1 // SPDX-License-Identifier: GPL-2.0
3 * Extensible Firmware Interface
5 * Based on Extensible Firmware Interface Specification version 0.9
8 * Copyright (C) 1999 VA Linux Systems
9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
11 * David Mosberger-Tang <davidm@hpl.hp.com>
12 * Stephane Eranian <eranian@hpl.hp.com>
13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14 * Bjorn Helgaas <bjorn.helgaas@hp.com>
16 * All EFI Runtime Services are not implemented yet as EFI only
17 * supports physical mode addressing on SoftSDV. This is to be fixed
18 * in a future version. --drummond 1999-07-20
20 * Implemented EFI runtime services and virtual mode calls. --davidm
22 * Goutham Rao: <goutham.rao@intel.com>
23 * Skip non-WB memory and ignore empty memory ranges.
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
38 #include <asm/kregs.h>
39 #include <asm/meminit.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/tlbflush.h>
48 static __initdata
unsigned long palo_phys
;
50 unsigned long sal_systab_phys
= EFI_INVALID_TABLE_ADDR
;
52 static __initdata efi_config_table_type_t arch_tables
[] = {
53 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID
, "PALO", &palo_phys
},
54 {SAL_SYSTEM_TABLE_GUID
, "SALsystab", &sal_systab_phys
},
58 extern efi_status_t
efi_call_phys (void *, ...);
60 static efi_runtime_services_t
*runtime
;
61 static u64 mem_limit
= ~0UL, max_addr
= ~0UL, min_addr
= 0UL;
63 #define efi_call_virt(f, args...) (*(f))(args)
65 #define STUB_GET_TIME(prefix, adjust_arg) \
67 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
69 struct ia64_fpreg fr[6]; \
70 efi_time_cap_t *atc = NULL; \
74 atc = adjust_arg(tc); \
75 ia64_save_scratch_fpregs(fr); \
76 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
77 adjust_arg(tm), atc); \
78 ia64_load_scratch_fpregs(fr); \
82 #define STUB_SET_TIME(prefix, adjust_arg) \
84 prefix##_set_time (efi_time_t *tm) \
86 struct ia64_fpreg fr[6]; \
89 ia64_save_scratch_fpregs(fr); \
90 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
92 ia64_load_scratch_fpregs(fr); \
96 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
98 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
101 struct ia64_fpreg fr[6]; \
104 ia64_save_scratch_fpregs(fr); \
105 ret = efi_call_##prefix( \
106 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
107 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
108 ia64_load_scratch_fpregs(fr); \
112 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
113 static efi_status_t \
114 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
116 struct ia64_fpreg fr[6]; \
117 efi_time_t *atm = NULL; \
121 atm = adjust_arg(tm); \
122 ia64_save_scratch_fpregs(fr); \
123 ret = efi_call_##prefix( \
124 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
126 ia64_load_scratch_fpregs(fr); \
130 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
131 static efi_status_t \
132 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
133 unsigned long *data_size, void *data) \
135 struct ia64_fpreg fr[6]; \
140 aattr = adjust_arg(attr); \
141 ia64_save_scratch_fpregs(fr); \
142 ret = efi_call_##prefix( \
143 (efi_get_variable_t *) __va(runtime->get_variable), \
144 adjust_arg(name), adjust_arg(vendor), aattr, \
145 adjust_arg(data_size), adjust_arg(data)); \
146 ia64_load_scratch_fpregs(fr); \
150 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
151 static efi_status_t \
152 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
153 efi_guid_t *vendor) \
155 struct ia64_fpreg fr[6]; \
158 ia64_save_scratch_fpregs(fr); \
159 ret = efi_call_##prefix( \
160 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
161 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
