net: initialize fastreuse on inet_inherit_port
[linux/fpc-iii.git] / mm / vmscan.c
blob4e5846b8b5eb68ffcbc76186c2fa51a3d12778c0
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
57 #include "internal.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
69 /* Allocation order */
70 int order;
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
76 nodemask_t *nodemask;
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup *target_mem_cgroup;
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
90 unsigned int may_writepage:1;
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
101 unsigned int hibernation_mode:1;
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
122 } while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
136 } while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
142 * From 0 .. 100. Higher means more swappy.
144 int vm_swappiness = 60;
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
149 unsigned long vm_total_pages;
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
157 return !sc->target_mem_cgroup;
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
173 static bool sane_reclaim(struct scan_control *sc)
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
177 if (!memcg)
178 return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 return true;
182 #endif
183 return false;
185 #else
186 static bool global_reclaim(struct scan_control *sc)
188 return true;
191 static bool sane_reclaim(struct scan_control *sc)
193 return true;
195 #endif
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
202 unsigned long zone_reclaimable_pages(struct zone *zone)
204 unsigned long nr;
206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 if (get_nr_swap_pages() > 0)
209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
212 return nr;
215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
217 unsigned long nr;
219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
223 if (get_nr_swap_pages() > 0)
224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
228 return nr;
231 bool pgdat_reclaimable(struct pglist_data *pgdat)
233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 pgdat_reclaimable_pages(pgdat) * 6;
238 * lruvec_lru_size - Returns the number of pages on the given LRU list.
239 * @lruvec: lru vector
240 * @lru: lru to use
241 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 unsigned long lru_size;
246 int zid;
248 if (!mem_cgroup_disabled())
249 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
250 else
251 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
254 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
255 unsigned long size;
257 if (!managed_zone(zone))
258 continue;
260 if (!mem_cgroup_disabled())
261 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
262 else
263 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
264 NR_ZONE_LRU_BASE + lru);
265 lru_size -= min(size, lru_size);
268 return lru_size;
273 * Add a shrinker callback to be called from the vm.
275 int register_shrinker(struct shrinker *shrinker)
277 size_t size = sizeof(*shrinker->nr_deferred);
279 if (shrinker->flags & SHRINKER_NUMA_AWARE)
280 size *= nr_node_ids;
282 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
283 if (!shrinker->nr_deferred)
284 return -ENOMEM;
286 down_write(&shrinker_rwsem);
287 list_add_tail(&shrinker->list, &shrinker_list);
288 up_write(&shrinker_rwsem);
289 return 0;
291 EXPORT_SYMBOL(register_shrinker);
294 * Remove one
296 void unregister_shrinker(struct shrinker *shrinker)
298 if (!shrinker->nr_deferred)
299 return;
300 down_write(&shrinker_rwsem);
301 list_del(&shrinker->list);
302 up_write(&shrinker_rwsem);
303 kfree(shrinker->nr_deferred);
304 shrinker->nr_deferred = NULL;
306 EXPORT_SYMBOL(unregister_shrinker);
308 #define SHRINK_BATCH 128
310 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
311 struct shrinker *shrinker,
312 unsigned long nr_scanned,
313 unsigned long nr_eligible)
315 unsigned long freed = 0;
316 unsigned long long delta;
317 long total_scan;
318 long freeable;
319 long nr;
320 long new_nr;
321 int nid = shrinkctl->nid;
322 long batch_size = shrinker->batch ? shrinker->batch
323 : SHRINK_BATCH;
324 long scanned = 0, next_deferred;
326 freeable = shrinker->count_objects(shrinker, shrinkctl);
327 if (freeable == 0)
328 return 0;
331 * copy the current shrinker scan count into a local variable
332 * and zero it so that other concurrent shrinker invocations
333 * don't also do this scanning work.
335 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
337 total_scan = nr;
338 delta = (4 * nr_scanned) / shrinker->seeks;
339 delta *= freeable;
340 do_div(delta, nr_eligible + 1);
341 total_scan += delta;
342 if (total_scan < 0) {
343 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
344 shrinker->scan_objects, total_scan);
345 total_scan = freeable;
346 next_deferred = nr;
347 } else
348 next_deferred = total_scan;
351 * We need to avoid excessive windup on filesystem shrinkers
352 * due to large numbers of GFP_NOFS allocations causing the
353 * shrinkers to return -1 all the time. This results in a large
354 * nr being built up so when a shrink that can do some work
355 * comes along it empties the entire cache due to nr >>>
356 * freeable. This is bad for sustaining a working set in
357 * memory.
359 * Hence only allow the shrinker to scan the entire cache when
360 * a large delta change is calculated directly.
362 if (delta < freeable / 4)
363 total_scan = min(total_scan, freeable / 2);
366 * Avoid risking looping forever due to too large nr value:
367 * never try to free more than twice the estimate number of
368 * freeable entries.
370 if (total_scan > freeable * 2)
371 total_scan = freeable * 2;
373 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
374 nr_scanned, nr_eligible,
375 freeable, delta, total_scan);
378 * Normally, we should not scan less than batch_size objects in one
379 * pass to avoid too frequent shrinker calls, but if the slab has less
380 * than batch_size objects in total and we are really tight on memory,
381 * we will try to reclaim all available objects, otherwise we can end
382 * up failing allocations although there are plenty of reclaimable
383 * objects spread over several slabs with usage less than the
384 * batch_size.
386 * We detect the "tight on memory" situations by looking at the total
387 * number of objects we want to scan (total_scan). If it is greater
388 * than the total number of objects on slab (freeable), we must be
389 * scanning at high prio and therefore should try to reclaim as much as
390 * possible.
392 while (total_scan >= batch_size ||
393 total_scan >= freeable) {
394 unsigned long ret;
395 unsigned long nr_to_scan = min(batch_size, total_scan);
397 shrinkctl->nr_to_scan = nr_to_scan;
398 ret = shrinker->scan_objects(shrinker, shrinkctl);
399 if (ret == SHRINK_STOP)
400 break;
401 freed += ret;
403 count_vm_events(SLABS_SCANNED, nr_to_scan);
404 total_scan -= nr_to_scan;
405 scanned += nr_to_scan;
407 cond_resched();
410 if (next_deferred >= scanned)
411 next_deferred -= scanned;
412 else
413 next_deferred = 0;
415 * move the unused scan count back into the shrinker in a
416 * manner that handles concurrent updates. If we exhausted the
417 * scan, there is no need to do an update.
419 if (next_deferred > 0)
420 new_nr = atomic_long_add_return(next_deferred,
421 &shrinker->nr_deferred[nid]);
422 else
423 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
425 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
426 return freed;
430 * shrink_slab - shrink slab caches
431 * @gfp_mask: allocation context
432 * @nid: node whose slab caches to target
433 * @memcg: memory cgroup whose slab caches to target
434 * @nr_scanned: pressure numerator
435 * @nr_eligible: pressure denominator
437 * Call the shrink functions to age shrinkable caches.
439 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
440 * unaware shrinkers will receive a node id of 0 instead.
442 * @memcg specifies the memory cgroup to target. If it is not NULL,
443 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
444 * objects from the memory cgroup specified. Otherwise, only unaware
445 * shrinkers are called.
447 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
448 * the available objects should be scanned. Page reclaim for example
449 * passes the number of pages scanned and the number of pages on the
450 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
451 * when it encountered mapped pages. The ratio is further biased by
452 * the ->seeks setting of the shrink function, which indicates the
453 * cost to recreate an object relative to that of an LRU page.
455 * Returns the number of reclaimed slab objects.
457 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
458 struct mem_cgroup *memcg,
459 unsigned long nr_scanned,
460 unsigned long nr_eligible)
462 struct shrinker *shrinker;
463 unsigned long freed = 0;
465 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
466 return 0;
468 if (nr_scanned == 0)
469 nr_scanned = SWAP_CLUSTER_MAX;
471 if (!down_read_trylock(&shrinker_rwsem)) {
473 * If we would return 0, our callers would understand that we
474 * have nothing else to shrink and give up trying. By returning
475 * 1 we keep it going and assume we'll be able to shrink next
476 * time.
478 freed = 1;
479 goto out;
482 list_for_each_entry(shrinker, &shrinker_list, list) {
483 struct shrink_control sc = {
484 .gfp_mask = gfp_mask,
485 .nid = nid,
486 .memcg = memcg,
490 * If kernel memory accounting is disabled, we ignore
491 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
492 * passing NULL for memcg.
494 if (memcg_kmem_enabled() &&
495 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
496 continue;
498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
499 sc.nid = 0;
501 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
504 up_read(&shrinker_rwsem);
505 out:
506 cond_resched();
507 return freed;
510 void drop_slab_node(int nid)
512 unsigned long freed;
514 do {
515 struct mem_cgroup *memcg = NULL;
517 freed = 0;
518 do {
519 freed += shrink_slab(GFP_KERNEL, nid, memcg,
520 1000, 1000);
521 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
522 } while (freed > 10);
525 void drop_slab(void)
527 int nid;
529 for_each_online_node(nid)
530 drop_slab_node(nid);
533 static inline int is_page_cache_freeable(struct page *page)
536 * A freeable page cache page is referenced only by the caller
537 * that isolated the page, the page cache radix tree and
538 * optional buffer heads at page->private.
540 return page_count(page) - page_has_private(page) == 2;
543 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
545 if (current->flags & PF_SWAPWRITE)
546 return 1;
547 if (!inode_write_congested(inode))
548 return 1;
549 if (inode_to_bdi(inode) == current->backing_dev_info)
550 return 1;
551 return 0;
555 * We detected a synchronous write error writing a page out. Probably
556 * -ENOSPC. We need to propagate that into the address_space for a subsequent
557 * fsync(), msync() or close().
559 * The tricky part is that after writepage we cannot touch the mapping: nothing
560 * prevents it from being freed up. But we have a ref on the page and once
561 * that page is locked, the mapping is pinned.
563 * We're allowed to run sleeping lock_page() here because we know the caller has
564 * __GFP_FS.
566 static void handle_write_error(struct address_space *mapping,
567 struct page *page, int error)
569 lock_page(page);
570 if (page_mapping(page) == mapping)
571 mapping_set_error(mapping, error);
572 unlock_page(page);
575 /* possible outcome of pageout() */
576 typedef enum {
577 /* failed to write page out, page is locked */
578 PAGE_KEEP,
579 /* move page to the active list, page is locked */
580 PAGE_ACTIVATE,
581 /* page has been sent to the disk successfully, page is unlocked */
582 PAGE_SUCCESS,
583 /* page is clean and locked */
584 PAGE_CLEAN,
585 } pageout_t;
588 * pageout is called by shrink_page_list() for each dirty page.
589 * Calls ->writepage().
591 static pageout_t pageout(struct page *page, struct address_space *mapping,
592 struct scan_control *sc)
595 * If the page is dirty, only perform writeback if that write
596 * will be non-blocking. To prevent this allocation from being
597 * stalled by pagecache activity. But note that there may be
598 * stalls if we need to run get_block(). We could test
599 * PagePrivate for that.
601 * If this process is currently in __generic_file_write_iter() against
602 * this page's queue, we can perform writeback even if that
603 * will block.
605 * If the page is swapcache, write it back even if that would
606 * block, for some throttling. This happens by accident, because
607 * swap_backing_dev_info is bust: it doesn't reflect the
608 * congestion state of the swapdevs. Easy to fix, if needed.
610 if (!is_page_cache_freeable(page))
611 return PAGE_KEEP;
612 if (!mapping) {
614 * Some data journaling orphaned pages can have
615 * page->mapping == NULL while being dirty with clean buffers.
617 if (page_has_private(page)) {
618 if (try_to_free_buffers(page)) {
619 ClearPageDirty(page);
620 pr_info("%s: orphaned page\n", __func__);
621 return PAGE_CLEAN;
624 return PAGE_KEEP;
626 if (mapping->a_ops->writepage == NULL)
627 return PAGE_ACTIVATE;
628 if (!may_write_to_inode(mapping->host, sc))
629 return PAGE_KEEP;
631 if (clear_page_dirty_for_io(page)) {
632 int res;
633 struct writeback_control wbc = {
634 .sync_mode = WB_SYNC_NONE,
635 .nr_to_write = SWAP_CLUSTER_MAX,
636 .range_start = 0,
637 .range_end = LLONG_MAX,
638 .for_reclaim = 1,
641 SetPageReclaim(page);
642 res = mapping->a_ops->writepage(page, &wbc);
643 if (res < 0)
644 handle_write_error(mapping, page, res);
645 if (res == AOP_WRITEPAGE_ACTIVATE) {
646 ClearPageReclaim(page);
647 return PAGE_ACTIVATE;
650 if (!PageWriteback(page)) {
651 /* synchronous write or broken a_ops? */
652 ClearPageReclaim(page);
654 trace_mm_vmscan_writepage(page);
655 inc_node_page_state(page, NR_VMSCAN_WRITE);
656 return PAGE_SUCCESS;
659 return PAGE_CLEAN;
663 * Same as remove_mapping, but if the page is removed from the mapping, it
664 * gets returned with a refcount of 0.
