1623 __init
struct attribute
**merge_attr(struct attribute
**a
, struct attribute
**b
)
1625 struct attribute
**new;
1628 for (j
= 0; a
[j
]; j
++)
1630 for (i
= 0; b
[i
]; i
++)
1634 new = kmalloc(sizeof(struct attribute
*) * j
, GFP_KERNEL
);
1639 for (i
= 0; a
[i
]; i
++)
1641 for (i
= 0; b
[i
]; i
++)
1648 ssize_t
events_sysfs_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
1650 struct perf_pmu_events_attr
*pmu_attr
= \
1651 container_of(attr
, struct perf_pmu_events_attr
, attr
);
1652 u64 config
= x86_pmu
.event_map(pmu_attr
->id
);
1654 /* string trumps id */
1655 if (pmu_attr
->event_str
)
1656 return sprintf(page
, "%s", pmu_attr
->event_str
);
1658 return x86_pmu
.events_sysfs_show(page
, config
);
1660 EXPORT_SYMBOL_GPL(events_sysfs_show
);
1662 ssize_t
events_ht_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
1665 struct perf_pmu_events_ht_attr
*pmu_attr
=
1666 container_of(attr
, struct perf_pmu_events_ht_attr
, attr
);
1669 * Report conditional events depending on Hyper-Threading.
1671 * This is overly conservative as usually the HT special
1672 * handling is not needed if the other CPU thread is idle.
1674 * Note this does not (and cannot) handle the case when thread
1675 * siblings are invisible, for example with virtualization
1676 * if they are owned by some other guest. The user tool
1677 * has to re-read when a thread sibling gets onlined later.
1679 return sprintf(page
, "%s",
1680 topology_max_smt_threads() > 1 ?
1681 pmu_attr
->event_str_ht
:
1682 pmu_attr
->event_str_noht
);
1685 EVENT_ATTR(cpu
-cycles
, CPU_CYCLES
);
1686 EVENT_ATTR(instructions
, INSTRUCTIONS
);
1687 EVENT_ATTR(cache
-references
, CACHE_REFERENCES
);
1688 EVENT_ATTR(cache
-misses
, CACHE_MISSES
);
1689 EVENT_ATTR(branch
-instructions
, BRANCH_INSTRUCTIONS
);
1690 EVENT_ATTR(branch
-misses
, BRANCH_MISSES
);
1691 EVENT_ATTR(bus
-cycles
, BUS_CYCLES
);
1692 EVENT_ATTR(stalled
-cycles
-frontend
, STALLED_CYCLES_FRONTEND
);
1693 EVENT_ATTR(stalled
-cycles
-backend
, STALLED_CYCLES_BACKEND
);
1694 EVENT_ATTR(ref
-cycles
, REF_CPU_CYCLES
);
1696 static struct attribute
*empty_attrs
;
1698 static struct attribute
*events_attr
[] = {
1699 EVENT_PTR(CPU_CYCLES
),
1700 EVENT_PTR(INSTRUCTIONS
),
1701 EVENT_PTR(CACHE_REFERENCES
),
1702 EVENT_PTR(CACHE_MISSES
),
1703 EVENT_PTR(BRANCH_INSTRUCTIONS
),
1704 EVENT_PTR(BRANCH_MISSES
),
1705 EVENT_PTR(BUS_CYCLES
),
1706 EVENT_PTR(STALLED_CYCLES_FRONTEND
),
1707 EVENT_PTR(STALLED_CYCLES_BACKEND
),
1708 EVENT_PTR(REF_CPU_CYCLES
),
1712 static struct attribute_group x86_pmu_events_group
= {
1714 .attrs
= events_attr
,
1717 ssize_t
x86_event_sysfs_show(char *page
, u64 config
, u64 event
)
1719 u64 umask
= (config
& ARCH_PERFMON_EVENTSEL_UMASK
) >> 8;
1720 u64 cmask
= (config
& ARCH_PERFMON_EVENTSEL_CMASK
) >> 24;
1721 bool edge
= (config
& ARCH_PERFMON_EVENTSEL_EDGE
);
1722 bool pc
= (config
& ARCH_PERFMON_EVENTSEL_PIN_CONTROL
);
1723 bool any
= (config
& ARCH_PERFMON_EVENTSEL_ANY
);
1724 bool inv
= (config
& ARCH_PERFMON_EVENTSEL_INV
);
1728 * We have whole page size to spend and just little data
1729 * to write, so we can safely use sprintf.