162 ia64_load_scratch_fpregs(fr); \
166 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
167 static efi_status_t \
168 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
169 u32 attr, unsigned long data_size, \
172 struct ia64_fpreg fr[6]; \
175 ia64_save_scratch_fpregs(fr); \
176 ret = efi_call_##prefix( \
177 (efi_set_variable_t *) __va(runtime->set_variable), \
178 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
180 ia64_load_scratch_fpregs(fr); \
184 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
185 static efi_status_t \
186 prefix##_get_next_high_mono_count (u32 *count) \
188 struct ia64_fpreg fr[6]; \
191 ia64_save_scratch_fpregs(fr); \
192 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
193 __va(runtime->get_next_high_mono_count), \
194 adjust_arg(count)); \
195 ia64_load_scratch_fpregs(fr); \
199 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
201 prefix##_reset_system (int reset_type, efi_status_t status, \
202 unsigned long data_size, efi_char16_t *data) \
204 struct ia64_fpreg fr[6]; \
205 efi_char16_t *adata = NULL; \
208 adata = adjust_arg(data); \
210 ia64_save_scratch_fpregs(fr); \
212 (efi_reset_system_t *) __va(runtime->reset_system), \
213 reset_type, status, data_size, adata); \
214 /* should not return, but just in case... */ \
215 ia64_load_scratch_fpregs(fr); \
218 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
220 STUB_GET_TIME(phys
, phys_ptr
)
221 STUB_SET_TIME(phys
, phys_ptr
)
222 STUB_GET_WAKEUP_TIME(phys
, phys_ptr
)
223 STUB_SET_WAKEUP_TIME(phys
, phys_ptr
)
224 STUB_GET_VARIABLE(phys
, phys_ptr
)
225 STUB_GET_NEXT_VARIABLE(phys
, phys_ptr
)
226 STUB_SET_VARIABLE(phys
, phys_ptr
)
227 STUB_GET_NEXT_HIGH_MONO_COUNT(phys
, phys_ptr
)
228 STUB_RESET_SYSTEM(phys
, phys_ptr
)
232 STUB_GET_TIME(virt
, id
)
233 STUB_SET_TIME(virt
, id
)
234 STUB_GET_WAKEUP_TIME(virt
, id
)
235 STUB_SET_WAKEUP_TIME(virt
, id
)
236 STUB_GET_VARIABLE(virt
, id
)
237 STUB_GET_NEXT_VARIABLE(virt
, id
)
238 STUB_SET_VARIABLE(virt
, id
)
239 STUB_GET_NEXT_HIGH_MONO_COUNT(virt
, id
)
240 STUB_RESET_SYSTEM(virt
, id
)
243 efi_gettimeofday (struct timespec64
*ts
)
247 if ((*efi
.get_time
)(&tm
, NULL
) != EFI_SUCCESS
) {
248 memset(ts
, 0, sizeof(*ts
));
252 ts
->tv_sec
= mktime64(tm
.year
, tm
.month
, tm
.day
,
253 tm
.hour
, tm
.minute
, tm
.second
);
254 ts
->tv_nsec
= tm
.nanosecond
;
258 is_memory_available (efi_memory_desc_t
*md
)
260 if (!(md
->attribute
& EFI_MEMORY_WB
))
264 case EFI_LOADER_CODE
:
265 case EFI_LOADER_DATA
:
266 case EFI_BOOT_SERVICES_CODE
:
267 case EFI_BOOT_SERVICES_DATA
:
268 case EFI_CONVENTIONAL_MEMORY
:
274 typedef struct kern_memdesc
{
280 static kern_memdesc_t
*kern_memmap
;
282 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
285 kmd_end(kern_memdesc_t
*kmd
)
287 return (kmd
->start
+ (kmd
->num_pages
<< EFI_PAGE_SHIFT
));
291 efi_md_end(efi_memory_desc_t
*md
)
293 return (md
->phys_addr
+ efi_md_size(md
));
297 efi_wb(efi_memory_desc_t
*md
)
299 return (md
->attribute
& EFI_MEMORY_WB
);
303 efi_uc(efi_memory_desc_t
*md
)
305 return (md
->attribute
& EFI_MEMORY_UC
);
309 walk (efi_freemem_callback_t callback
, void *arg
, u64 attr
)
312 u64 start
, end
, voff
;
314 voff
= (attr
== EFI_MEMORY_WB
) ? PAGE_OFFSET
: __IA64_UNCACHED_OFFSET
;
315 for (k
= kern_memmap
; k
->start
!= ~0UL; k
++) {
316 if (k
->attribute
!= attr
)
318 start
= PAGE_ALIGN(k
->start
);
319 end
= (k
->start
+ (k
->num_pages
<< EFI_PAGE_SHIFT
)) & PAGE_MASK
;
321 if ((*callback
)(start
+ voff
, end
+ voff
, arg
) < 0)
327 * Walk the EFI memory map and call CALLBACK once for each EFI memory
328 * descriptor that has memory that is available for OS use.
