4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim
;
66 /* This context's GFP mask */
69 /* Allocation order */
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup
*target_mem_cgroup
;
84 /* Scan (total_size >> priority) pages at once */
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx
;
90 unsigned int may_writepage
:1;
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap
:1;
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap
:1;
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash
:1;
101 unsigned int hibernation_mode
:1;
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready
:1;
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned
;
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed
;
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
130 if ((_page)->lru.prev != _base) { \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
142 * From 0 .. 100. Higher means more swappy.
144 int vm_swappiness
= 60;
146 * The total number of pages which are beyond the high watermark within all
149 unsigned long vm_total_pages
;
151 static LIST_HEAD(shrinker_list
);
152 static DECLARE_RWSEM(shrinker_rwsem
);
155 static bool global_reclaim(struct scan_control
*sc
)
157 return !sc
->target_mem_cgroup
;
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
173 static bool sane_reclaim(struct scan_control
*sc
)
175 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
186 static bool global_reclaim(struct scan_control
*sc
)
191 static bool sane_reclaim(struct scan_control
*sc
)
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
202 unsigned long zone_reclaimable_pages(struct zone
*zone
)
206 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
207 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
208 if (get_nr_swap_pages() > 0)
209 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
210 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
215 unsigned long pgdat_reclaimable_pages(struct pglist_data
*pgdat
)
219 nr
= node_page_state_snapshot(pgdat
, NR_ACTIVE_FILE
) +
220 node_page_state_snapshot(pgdat
, NR_INACTIVE_FILE
) +
221 node_page_state_snapshot(pgdat
, NR_ISOLATED_FILE
);
223 if (get_nr_swap_pages() > 0)
224 nr
+= node_page_state_snapshot(pgdat
, NR_ACTIVE_ANON
) +
225 node_page_state_snapshot(pgdat
, NR_INACTIVE_ANON
) +
226 node_page_state_snapshot(pgdat
, NR_ISOLATED_ANON
);
231 bool pgdat_reclaimable(struct pglist_data
*pgdat
)
233 return node_page_state_snapshot(pgdat
, NR_PAGES_SCANNED
) <
234 pgdat_reclaimable_pages(pgdat
) * 6;
238 * lruvec_lru_size - Returns the number of pages on the given LRU list.
239 * @lruvec: lru vector
241 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
245 unsigned long lru_size
;
248 if (!mem_cgroup_disabled())
249 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
251 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
253 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
254 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
257 if (!managed_zone(zone
))
260 if (!mem_cgroup_disabled())
261 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
263 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
264 NR_ZONE_LRU_BASE
+ lru
);
265 lru_size
-= min(size
, lru_size
);
273 * Add a shrinker callback to be called from the vm.
275 int register_shrinker(struct shrinker
*shrinker
)
277 size_t size
= sizeof(*shrinker
->nr_deferred
);
279 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
282 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
283 if (!shrinker
->nr_deferred
)
286 down_write(&shrinker_rwsem
);
287 list_add_tail(&shrinker
->list
, &shrinker_list
);
288 up_write(&shrinker_rwsem
);
291 EXPORT_SYMBOL(register_shrinker
);
296 void unregister_shrinker(struct shrinker
*shrinker
)
298 if (!shrinker
->nr_deferred
)
300 down_write(&shrinker_rwsem
);
301 list_del(&shrinker
->list
);
302 up_write(&shrinker_rwsem
);
303 kfree(shrinker
->nr_deferred
);
304 shrinker
->nr_deferred
= NULL
;
306 EXPORT_SYMBOL(unregister_shrinker
);
308 #define SHRINK_BATCH 128
310 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
311 struct shrinker
*shrinker
,
312 unsigned long nr_scanned
,
313 unsigned long nr_eligible
)
315 unsigned long freed
= 0;
316 unsigned long long delta
;
321 int nid
= shrinkctl
->nid
;
322 long batch_size
= shrinker
->batch
? shrinker
->batch
324 long scanned
= 0, next_deferred
;
326 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
331 * copy the current shrinker scan count into a local variable
332 * and zero it so that other concurrent shrinker invocations
333 * don't also do this scanning work.
335 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
338 delta
= (4 * nr_scanned
) / shrinker
->seeks
;
340 do_div(delta
, nr_eligible
+ 1);
342 if (total_scan
< 0) {
343 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
344 shrinker
->scan_objects
, total_scan
);
345 total_scan
= freeable
;
348 next_deferred
= total_scan
;
351 * We need to avoid excessive windup on filesystem shrinkers
352 * due to large numbers of GFP_NOFS allocations causing the
353 * shrinkers to return -1 all the time. This results in a large
354 * nr being built up so when a shrink that can do some work
355 * comes along it empties the entire cache due to nr >>>
356 * freeable. This is bad for sustaining a working set in
359 * Hence only allow the shrinker to scan the entire cache when
360 * a large delta change is calculated directly.