1731 ret
= sprintf(page
, "event=0x%02llx", event
);
1734 ret
+= sprintf(page
+ ret
, ",umask=0x%02llx", umask
);
1737 ret
+= sprintf(page
+ ret
, ",edge");
1740 ret
+= sprintf(page
+ ret
, ",pc");
1743 ret
+= sprintf(page
+ ret
, ",any");
1746 ret
+= sprintf(page
+ ret
, ",inv");
1749 ret
+= sprintf(page
+ ret
, ",cmask=0x%02llx", cmask
);
1751 ret
+= sprintf(page
+ ret
, "\n");
1756 static struct attribute_group x86_pmu_attr_group
;
1757 static struct attribute_group x86_pmu_caps_group
;
1759 static int __init
init_hw_perf_events(void)
1761 struct x86_pmu_quirk
*quirk
;
1764 pr_info("Performance Events: ");
1766 switch (boot_cpu_data
.x86_vendor
) {
1767 case X86_VENDOR_INTEL
:
1768 err
= intel_pmu_init();
1770 case X86_VENDOR_AMD
:
1771 err
= amd_pmu_init();
1777 pr_cont("no PMU driver, software events only.\n");
1783 /* sanity check that the hardware exists or is emulated */
1784 if (!check_hw_exists())
1787 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1789 x86_pmu
.attr_rdpmc
= 1; /* enable userspace RDPMC usage by default */
1791 for (quirk
= x86_pmu
.quirks
; quirk
; quirk
= quirk
->next
)
1794 if (!x86_pmu
.intel_ctrl
)
1795 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1797 perf_events_lapic_init();
1798 register_nmi_handler(NMI_LOCAL
, perf_event_nmi_handler
, 0, "PMI");
1800 unconstrained
= (struct event_constraint
)
1801 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1802 0, x86_pmu
.num_counters
, 0, 0);
1804 x86_pmu_format_group
.attrs
= x86_pmu
.format_attrs
;
1806 if (x86_pmu
.caps_attrs
) {
1807 struct attribute
**tmp
;
1809 tmp
= merge_attr(x86_pmu_caps_group
.attrs
, x86_pmu
.caps_attrs
);
1811 x86_pmu_caps_group
.attrs
= tmp
;
1814 if (x86_pmu
.event_attrs
)
1815 x86_pmu_events_group
.attrs
= x86_pmu
.event_attrs
;
1817 if (!x86_pmu
.events_sysfs_show
)
1818 x86_pmu_events_group
.attrs
= &empty_attrs
;
1820 filter_events(x86_pmu_events_group
.attrs
);
1822 if (x86_pmu
.cpu_events
) {
1823 struct attribute
**tmp
;
1825 tmp
= merge_attr(x86_pmu_events_group
.attrs
, x86_pmu
.cpu_events
);
1827 x86_pmu_events_group
.attrs
= tmp
;
1830 if (x86_pmu
.attrs
) {
1831 struct attribute
**tmp
;
1833 tmp
= merge_attr(x86_pmu_attr_group
.attrs
, x86_pmu
.attrs
);
1835 x86_pmu_attr_group
.attrs
= tmp
;
1838 pr_info("... version: %d\n", x86_pmu
.version
);
1839 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1840 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1841 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1842 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1843 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1844 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1847 * Install callbacks. Core will call them for each online
1850 err
= cpuhp_setup_state(CPUHP_PERF_X86_PREPARE
, "perf/x86:prepare",
1851 x86_pmu_prepare_cpu
, x86_pmu_dead_cpu
);
1855 err
= cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING
,
1856 "perf/x86:starting", x86_pmu_starting_cpu
,
1861 err
= cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE
, "perf/x86:online",
1862 x86_pmu_online_cpu
, NULL
);
1866 err
= perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1873 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE
);
1875 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING
);
1877 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE
);
1880 early_initcall(init_hw_perf_events
);
1882 static inline void x86_pmu_read(struct perf_event
*event
)
1884 x86_perf_event_update(event
);
1888 * Start group events scheduling transaction
1889 * Set the flag to make pmu::enable() not perform the
1890 * schedulability test, it will be performed at commit time
1892 * We only support PERF_PMU_TXN_ADD transactions. Save the
1893 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1896 static void x86_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1898 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1900 WARN_ON_ONCE(cpuc
->txn_flags
); /* txn already in flight */
1902 cpuc
->txn_flags
= txn_flags
;
1903 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1906 perf_pmu_disable(pmu
);
1907 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1911 * Stop group events scheduling transaction
1912 * Clear the flag and pmu::enable() will perform the
1913 * schedulability test.