331 efi_memmap_walk (efi_freemem_callback_t callback
, void *arg
)
333 walk(callback
, arg
, EFI_MEMORY_WB
);
337 * Walk the EFI memory map and call CALLBACK once for each EFI memory
338 * descriptor that has memory that is available for uncached allocator.
341 efi_memmap_walk_uc (efi_freemem_callback_t callback
, void *arg
)
343 walk(callback
, arg
, EFI_MEMORY_UC
);
347 * Look for the PAL_CODE region reported by EFI and map it using an
348 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
349 * Abstraction Layer chapter 11 in ADAG
352 efi_get_pal_addr (void)
354 void *efi_map_start
, *efi_map_end
, *p
;
355 efi_memory_desc_t
*md
;
357 int pal_code_count
= 0;
360 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
361 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
362 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
364 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
366 if (md
->type
!= EFI_PAL_CODE
)
369 if (++pal_code_count
> 1) {
370 printk(KERN_ERR
"Too many EFI Pal Code memory ranges, "
371 "dropped @ %llx\n", md
->phys_addr
);
375 * The only ITLB entry in region 7 that is used is the one
376 * installed by __start(). That entry covers a 64MB range.
378 mask
= ~((1 << KERNEL_TR_PAGE_SHIFT
) - 1);
379 vaddr
= PAGE_OFFSET
+ md
->phys_addr
;
382 * We must check that the PAL mapping won't overlap with the
385 * PAL code is guaranteed to be aligned on a power of 2 between
386 * 4k and 256KB and that only one ITR is needed to map it. This
387 * implies that the PAL code is always aligned on its size,
388 * i.e., the closest matching page size supported by the TLB.
389 * Therefore PAL code is guaranteed never to cross a 64MB unless
390 * it is bigger than 64MB (very unlikely!). So for now the
391 * following test is enough to determine whether or not we need
392 * a dedicated ITR for the PAL code.
394 if ((vaddr
& mask
) == (KERNEL_START
& mask
)) {
395 printk(KERN_INFO
"%s: no need to install ITR for PAL code\n",
400 if (efi_md_size(md
) > IA64_GRANULE_SIZE
)
401 panic("Whoa! PAL code size bigger than a granule!");
404 mask
= ~((1 << IA64_GRANULE_SHIFT
) - 1);
406 printk(KERN_INFO
"CPU %d: mapping PAL code "
407 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
408 smp_processor_id(), md
->phys_addr
,
409 md
->phys_addr
+ efi_md_size(md
),
410 vaddr
& mask
, (vaddr
& mask
) + IA64_GRANULE_SIZE
);
412 return __va(md
->phys_addr
);
414 printk(KERN_WARNING
"%s: no PAL-code memory-descriptor found\n",
420 static u8 __init
palo_checksum(u8
*buffer
, u32 length
)
423 u8
*end
= buffer
+ length
;
426 sum
= (u8
) (sum
+ *(buffer
++));
432 * Parse and handle PALO table which is published at:
433 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
435 static void __init
handle_palo(unsigned long phys_addr
)
437 struct palo_table
*palo
= __va(phys_addr
);
440 if (strncmp(palo
->signature
, PALO_SIG
, sizeof(PALO_SIG
) - 1)) {
441 printk(KERN_INFO
"PALO signature incorrect.\n");
445 checksum
= palo_checksum((u8
*)palo
, palo
->length
);
447 printk(KERN_INFO
"PALO checksum incorrect.\n");
451 setup_ptcg_sem(palo
->max_tlb_purges
, NPTCG_FROM_PALO
);
455 efi_map_pal_code (void)
457 void *pal_vaddr
= efi_get_pal_addr ();
464 * Cannot write to CRx with PSR.ic=1
466 psr
= ia64_clear_ic();
467 ia64_itr(0x1, IA64_TR_PALCODE
,
468 GRANULEROUNDDOWN((unsigned long) pal_vaddr
),
469 pte_val(pfn_pte(__pa(pal_vaddr
) >> PAGE_SHIFT
, PAGE_KERNEL
)),
471 ia64_set_psr(psr
); /* restore psr */
477 void *efi_map_start
, *efi_map_end
;
480 char *cp
, vendor
[100] = "unknown";
483 set_bit(EFI_BOOT
, &efi
.flags
);
484 set_bit(EFI_64BIT
, &efi
.flags
);
487 * It's too early to be able to use the standard kernel command line
490 for (cp
= boot_command_line
; *cp
; ) {
491 if (memcmp(cp
, "mem=", 4) == 0) {
492 mem_limit
= memparse(cp
+ 4, &cp
);
493 } else if (memcmp(cp
, "max_addr=", 9) == 0) {
494 max_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
495 } else if (memcmp(cp
, "min_addr=", 9) == 0) {
496 min_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
498 while (*cp
!= ' ' && *cp
)
505 printk(KERN_INFO
"Ignoring memory below %lluMB\n",
507 if (max_addr
!= ~0UL)
508 printk(KERN_INFO
"Ignoring memory above %lluMB\n",
511 efi
.systab
= __va(ia64_boot_param