666 static int __remove_mapping(struct address_space *mapping, struct page *page,
667 bool reclaimed)
669 unsigned long flags;
671 BUG_ON(!PageLocked(page));
672 BUG_ON(mapping != page_mapping(page));
674 spin_lock_irqsave(&mapping->tree_lock, flags);
676 * The non racy check for a busy page.
678 * Must be careful with the order of the tests. When someone has
679 * a ref to the page, it may be possible that they dirty it then
680 * drop the reference. So if PageDirty is tested before page_count
681 * here, then the following race may occur:
683 * get_user_pages(&page);
684 * [user mapping goes away]
685 * write_to(page);
686 * !PageDirty(page) [good]
687 * SetPageDirty(page);
688 * put_page(page);
689 * !page_count(page) [good, discard it]
691 * [oops, our write_to data is lost]
693 * Reversing the order of the tests ensures such a situation cannot
694 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
695 * load is not satisfied before that of page->_refcount.
697 * Note that if SetPageDirty is always performed via set_page_dirty,
698 * and thus under tree_lock, then this ordering is not required.
700 if (!page_ref_freeze(page, 2))
701 goto cannot_free;
702 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
703 if (unlikely(PageDirty(page))) {
704 page_ref_unfreeze(page, 2);
705 goto cannot_free;
708 if (PageSwapCache(page)) {
709 swp_entry_t swap = { .val = page_private(page) };
710 mem_cgroup_swapout(page, swap);
711 __delete_from_swap_cache(page);
712 spin_unlock_irqrestore(&mapping->tree_lock, flags);
713 swapcache_free(swap);
714 } else {
715 void (*freepage)(struct page *);
716 void *shadow = NULL;
718 freepage = mapping->a_ops->freepage;
720 * Remember a shadow entry for reclaimed file cache in
721 * order to detect refaults, thus thrashing, later on.
723 * But don't store shadows in an address space that is
724 * already exiting. This is not just an optizimation,
725 * inode reclaim needs to empty out the radix tree or
726 * the nodes are lost. Don't plant shadows behind its
727 * back.
729 * We also don't store shadows for DAX mappings because the
730 * only page cache pages found in these are zero pages
731 * covering holes, and because we don't want to mix DAX
732 * exceptional entries and shadow exceptional entries in the
733 * same page_tree.
735 if (reclaimed && page_is_file_cache(page) &&
736 !mapping_exiting(mapping) && !dax_mapping(mapping))
737 shadow = workingset_eviction(mapping, page);
738 __delete_from_page_cache(page, shadow);
739 spin_unlock_irqrestore(&mapping->tree_lock, flags);
741 if (freepage != NULL)
742 freepage(page);
745 return 1;
747 cannot_free:
748 spin_unlock_irqrestore(&mapping->tree_lock, flags);
749 return 0;
753 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
754 * someone else has a ref on the page, abort and return 0. If it was
755 * successfully detached, return 1. Assumes the caller has a single ref on
756 * this page.
758 int remove_mapping(struct address_space *mapping, struct page *page)
760 if (__remove_mapping(mapping, page, false)) {
762 * Unfreezing the refcount with 1 rather than 2 effectively
763 * drops the pagecache ref for us without requiring another
764 * atomic operation.
766 page_ref_unfreeze(page, 1);
767 return 1;
769 return 0;
773 * putback_lru_page - put previously isolated page onto appropriate LRU list
774 * @page: page to be put back to appropriate lru list
776 * Add previously isolated @page to appropriate LRU list.
777 * Page may still be unevictable for other reasons.
779 * lru_lock must not be held, interrupts must be enabled.
781 void putback_lru_page(struct page *page)
783 bool is_unevictable;
784 int was_unevictable = PageUnevictable(page);
786 VM_BUG_ON_PAGE(PageLRU(page), page);
788 redo:
789 ClearPageUnevictable(page);
791 if (page_evictable(page)) {
793 * For evictable pages, we can use the cache.
794 * In event of a race, worst case is we end up with an
795 * unevictable page on [in]active list.
796 * We know how to handle that.
798 is_unevictable = false;
799 lru_cache_add(page);
800 } else {
802 * Put unevictable pages directly on zone's unevictable
803 * list.
805 is_unevictable = true;
806 add_page_to_unevictable_list(page);
808 * When racing with an mlock or AS_UNEVICTABLE clearing
809 * (page is unlocked) make sure that if the other thread
810 * does not observe our setting of PG_lru and fails
811 * isolation/check_move_unevictable_pages,
812 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
813 * the page back to the evictable list.
815 * The other side is TestClearPageMlocked() or shmem_lock().
817 smp_mb();
821 * page's status can change while we move it among lru. If an evictable
822 * page is on unevictable list, it never be freed. To avoid that,
823 * check after we added it to the list, again.
825 if (is_unevictable && page_evictable(page)) {
826 if (!isolate_lru_page(page)) {
827 put_page(page);
828 goto redo;
830 /* This means someone else dropped this page from LRU
831 * So, it will be freed or putback to LRU again. There is
832 * nothing to do here.
836 if (was_unevictable && !is_unevictable)
837 count_vm_event(UNEVICTABLE_PGRESCUED);
838 else if (!was_unevictable && is_unevictable)
839 count_vm_event(UNEVICTABLE_PGCULLED);
841 put_page(page); /* drop ref from isolate */
844 enum page_references {
845 PAGEREF_RECLAIM,
846 PAGEREF_RECLAIM_CLEAN,
847 PAGEREF_KEEP,
848 PAGEREF_ACTIVATE,
851 static enum page_references page_check_references(struct page *page,
852 struct scan_control *sc)
854 int referenced_ptes, referenced_page;
855 unsigned long vm_flags;
857 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
858 &vm_flags);
859 referenced_page = TestClearPageReferenced(page);
862 * Mlock lost the isolation race with us. Let try_to_unmap()
863 * move the page to the unevictable list.
865 if (vm_flags & VM_LOCKED)
866 return PAGEREF_RECLAIM;
868 if (referenced_ptes) {
869 if (PageSwapBacked(page))
870 return PAGEREF_ACTIVATE;
872 * All mapped pages start out with page table
873 * references from the instantiating fault, so we need
874 * to look twice if a mapped file page is used more
875 * than once.
877 * Mark it and spare it for another trip around the
878 * inactive list. Another page table reference will
879 * lead to its activation.
881 * Note: the mark is set for activated pages as well
882 * so that recently deactivated but used pages are
883 * quickly recovered.
885 SetPageReferenced(page);
887 if (referenced_page || referenced_ptes > 1)
888 return PAGEREF_ACTIVATE;
891 * Activate file-backed executable pages after first usage.
893 if (vm_flags & VM_EXEC)
894 return PAGEREF_ACTIVATE;
896 return PAGEREF_KEEP;
899 /* Reclaim if clean, defer dirty pages to writeback */
900 if (referenced_page && !PageSwapBacked(page))
901 return PAGEREF_RECLAIM_CLEAN;
903 return PAGEREF_RECLAIM;
906 /* Check if a page is dirty or under writeback */
907 static void page_check_dirty_writeback(struct page *page,
908 bool *dirty, bool *writeback)
910 struct address_space *mapping;
913 * Anonymous pages are not handled by flushers and must be written
914 * from reclaim context. Do not stall reclaim based on them
916 if (!page_is_file_cache(page)) {
917 *dirty = false;
918 *writeback = false;
919 return;
922 /* By default assume that the page flags are accurate */
923 *dirty = PageDirty(page);
924 *writeback = PageWriteback(page);
926 /* Verify dirty/writeback state if the filesystem supports it */
927 if (!page_has_private(page))
928 return;
930 mapping = page_mapping(page);
931 if (mapping && mapping->a_ops->is_dirty_writeback)
932 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
936 * shrink_page_list() returns the number of reclaimed pages
938 static unsigned long shrink_page_list(struct list_head *page_list,
939 struct pglist_data *pgdat,
940 struct scan_control *sc,
941 enum ttu_flags ttu_flags,
942 unsigned long *ret_nr_dirty,
943 unsigned long *ret_nr_unqueued_dirty,
944 unsigned long *ret_nr_congested,
945 unsigned long *ret_nr_writeback,
946 unsigned long *ret_nr_immediate,
947 bool force_reclaim)
949 LIST_HEAD(ret_pages);
950 LIST_HEAD(free_pages);
951 int pgactivate = 0;
952 unsigned long nr_unqueued_dirty = 0;
953 unsigned long nr_dirty = 0;
954 unsigned long nr_congested = 0;
955 unsigned long nr_reclaimed = 0;
956 unsigned long nr_writeback = 0;
957 unsigned long nr_immediate = 0;
959 cond_resched();
961 while (!list_empty(page_list)) {
962 struct address_space *mapping;
963 struct page *page;
964 int may_enter_fs;
965 enum page_references references = PAGEREF_RECLAIM_CLEAN;
966 bool dirty, writeback;
967 bool lazyfree = false;
968 int ret = SWAP_SUCCESS;
970 cond_resched();
972 page = lru_to_page(page_list);
973 list_del(&page->lru);
975 if (!trylock_page(page))
976 goto keep;
978 VM_BUG_ON_PAGE(PageActive(page), page);
980 sc->nr_scanned++;
982 if (unlikely(!page_evictable(page)))
983 goto cull_mlocked;
985 if (!sc->may_unmap && page_mapped(page))
986 goto keep_locked;
988 /* Double the slab pressure for mapped and swapcache pages */
989 if (page_mapped(page) || PageSwapCache(page))
990 sc->nr_scanned++;
992 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
993 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
996 * The number of dirty pages determines if a zone is marked
997 * reclaim_congested which affects wait_iff_congested. kswapd
998 * will stall and start writing pages if the tail of the LRU
999 * is all dirty unqueued pages.
1001 page_check_dirty_writeback(page, &dirty, &writeback);
1002 if (dirty || writeback)
1003 nr_dirty++;
1005 if (dirty && !writeback)
1006 nr_unqueued_dirty++;
1009 * Treat this page as congested if the underlying BDI is or if
1010 * pages are cycling through the LRU so quickly that the
1011 * pages marked for immediate reclaim are making it to the
1012 * end of the LRU a second time.
1014 mapping = page_mapping(page);
1015 if (((dirty || writeback) && mapping &&
1016 inode_write_congested(mapping->host)) ||
1017 (writeback && PageReclaim(page)))
1018 nr_congested++;
1021 * If a page at the tail of the LRU is under writeback, there
1022 * are three cases to consider.
1024 * 1) If reclaim is encountering an excessive number of pages
1025 * under writeback and this page is both under writeback and
1026 * PageReclaim then it indicates that pages are being queued
1027 * for IO but are being recycled through the LRU before the
1028 * IO can complete. Waiting on the page itself risks an
1029 * indefinite stall if it is impossible to writeback the
1030 * page due to IO error or disconnected storage so instead
1031 * note that the LRU is being scanned too quickly and the
1032 * caller can stall after page list has been processed.
1034 * 2) Global or new memcg reclaim encounters a page that is
1035 * not marked for immediate reclaim, or the caller does not
1036 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1037 * not to fs). In this case mark the page for immediate
1038 * reclaim and continue scanning.
1040 * Require may_enter_fs because we would wait on fs, which
1041 * may not have submitted IO yet. And the loop driver might
1042 * enter reclaim, and deadlock if it waits on a page for
1043 * which it is needed to do the write (loop masks off
1044 * __GFP_IO|__GFP_FS for this reason); but more thought
1045 * would probably show more reasons.
1047 * 3) Legacy memcg encounters a page that is already marked
1048 * PageReclaim. memcg does not have any dirty pages
1049 * throttling so we could easily OOM just because too many
1050 * pages are in writeback and there is nothing else to
1051 * reclaim. Wait for the writeback to complete.
1053 if (PageWriteback(page)) {
1054 /* Case 1 above */
1055 if (current_is_kswapd() &&
1056 PageReclaim(page) &&
1057 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1058 nr_immediate++;
1059 goto keep_locked;
1061 /* Case 2 above */
1062 } else if (sane_reclaim(sc) ||
1063 !PageReclaim(page) || !may_enter_fs) {
1065 * This is slightly racy - end_page_writeback()
1066 * might have just cleared PageReclaim, then
1067 * setting PageReclaim here end up interpreted
1068 * as PageReadahead - but that does not matter
1069 * enough to care. What we do want is for this
1070 * page to have PageReclaim set next time memcg
1071 * reclaim reaches the tests above, so it will
1072 * then wait_on_page_writeback() to avoid OOM;
1073 * and it's also appropriate in global reclaim.
1075 SetPageReclaim(page);
1076 nr_writeback++;
1077 goto keep_locked;
1079 /* Case 3 above */
1080 } else {
1081 unlock_page(page);
1082 wait_on_page_writeback(page);
1083 /* then go back and try same page again */
1084 list_add_tail(&page->lru, page_list);
1085 continue;
1089 if (!force_reclaim)
1090 references = page_check_references(page, sc);
1092 switch (references) {
1093 case PAGEREF_ACTIVATE:
1094 goto activate_locked;
1095 case PAGEREF_KEEP:
1096 goto keep_locked;
1097 case PAGEREF_RECLAIM:
1098 case PAGEREF_RECLAIM_CLEAN:
1099 ; /* try to reclaim the page below */
1103 * Anonymous process memory has backing store?