362 if (delta
< freeable
/ 4)
363 total_scan
= min(total_scan
, freeable
/ 2);
366 * Avoid risking looping forever due to too large nr value:
367 * never try to free more than twice the estimate number of
370 if (total_scan
> freeable
* 2)
371 total_scan
= freeable
* 2;
373 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
374 nr_scanned
, nr_eligible
,
375 freeable
, delta
, total_scan
);
378 * Normally, we should not scan less than batch_size objects in one
379 * pass to avoid too frequent shrinker calls, but if the slab has less
380 * than batch_size objects in total and we are really tight on memory,
381 * we will try to reclaim all available objects, otherwise we can end
382 * up failing allocations although there are plenty of reclaimable
383 * objects spread over several slabs with usage less than the
386 * We detect the "tight on memory" situations by looking at the total
387 * number of objects we want to scan (total_scan). If it is greater
388 * than the total number of objects on slab (freeable), we must be
389 * scanning at high prio and therefore should try to reclaim as much as
392 while (total_scan
>= batch_size
||
393 total_scan
>= freeable
) {
395 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
397 shrinkctl
->nr_to_scan
= nr_to_scan
;
398 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
399 if (ret
== SHRINK_STOP
)
403 count_vm_events(SLABS_SCANNED
, nr_to_scan
);
404 total_scan
-= nr_to_scan
;
405 scanned
+= nr_to_scan
;
410 if (next_deferred
>= scanned
)
411 next_deferred
-= scanned
;
415 * move the unused scan count back into the shrinker in a
416 * manner that handles concurrent updates. If we exhausted the
417 * scan, there is no need to do an update.
419 if (next_deferred
> 0)
420 new_nr
= atomic_long_add_return(next_deferred
,
421 &shrinker
->nr_deferred
[nid
]);
423 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
425 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
430 * shrink_slab - shrink slab caches
431 * @gfp_mask: allocation context
432 * @nid: node whose slab caches to target
433 * @memcg: memory cgroup whose slab caches to target
434 * @nr_scanned: pressure numerator
435 * @nr_eligible: pressure denominator
437 * Call the shrink functions to age shrinkable caches.
439 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
440 * unaware shrinkers will receive a node id of 0 instead.
442 * @memcg specifies the memory cgroup to target. If it is not NULL,
443 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
444 * objects from the memory cgroup specified. Otherwise, only unaware
445 * shrinkers are called.
447 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
448 * the available objects should be scanned. Page reclaim for example
449 * passes the number of pages scanned and the number of pages on the
450 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
451 * when it encountered mapped pages. The ratio is further biased by
452 * the ->seeks setting of the shrink function, which indicates the
453 * cost to recreate an object relative to that of an LRU page.
455 * Returns the number of reclaimed slab objects.
457 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
458 struct mem_cgroup
*memcg
,
459 unsigned long nr_scanned
,
460 unsigned long nr_eligible
)
462 struct shrinker
*shrinker
;
463 unsigned long freed
= 0;
465 if (memcg
&& (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
)))
469 nr_scanned
= SWAP_CLUSTER_MAX
;
471 if (!down_read_trylock(&shrinker_rwsem
)) {
473 * If we would return 0, our callers would understand that we
474 * have nothing else to shrink and give up trying. By returning
475 * 1 we keep it going and assume we'll be able to shrink next
482 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
483 struct shrink_control sc
= {
484 .gfp_mask
= gfp_mask
,
490 * If kernel memory accounting is disabled, we ignore
491 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
492 * passing NULL for memcg.
494 if (memcg_kmem_enabled() &&
495 !!memcg
!= !!(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
498 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
501 freed
+= do_shrink_slab(&sc
, shrinker
, nr_scanned
, nr_eligible
);
504 up_read(&shrinker_rwsem
);
510 void drop_slab_node(int nid
)
515 struct mem_cgroup
*memcg
= NULL
;
519 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
,
521 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
522 } while (freed
> 10);
529 for_each_online_node(nid
)
533 static inline int is_page_cache_freeable(struct page
*page
)
536 * A freeable page cache page is referenced only by the caller
537 * that isolated the page, the page cache radix tree and
538 * optional buffer heads at page->private.
540 return page_count(page
) - page_has_private(page
) == 2;
543 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
545 if (current
->flags
& PF_SWAPWRITE
)
547 if (!inode_write_congested(inode
))
549 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
555 * We detected a synchronous write error writing a page out. Probably
556 * -ENOSPC. We need to propagate that into the address_space for a subsequent
557 * fsync(), msync() or close().
559 * The tricky part is that after writepage we cannot touch the mapping: nothing
560 * prevents it from being freed up. But we have a ref on the page and once
561 * that page is locked, the mapping is pinned.
563 * We're allowed to run sleeping lock_page() here because we know the caller has
566 static void handle_write_error(struct address_space
*mapping
,
567 struct page
*page
, int error
)
570 if (page_mapping(page
) == mapping
)
571 mapping_set_error(mapping
, error
);
575 /* possible outcome of pageout() */
577 /* failed to write page out, page is locked */
579 /* move page to the active list, page is locked */
581 /* page has been sent to the disk successfully, page is unlocked */
583 /* page is clean and locked */
588 * pageout is called by shrink_page_list() for each dirty page.