1915 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1917 unsigned int txn_flags
;
1918 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1920 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1922 txn_flags
= cpuc
->txn_flags
;
1923 cpuc
->txn_flags
= 0;
1924 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1928 * Truncate collected array by the number of events added in this
1929 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1931 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1932 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1933 perf_pmu_enable(pmu
);
1937 * Commit group events scheduling transaction
1938 * Perform the group schedulability test as a whole
1939 * Return 0 if success
1941 * Does not cancel the transaction on failure; expects the caller to do this.
1943 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1945 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1946 int assign
[X86_PMC_IDX_MAX
];
1949 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1951 if (cpuc
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1952 cpuc
->txn_flags
= 0;
1958 if (!x86_pmu_initialized())
1961 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1966 * copy new assignment, now we know it is possible
1967 * will be used by hw_perf_enable()
1969 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1971 cpuc
->txn_flags
= 0;
1972 perf_pmu_enable(pmu
);
1976 * a fake_cpuc is used to validate event groups. Due to
1977 * the extra reg logic, we need to also allocate a fake
1978 * per_core and per_cpu structure. Otherwise, group events
1979 * using extra reg may conflict without the kernel being
1980 * able to catch this when the last event gets added to
1983 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1985 kfree(cpuc
->shared_regs
);
1989 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1991 struct cpu_hw_events
*cpuc
;
1992 int cpu
= raw_smp_processor_id();
1994 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
1996 return ERR_PTR(-ENOMEM
);
1998 /* only needed, if we have extra_regs */
1999 if (x86_pmu
.extra_regs
) {
2000 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
2001 if (!cpuc
->shared_regs
)
2007 free_fake_cpuc(cpuc
);
2008 return ERR_PTR(-ENOMEM
);
2012 * validate that we can schedule this event
2014 static int validate_event(struct perf_event
*event
)
2016 struct cpu_hw_events
*fake_cpuc
;
2017 struct event_constraint
*c
;
2020 fake_cpuc
= allocate_fake_cpuc();
2021 if (IS_ERR(fake_cpuc
))
2022 return PTR_ERR(fake_cpuc
);
2024 c
= x86_pmu
.get_event_constraints(fake_cpuc
, -1, event
);
2026 if (!c
|| !c
->weight
)
2029 if (x86_pmu
.put_event_constraints
)
2030 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
2032 free_fake_cpuc(fake_cpuc
);
2038 * validate a single event group
2040 * validation include:
2041 * - check events are compatible which each other
2042 * - events do not compete for the same counter
2043 * - number of events <= number of counters
2045 * validation ensures the group can be loaded onto the
2046 * PMU if it was the only group available.
2048 static int validate_group(struct perf_event
*event
)
2050 struct perf_event
*leader
= event
->group_leader
;
2051 struct cpu_hw_events
*fake_cpuc
;
2052 int ret
= -EINVAL
, n
;
2054 fake_cpuc
= allocate_fake_cpuc();
2055 if (IS_ERR(fake_cpuc
))
2056 return PTR_ERR(fake_cpuc
);
2058 * the event is not yet connected with its
2059 * siblings therefore we must first collect
2060 * existing siblings, then add the new event
2061 * before we can simulate the scheduling
2063 n
= collect_events(fake_cpuc
, leader
, true);
2067 fake_cpuc
->n_events
= n
;
2068 n
= collect_events(fake_cpuc
, event
, false);
2072 fake_cpuc
->n_events
= n
;
2074 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
2077 free_fake_cpuc(fake_cpuc
);
2081 static int x86_pmu_event_init(struct perf_event
*event
)
2086 switch (event
->attr
.type
) {
2088 case PERF_TYPE_HARDWARE
:
2089 case PERF_TYPE_HW_CACHE
:
2096 err
= __x86_pmu_event_init(event
);
2099 * we temporarily connect event to its pmu
2100 * such that validate_group() can classify
2101 * it as an x86 event using is_x86_event()
2106 if (event
->group_leader
!= event
)
2107 err
= validate_group(event
);
2109 err
= validate_event(event
);
2115 event
->destroy(event
);
2118 if (READ_ONCE(x86_pmu
.attr_rdpmc
))
2119 event
->hw
.flags
|= PERF_X86_EVENT_RDPMC_ALLOWED
;
2124 static void refresh_pce(void *ignored
)
2126 load_mm_cr4(this_cpu_read(cpu_tlbstate
.loaded_mm
));
2129 static void x86_pmu_event_mapped(struct perf_event
*event
, struct mm_struct
*mm
)
2131 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2135 * This function relies on not being called concurrently in two
2136 * tasks in the same mm. Otherwise one task could observe
2137 * perf_rdpmc_allowed > 1 and return all the way back to
2138 * userspace with CR4.PCE clear while another task is still
2139 * doing on_each_cpu_mask() to propagate CR4.PCE.