1104 * Try to allocate it some swap space here.
1106 if (PageAnon(page) && !PageSwapCache(page)) {
1107 if (!(sc->gfp_mask & __GFP_IO))
1108 goto keep_locked;
1109 if (!add_to_swap(page, page_list))
1110 goto activate_locked;
1111 lazyfree = true;
1112 may_enter_fs = 1;
1114 /* Adding to swap updated mapping */
1115 mapping = page_mapping(page);
1116 } else if (unlikely(PageTransHuge(page))) {
1117 /* Split file THP */
1118 if (split_huge_page_to_list(page, page_list))
1119 goto keep_locked;
1122 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1125 * The page is mapped into the page tables of one or more
1126 * processes. Try to unmap it here.
1128 if (page_mapped(page) && mapping) {
1129 switch (ret = try_to_unmap(page, lazyfree ?
1130 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1131 (ttu_flags | TTU_BATCH_FLUSH))) {
1132 case SWAP_FAIL:
1133 goto activate_locked;
1134 case SWAP_AGAIN:
1135 goto keep_locked;
1136 case SWAP_MLOCK:
1137 goto cull_mlocked;
1138 case SWAP_LZFREE:
1139 goto lazyfree;
1140 case SWAP_SUCCESS:
1141 ; /* try to free the page below */
1145 if (PageDirty(page)) {
1147 * Only kswapd can writeback filesystem pages to
1148 * avoid risk of stack overflow but only writeback
1149 * if many dirty pages have been encountered.
1151 if (page_is_file_cache(page) &&
1152 (!current_is_kswapd() ||
1153 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1155 * Immediately reclaim when written back.
1156 * Similar in principal to deactivate_page()
1157 * except we already have the page isolated
1158 * and know it's dirty
1160 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1161 SetPageReclaim(page);
1163 goto keep_locked;
1166 if (references == PAGEREF_RECLAIM_CLEAN)
1167 goto keep_locked;
1168 if (!may_enter_fs)
1169 goto keep_locked;
1170 if (!sc->may_writepage)
1171 goto keep_locked;
1174 * Page is dirty. Flush the TLB if a writable entry
1175 * potentially exists to avoid CPU writes after IO
1176 * starts and then write it out here.
1178 try_to_unmap_flush_dirty();
1179 switch (pageout(page, mapping, sc)) {
1180 case PAGE_KEEP:
1181 goto keep_locked;
1182 case PAGE_ACTIVATE:
1183 goto activate_locked;
1184 case PAGE_SUCCESS:
1185 if (PageWriteback(page))
1186 goto keep;
1187 if (PageDirty(page))
1188 goto keep;
1191 * A synchronous write - probably a ramdisk. Go
1192 * ahead and try to reclaim the page.
1194 if (!trylock_page(page))
1195 goto keep;
1196 if (PageDirty(page) || PageWriteback(page))
1197 goto keep_locked;
1198 mapping = page_mapping(page);
1199 case PAGE_CLEAN:
1200 ; /* try to free the page below */
1205 * If the page has buffers, try to free the buffer mappings
1206 * associated with this page. If we succeed we try to free
1207 * the page as well.
1209 * We do this even if the page is PageDirty().
1210 * try_to_release_page() does not perform I/O, but it is
1211 * possible for a page to have PageDirty set, but it is actually
1212 * clean (all its buffers are clean). This happens if the
1213 * buffers were written out directly, with submit_bh(). ext3
1214 * will do this, as well as the blockdev mapping.
1215 * try_to_release_page() will discover that cleanness and will
1216 * drop the buffers and mark the page clean - it can be freed.
1218 * Rarely, pages can have buffers and no ->mapping. These are
1219 * the pages which were not successfully invalidated in
1220 * truncate_complete_page(). We try to drop those buffers here
1221 * and if that worked, and the page is no longer mapped into
1222 * process address space (page_count == 1) it can be freed.
1223 * Otherwise, leave the page on the LRU so it is swappable.
1225 if (page_has_private(page)) {
1226 if (!try_to_release_page(page, sc->gfp_mask))
1227 goto activate_locked;
1228 if (!mapping && page_count(page) == 1) {
1229 unlock_page(page);
1230 if (put_page_testzero(page))
1231 goto free_it;
1232 else {
1234 * rare race with speculative reference.
1235 * the speculative reference will free
1236 * this page shortly, so we may
1237 * increment nr_reclaimed here (and
1238 * leave it off the LRU).
1240 nr_reclaimed++;
1241 continue;
1246 lazyfree:
1247 if (!mapping || !__remove_mapping(mapping, page, true))
1248 goto keep_locked;
1251 * At this point, we have no other references and there is
1252 * no way to pick any more up (removed from LRU, removed
1253 * from pagecache). Can use non-atomic bitops now (and
1254 * we obviously don't have to worry about waking up a process
1255 * waiting on the page lock, because there are no references.
1257 __ClearPageLocked(page);
1258 free_it:
1259 if (ret == SWAP_LZFREE)
1260 count_vm_event(PGLAZYFREED);
1262 nr_reclaimed++;
1265 * Is there need to periodically free_page_list? It would
1266 * appear not as the counts should be low
1268 list_add(&page->lru, &free_pages);
1269 continue;
1271 cull_mlocked:
1272 if (PageSwapCache(page))
1273 try_to_free_swap(page);
1274 unlock_page(page);
1275 list_add(&page->lru, &ret_pages);
1276 continue;
1278 activate_locked:
1279 /* Not a candidate for swapping, so reclaim swap space. */
1280 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1281 try_to_free_swap(page);
1282 VM_BUG_ON_PAGE(PageActive(page), page);
1283 SetPageActive(page);
1284 pgactivate++;
1285 keep_locked:
1286 unlock_page(page);
1287 keep:
1288 list_add(&page->lru, &ret_pages);
1289 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1292 mem_cgroup_uncharge_list(&free_pages);
1293 try_to_unmap_flush();
1294 free_hot_cold_page_list(&free_pages, true);
1296 list_splice(&ret_pages, page_list);
1297 count_vm_events(PGACTIVATE, pgactivate);
1299 *ret_nr_dirty += nr_dirty;
1300 *ret_nr_congested += nr_congested;
1301 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1302 *ret_nr_writeback += nr_writeback;
1303 *ret_nr_immediate += nr_immediate;
1304 return nr_reclaimed;
1307 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1308 struct list_head *page_list)
1310 struct scan_control sc = {
1311 .gfp_mask = GFP_KERNEL,
1312 .priority = DEF_PRIORITY,
1313 .may_unmap = 1,
1315 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1316 struct page *page, *next;
1317 LIST_HEAD(clean_pages);
1319 list_for_each_entry_safe(page, next, page_list, lru) {
1320 if (page_is_file_cache(page) && !PageDirty(page) &&
1321 !__PageMovable(page)) {
1322 ClearPageActive(page);
1323 list_move(&page->lru, &clean_pages);
1327 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1328 TTU_UNMAP|TTU_IGNORE_ACCESS,
1329 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1330 list_splice(&clean_pages, page_list);
1331 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1332 return ret;
1336 * Attempt to remove the specified page from its LRU. Only take this page
1337 * if it is of the appropriate PageActive status. Pages which are being
1338 * freed elsewhere are also ignored.
1340 * page: page to consider
1341 * mode: one of the LRU isolation modes defined above
1343 * returns 0 on success, -ve errno on failure.
1345 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1347 int ret = -EINVAL;
1349 /* Only take pages on the LRU. */
1350 if (!PageLRU(page))
1351 return ret;
1353 /* Compaction should not handle unevictable pages but CMA can do so */
1354 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1355 return ret;
1357 ret = -EBUSY;
1360 * To minimise LRU disruption, the caller can indicate that it only
1361 * wants to isolate pages it will be able to operate on without
1362 * blocking - clean pages for the most part.
1364 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1365 * is used by reclaim when it is cannot write to backing storage
1367 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1368 * that it is possible to migrate without blocking
1370 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1371 /* All the caller can do on PageWriteback is block */
1372 if (PageWriteback(page))
1373 return ret;
1375 if (PageDirty(page)) {
1376 struct address_space *mapping;
1377 bool migrate_dirty;
1379 /* ISOLATE_CLEAN means only clean pages */
1380 if (mode & ISOLATE_CLEAN)
1381 return ret;
1384 * Only pages without mappings or that have a
1385 * ->migratepage callback are possible to migrate
1386 * without blocking. However, we can be racing with
1387 * truncation so it's necessary to lock the page
1388 * to stabilise the mapping as truncation holds
1389 * the page lock until after the page is removed
1390 * from the page cache.
1392 if (!trylock_page(page))
1393 return ret;
1395 mapping = page_mapping(page);
1396 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1397 unlock_page(page);
1398 if (!migrate_dirty)
1399 return ret;
1403 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1404 return ret;
1406 if (likely(get_page_unless_zero(page))) {
1408 * Be careful not to clear PageLRU until after we're
1409 * sure the page is not being freed elsewhere -- the
1410 * page release code relies on it.
1412 ClearPageLRU(page);
1413 ret = 0;
1416 return ret;
1421 * Update LRU sizes after isolating pages. The LRU size updates must
1422 * be complete before mem_cgroup_update_lru_size due to a santity check.
1424 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1425 enum lru_list lru, unsigned long *nr_zone_taken)
1427 int zid;
1429 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1430 if (!nr_zone_taken[zid])
1431 continue;
1433 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1434 #ifdef CONFIG_MEMCG
1435 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1436 #endif
1442 * zone_lru_lock is heavily contended. Some of the functions that
1443 * shrink the lists perform better by taking out a batch of pages
1444 * and working on them outside the LRU lock.
1446 * For pagecache intensive workloads, this function is the hottest
1447 * spot in the kernel (apart from copy_*_user functions).
1449 * Appropriate locks must be held before calling this function.
1451 * @nr_to_scan: The number of pages to look through on the list.
1452 * @lruvec: The LRU vector to pull pages from.
1453 * @dst: The temp list to put pages on to.
1454 * @nr_scanned: The number of pages that were scanned.
1455 * @sc: The scan_control struct for this reclaim session
1456 * @mode: One of the LRU isolation modes
1457 * @lru: LRU list id for isolating
1459 * returns how many pages were moved onto *@dst.
1461 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1462 struct lruvec *lruvec, struct list_head *dst,
1463 unsigned long *nr_scanned, struct scan_control *sc,
1464 isolate_mode_t mode, enum lru_list lru)
1466 struct list_head *src = &lruvec->lists[lru];
1467 unsigned long nr_taken = 0;
1468 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1469 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1470 unsigned long scan, nr_pages;
1471 LIST_HEAD(pages_skipped);
1473 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1474 !list_empty(src);) {
1475 struct page *page;
1477 page = lru_to_page(src);
1478 prefetchw_prev_lru_page(page, src, flags);
1480 VM_BUG_ON_PAGE(!PageLRU(page), page);
1482 if (page_zonenum(page) > sc->reclaim_idx) {
1483 list_move(&page->lru, &pages_skipped);
1484 nr_skipped[page_zonenum(page)]++;
1485 continue;
1489 * Account for scanned and skipped separetly to avoid the pgdat
1490 * being prematurely marked unreclaimable by pgdat_reclaimable.
1492 scan++;
1494 switch (__isolate_lru_page(page, mode)) {
1495 case 0:
1496 nr_pages = hpage_nr_pages(page);
1497 nr_taken += nr_pages;
1498 nr_zone_taken[page_zonenum(page)] += nr_pages;
1499 list_move(&page->lru, dst);
1500 break;
1502 case -EBUSY:
1503 /* else it is being freed elsewhere */
1504 list_move(&page->lru, src);
1505 continue;
1507 default:
1508 BUG();
1513 * Splice any skipped pages to the start of the LRU list. Note that
1514 * this disrupts the LRU order when reclaiming for lower zones but
1515 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1516 * scanning would soon rescan the same pages to skip and put the
1517 * system at risk of premature OOM.
1519 if (!list_empty(&pages_skipped)) {
1520 int zid;
1521 unsigned long total_skipped = 0;
1523 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1524 if (!nr_skipped[zid])
1525 continue;
1527 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1528 total_skipped += nr_skipped[zid];
1532 * Account skipped pages as a partial scan as the pgdat may be
1533 * close to unreclaimable. If the LRU list is empty, account
1534 * skipped pages as a full scan.
1536 scan += list_empty(src) ? total_skipped : total_skipped >> 2;
1538 list_splice(&pages_skipped, src);
1540 *nr_scanned = scan;
1541 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1542 nr_taken, mode, is_file_lru(lru));
1543 update_lru_sizes(lruvec, lru, nr_zone_taken);
1544 return nr_taken;
1548 * isolate_lru_page - tries to isolate a page from its LRU list
1549 * @page: page to isolate from its LRU list
1551 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1552 * vmstat statistic corresponding to whatever LRU list the page was on.
1554 * Returns 0 if the page was removed from an LRU list.
1555 * Returns -EBUSY if the page was not on an LRU list.
1557 * The returned page will have PageLRU() cleared. If it was found on
1558 * the active list, it will have PageActive set. If it was found on
1559 * the unevictable list, it will have the PageUnevictable bit set. That flag
1560 * may need to be cleared by the caller before letting the page go.