->efi_systab
);
514 * Verify the EFI Table
516 if (efi
.systab
== NULL
)
517 panic("Whoa! Can't find EFI system table.\n");
518 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
519 panic("Whoa! EFI system table signature incorrect\n");
520 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
521 printk(KERN_WARNING
"Warning: EFI system table version "
522 "%d.%02d, expected 1.00 or greater\n",
523 efi
.systab
->hdr
.revision
>> 16,
524 efi
.systab
->hdr
.revision
& 0xffff);
526 /* Show what we know for posterity */
527 c16
= __va(efi
.systab
->fw_vendor
);
529 for (i
= 0;i
< (int) sizeof(vendor
) - 1 && *c16
; ++i
)
534 printk(KERN_INFO
"EFI v%u.%.02u by %s:",
535 efi
.systab
->hdr
.revision
>> 16,
536 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
538 palo_phys
= EFI_INVALID_TABLE_ADDR
;
540 if (efi_config_init(arch_tables
) != 0)
543 if (palo_phys
!= EFI_INVALID_TABLE_ADDR
)
544 handle_palo(palo_phys
);
546 runtime
= __va(efi
.systab
->runtime
);
547 efi
.get_time
= phys_get_time
;
548 efi
.set_time
= phys_set_time
;
549 efi
.get_wakeup_time
= phys_get_wakeup_time
;
550 efi
.set_wakeup_time
= phys_set_wakeup_time
;
551 efi
.get_variable
= phys_get_variable
;
552 efi
.get_next_variable
= phys_get_next_variable
;
553 efi
.set_variable
= phys_set_variable
;
554 efi
.get_next_high_mono_count
= phys_get_next_high_mono_count
;
555 efi
.reset_system
= phys_reset_system
;
557 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
558 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
559 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
562 /* print EFI memory map: */
564 efi_memory_desc_t
*md
;
567 for (i
= 0, p
= efi_map_start
; p
< efi_map_end
;
568 ++i
, p
+= efi_desc_size
)
575 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
577 if ((size
>> 40) > 0) {
580 } else if ((size
>> 30) > 0) {
583 } else if ((size
>> 20) > 0) {
591 printk("mem%02d: %s "
592 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
593 i
, efi_md_typeattr_format(buf
, sizeof(buf
), md
),
595 md
->phys_addr
+ efi_md_size(md
), size
, unit
);
601 efi_enter_virtual_mode();
605 efi_enter_virtual_mode (void)
607 void *efi_map_start
, *efi_map_end
, *p
;
608 efi_memory_desc_t
*md
;
612 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
613 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
614 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
616 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
618 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
620 * Some descriptors have multiple bits set, so the
621 * order of the tests is relevant.
623 if (md
->attribute
& EFI_MEMORY_WB
) {
624 md
->virt_addr
= (u64
) __va(md
->phys_addr
);
625 } else if (md
->attribute
& EFI_MEMORY_UC
) {
626 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
627 } else if (md
->attribute
& EFI_MEMORY_WC
) {
629 md
->virt_addr
= ia64_remap(md
->phys_addr
,
637 printk(KERN_INFO
"EFI_MEMORY_WC mapping\n");
638 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
640 } else if (md
->attribute
& EFI_MEMORY_WT
) {
642 md
->virt_addr
= ia64_remap(md
->phys_addr
,
650 printk(KERN_INFO
"EFI_MEMORY_WT mapping\n");
651 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
657 status
= efi_call_phys(__va(runtime
->set_virtual_address_map
),
658 ia64_boot_param
->efi_memmap_size
,
660 ia64_boot_param
->efi_memdesc_version
,
661 ia64_boot_param
->efi_memmap
);
662 if (status
!= EFI_SUCCESS
) {
663 printk(KERN_WARNING
"warning: unable to switch EFI into "
664 "virtual mode (status=%lu)\n", status
);
668 set_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
671 * Now that EFI is in virtual mode, we call the EFI functions more
674 efi
.get_time
= virt_get_time
;
675 efi
.set_time
= virt_set_time
;
676 efi
.get_wakeup_time
= virt_get_wakeup_time
;
677 efi
.set_wakeup_time
= virt_set_wakeup_time
;
678 efi
.get_variable
= virt_get_variable
;
679 efi
.get_next_variable
= virt_get_next_variable
;
680 efi
.set_variable
= virt_set_variable
;
681 efi
.get_next_high_mono_count
= virt_get_next_high_mono_count
;
682 efi
.reset_system
= virt_reset_system
;
686 * Walk the EFI memory map looking for the I/O port range. There can only be
687 * one entry of this type, other I/O port ranges should be described via ACPI.