2141 * For now, this can't happen because all callers hold mmap_sem
2142 * for write. If this changes, we'll need a different solution.
2144 lockdep_assert_held_exclusive(&mm
->mmap_sem
);
2146 if (atomic_inc_return(&mm
->context
.perf_rdpmc_allowed
) == 1)
2147 on_each_cpu_mask(mm_cpumask(mm
), refresh_pce
, NULL
, 1);
2150 static void x86_pmu_event_unmapped(struct perf_event
*event
, struct mm_struct
*mm
)
2153 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2156 if (atomic_dec_and_test(&mm
->context
.perf_rdpmc_allowed
))
2157 on_each_cpu_mask(mm_cpumask(mm
), refresh_pce
, NULL
, 1);
2160 static int x86_pmu_event_idx(struct perf_event
*event
)
2162 int idx
= event
->hw
.idx
;
2164 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
2167 if (x86_pmu
.num_counters_fixed
&& idx
>= INTEL_PMC_IDX_FIXED
) {
2168 idx
-= INTEL_PMC_IDX_FIXED
;
2175 static ssize_t
get_attr_rdpmc(struct device
*cdev
,
2176 struct device_attribute
*attr
,
2179 return snprintf(buf
, 40, "%d\n", x86_pmu
.attr_rdpmc
);
2182 static ssize_t
set_attr_rdpmc(struct device
*cdev
,
2183 struct device_attribute
*attr
,
2184 const char *buf
, size_t count
)
2189 ret
= kstrtoul(buf
, 0, &val
);
2196 if (x86_pmu
.attr_rdpmc_broken
)
2199 if ((val
== 2) != (x86_pmu
.attr_rdpmc
== 2)) {
2201 * Changing into or out of always available, aka
2202 * perf-event-bypassing mode. This path is extremely slow,
2203 * but only root can trigger it, so it's okay.
2206 static_key_slow_inc(&rdpmc_always_available
);
2208 static_key_slow_dec(&rdpmc_always_available
);
2209 on_each_cpu(refresh_pce
, NULL
, 1);
2212 x86_pmu
.attr_rdpmc
= val
;
2217 static DEVICE_ATTR(rdpmc
, S_IRUSR
| S_IWUSR
, get_attr_rdpmc
, set_attr_rdpmc
);
2219 static struct attribute
*x86_pmu_attrs
[] = {
2220 &dev_attr_rdpmc
.attr
,
2224 static struct attribute_group x86_pmu_attr_group
= {
2225 .attrs
= x86_pmu_attrs
,
2228 static ssize_t
max_precise_show(struct device
*cdev
,
2229 struct device_attribute
*attr
,
2232 return snprintf(buf
, PAGE_SIZE
, "%d\n", x86_pmu_max_precise());
2235 static DEVICE_ATTR_RO(max_precise
);
2237 static struct attribute
*x86_pmu_caps_attrs
[] = {
2238 &dev_attr_max_precise
.attr
,
2242 static struct attribute_group x86_pmu_caps_group
= {
2244 .attrs
= x86_pmu_caps_attrs
,
2247 static const struct attribute_group
*x86_pmu_attr_groups
[] = {
2248 &x86_pmu_attr_group
,
2249 &x86_pmu_format_group
,
2250 &x86_pmu_events_group
,
2251 &x86_pmu_caps_group
,
2255 static void x86_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
2257 if (x86_pmu
.sched_task
)
2258 x86_pmu
.sched_task(ctx
, sched_in
);
2261 void perf_check_microcode(void)
2263 if (x86_pmu
.check_microcode
)
2264 x86_pmu
.check_microcode();
2267 static struct pmu pmu
= {
2268 .pmu_enable
= x86_pmu_enable
,
2269 .pmu_disable
= x86_pmu_disable
,
2271 .attr_groups
= x86_pmu_attr_groups
,
2273 .event_init
= x86_pmu_event_init
,
2275 .event_mapped
= x86_pmu_event_mapped
,
2276 .event_unmapped
= x86_pmu_event_unmapped
,
2280 .start
= x86_pmu_start
,
2281 .stop
= x86_pmu_stop
,
2282 .read
= x86_pmu_read
,
2284 .start_txn
= x86_pmu_start_txn
,
2285 .cancel_txn
= x86_pmu_cancel_txn
,
2286 .commit_txn
= x86_pmu_commit_txn
,
2288 .event_idx
= x86_pmu_event_idx
,
2289 .sched_task
= x86_pmu_sched_task
,
2290 .task_ctx_size
= sizeof(struct x86_perf_task_context
),
2293 void arch_perf_update_userpage(struct perf_event
*event
,
2294 struct perf_event_mmap_page
*userpg
, u64 now
)