1562 * The vmstat statistic corresponding to the list on which the page was
1563 * found will be decremented.
1565 * Restrictions:
1566 * (1) Must be called with an elevated refcount on the page. This is a
1567 * fundamentnal difference from isolate_lru_pages (which is called
1568 * without a stable reference).
1569 * (2) the lru_lock must not be held.
1570 * (3) interrupts must be enabled.
1572 int isolate_lru_page(struct page *page)
1574 int ret = -EBUSY;
1576 VM_BUG_ON_PAGE(!page_count(page), page);
1577 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1579 if (PageLRU(page)) {
1580 struct zone *zone = page_zone(page);
1581 struct lruvec *lruvec;
1583 spin_lock_irq(zone_lru_lock(zone));
1584 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1585 if (PageLRU(page)) {
1586 int lru = page_lru(page);
1587 get_page(page);
1588 ClearPageLRU(page);
1589 del_page_from_lru_list(page, lruvec, lru);
1590 ret = 0;
1592 spin_unlock_irq(zone_lru_lock(zone));
1594 return ret;
1598 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1599 * then get resheduled. When there are massive number of tasks doing page
1600 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1601 * the LRU list will go small and be scanned faster than necessary, leading to
1602 * unnecessary swapping, thrashing and OOM.
1604 static int too_many_isolated(struct pglist_data *pgdat, int file,
1605 struct scan_control *sc)
1607 unsigned long inactive, isolated;
1609 if (current_is_kswapd())
1610 return 0;
1612 if (!sane_reclaim(sc))
1613 return 0;
1615 if (file) {
1616 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1617 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1618 } else {
1619 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1620 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1624 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1625 * won't get blocked by normal direct-reclaimers, forming a circular
1626 * deadlock.
1628 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1629 inactive >>= 3;
1631 return isolated > inactive;
1634 static noinline_for_stack void
1635 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1637 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1638 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1639 LIST_HEAD(pages_to_free);
1642 * Put back any unfreeable pages.
1644 while (!list_empty(page_list)) {
1645 struct page *page = lru_to_page(page_list);
1646 int lru;
1648 VM_BUG_ON_PAGE(PageLRU(page), page);
1649 list_del(&page->lru);
1650 if (unlikely(!page_evictable(page))) {
1651 spin_unlock_irq(&pgdat->lru_lock);
1652 putback_lru_page(page);
1653 spin_lock_irq(&pgdat->lru_lock);
1654 continue;
1657 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1659 SetPageLRU(page);
1660 lru = page_lru(page);
1661 add_page_to_lru_list(page, lruvec, lru);
1663 if (is_active_lru(lru)) {
1664 int file = is_file_lru(lru);
1665 int numpages = hpage_nr_pages(page);
1666 reclaim_stat->recent_rotated[file] += numpages;
1668 if (put_page_testzero(page)) {
1669 __ClearPageLRU(page);
1670 __ClearPageActive(page);
1671 del_page_from_lru_list(page, lruvec, lru);
1673 if (unlikely(PageCompound(page))) {
1674 spin_unlock_irq(&pgdat->lru_lock);
1675 mem_cgroup_uncharge(page);
1676 (*get_compound_page_dtor(page))(page);
1677 spin_lock_irq(&pgdat->lru_lock);
1678 } else
1679 list_add(&page->lru, &pages_to_free);
1684 * To save our caller's stack, now use input list for pages to free.
1686 list_splice(&pages_to_free, page_list);
1690 * If a kernel thread (such as nfsd for loop-back mounts) services
1691 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1692 * In that case we should only throttle if the backing device it is
1693 * writing to is congested. In other cases it is safe to throttle.
1695 static int current_may_throttle(void)
1697 return !(current->flags & PF_LESS_THROTTLE) ||
1698 current->backing_dev_info == NULL ||
1699 bdi_write_congested(current->backing_dev_info);
1702 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1703 struct scan_control *sc, enum lru_list lru)
1705 int zid;
1706 struct zone *zone;
1707 int file = is_file_lru(lru);
1708 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1710 if (!global_reclaim(sc))
1711 return true;
1713 for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1714 zone = &pgdat->node_zones[zid];
1715 if (!managed_zone(zone))
1716 continue;
1718 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1719 LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1720 return true;
1723 return false;
1727 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1728 * of reclaimed pages
1730 static noinline_for_stack unsigned long
1731 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1732 struct scan_control *sc, enum lru_list lru)
1734 LIST_HEAD(page_list);
1735 unsigned long nr_scanned;
1736 unsigned long nr_reclaimed = 0;
1737 unsigned long nr_taken;
1738 unsigned long nr_dirty = 0;
1739 unsigned long nr_congested = 0;
1740 unsigned long nr_unqueued_dirty = 0;
1741 unsigned long nr_writeback = 0;
1742 unsigned long nr_immediate = 0;
1743 isolate_mode_t isolate_mode = 0;
1744 int file = is_file_lru(lru);
1745 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1746 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1748 if (!inactive_reclaimable_pages(lruvec, sc, lru))
1749 return 0;
1751 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1752 congestion_wait(BLK_RW_ASYNC, HZ/10);
1754 /* We are about to die and free our memory. Return now. */
1755 if (fatal_signal_pending(current))
1756 return SWAP_CLUSTER_MAX;
1759 lru_add_drain();
1761 if (!sc->may_unmap)
1762 isolate_mode |= ISOLATE_UNMAPPED;
1763 if (!sc->may_writepage)
1764 isolate_mode |= ISOLATE_CLEAN;
1766 spin_lock_irq(&pgdat->lru_lock);
1768 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1769 &nr_scanned, sc, isolate_mode, lru);
1771 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1772 reclaim_stat->recent_scanned[file] += nr_taken;
1774 if (global_reclaim(sc)) {
1775 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1776 if (current_is_kswapd())
1777 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1778 else
1779 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1781 spin_unlock_irq(&pgdat->lru_lock);
1783 if (nr_taken == 0)
1784 return 0;
1786 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1787 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1788 &nr_writeback, &nr_immediate,
1789 false);
1791 spin_lock_irq(&pgdat->lru_lock);
1793 if (global_reclaim(sc)) {
1794 if (current_is_kswapd())
1795 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1796 else
1797 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1800 putback_inactive_pages(lruvec, &page_list);
1802 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804 spin_unlock_irq(&pgdat->lru_lock);
1806 mem_cgroup_uncharge_list(&page_list);
1807 free_hot_cold_page_list(&page_list, true);
1810 * If reclaim is isolating dirty pages under writeback, it implies
1811 * that the long-lived page allocation rate is exceeding the page
1812 * laundering rate. Either the global limits are not being effective
1813 * at throttling processes due to the page distribution throughout
1814 * zones or there is heavy usage of a slow backing device. The
1815 * only option is to throttle from reclaim context which is not ideal
1816 * as there is no guarantee the dirtying process is throttled in the
1817 * same way balance_dirty_pages() manages.
1819 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1820 * of pages under pages flagged for immediate reclaim and stall if any
1821 * are encountered in the nr_immediate check below.
1823 if (nr_writeback && nr_writeback == nr_taken)
1824 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1827 * Legacy memcg will stall in page writeback so avoid forcibly
1828 * stalling here.
1830 if (sane_reclaim(sc)) {
1832 * Tag a zone as congested if all the dirty pages scanned were
1833 * backed by a congested BDI and wait_iff_congested will stall.
1835 if (nr_dirty && nr_dirty == nr_congested)
1836 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1839 * If dirty pages are scanned that are not queued for IO, it
1840 * implies that flushers are not keeping up. In this case, flag
1841 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1842 * reclaim context.
1844 if (nr_unqueued_dirty == nr_taken)
1845 set_bit(PGDAT_DIRTY, &pgdat->flags);
1848 * If kswapd scans pages marked marked for immediate
1849 * reclaim and under writeback (nr_immediate), it implies
1850 * that pages are cycling through the LRU faster than
1851 * they are written so also forcibly stall.
1853 if (nr_immediate && current_may_throttle())
1854 congestion_wait(BLK_RW_ASYNC, HZ/10);
1858 * Stall direct reclaim for IO completions if underlying BDIs or zone
1859 * is congested. Allow kswapd to continue until it starts encountering
1860 * unqueued dirty pages or cycling through the LRU too quickly.
1862 if (!sc->hibernation_mode && !current_is_kswapd() &&
1863 current_may_throttle())
1864 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1866 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1867 nr_scanned, nr_reclaimed,
1868 sc->priority, file);
1869 return nr_reclaimed;
1873 * This moves pages from the active list to the inactive list.
1875 * We move them the other way if the page is referenced by one or more
1876 * processes, from rmap.
1878 * If the pages are mostly unmapped, the processing is fast and it is
1879 * appropriate to hold zone_lru_lock across the whole operation. But if
1880 * the pages are mapped, the processing is slow (page_referenced()) so we
1881 * should drop zone_lru_lock around each page. It's impossible to balance
1882 * this, so instead we remove the pages from the LRU while processing them.
1883 * It is safe to rely on PG_active against the non-LRU pages in here because
1884 * nobody will play with that bit on a non-LRU page.
1886 * The downside is that we have to touch page->_refcount against each page.
1887 * But we had to alter page->flags anyway.
1890 static void move_active_pages_to_lru(struct lruvec *lruvec,
1891 struct list_head *list,
1892 struct list_head *pages_to_free,
1893 enum lru_list lru)
1895 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1896 unsigned long pgmoved = 0;
1897 struct page *page;
1898 int nr_pages;
1900 while (!list_empty(list)) {
1901 page = lru_to_page(list);
1902 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1904 VM_BUG_ON_PAGE(PageLRU(page), page);
1905 SetPageLRU(page);
1907 nr_pages = hpage_nr_pages(page);
1908 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1909 list_move(&page->lru, &lruvec->lists[lru]);
1910 pgmoved += nr_pages;
1912 if (put_page_testzero(page)) {
1913 __ClearPageLRU(page);
1914 __ClearPageActive(page);
1915 del_page_from_lru_list(page, lruvec, lru);
1917 if (unlikely(PageCompound(page))) {
1918 spin_unlock_irq(&pgdat->lru_lock);
1919 mem_cgroup_uncharge(page);
1920 (*get_compound_page_dtor(page))(page);
1921 spin_lock_irq(&pgdat->lru_lock);
1922 } else
1923 list_add(&page->lru, pages_to_free);
1927 if (!is_active_lru(lru))
1928 __count_vm_events(PGDEACTIVATE, pgmoved);
1931 static void shrink_active_list(unsigned long nr_to_scan,
1932 struct lruvec *lruvec,
1933 struct scan_control *sc,
1934 enum lru_list lru)
1936 unsigned long nr_taken;
1937 unsigned long nr_scanned;
1938 unsigned long vm_flags;
1939 LIST_HEAD(l_hold); /* The pages which were snipped off */
1940 LIST_HEAD(l_active);
1941 LIST_HEAD(l_inactive);
1942 struct page *page;
1943 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1944 unsigned long nr_rotated = 0;
1945 isolate_mode_t isolate_mode = 0;
1946 int file = is_file_lru(lru);
1947 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1949 lru_add_drain();
1951 if (!sc->may_unmap)
1952 isolate_mode |= ISOLATE_UNMAPPED;
1953 if (!sc->may_writepage)
1954 isolate_mode |= ISOLATE_CLEAN;
1956 spin_lock_irq(&pgdat->lru_lock);
1958 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1959 &nr_scanned, sc, isolate_mode, lru);
1961 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1962 reclaim_stat->recent_scanned[file] += nr_taken;
1964 if (global_reclaim(sc))
1965 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1966 __count_vm_events(PGREFILL, nr_scanned);
1968 spin_unlock_irq(&pgdat->lru_lock);
1970 while (!list_empty(&l_hold)) {
1971 cond_resched();
1972 page = lru_to_page(&l_hold);
1973 list_del(&page->lru);
1975 if (unlikely(!page_evictable(page))) {
1976 putback_lru_page(page);
1977 continue;
1980 if (unlikely(buffer_heads_over_limit)) {
1981 if (page_has_private(page) && trylock_page(page)) {
1982 if (page_has_private(page))
1983 try_to_release_page(page, 0);
1984 unlock_page(page);
1988 if (page_referenced(page, 0, sc->target_mem_cgroup,
1989 &vm_flags)) {
1990 nr_rotated += hpage_nr_pages(page);
1992 * Identify referenced, file-backed active pages and
1993 * give them one more trip around the active list. So
1994 * that executable code get better chances to stay in
1995 * memory under moderate memory pressure. Anon pages
1996 * are not likely to be evicted by use-once streaming
1997 * IO, plus JVM can create lots of anon VM_EXEC pages,
1998 * so we ignore them here.
2000 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2001 list_add(&page->lru, &l_active);
2002 continue;
2006 ClearPageActive(page); /* we are de-activating */
2007 list_add(&page->lru, &l_inactive);
2011 * Move pages back to the lru list.
2013 spin_lock_irq(&pgdat->lru_lock);
2015 * Count referenced pages from currently used mappings as rotated,
2016 * even though only some of them are actually re-activated. This
2017 * helps balance scan pressure between file and anonymous pages in
2018 * get_scan_count.