690 efi_get_iobase (void)
692 void *efi_map_start
, *efi_map_end
, *p
;
693 efi_memory_desc_t
*md
;
696 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
697 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
698 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
700 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
702 if (md
->type
== EFI_MEMORY_MAPPED_IO_PORT_SPACE
) {
703 if (md
->attribute
& EFI_MEMORY_UC
)
704 return md
->phys_addr
;
710 static struct kern_memdesc
*
711 kern_memory_descriptor (unsigned long phys_addr
)
713 struct kern_memdesc
*md
;
715 for (md
= kern_memmap
; md
->start
!= ~0UL; md
++) {
716 if (phys_addr
- md
->start
< (md
->num_pages
<< EFI_PAGE_SHIFT
))
722 static efi_memory_desc_t
*
723 efi_memory_descriptor (unsigned long phys_addr
)
725 void *efi_map_start
, *efi_map_end
, *p
;
726 efi_memory_desc_t
*md
;
729 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
730 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
731 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
733 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
736 if (phys_addr
- md
->phys_addr
< efi_md_size(md
))
743 efi_memmap_intersects (unsigned long phys_addr
, unsigned long size
)
745 void *efi_map_start
, *efi_map_end
, *p
;
746 efi_memory_desc_t
*md
;
750 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
751 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
752 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
754 end
= phys_addr
+ size
;
756 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
758 if (md
->phys_addr
< end
&& efi_md_end(md
) > phys_addr
)
765 efi_mem_type (unsigned long phys_addr
)
767 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
775 efi_mem_attributes (unsigned long phys_addr
)
777 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
780 return md
->attribute
;
783 EXPORT_SYMBOL(efi_mem_attributes
);
786 efi_mem_attribute (unsigned long phys_addr
, unsigned long size
)
788 unsigned long end
= phys_addr
+ size
;
789 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
796 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
797 * the kernel that firmware needs this region mapped.
799 attr
= md
->attribute
& ~EFI_MEMORY_RUNTIME
;
801 unsigned long md_end
= efi_md_end(md
);
806 md
= efi_memory_descriptor(md_end
);
807 if (!md
|| (md
->attribute
& ~EFI_MEMORY_RUNTIME
) != attr
)
810 return 0; /* never reached */
814 kern_mem_attribute (unsigned long phys_addr
, unsigned long size
)
816 unsigned long end
= phys_addr
+ size
;
817 struct kern_memdesc
*md
;
821 * This is a hack for ioremap calls before we set up kern_memmap.
822 * Maybe we should do efi_memmap_init() earlier instead.
825 attr
= efi_mem_attribute(phys_addr
, size
);
826 if (attr
& EFI_MEMORY_WB
)
827 return EFI_MEMORY_WB
;
831 md
= kern_memory_descriptor(phys_addr
);
835 attr
= md
->attribute
;
837 unsigned long md_end
= kmd_end(md
);
842 md
= kern_memory_descriptor(md_end
);
843 if (!md
|| md
->attribute
!= attr
)
846 return 0; /* never reached */
850 valid_phys_addr_range (phys_addr_t phys_addr
, unsigned long size
)
855 * /dev/mem reads and writes use copy_to_user(), which implicitly
856 * uses a granule-sized kernel identity mapping. It's really
857 * only safe to do this for regions in kern_memmap. For more
858 * details, see Documentation/ia64/aliasing.rst.