2296 struct cyc2ns_data data
;
2299 userpg
->cap_user_time
= 0;
2300 userpg
->cap_user_time_zero
= 0;
2301 userpg
->cap_user_rdpmc
=
2302 !!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
);
2303 userpg
->pmc_width
= x86_pmu
.cntval_bits
;
2305 if (!using_native_sched_clock() || !sched_clock_stable())
2308 cyc2ns_read_begin(&data
);
2310 offset
= data
.cyc2ns_offset
+ __sched_clock_offset
;
2313 * Internal timekeeping for enabled/running/stopped times
2314 * is always in the local_clock domain.
2316 userpg
->cap_user_time
= 1;
2317 userpg
->time_mult
= data
.cyc2ns_mul
;
2318 userpg
->time_shift
= data
.cyc2ns_shift
;
2319 userpg
->time_offset
= offset
- now
;
2322 * cap_user_time_zero doesn't make sense when we're using a different
2323 * time base for the records.
2325 if (!event
->attr
.use_clockid
) {
2326 userpg
->cap_user_time_zero
= 1;
2327 userpg
->time_zero
= offset
;
2334 perf_callchain_kernel(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
)
2336 struct unwind_state state
;
2339 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2340 /* TODO: We don't support guest os callchain now */
2344 if (perf_callchain_store(entry
, regs
->ip
))
2347 for (unwind_start(&state
, current
, regs
, NULL
); !unwind_done(&state
);
2348 unwind_next_frame(&state
)) {
2349 addr
= unwind_get_return_address(&state
);
2350 if (!addr
|| perf_callchain_store(entry
, addr
))
2356 valid_user_frame(const void __user
*fp
, unsigned long size
)
2358 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
2361 static unsigned long get_segment_base(unsigned int segment
)
2363 struct desc_struct
*desc
;
2364 unsigned int idx
= segment
>> 3;
2366 if ((segment
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
2367 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2368 struct ldt_struct
*ldt
;
2370 /* IRQs are off, so this synchronizes with smp_store_release */
2371 ldt
= READ_ONCE(current
->active_mm
->context
.ldt
);
2372 if (!ldt
|| idx
>= ldt
->nr_entries
)
2375 desc
= &ldt
->entries
[idx
];
2380 if (idx
>= GDT_ENTRIES
)
2383 desc
= raw_cpu_ptr(gdt_page
.gdt
) + idx
;
2386 return get_desc_base(desc
);
2389 #ifdef CONFIG_IA32_EMULATION
2391 #include <asm/compat.h>
2394 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry_ctx
*entry
)
2396 /* 32-bit process in 64-bit kernel. */
2397 unsigned long ss_base
, cs_base
;
2398 struct stack_frame_ia32 frame
;
2399 const void __user
*fp
;
2401 if (!test_thread_flag(TIF_IA32
))
2404 cs_base
= get_segment_base(regs
->cs
);
2405 ss_base
= get_segment_base(regs
->ss
);
2407 fp
= compat_ptr(ss_base
+ regs
->bp
);
2408 pagefault_disable();
2409 while (entry
->nr
< entry
->max_stack
) {
2410 unsigned long bytes
;
2411 frame
.next_frame
= 0;
2412 frame
.return_address
= 0;
2414 if (!valid_user_frame(fp
, sizeof(frame
)))
2417 bytes
= __copy_from_user_nmi(&frame
.next_frame
, fp
, 4);
2420 bytes
= __copy_from_user_nmi(&frame
.return_address
, fp
+4, 4);
2424 perf_callchain_store(entry
, cs_base
+ frame
.return_address
);
2425 fp
= compat_ptr(ss_base
+ frame
.next_frame
);
2432 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry_ctx
*entry
)
2439 perf_callchain_user(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
)
2441 struct stack_frame frame
;
2442 const unsigned long __user
*fp
;
2444 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2445 /* TODO: We don't support guest os callchain now */
2450 * We don't know what to do with VM86 stacks.. ignore them for now.