2020 reclaim_stat->recent_rotated[file] += nr_rotated;
2022 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2023 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2024 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2025 spin_unlock_irq(&pgdat->lru_lock);
2027 mem_cgroup_uncharge_list(&l_hold);
2028 free_hot_cold_page_list(&l_hold, true);
2032 * The inactive anon list should be small enough that the VM never has
2033 * to do too much work.
2035 * The inactive file list should be small enough to leave most memory
2036 * to the established workingset on the scan-resistant active list,
2037 * but large enough to avoid thrashing the aggregate readahead window.
2039 * Both inactive lists should also be large enough that each inactive
2040 * page has a chance to be referenced again before it is reclaimed.
2042 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2043 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2044 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2046 * total target max
2047 * memory ratio inactive
2048 * -------------------------------------
2049 * 10MB 1 5MB
2050 * 100MB 1 50MB
2051 * 1GB 3 250MB
2052 * 10GB 10 0.9GB
2053 * 100GB 31 3GB
2054 * 1TB 101 10GB
2055 * 10TB 320 32GB
2057 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2058 struct scan_control *sc)
2060 unsigned long inactive_ratio;
2061 unsigned long inactive, active;
2062 enum lru_list inactive_lru = file * LRU_FILE;
2063 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2064 unsigned long gb;
2067 * If we don't have swap space, anonymous page deactivation
2068 * is pointless.
2070 if (!file && !total_swap_pages)
2071 return false;
2073 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2074 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2076 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2077 if (gb)
2078 inactive_ratio = int_sqrt(10 * gb);
2079 else
2080 inactive_ratio = 1;
2082 return inactive * inactive_ratio < active;
2085 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2086 struct lruvec *lruvec, struct scan_control *sc)
2088 if (is_active_lru(lru)) {
2089 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2090 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2091 return 0;
2094 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2097 enum scan_balance {
2098 SCAN_EQUAL,
2099 SCAN_FRACT,
2100 SCAN_ANON,
2101 SCAN_FILE,
2105 * Determine how aggressively the anon and file LRU lists should be
2106 * scanned. The relative value of each set of LRU lists is determined
2107 * by looking at the fraction of the pages scanned we did rotate back
2108 * onto the active list instead of evict.
2110 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2111 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2114 struct scan_control *sc, unsigned long *nr,
2115 unsigned long *lru_pages)
2117 int swappiness = mem_cgroup_swappiness(memcg);
2118 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2119 u64 fraction[2];
2120 u64 denominator = 0; /* gcc */
2121 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2122 unsigned long anon_prio, file_prio;
2123 enum scan_balance scan_balance;
2124 unsigned long anon, file;
2125 bool force_scan = false;
2126 unsigned long ap, fp;
2127 enum lru_list lru;
2128 bool some_scanned;
2129 int pass;
2132 * If the zone or memcg is small, nr[l] can be 0. This
2133 * results in no scanning on this priority and a potential
2134 * priority drop. Global direct reclaim can go to the next
2135 * zone and tends to have no problems. Global kswapd is for
2136 * zone balancing and it needs to scan a minimum amount. When
2137 * reclaiming for a memcg, a priority drop can cause high
2138 * latencies, so it's better to scan a minimum amount there as
2139 * well.
2141 if (current_is_kswapd()) {
2142 if (!pgdat_reclaimable(pgdat))
2143 force_scan = true;
2144 if (!mem_cgroup_online(memcg))
2145 force_scan = true;
2147 if (!global_reclaim(sc))
2148 force_scan = true;
2150 /* If we have no swap space, do not bother scanning anon pages. */
2151 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2152 scan_balance = SCAN_FILE;
2153 goto out;
2157 * Global reclaim will swap to prevent OOM even with no
2158 * swappiness, but memcg users want to use this knob to
2159 * disable swapping for individual groups completely when
2160 * using the memory controller's swap limit feature would be
2161 * too expensive.
2163 if (!global_reclaim(sc) && !swappiness) {
2164 scan_balance = SCAN_FILE;
2165 goto out;
2169 * Do not apply any pressure balancing cleverness when the
2170 * system is close to OOM, scan both anon and file equally
2171 * (unless the swappiness setting disagrees with swapping).
2173 if (!sc->priority && swappiness) {
2174 scan_balance = SCAN_EQUAL;
2175 goto out;
2179 * Prevent the reclaimer from falling into the cache trap: as
2180 * cache pages start out inactive, every cache fault will tip
2181 * the scan balance towards the file LRU. And as the file LRU
2182 * shrinks, so does the window for rotation from references.
2183 * This means we have a runaway feedback loop where a tiny
2184 * thrashing file LRU becomes infinitely more attractive than
2185 * anon pages. Try to detect this based on file LRU size.
2187 if (global_reclaim(sc)) {
2188 unsigned long pgdatfile;
2189 unsigned long pgdatfree;
2190 int z;
2191 unsigned long total_high_wmark = 0;
2193 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2194 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2195 node_page_state(pgdat, NR_INACTIVE_FILE);
2197 for (z = 0; z < MAX_NR_ZONES; z++) {
2198 struct zone *zone = &pgdat->node_zones[z];
2199 if (!managed_zone(zone))
2200 continue;
2202 total_high_wmark += high_wmark_pages(zone);
2205 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2206 scan_balance = SCAN_ANON;
2207 goto out;
2212 * If there is enough inactive page cache, i.e. if the size of the
2213 * inactive list is greater than that of the active list *and* the
2214 * inactive list actually has some pages to scan on this priority, we
2215 * do not reclaim anything from the anonymous working set right now.
2216 * Without the second condition we could end up never scanning an
2217 * lruvec even if it has plenty of old anonymous pages unless the
2218 * system is under heavy pressure.
2220 if (!inactive_list_is_low(lruvec, true, sc) &&
2221 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2222 scan_balance = SCAN_FILE;
2223 goto out;
2226 scan_balance = SCAN_FRACT;
2229 * With swappiness at 100, anonymous and file have the same priority.
2230 * This scanning priority is essentially the inverse of IO cost.
2232 anon_prio = swappiness;
2233 file_prio = 200 - anon_prio;
2236 * OK, so we have swap space and a fair amount of page cache
2237 * pages. We use the recently rotated / recently scanned
2238 * ratios to determine how valuable each cache is.
2240 * Because workloads change over time (and to avoid overflow)
2241 * we keep these statistics as a floating average, which ends
2242 * up weighing recent references more than old ones.
2244 * anon in [0], file in [1]
2247 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2248 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2249 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2250 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2252 spin_lock_irq(&pgdat->lru_lock);
2253 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2254 reclaim_stat->recent_scanned[0] /= 2;
2255 reclaim_stat->recent_rotated[0] /= 2;
2258 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2259 reclaim_stat->recent_scanned[1] /= 2;
2260 reclaim_stat->recent_rotated[1] /= 2;
2264 * The amount of pressure on anon vs file pages is inversely
2265 * proportional to the fraction of recently scanned pages on
2266 * each list that were recently referenced and in active use.
2268 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2269 ap /= reclaim_stat->recent_rotated[0] + 1;
2271 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2272 fp /= reclaim_stat->recent_rotated[1] + 1;
2273 spin_unlock_irq(&pgdat->lru_lock);
2275 fraction[0] = ap;
2276 fraction[1] = fp;
2277 denominator = ap + fp + 1;
2278 out:
2279 some_scanned = false;
2280 /* Only use force_scan on second pass. */
2281 for (pass = 0; !some_scanned && pass < 2; pass++) {
2282 *lru_pages = 0;
2283 for_each_evictable_lru(lru) {
2284 int file = is_file_lru(lru);
2285 unsigned long size;
2286 unsigned long scan;
2288 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2289 scan = size >> sc->priority;
2291 if (!scan && pass && force_scan)
2292 scan = min(size, SWAP_CLUSTER_MAX);
2294 switch (scan_balance) {
2295 case SCAN_EQUAL:
2296 /* Scan lists relative to size */
2297 break;
2298 case SCAN_FRACT:
2300 * Scan types proportional to swappiness and
2301 * their relative recent reclaim efficiency.
2303 scan = div64_u64(scan * fraction[file],
2304 denominator);
2305 break;
2306 case SCAN_FILE:
2307 case SCAN_ANON:
2308 /* Scan one type exclusively */
2309 if ((scan_balance == SCAN_FILE) != file) {
2310 size = 0;
2311 scan = 0;
2313 break;
2314 default:
2315 /* Look ma, no brain */
2316 BUG();
2319 *lru_pages += size;
2320 nr[lru] = scan;
2323 * Skip the second pass and don't force_scan,
2324 * if we found something to scan.
2326 some_scanned |= !!scan;
2332 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2334 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2335 struct scan_control *sc, unsigned long *lru_pages)
2337 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2338 unsigned long nr[NR_LRU_LISTS];
2339 unsigned long targets[NR_LRU_LISTS];
2340 unsigned long nr_to_scan;
2341 enum lru_list lru;
2342 unsigned long nr_reclaimed = 0;
2343 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2344 struct blk_plug plug;
2345 bool scan_adjusted;
2347 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2349 /* Record the original scan target for proportional adjustments later */
2350 memcpy(targets, nr, sizeof(nr));
2353 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2354 * event that can occur when there is little memory pressure e.g.
2355 * multiple streaming readers/writers. Hence, we do not abort scanning
2356 * when the requested number of pages are reclaimed when scanning at
2357 * DEF_PRIORITY on the assumption that the fact we are direct
2358 * reclaiming implies that kswapd is not keeping up and it is best to
2359 * do a batch of work at once. For memcg reclaim one check is made to
2360 * abort proportional reclaim if either the file or anon lru has already
2361 * dropped to zero at the first pass.
2363 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2364 sc->priority == DEF_PRIORITY);
2366 blk_start_plug(&plug);
2367 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2368 nr[LRU_INACTIVE_FILE]) {
2369 unsigned long nr_anon, nr_file, percentage;
2370 unsigned long nr_scanned;
2372 for_each_evictable_lru(lru) {
2373 if (nr[lru]) {
2374 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2375 nr[lru] -= nr_to_scan;
2377 nr_reclaimed += shrink_list(lru, nr_to_scan,
2378 lruvec, sc);
2382 cond_resched();
2384 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2385 continue;
2388 * For kswapd and memcg, reclaim at least the number of pages
2389 * requested. Ensure that the anon and file LRUs are scanned
2390 * proportionally what was requested by get_scan_count(). We
2391 * stop reclaiming one LRU and reduce the amount scanning
2392 * proportional to the original scan target.
2394 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2395 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2398 * It's just vindictive to attack the larger once the smaller
2399 * has gone to zero. And given the way we stop scanning the
2400 * smaller below, this makes sure that we only make one nudge
2401 * towards proportionality once we've got nr_to_reclaim.
2403 if (!nr_file || !nr_anon)
2404 break;
2406 if (nr_file > nr_anon) {
2407 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2408 targets[LRU_ACTIVE_ANON] + 1;
2409 lru = LRU_BASE;
2410 percentage = nr_anon * 100 / scan_target;
2411 } else {
2412 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2413 targets[LRU_ACTIVE_FILE] + 1;
2414 lru = LRU_FILE;
2415 percentage = nr_file * 100 / scan_target;
2418 /* Stop scanning the smaller of the LRU */
2419 nr[lru] = 0;
2420 nr[lru + LRU_ACTIVE] = 0;
2423 * Recalculate the other LRU scan count based on its original
2424 * scan target and the percentage scanning already complete
2426 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2427 nr_scanned = targets[lru] - nr[lru];
2428 nr[lru] = targets[lru] * (100 - percentage) / 100;
2429 nr[lru] -= min(nr[lru], nr_scanned);
2431 lru += LRU_ACTIVE;
2432 nr_scanned = targets[lru] - nr[lru];
2433 nr[lru] = targets[lru] * (100 - percentage) / 100;
2434 nr[lru] -= min(nr[lru], nr_scanned);
2436 scan_adjusted = true;
2438 blk_finish_plug(&plug);
2439 sc->nr_reclaimed += nr_reclaimed;
2442 * Even if we did not try to evict anon pages at all, we want to
2443 * rebalance the anon lru active/inactive ratio.
2445 if (inactive_list_is_low(lruvec, false, sc))
2446 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2447 sc, LRU_ACTIVE_ANON);
2450 /* Use reclaim/compaction for costly allocs or under memory pressure */
2451 static bool in_reclaim_compaction(struct scan_control *sc)
2453 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2454 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2455 sc->priority < DEF_PRIORITY - 2))
2456 return true;
2458 return false;
2462 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2463 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2464 * true if more pages should be reclaimed such that when the page allocator
2465 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2466 * It will give up earlier than that if there is difficulty reclaiming pages.