860 attr
= kern_mem_attribute(phys_addr
, size
);
861 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
867 valid_mmap_phys_addr_range (unsigned long pfn
, unsigned long size
)
869 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
872 attr
= efi_mem_attribute(phys_addr
, size
);
875 * /dev/mem mmap uses normal user pages, so we don't need the entire
876 * granule, but the entire region we're mapping must support the same
879 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
883 * Intel firmware doesn't tell us about all the MMIO regions, so
884 * in general we have to allow mmap requests. But if EFI *does*
885 * tell us about anything inside this region, we should deny it.
886 * The user can always map a smaller region to avoid the overlap.
888 if (efi_memmap_intersects(phys_addr
, size
))
895 phys_mem_access_prot(struct file
*file
, unsigned long pfn
, unsigned long size
,
898 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
902 * For /dev/mem mmap, we use user mappings, but if the region is
903 * in kern_memmap (and hence may be covered by a kernel mapping),
904 * we must use the same attribute as the kernel mapping.
906 attr
= kern_mem_attribute(phys_addr
, size
);
907 if (attr
& EFI_MEMORY_WB
)
908 return pgprot_cacheable(vma_prot
);
909 else if (attr
& EFI_MEMORY_UC
)
910 return pgprot_noncached(vma_prot
);
913 * Some chipsets don't support UC access to memory. If
914 * WB is supported, we prefer that.
916 if (efi_mem_attribute(phys_addr
, size
) & EFI_MEMORY_WB
)
917 return pgprot_cacheable(vma_prot
);
919 return pgprot_noncached(vma_prot
);
923 efi_uart_console_only(void)
926 char *s
, name
[] = "ConOut";
927 efi_guid_t guid
= EFI_GLOBAL_VARIABLE_GUID
;
928 efi_char16_t
*utf16
, name_utf16
[32];
929 unsigned char data
[1024];
930 unsigned long size
= sizeof(data
);
931 struct efi_generic_dev_path
*hdr
, *end_addr
;
934 /* Convert to UTF-16 */
938 *utf16
++ = *s
++ & 0x7f;
941 status
= efi
.get_variable(name_utf16
, &guid
, NULL
, &size
, data
);
942 if (status
!= EFI_SUCCESS
) {
943 printk(KERN_ERR
"No EFI %s variable?\n", name
);
947 hdr
= (struct efi_generic_dev_path
*) data
;
948 end_addr
= (struct efi_generic_dev_path
*) ((u8
*) data
+ size
);
949 while (hdr
< end_addr
) {
950 if (hdr
->type
== EFI_DEV_MSG
&&
951 hdr
->sub_type
== EFI_DEV_MSG_UART
)
953 else if (hdr
->type
== EFI_DEV_END_PATH
||
954 hdr
->type
== EFI_DEV_END_PATH2
) {
957 if (hdr
->sub_type
== EFI_DEV_END_ENTIRE
)
961 hdr
= (struct efi_generic_dev_path
*)((u8
*) hdr
+ hdr
->length
);
963 printk(KERN_ERR
"Malformed %s value\n", name
);
968 * Look for the first granule aligned memory descriptor memory
969 * that is big enough to hold EFI memory map. Make sure this
970 * descriptor is at least granule sized so it does not get trimmed
972 struct kern_memdesc
*
973 find_memmap_space (void)
975 u64 contig_low
=0, contig_high
=0;
977 void *efi_map_start
, *efi_map_end
, *p
, *q
;
978 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
979 u64 space_needed
, efi_desc_size
;
980 unsigned long total_mem
= 0;
982 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
983 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
984 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
987 * Worst case: we need 3 kernel descriptors for each efi descriptor
988 * (if every entry has a WB part in the middle, and UC head and tail),
989 * plus one for the end marker.
991 space_needed
= sizeof(kern_memdesc_t
) *
992 (3 * (ia64_boot_param
->efi_memmap_size
/efi_desc_size
) + 1);
994 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
999 if (pmd
== NULL
|| !efi_wb(pmd
) ||
1000 efi_md_end(pmd
) != md
->phys_addr
) {
1001 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1002 contig_high
= efi_md_end(md
);
1003 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1004 q
+= efi_desc_size
) {
1006 if (!efi_wb(check_md
))
1008 if (contig_high
!= check_md
->phys_addr
)
1010 contig_high
= efi_md_end(check_md
);
1012 contig_high
= GRANULEROUNDDOWN(contig_high
);
1014 if (!is_memory_available(md
) || md
->type
== EFI_LOADER_DATA
)
1017 /* Round ends inward to granule boundaries */
1018 as
= max(contig_low
, md
->phys_addr
);
1019 ae
= min(contig_high
, efi_md_end(md
));
1021 /* keep within max_addr= and min_addr= command line arg */
1022 as
= max(as
, min_addr
);
1023 ae
= min(ae
, max_addr
);
1027 /* avoid going over mem= command line arg */
1028 if (total_mem
+ (ae
- as
) > mem_limit
)
1029 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1034 if (ae
- as
> space_needed
)
1037 if (p
>= efi_map_end
)
1038 panic("Can't allocate space for kernel memory descriptors");
1044 * Walk the EFI memory map and gather all memory available for kernel
1045 * to use. We can allocate partial granules only if the unavailable
1046 * parts exist, and are WB.