2452 if (regs
->flags
& (X86_VM_MASK
| PERF_EFLAGS_VM
))
2455 fp
= (unsigned long __user
*)regs
->bp
;
2457 perf_callchain_store(entry
, regs
->ip
);
2462 if (perf_callchain_user32(regs
, entry
))
2465 pagefault_disable();
2466 while (entry
->nr
< entry
->max_stack
) {
2467 unsigned long bytes
;
2469 frame
.next_frame
= NULL
;
2470 frame
.return_address
= 0;
2472 if (!valid_user_frame(fp
, sizeof(frame
)))
2475 bytes
= __copy_from_user_nmi(&frame
.next_frame
, fp
, sizeof(*fp
));
2478 bytes
= __copy_from_user_nmi(&frame
.return_address
, fp
+ 1, sizeof(*fp
));
2482 perf_callchain_store(entry
, frame
.return_address
);
2483 fp
= (void __user
*)frame
.next_frame
;
2489 * Deal with code segment offsets for the various execution modes:
2491 * VM86 - the good olde 16 bit days, where the linear address is
2492 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2494 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2495 * to figure out what the 32bit base address is.
2497 * X32 - has TIF_X32 set, but is running in x86_64
2499 * X86_64 - CS,DS,SS,ES are all zero based.
2501 static unsigned long code_segment_base(struct pt_regs
*regs
)
2504 * For IA32 we look at the GDT/LDT segment base to convert the
2505 * effective IP to a linear address.
2508 #ifdef CONFIG_X86_32
2510 * If we are in VM86 mode, add the segment offset to convert to a
2513 if (regs
->flags
& X86_VM_MASK
)
2514 return 0x10 * regs
->cs
;
2516 if (user_mode(regs
) && regs
->cs
!= __USER_CS
)
2517 return get_segment_base(regs
->cs
);
2519 if (user_mode(regs
) && !user_64bit_mode(regs
) &&
2520 regs
->cs
!= __USER32_CS
)
2521 return get_segment_base(regs
->cs
);
2526 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2528 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
2529 return perf_guest_cbs
->get_guest_ip();
2531 return regs
->ip
+ code_segment_base(regs
);
2534 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2538 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2539 if (perf_guest_cbs
->is_user_mode())
2540 misc
|= PERF_RECORD_MISC_GUEST_USER
;
2542 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
2544 if (user_mode(regs
))
2545 misc
|= PERF_RECORD_MISC_USER
;
2547 misc
|= PERF_RECORD_MISC_KERNEL
;
2550 if (regs
->flags
& PERF_EFLAGS_EXACT
)
2551 misc
|= PERF_RECORD_MISC_EXACT_IP
;
2556 void perf_get_x86_pmu_capability(struct x86_pmu_capability
*cap
)
2558 cap
->version
= x86_pmu
.version
;
2559 cap
->num_counters_gp
= x86_pmu
.num_counters
;
2560 cap
->num_counters_fixed
= x86_pmu
.num_counters_fixed
;
2561 cap
->bit_width_gp
= x86_pmu
.cntval_bits
;
2562 cap
->bit_width_fixed
= x86_pmu
.cntval_bits
;
2563 cap
->events_mask
= (unsigned int)x86_pmu
.events_maskl
;
2564 cap
->events_mask_len
= x86_pmu
.events_mask_len
;
2566 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability
);