2468 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2469 unsigned long nr_reclaimed,
2470 unsigned long nr_scanned,
2471 struct scan_control *sc)
2473 unsigned long pages_for_compaction;
2474 unsigned long inactive_lru_pages;
2475 int z;
2477 /* If not in reclaim/compaction mode, stop */
2478 if (!in_reclaim_compaction(sc))
2479 return false;
2481 /* Consider stopping depending on scan and reclaim activity */
2482 if (sc->gfp_mask & __GFP_REPEAT) {
2484 * For __GFP_REPEAT allocations, stop reclaiming if the
2485 * full LRU list has been scanned and we are still failing
2486 * to reclaim pages. This full LRU scan is potentially
2487 * expensive but a __GFP_REPEAT caller really wants to succeed
2489 if (!nr_reclaimed && !nr_scanned)
2490 return false;
2491 } else {
2493 * For non-__GFP_REPEAT allocations which can presumably
2494 * fail without consequence, stop if we failed to reclaim
2495 * any pages from the last SWAP_CLUSTER_MAX number of
2496 * pages that were scanned. This will return to the
2497 * caller faster at the risk reclaim/compaction and
2498 * the resulting allocation attempt fails
2500 if (!nr_reclaimed)
2501 return false;
2505 * If we have not reclaimed enough pages for compaction and the
2506 * inactive lists are large enough, continue reclaiming
2508 pages_for_compaction = compact_gap(sc->order);
2509 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2510 if (get_nr_swap_pages() > 0)
2511 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2512 if (sc->nr_reclaimed < pages_for_compaction &&
2513 inactive_lru_pages > pages_for_compaction)
2514 return true;
2516 /* If compaction would go ahead or the allocation would succeed, stop */
2517 for (z = 0; z <= sc->reclaim_idx; z++) {
2518 struct zone *zone = &pgdat->node_zones[z];
2519 if (!managed_zone(zone))
2520 continue;
2522 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2523 case COMPACT_SUCCESS:
2524 case COMPACT_CONTINUE:
2525 return false;
2526 default:
2527 /* check next zone */
2531 return true;
2534 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2536 struct reclaim_state *reclaim_state = current->reclaim_state;
2537 unsigned long nr_reclaimed, nr_scanned;
2538 bool reclaimable = false;
2540 do {
2541 struct mem_cgroup *root = sc->target_mem_cgroup;
2542 struct mem_cgroup_reclaim_cookie reclaim = {
2543 .pgdat = pgdat,
2544 .priority = sc->priority,
2546 unsigned long node_lru_pages = 0;
2547 struct mem_cgroup *memcg;
2549 nr_reclaimed = sc->nr_reclaimed;
2550 nr_scanned = sc->nr_scanned;
2552 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2553 do {
2554 unsigned long lru_pages;
2555 unsigned long reclaimed;
2556 unsigned long scanned;
2558 if (mem_cgroup_low(root, memcg)) {
2559 if (!sc->may_thrash)
2560 continue;
2561 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2564 reclaimed = sc->nr_reclaimed;
2565 scanned = sc->nr_scanned;
2567 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2568 node_lru_pages += lru_pages;
2570 if (memcg)
2571 shrink_slab(sc->gfp_mask, pgdat->node_id,
2572 memcg, sc->nr_scanned - scanned,
2573 lru_pages);
2575 /* Record the group's reclaim efficiency */
2576 vmpressure(sc->gfp_mask, memcg, false,
2577 sc->nr_scanned - scanned,
2578 sc->nr_reclaimed - reclaimed);
2581 * Direct reclaim and kswapd have to scan all memory
2582 * cgroups to fulfill the overall scan target for the
2583 * node.
2585 * Limit reclaim, on the other hand, only cares about
2586 * nr_to_reclaim pages to be reclaimed and it will
2587 * retry with decreasing priority if one round over the
2588 * whole hierarchy is not sufficient.
2590 if (!global_reclaim(sc) &&
2591 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2592 mem_cgroup_iter_break(root, memcg);
2593 break;
2595 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2598 * Shrink the slab caches in the same proportion that
2599 * the eligible LRU pages were scanned.
2601 if (global_reclaim(sc))
2602 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2603 sc->nr_scanned - nr_scanned,
2604 node_lru_pages);
2606 if (reclaim_state) {
2607 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2608 reclaim_state->reclaimed_slab = 0;
2611 /* Record the subtree's reclaim efficiency */
2612 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2613 sc->nr_scanned - nr_scanned,
2614 sc->nr_reclaimed - nr_reclaimed);
2616 if (sc->nr_reclaimed - nr_reclaimed)
2617 reclaimable = true;
2619 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2620 sc->nr_scanned - nr_scanned, sc));
2623 * Kswapd gives up on balancing particular nodes after too
2624 * many failures to reclaim anything from them and goes to
2625 * sleep. On reclaim progress, reset the failure counter. A
2626 * successful direct reclaim run will revive a dormant kswapd.
2628 if (reclaimable)
2629 pgdat->kswapd_failures = 0;
2631 return reclaimable;
2635 * Returns true if compaction should go ahead for a costly-order request, or
2636 * the allocation would already succeed without compaction. Return false if we
2637 * should reclaim first.
2639 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2641 unsigned long watermark;
2642 enum compact_result suitable;
2644 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2645 if (suitable == COMPACT_SUCCESS)
2646 /* Allocation should succeed already. Don't reclaim. */
2647 return true;
2648 if (suitable == COMPACT_SKIPPED)
2649 /* Compaction cannot yet proceed. Do reclaim. */
2650 return false;
2653 * Compaction is already possible, but it takes time to run and there
2654 * are potentially other callers using the pages just freed. So proceed
2655 * with reclaim to make a buffer of free pages available to give
2656 * compaction a reasonable chance of completing and allocating the page.
2657 * Note that we won't actually reclaim the whole buffer in one attempt
2658 * as the target watermark in should_continue_reclaim() is lower. But if
2659 * we are already above the high+gap watermark, don't reclaim at all.
2661 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2663 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2667 * This is the direct reclaim path, for page-allocating processes. We only
2668 * try to reclaim pages from zones which will satisfy the caller's allocation
2669 * request.
2671 * If a zone is deemed to be full of pinned pages then just give it a light
2672 * scan then give up on it.
2674 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2676 struct zoneref *z;
2677 struct zone *zone;
2678 unsigned long nr_soft_reclaimed;
2679 unsigned long nr_soft_scanned;
2680 gfp_t orig_mask;
2681 pg_data_t *last_pgdat = NULL;
2684 * If the number of buffer_heads in the machine exceeds the maximum
2685 * allowed level, force direct reclaim to scan the highmem zone as
2686 * highmem pages could be pinning lowmem pages storing buffer_heads
2688 orig_mask = sc->gfp_mask;
2689 if (buffer_heads_over_limit) {
2690 sc->gfp_mask |= __GFP_HIGHMEM;
2691 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2694 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2695 sc->reclaim_idx, sc->nodemask) {
2697 * Take care memory controller reclaiming has small influence
2698 * to global LRU.
2700 if (global_reclaim(sc)) {
2701 if (!cpuset_zone_allowed(zone,
2702 GFP_KERNEL | __GFP_HARDWALL))
2703 continue;
2706 * If we already have plenty of memory free for
2707 * compaction in this zone, don't free any more.
2708 * Even though compaction is invoked for any
2709 * non-zero order, only frequent costly order
2710 * reclamation is disruptive enough to become a
2711 * noticeable problem, like transparent huge
2712 * page allocations.
2714 if (IS_ENABLED(CONFIG_COMPACTION) &&
2715 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2716 compaction_ready(zone, sc)) {
2717 sc->compaction_ready = true;
2718 continue;
2722 * Shrink each node in the zonelist once. If the
2723 * zonelist is ordered by zone (not the default) then a
2724 * node may be shrunk multiple times but in that case
2725 * the user prefers lower zones being preserved.
2727 if (zone->zone_pgdat == last_pgdat)
2728 continue;
2731 * This steals pages from memory cgroups over softlimit
2732 * and returns the number of reclaimed pages and
2733 * scanned pages. This works for global memory pressure
2734 * and balancing, not for a memcg's limit.
2736 nr_soft_scanned = 0;
2737 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2738 sc->order, sc->gfp_mask,
2739 &nr_soft_scanned);
2740 sc->nr_reclaimed += nr_soft_reclaimed;
2741 sc->nr_scanned += nr_soft_scanned;
2742 /* need some check for avoid more shrink_zone() */
2745 /* See comment about same check for global reclaim above */
2746 if (zone->zone_pgdat == last_pgdat)
2747 continue;
2748 last_pgdat = zone->zone_pgdat;
2749 shrink_node(zone->zone_pgdat, sc);
2753 * Restore to original mask to avoid the impact on the caller if we
2754 * promoted it to __GFP_HIGHMEM.
2756 sc->gfp_mask = orig_mask;
2760 * This is the main entry point to direct page reclaim.
2762 * If a full scan of the inactive list fails to free enough memory then we
2763 * are "out of memory" and something needs to be killed.
2765 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2766 * high - the zone may be full of dirty or under-writeback pages, which this
2767 * caller can't do much about. We kick the writeback threads and take explicit
2768 * naps in the hope that some of these pages can be written. But if the
2769 * allocating task holds filesystem locks which prevent writeout this might not
2770 * work, and the allocation attempt will fail.
2772 * returns: 0, if no pages reclaimed
2773 * else, the number of pages reclaimed
2775 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2776 struct scan_control *sc)
2778 int initial_priority = sc->priority;
2779 unsigned long total_scanned = 0;
2780 unsigned long writeback_threshold;
2781 retry:
2782 delayacct_freepages_start();
2784 if (global_reclaim(sc))
2785 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2787 do {
2788 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2789 sc->priority);
2790 sc->nr_scanned = 0;
2791 shrink_zones(zonelist, sc);
2793 total_scanned += sc->nr_scanned;
2794 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2795 break;
2797 if (sc->compaction_ready)
2798 break;
2801 * If we're getting trouble reclaiming, start doing
2802 * writepage even in laptop mode.
2804 if (sc->priority < DEF_PRIORITY - 2)
2805 sc->may_writepage = 1;
2808 * Try to write back as many pages as we just scanned. This
2809 * tends to cause slow streaming writers to write data to the
2810 * disk smoothly, at the dirtying rate, which is nice. But
2811 * that's undesirable in laptop mode, where we *want* lumpy
2812 * writeout. So in laptop mode, write out the whole world.
2814 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2815 if (total_scanned > writeback_threshold) {
2816 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2817 WB_REASON_TRY_TO_FREE_PAGES);
2818 sc->may_writepage = 1;
2820 } while (--sc->priority >= 0);
2822 delayacct_freepages_end();
2824 if (sc->nr_reclaimed)
2825 return sc->nr_reclaimed;
2827 /* Aborted reclaim to try compaction? don't OOM, then */
2828 if (sc->compaction_ready)
2829 return 1;
2831 /* Untapped cgroup reserves? Don't OOM, retry. */
2832 if (!sc->may_thrash) {
2833 sc->priority = initial_priority;
2834 sc->may_thrash = 1;
2835 goto retry;
2838 return 0;
2841 static bool allow_direct_reclaim(pg_data_t *pgdat)
2843 struct zone *zone;
2844 unsigned long pfmemalloc_reserve = 0;
2845 unsigned long free_pages = 0;
2846 int i;
2847 bool wmark_ok;
2849 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2850 return true;
2852 for (i = 0; i <= ZONE_NORMAL; i++) {
2853 zone = &pgdat->node_zones[i];
2854 if (!managed_zone(zone))
2855 continue;
2857 if (!zone_reclaimable_pages(zone))
2858 continue;
2860 pfmemalloc_reserve += min_wmark_pages(zone);
2861 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2864 /* If there are no reserves (unexpected config) then do not throttle */
2865 if (!pfmemalloc_reserve)
2866 return true;
2868 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2870 /* kswapd must be awake if processes are being throttled */
2871 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2872 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2873 (enum zone_type)ZONE_NORMAL);
2874 wake_up_interruptible(&pgdat->kswapd_wait);
2877 return wmark_ok;
2881 * Throttle direct reclaimers if backing storage is backed by the network
2882 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2883 * depleted. kswapd will continue to make progress and wake the processes
2884 * when the low watermark is reached.
2886 * Returns true if a fatal signal was delivered during throttling. If this
2887 * happens, the page allocator should not consider triggering the OOM killer.
2889 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2890 nodemask_t *nodemask)
2892 struct zoneref *z;
2893 struct zone *zone;
2894 pg_data_t *pgdat = NULL;
2897 * Kernel threads should not be throttled as they may be indirectly
2898 * responsible for cleaning pages necessary for reclaim to make forward
2899 * progress. kjournald for example may enter direct reclaim while
2900 * committing a transaction where throttling it could forcing other
2901 * processes to block on log_wait_commit().
2903 if (current->flags & PF_KTHREAD)
2904 goto out;
2907 * If a fatal signal is pending, this process should not throttle.
2908 * It should return quickly so it can exit and free its memory
2910 if (fatal_signal_pending(current))
2911 goto out;
2914 * Check if the pfmemalloc reserves are ok by finding the first node
2915 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2916 * GFP_KERNEL will be required for allocating network buffers when
2917 * swapping over the network so ZONE_HIGHMEM is unusable.
2919 * Throttling is based on the first usable node and throttled processes
2920 * wait on a queue until kswapd makes progress and wakes them. There
2921 * is an affinity then between processes waking up and where reclaim
2922 * progress has been made assuming the process wakes on the same node.
2923 * More importantly, processes running on remote nodes will not compete
2924 * for remote pfmemalloc reserves and processes on different nodes
2925 * should make reasonable progress.