1049 efi_memmap_init(u64
*s
, u64
*e
)
1051 struct kern_memdesc
*k
, *prev
= NULL
;
1052 u64 contig_low
=0, contig_high
=0;
1054 void *efi_map_start
, *efi_map_end
, *p
, *q
;
1055 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
1057 unsigned long total_mem
= 0;
1059 k
= kern_memmap
= find_memmap_space();
1061 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1062 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1063 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1065 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
1069 (md
->type
== EFI_CONVENTIONAL_MEMORY
||
1070 md
->type
== EFI_BOOT_SERVICES_DATA
)) {
1071 k
->attribute
= EFI_MEMORY_UC
;
1072 k
->start
= md
->phys_addr
;
1073 k
->num_pages
= md
->num_pages
;
1078 if (pmd
== NULL
|| !efi_wb(pmd
) ||
1079 efi_md_end(pmd
) != md
->phys_addr
) {
1080 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1081 contig_high
= efi_md_end(md
);
1082 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1083 q
+= efi_desc_size
) {
1085 if (!efi_wb(check_md
))
1087 if (contig_high
!= check_md
->phys_addr
)
1089 contig_high
= efi_md_end(check_md
);
1091 contig_high
= GRANULEROUNDDOWN(contig_high
);
1093 if (!is_memory_available(md
))
1097 * Round ends inward to granule boundaries
1098 * Give trimmings to uncached allocator
1100 if (md
->phys_addr
< contig_low
) {
1101 lim
= min(efi_md_end(md
), contig_low
);
1103 if (k
> kern_memmap
&&
1104 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1105 kmd_end(k
-1) == md
->phys_addr
) {
1107 (lim
- md
->phys_addr
)
1110 k
->attribute
= EFI_MEMORY_UC
;
1111 k
->start
= md
->phys_addr
;
1112 k
->num_pages
= (lim
- md
->phys_addr
)
1121 if (efi_md_end(md
) > contig_high
) {
1122 lim
= max(md
->phys_addr
, contig_high
);
1124 if (lim
== md
->phys_addr
&& k
> kern_memmap
&&
1125 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1126 kmd_end(k
-1) == md
->phys_addr
) {
1127 (k
-1)->num_pages
+= md
->num_pages
;
1129 k
->attribute
= EFI_MEMORY_UC
;
1131 k
->num_pages
= (efi_md_end(md
) - lim
)
1138 ae
= efi_md_end(md
);
1140 /* keep within max_addr= and min_addr= command line arg */
1141 as
= max(as
, min_addr
);
1142 ae
= min(ae
, max_addr
);
1146 /* avoid going over mem= command line arg */
1147 if (total_mem
+ (ae
- as
) > mem_limit
)
1148 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1152 if (prev
&& kmd_end(prev
) == md
->phys_addr
) {
1153 prev
->num_pages
+= (ae
- as
) >> EFI_PAGE_SHIFT
;
1154 total_mem
+= ae
- as
;
1157 k
->attribute
= EFI_MEMORY_WB
;
1159 k
->num_pages
= (ae
- as
) >> EFI_PAGE_SHIFT
;
1160 total_mem
+= ae
- as
;
1163 k
->start
= ~0L; /* end-marker */
1165 /* reserve the memory we are using for kern_memmap */
1166 *s
= (u64
)kern_memmap
;
1173 efi_initialize_iomem_resources(struct resource
*code_resource
,
1174 struct resource
*data_resource
,
1175 struct resource
*bss_resource
)
1177 struct resource
*res
;
1178 void *efi_map_start
, *efi_map_end
, *p
;
1179 efi_memory_desc_t
*md
;
1182 unsigned long flags
, desc
;
1184 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1185 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1186 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1190 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1193 if (md
->num_pages
== 0) /* should not happen */
1196 flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