2927 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2928 gfp_zone(gfp_mask), nodemask) {
2929 if (zone_idx(zone) > ZONE_NORMAL)
2930 continue;
2932 /* Throttle based on the first usable node */
2933 pgdat = zone->zone_pgdat;
2934 if (allow_direct_reclaim(pgdat))
2935 goto out;
2936 break;
2939 /* If no zone was usable by the allocation flags then do not throttle */
2940 if (!pgdat)
2941 goto out;
2943 /* Account for the throttling */
2944 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2947 * If the caller cannot enter the filesystem, it's possible that it
2948 * is due to the caller holding an FS lock or performing a journal
2949 * transaction in the case of a filesystem like ext[3|4]. In this case,
2950 * it is not safe to block on pfmemalloc_wait as kswapd could be
2951 * blocked waiting on the same lock. Instead, throttle for up to a
2952 * second before continuing.
2954 if (!(gfp_mask & __GFP_FS)) {
2955 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2956 allow_direct_reclaim(pgdat), HZ);
2958 goto check_pending;
2961 /* Throttle until kswapd wakes the process */
2962 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2963 allow_direct_reclaim(pgdat));
2965 check_pending:
2966 if (fatal_signal_pending(current))
2967 return true;
2969 out:
2970 return false;
2973 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2974 gfp_t gfp_mask, nodemask_t *nodemask)
2976 unsigned long nr_reclaimed;
2977 struct scan_control sc = {
2978 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2979 .gfp_mask = memalloc_noio_flags(gfp_mask),
2980 .reclaim_idx = gfp_zone(gfp_mask),
2981 .order = order,
2982 .nodemask = nodemask,
2983 .priority = DEF_PRIORITY,
2984 .may_writepage = !laptop_mode,
2985 .may_unmap = 1,
2986 .may_swap = 1,
2990 * Do not enter reclaim if fatal signal was delivered while throttled.
2991 * 1 is returned so that the page allocator does not OOM kill at this
2992 * point.
2994 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
2995 return 1;
2997 trace_mm_vmscan_direct_reclaim_begin(order,
2998 sc.may_writepage,
2999 sc.gfp_mask,
3000 sc.reclaim_idx);
3002 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3004 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3006 return nr_reclaimed;
3009 #ifdef CONFIG_MEMCG
3011 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3012 gfp_t gfp_mask, bool noswap,
3013 pg_data_t *pgdat,
3014 unsigned long *nr_scanned)
3016 struct scan_control sc = {
3017 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3018 .target_mem_cgroup = memcg,
3019 .may_writepage = !laptop_mode,
3020 .may_unmap = 1,
3021 .reclaim_idx = MAX_NR_ZONES - 1,
3022 .may_swap = !noswap,
3024 unsigned long lru_pages;
3026 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3027 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3029 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3030 sc.may_writepage,
3031 sc.gfp_mask,
3032 sc.reclaim_idx);
3035 * NOTE: Although we can get the priority field, using it
3036 * here is not a good idea, since it limits the pages we can scan.
3037 * if we don't reclaim here, the shrink_node from balance_pgdat
3038 * will pick up pages from other mem cgroup's as well. We hack
3039 * the priority and make it zero.
3041 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3043 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3045 *nr_scanned = sc.nr_scanned;
3046 return sc.nr_reclaimed;
3049 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3050 unsigned long nr_pages,
3051 gfp_t gfp_mask,
3052 bool may_swap)
3054 struct zonelist *zonelist;
3055 unsigned long nr_reclaimed;
3056 int nid;
3057 struct scan_control sc = {
3058 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3059 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3060 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3061 .reclaim_idx = MAX_NR_ZONES - 1,
3062 .target_mem_cgroup = memcg,
3063 .priority = DEF_PRIORITY,
3064 .may_writepage = !laptop_mode,
3065 .may_unmap = 1,
3066 .may_swap = may_swap,
3070 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3071 * take care of from where we get pages. So the node where we start the
3072 * scan does not need to be the current node.
3074 nid = mem_cgroup_select_victim_node(memcg);
3076 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3078 trace_mm_vmscan_memcg_reclaim_begin(0,
3079 sc.may_writepage,
3080 sc.gfp_mask,
3081 sc.reclaim_idx);
3083 current->flags |= PF_MEMALLOC;
3084 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3085 current->flags &= ~PF_MEMALLOC;
3087 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3089 return nr_reclaimed;
3091 #endif
3093 static void age_active_anon(struct pglist_data *pgdat,
3094 struct scan_control *sc)
3096 struct mem_cgroup *memcg;
3098 if (!total_swap_pages)
3099 return;
3101 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3102 do {
3103 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3105 if (inactive_list_is_low(lruvec, false, sc))
3106 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3107 sc, LRU_ACTIVE_ANON);
3109 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3110 } while (memcg);
3113 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3115 unsigned long mark = high_wmark_pages(zone);
3117 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3118 return false;
3121 * If any eligible zone is balanced then the node is not considered
3122 * to be congested or dirty
3124 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3125 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3126 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3128 return true;
3132 * Prepare kswapd for sleeping. This verifies that there are no processes
3133 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3135 * Returns true if kswapd is ready to sleep
3137 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3139 int i;
3142 * The throttled processes are normally woken up in balance_pgdat() as
3143 * soon as allow_direct_reclaim() is true. But there is a potential
3144 * race between when kswapd checks the watermarks and a process gets
3145 * throttled. There is also a potential race if processes get
3146 * throttled, kswapd wakes, a large process exits thereby balancing the
3147 * zones, which causes kswapd to exit balance_pgdat() before reaching
3148 * the wake up checks. If kswapd is going to sleep, no process should
3149 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3150 * the wake up is premature, processes will wake kswapd and get
3151 * throttled again. The difference from wake ups in balance_pgdat() is
3152 * that here we are under prepare_to_wait().
3154 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3155 wake_up_all(&pgdat->pfmemalloc_wait);
3157 /* Hopeless node, leave it to direct reclaim */
3158 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3159 return true;
3161 for (i = 0; i <= classzone_idx; i++) {
3162 struct zone *zone = pgdat->node_zones + i;
3164 if (!managed_zone(zone))
3165 continue;
3167 if (!zone_balanced(zone, order, classzone_idx))
3168 return false;
3171 return true;
3175 * kswapd shrinks a node of pages that are at or below the highest usable
3176 * zone that is currently unbalanced.
3178 * Returns true if kswapd scanned at least the requested number of pages to
3179 * reclaim or if the lack of progress was due to pages under writeback.
3180 * This is used to determine if the scanning priority needs to be raised.
3182 static bool kswapd_shrink_node(pg_data_t *pgdat,
3183 struct scan_control *sc)
3185 struct zone *zone;
3186 int z;
3188 /* Reclaim a number of pages proportional to the number of zones */
3189 sc->nr_to_reclaim = 0;
3190 for (z = 0; z <= sc->reclaim_idx; z++) {
3191 zone = pgdat->node_zones + z;
3192 if (!managed_zone(zone))
3193 continue;
3195 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3199 * Historically care was taken to put equal pressure on all zones but
3200 * now pressure is applied based on node LRU order.
3202 shrink_node(pgdat, sc);
3205 * Fragmentation may mean that the system cannot be rebalanced for
3206 * high-order allocations. If twice the allocation size has been
3207 * reclaimed then recheck watermarks only at order-0 to prevent
3208 * excessive reclaim. Assume that a process requested a high-order
3209 * can direct reclaim/compact.
3211 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3212 sc->order = 0;
3214 return sc->nr_scanned >= sc->nr_to_reclaim;
3218 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3219 * that are eligible for use by the caller until at least one zone is
3220 * balanced.
3222 * Returns the order kswapd finished reclaiming at.
3224 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3225 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3226 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3227 * or lower is eligible for reclaim until at least one usable zone is
3228 * balanced.
3230 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3232 int i;
3233 unsigned long nr_soft_reclaimed;
3234 unsigned long nr_soft_scanned;
3235 struct zone *zone;
3236 struct scan_control sc = {
3237 .gfp_mask = GFP_KERNEL,
3238 .order = order,
3239 .priority = DEF_PRIORITY,
3240 .may_writepage = !laptop_mode,
3241 .may_unmap = 1,
3242 .may_swap = 1,
3244 count_vm_event(PAGEOUTRUN);
3246 do {
3247 unsigned long nr_reclaimed = sc.nr_reclaimed;
3248 bool raise_priority = true;
3250 sc.reclaim_idx = classzone_idx;
3253 * If the number of buffer_heads exceeds the maximum allowed
3254 * then consider reclaiming from all zones. This has a dual
3255 * purpose -- on 64-bit systems it is expected that
3256 * buffer_heads are stripped during active rotation. On 32-bit
3257 * systems, highmem pages can pin lowmem memory and shrinking
3258 * buffers can relieve lowmem pressure. Reclaim may still not
3259 * go ahead if all eligible zones for the original allocation
3260 * request are balanced to avoid excessive reclaim from kswapd.
3262 if (buffer_heads_over_limit) {
3263 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3264 zone = pgdat->node_zones + i;
3265 if (!managed_zone(zone))
3266 continue;
3268 sc.reclaim_idx = i;
3269 break;
3274 * Only reclaim if there are no eligible zones. Check from
3275 * high to low zone as allocations prefer higher zones.
3276 * Scanning from low to high zone would allow congestion to be
3277 * cleared during a very small window when a small low
3278 * zone was balanced even under extreme pressure when the
3279 * overall node may be congested. Note that sc.reclaim_idx
3280 * is not used as buffer_heads_over_limit may have adjusted
3281 * it.
3283 for (i = classzone_idx; i >= 0; i--) {
3284 zone = pgdat->node_zones + i;
3285 if (!managed_zone(zone))
3286 continue;
3288 if (zone_balanced(zone, sc.order, classzone_idx))
3289 goto out;
3293 * Do some background aging of the anon list, to give
3294 * pages a chance to be referenced before reclaiming. All
3295 * pages are rotated regardless of classzone as this is
3296 * about consistent aging.
3298 age_active_anon(pgdat, &sc);
3301 * If we're getting trouble reclaiming, start doing writepage
3302 * even in laptop mode.
3304 if (sc.priority < DEF_PRIORITY - 2)
3305 sc.may_writepage = 1;
3307 /* Call soft limit reclaim before calling shrink_node. */
3308 sc.nr_scanned = 0;
3309 nr_soft_scanned = 0;
3310 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3311 sc.gfp_mask, &nr_soft_scanned);
3312 sc.nr_reclaimed += nr_soft_reclaimed;
3315 * There should be no need to raise the scanning priority if
3316 * enough pages are already being scanned that that high
3317 * watermark would be met at 100% efficiency.
3319 if (kswapd_shrink_node(pgdat, &sc))
3320 raise_priority = false;
3323 * If the low watermark is met there is no need for processes
3324 * to be throttled on pfmemalloc_wait as they should not be
3325 * able to safely make forward progress. Wake them
3327 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3328 allow_direct_reclaim(pgdat))
3329 wake_up_all(&pgdat->pfmemalloc_wait);
3331 /* Check if kswapd should be suspending */
3332 if (try_to_freeze() || kthread_should_stop())
3333 break;
3336 * Raise priority if scanning rate is too low or there was no
3337 * progress in reclaiming pages
3339 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3340 if (raise_priority || !nr_reclaimed)
3341 sc.priority--;
3342 } while (sc.priority >= 1);
3344 if (!sc.nr_reclaimed)
3345 pgdat->kswapd_failures++;
3347 out:
3349 * Return the order kswapd stopped reclaiming at as
3350 * prepare_kswapd_sleep() takes it into account. If another caller
3351 * entered the allocator slow path while kswapd was awake, order will
3352 * remain at the higher level.
3354 return sc.order;
3357 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3358 unsigned int classzone_idx)
3360 long remaining = 0;
3361 DEFINE_WAIT(wait);
3363 if (freezing(current) || kthread_should_stop())
3364 return;
3366 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3368 /* Try to sleep for a short interval */
3369 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3371 * Compaction records what page blocks it recently failed to
3372 * isolate pages from and skips them in the future scanning.
3373 * When kswapd is going to sleep, it is reasonable to assume
3374 * that pages and compaction may succeed so reset the cache.
3376 reset_isolation_suitable(pgdat);
3379 * We have freed the memory, now we should compact it to make
3380 * allocation of the requested order possible.
3382 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3384 remaining = schedule_timeout(HZ/10);
3387 * If woken prematurely then reset kswapd_classzone_idx and
3388 * order. The values will either be from a wakeup request or
3389 * the previous request that slept prematurely.
3391 if (remaining) {
3392 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3393 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3396 finish_wait(&pgdat->kswapd_wait, &wait);
3397 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3401 * After a short sleep, check if it was a premature sleep. If not, then
3402 * go fully to sleep until explicitly woken up.
3404 if (!remaining &&
3405 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3406 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3409 * vmstat counters are not perfectly accurate and the estimated
3410 * value for counters such as NR_FREE_PAGES can deviate from the
3411 * true value by nr_online_cpus * threshold. To avoid the zone
3412 * watermarks being breached while under pressure, we reduce the
3413 * per-cpu vmstat threshold while kswapd is awake and restore
3414 * them before going back to sleep.
3416 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3418 if (!kthread_should_stop())
3419 schedule();
3421 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3422 } else {
3423 if (remaining)
3424 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3425 else
3426 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3428 finish_wait(&pgdat->kswapd_wait, &wait);
3432 * The background pageout daemon, started as a kernel thread
3433 * from the init process.
3435 * This basically trickles out pages so that we have _some_
3436 * free memory available even if there is no other activity
3437 * that frees anything up. This is needed for things like routing
3438 * etc, where we otherwise might have all activity going on in
3439 * asynchronous contexts that cannot page things out.
3441 * If there are applications that are active memory-allocators
3442 * (most normal use), this basically shouldn't matter.
3444 static int kswapd(void *p)
3446 unsigned int alloc_order, reclaim_order, classzone_idx;
3447 pg_data_t *pgdat = (pg_data_t*)p;
3448 struct task_struct *tsk = current;
3450 struct reclaim_state reclaim_state = {
3451 .reclaimed_slab = 0,
3453 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3455 lockdep_set_current_reclaim_state(GFP_KERNEL);
3457 if (!cpumask_empty(cpumask))
3458 set_cpus_allowed_ptr(tsk, cpumask);
3459 current->reclaim_state = &reclaim_state;
3462 * Tell the memory management that we're a "memory allocator",
3463 * and that if we need more memory we should get access to it
3464 * regardless (see "__alloc_pages()"). "kswapd" should
3465 * never get caught in the normal page freeing logic.
3467 * (Kswapd normally doesn't need memory anyway, but sometimes
3468 * you need a small amount of memory in order to be able to
3469 * page out something else, and this flag essentially protects
3470 * us from recursively trying to free more memory as we're
3471 * trying to free the first piece of memory in the first place).
3473 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3474 set_freezable();
3476 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3477 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3478 for ( ; ; ) {
3479 bool ret;
3481 kswapd_try_sleep:
3482 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3483 classzone_idx);
3485 /* Read the new order and classzone_idx */
3486 alloc_order = reclaim_order = pgdat->kswapd_order;
3487 classzone_idx = pgdat->kswapd_classzone_idx;
3488 pgdat->kswapd_order = 0;
3489 pgdat->kswapd_classzone_idx = 0;
3491 ret = try_to_freeze();
3492 if (kthread_should_stop())
3493 break;
3496 * We can speed up thawing tasks if we don't call balance_pgdat
3497 * after returning from the refrigerator
3499 if (ret)
3500 continue;
3503 * Reclaim begins at the requested order but if a high-order
3504 * reclaim fails then kswapd falls back to reclaiming for
3505 * order-0. If that happens, kswapd will consider sleeping
3506 * for the order it finished reclaiming at (reclaim_order)
3507 * but kcompactd is woken to compact for the original
3508 * request (alloc_order).
3510 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3511 alloc_order);
3512 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3513 if (reclaim_order < alloc_order)
3514 goto kswapd_try_sleep;
3516 alloc_order = reclaim_order = pgdat->kswapd_order;
3517 classzone_idx = pgdat->kswapd_classzone_idx;
3520 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3521 current->reclaim_state = NULL;
3522 lockdep_clear_current_reclaim_state();
3524 return 0;
3528 * A zone is low on free memory, so wake its kswapd task to service it.
3530 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3532 pg_data_t *pgdat;
3533 int z;
3535 if (!managed_zone(zone))
3536 return;
3538 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3539 return;
3540 pgdat = zone->zone_pgdat;
3541 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3542 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3543 if (!waitqueue_active(&pgdat->kswapd_wait))
3544 return;
3546 /* Hopeless node, leave it to direct reclaim */
3547 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3548 return;
3550 /* Only wake kswapd if all zones are unbalanced */
3551 for (z = 0; z <= classzone_idx; z++) {
3552 zone = pgdat->node_zones + z;
3553 if (!managed_zone(zone))
3554 continue;
3556 if (zone_balanced(zone, order, classzone_idx))
3557 return;
3560 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3561 wake_up_interruptible(&pgdat->kswapd_wait);
3564 #ifdef CONFIG_HIBERNATION
3566 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3567 * freed pages.
3569 * Rather than trying to age LRUs the aim is to preserve the overall
3570 * LRU order by reclaiming preferentially
3571 * inactive > active > active referenced > active mapped
3573 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3575 struct reclaim_state reclaim_state;
3576 struct scan_control sc = {
3577 .nr_to_reclaim = nr_to_reclaim,
3578 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3579 .reclaim_idx = MAX_NR_ZONES - 1,
3580 .priority = DEF_PRIORITY,
3581 .may_writepage = 1,
3582 .may_unmap = 1,
3583 .may_swap = 1,
3584 .hibernation_mode = 1,
3586 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3587 struct task_struct *p = current;
3588 unsigned long nr_reclaimed;
3590 p->flags |= PF_MEMALLOC;
3591 lockdep_set_current_reclaim_state(sc.gfp_mask);
3592 reclaim_state.reclaimed_slab = 0;
3593 p->reclaim_state = &reclaim_state;
3595 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3597 p->reclaim_state = NULL;
3598 lockdep_clear_current_reclaim_state();
3599 p->flags &= ~PF_MEMALLOC;
3601 return nr_reclaimed;
3603 #endif /* CONFIG_HIBERNATION */
3605 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3606 not required for correctness. So if the last cpu in a node goes
3607 away, we get changed to run anywhere: as the first one comes back,
3608 restore their cpu bindings. */
3609 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3610 void *hcpu)
3612 int nid;
3614 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3615 for_each_node_state(nid, N_MEMORY) {
3616 pg_data_t *pgdat = NODE_DATA(nid);
3617 const struct cpumask *mask;
3619 mask = cpumask_of_node(pgdat->node_id);
3621 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3622 /* One of our CPUs online: restore mask */
3623 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3626 return NOTIFY_OK;
3630 * This kswapd start function will be called by init and node-hot-add.
3631 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3633 int kswapd_run(int nid)
3635 pg_data_t *pgdat = NODE_DATA(nid);
3636 int ret = 0;
3638 if (pgdat->kswapd)
3639 return 0;
3641 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3642 if (IS_ERR(pgdat->kswapd)) {
3643 /* failure at boot is fatal */
3644 BUG_ON(system_state == SYSTEM_BOOTING);
3645 pr_err("Failed to start kswapd on node %d\n", nid);
3646 ret = PTR_ERR(pgdat->kswapd);
3647 pgdat->kswapd = NULL;
3649 return ret;
3653 * Called by memory hotplug when all memory in a node is offlined. Caller must
3654 * hold mem_hotplug_begin/end().
3656 void kswapd_stop(int nid)
3658 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3660 if (kswapd) {
3661 kthread_stop(kswapd);
3662 NODE_DATA(nid)->kswapd = NULL;
3666 static int __init kswapd_init(void)
3668 int nid;
3670 swap_setup();
3671 for_each_node_state(nid, N_MEMORY)
3672 kswapd_run(nid);
3673 hotcpu_notifier(cpu_callback, 0);
3674 return 0;
3677 module_init(kswapd_init)
3679 #ifdef CONFIG_NUMA
3681 * Node reclaim mode
3683 * If non-zero call node_reclaim when the number of free pages falls below
3684 * the watermarks.
3686 int node_reclaim_mode __read_mostly;
3688 #define RECLAIM_OFF 0
3689 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3690 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3691 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3694 * Priority for NODE_RECLAIM. This determines the fraction of pages
3695 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3696 * a zone.
3698 #define NODE_RECLAIM_PRIORITY 4
3701 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3702 * occur.
3704 int sysctl_min_unmapped_ratio = 1;
3707 * If the number of slab pages in a zone grows beyond this percentage then
3708 * slab reclaim needs to occur.
3710 int sysctl_min_slab_ratio = 5;
3712 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3714 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3715 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3716 node_page_state(pgdat, NR_ACTIVE_FILE);
3719 * It's possible for there to be more file mapped pages than
3720 * accounted for by the pages on the file LRU lists because
3721 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3723 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3726 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3727 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3729 unsigned long nr_pagecache_reclaimable;
3730 unsigned long delta = 0;
3733 * If RECLAIM_UNMAP is set, then all file pages are considered
3734 * potentially reclaimable. Otherwise, we have to worry about
3735 * pages like swapcache and node_unmapped_file_pages() provides
3736 * a better estimate
3738 if (node_reclaim_mode & RECLAIM_UNMAP)
3739 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3740 else
3741 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3743 /* If we can't clean pages, remove dirty pages from consideration */
3744 if (!(node_reclaim_mode & RECLAIM_WRITE))
3745 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3747 /* Watch for any possible underflows due to delta */
3748 if (unlikely(delta > nr_pagecache_reclaimable))
3749 delta = nr_pagecache_reclaimable;
3751 return nr_pagecache_reclaimable - delta;
3755 * Try to free up some pages from this node through reclaim.
3757 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3759 /* Minimum pages needed in order to stay on node */
3760 const unsigned long nr_pages = 1 << order;
3761 struct task_struct *p = current;
3762 struct reclaim_state reclaim_state;
3763 struct scan_control sc = {
3764 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3765 .gfp_mask = memalloc_noio_flags(gfp_mask),
3766 .order = order,
3767 .priority = NODE_RECLAIM_PRIORITY,
3768 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3769 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3770 .may_swap = 1,
3771 .reclaim_idx = gfp_zone(gfp_mask),
3774 cond_resched();
3776 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3777 * and we also need to be able to write out pages for RECLAIM_WRITE
3778 * and RECLAIM_UNMAP.
3780 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3781 lockdep_set_current_reclaim_state(sc.gfp_mask);
3782 reclaim_state.reclaimed_slab = 0;
3783 p->reclaim_state = &reclaim_state;
3785 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3787 * Free memory by calling shrink zone with increasing
3788 * priorities until we have enough memory freed.
3790 do {
3791 shrink_node(pgdat, &sc);
3792 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3795 p->reclaim_state = NULL;
3796 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3797 lockdep_clear_current_reclaim_state();
3798 return sc.nr_reclaimed >= nr_pages;
3801 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3803 int ret;
3806 * Node reclaim reclaims unmapped file backed pages and
3807 * slab pages if we are over the defined limits.
3809 * A small portion of unmapped file backed pages is needed for
3810 * file I/O otherwise pages read by file I/O will be immediately
3811 * thrown out if the node is overallocated. So we do not reclaim
3812 * if less than a specified percentage of the node is used by
3813 * unmapped file backed pages.
3815 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3816 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3817 return NODE_RECLAIM_FULL;
3820 * Do not scan if the allocation should not be delayed.
3822 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3823 return NODE_RECLAIM_NOSCAN;
3826 * Only run node reclaim on the local node or on nodes that do not
3827 * have associated processors. This will favor the local processor
3828 * over remote processors and spread off node memory allocations
3829 * as wide as possible.
3831 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3832 return NODE_RECLAIM_NOSCAN;
3834 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3835 return NODE_RECLAIM_NOSCAN;
3837 ret = __node_reclaim(pgdat, gfp_mask, order);
3838 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3840 if (!ret)
3841 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3843 return ret;
3845 #endif
3848 * page_evictable - test whether a page is evictable
3849 * @page: the page to test
3851 * Test whether page is evictable--i.e., should be placed on active/inactive
3852 * lists vs unevictable list.
3854 * Reasons page might not be evictable:
3855 * (1) page's mapping marked unevictable
3856 * (2) page is part of an mlocked VMA
3859 int page_evictable(struct page *page)
3861 int ret;
3863 /* Prevent address_space of inode and swap cache from being freed */
3864 rcu_read_lock();
3865 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3866 rcu_read_unlock();
3867 return ret;
3870 #ifdef CONFIG_SHMEM
3872 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3873 * @pages: array of pages to check
3874 * @nr_pages: number of pages to check
3876 * Checks pages for evictability and moves them to the appropriate lru list.
3878 * This function is only used for SysV IPC SHM_UNLOCK.
3880 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3882 struct lruvec *lruvec;
3883 struct pglist_data *pgdat = NULL;
3884 int pgscanned = 0;
3885 int pgrescued = 0;
3886 int i;
3888 for (i = 0; i < nr_pages; i++) {
3889 struct page *page = pages[i];
3890 struct pglist_data *pagepgdat = page_pgdat(page);
3892 pgscanned++;
3893 if (pagepgdat != pgdat) {
3894 if (pgdat)
3895 spin_unlock_irq(&pgdat->lru_lock);
3896 pgdat = pagepgdat;
3897 spin_lock_irq(&pgdat->lru_lock);
3899 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3901 if (!PageLRU(page) || !PageUnevictable(page))
3902 continue;
3904 if (page_evictable(page)) {
3905 enum lru_list lru = page_lru_base_type(page);
3907 VM_BUG_ON_PAGE(PageActive(page), page);
3908 ClearPageUnevictable(page);
3909 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3910 add_page_to_lru_list(page, lruvec, lru);
3911 pgrescued++;
3915 if (pgdat) {
3916 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3917 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3918 spin_unlock_irq(&pgdat->lru_lock);
3921 #endif /* CONFIG_SHMEM */