1197 desc
= IORES_DESC_NONE
;
1201 case EFI_MEMORY_MAPPED_IO
:
1202 case EFI_MEMORY_MAPPED_IO_PORT_SPACE
:
1205 case EFI_LOADER_CODE
:
1206 case EFI_LOADER_DATA
:
1207 case EFI_BOOT_SERVICES_DATA
:
1208 case EFI_BOOT_SERVICES_CODE
:
1209 case EFI_CONVENTIONAL_MEMORY
:
1210 if (md
->attribute
& EFI_MEMORY_WP
) {
1211 name
= "System ROM";
1212 flags
|= IORESOURCE_READONLY
;
1213 } else if (md
->attribute
== EFI_MEMORY_UC
) {
1214 name
= "Uncached RAM";
1216 name
= "System RAM";
1217 flags
|= IORESOURCE_SYSRAM
;
1221 case EFI_ACPI_MEMORY_NVS
:
1222 name
= "ACPI Non-volatile Storage";
1223 desc
= IORES_DESC_ACPI_NV_STORAGE
;
1226 case EFI_UNUSABLE_MEMORY
:
1228 flags
|= IORESOURCE_DISABLED
;
1231 case EFI_PERSISTENT_MEMORY
:
1232 name
= "Persistent Memory";
1233 desc
= IORES_DESC_PERSISTENT_MEMORY
;
1236 case EFI_RESERVED_TYPE
:
1237 case EFI_RUNTIME_SERVICES_CODE
:
1238 case EFI_RUNTIME_SERVICES_DATA
:
1239 case EFI_ACPI_RECLAIM_MEMORY
:
1245 if ((res
= kzalloc(sizeof(struct resource
),
1246 GFP_KERNEL
)) == NULL
) {
1248 "failed to allocate resource for iomem\n");
1253 res
->start
= md
->phys_addr
;
1254 res
->end
= md
->phys_addr
+ efi_md_size(md
) - 1;
1258 if (insert_resource(&iomem_resource
, res
) < 0)
1262 * We don't know which region contains
1263 * kernel data so we try it repeatedly and
1264 * let the resource manager test it.
1266 insert_resource(res
, code_resource
);
1267 insert_resource(res
, data_resource
);
1268 insert_resource(res
, bss_resource
);
1270 insert_resource(res
, &efi_memmap_res
);
1271 insert_resource(res
, &boot_param_res
);
1272 if (crashk_res
.end
> crashk_res
.start
)
1273 insert_resource(res
, &crashk_res
);
1280 /* find a block of memory aligned to 64M exclude reserved regions
1281 rsvd_regions are sorted
1283 unsigned long __init
1284 kdump_find_rsvd_region (unsigned long size
, struct rsvd_region
*r
, int n
)
1288 u64 alignment
= 1UL << _PAGE_SIZE_64M
;
1289 void *efi_map_start
, *efi_map_end
, *p
;
1290 efi_memory_desc_t
*md
;
1293 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1294 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1295 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1297 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1301 start
= ALIGN(md
->phys_addr
, alignment
);
1302 end
= efi_md_end(md
);
1303 for (i
= 0; i
< n
; i
++) {
1304 if (__pa(r
[i
].start
) >= start
&& __pa(r
[i
].end
) < end
) {
1305 if (__pa(r
[i
].start
) > start
+ size
)
1307 start
= ALIGN(__pa(r
[i
].end
), alignment
);
1309 __pa(r
[i
+1].start
) < start
+ size
)
1315 if (end
> start
+ size
)
1320 "Cannot reserve 0x%lx byte of memory for crashdump\n", size
);
1325 #ifdef CONFIG_CRASH_DUMP
1326 /* locate the size find a the descriptor at a certain address */
1327 unsigned long __init
1328 vmcore_find_descriptor_size (unsigned long address
)
1330 void *efi_map_start
, *efi_map_end
, *p
;
1331 efi_memory_desc_t
*md
;
1333 unsigned long ret
= 0;
1335 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1336 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1337 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1339 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1341 if (efi_wb(md
) && md
->type
== EFI_LOADER_DATA
1342 && md
->phys_addr
== address
) {
1343 ret
= efi_md_size(md
);
1349 printk(KERN_WARNING
"Cannot locate EFI vmcore descriptor\n");