589 * Calls ->writepage().
591 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
592 struct scan_control
*sc
)
595 * If the page is dirty, only perform writeback if that write
596 * will be non-blocking. To prevent this allocation from being
597 * stalled by pagecache activity. But note that there may be
598 * stalls if we need to run get_block(). We could test
599 * PagePrivate for that.
601 * If this process is currently in __generic_file_write_iter() against
602 * this page's queue, we can perform writeback even if that
605 * If the page is swapcache, write it back even if that would
606 * block, for some throttling. This happens by accident, because
607 * swap_backing_dev_info is bust: it doesn't reflect the
608 * congestion state of the swapdevs. Easy to fix, if needed.
610 if (!is_page_cache_freeable(page
))
614 * Some data journaling orphaned pages can have
615 * page->mapping == NULL while being dirty with clean buffers.
617 if (page_has_private(page
)) {
618 if (try_to_free_buffers(page
)) {
619 ClearPageDirty(page
);
620 pr_info("%s: orphaned page\n", __func__
);
626 if (mapping
->a_ops
->writepage
== NULL
)
627 return PAGE_ACTIVATE
;
628 if (!may_write_to_inode(mapping
->host
, sc
))
631 if (clear_page_dirty_for_io(page
)) {
633 struct writeback_control wbc
= {
634 .sync_mode
= WB_SYNC_NONE
,
635 .nr_to_write
= SWAP_CLUSTER_MAX
,
637 .range_end
= LLONG_MAX
,
641 SetPageReclaim(page
);
642 res
= mapping
->a_ops
->writepage(page
, &wbc
);
644 handle_write_error(mapping
, page
, res
);
645 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
646 ClearPageReclaim(page
);
647 return PAGE_ACTIVATE
;
650 if (!PageWriteback(page
)) {
651 /* synchronous write or broken a_ops? */
652 ClearPageReclaim(page
);
654 trace_mm_vmscan_writepage(page
);
655 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
663 * Same as remove_mapping, but if the page is removed from the mapping, it
664 * gets returned with a refcount of 0.
666 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
671 BUG_ON(!PageLocked(page
));
672 BUG_ON(mapping
!= page_mapping(page
));
674 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
676 * The non racy check for a busy page.
678 * Must be careful with the order of the tests. When someone has
679 * a ref to the page, it may be possible that they dirty it then
680 * drop the reference. So if PageDirty is tested before page_count
681 * here, then the following race may occur:
683 * get_user_pages(&page);
684 * [user mapping goes away]
686 * !PageDirty(page) [good]
687 * SetPageDirty(page);
689 * !page_count(page) [good, discard it]
691 * [oops, our write_to data is lost]
693 * Reversing the order of the tests ensures such a situation cannot
694 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
695 * load is not satisfied before that of page->_refcount.
697 * Note that if SetPageDirty is always performed via set_page_dirty,
698 * and thus under tree_lock, then this ordering is not required.
700 if (!page_ref_freeze(page
, 2))
702 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
703 if (unlikely(PageDirty(page
))) {
704 page_ref_unfreeze(page
, 2);
708 if (PageSwapCache(page
)) {
709 swp_entry_t swap
= { .val
= page_private(page
) };
710 mem_cgroup_swapout(page
, swap
);
711 __delete_from_swap_cache(page
);
712 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
713 swapcache_free(swap
);
715 void (*freepage
)(struct page
*);
718 freepage
= mapping
->a_ops
->freepage
;
720 * Remember a shadow entry for reclaimed file cache in
721 * order to detect refaults, thus thrashing, later on.
723 * But don't store shadows in an address space that is
724 * already exiting. This is not just an optizimation,
725 * inode reclaim needs to empty out the radix tree or
726 * the nodes are lost. Don't plant shadows behind its
729 * We also don't store shadows for DAX mappings because the
730 * only page cache pages found in these are zero pages
731 * covering holes, and because we don't want to mix DAX
732 * exceptional entries and shadow exceptional entries in the
735 if (reclaimed
&& page_is_file_cache(page
) &&
736 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
737 shadow
= workingset_eviction(mapping
, page
);
738 __delete_from_page_cache(page
, shadow
);
739 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
741 if (freepage
!= NULL
)
748 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
753 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
754 * someone else has a ref on the page, abort and return 0. If it was
755 * successfully detached, return 1. Assumes the caller has a single ref on
758 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
760 if (__remove_mapping(mapping
, page
, false)) {
762 * Unfreezing the refcount with 1 rather than 2 effectively
763 * drops the pagecache ref for us without requiring another
766 page_ref_unfreeze(page
, 1);
773 * putback_lru_page - put previously isolated page onto appropriate LRU list
774 * @page: page to be put back to appropriate lru list
776 * Add previously isolated @page to appropriate LRU list.
777 * Page may still be unevictable for other reasons.
779 * lru_lock must not be held, interrupts must be enabled.
781 void putback_lru_page(struct page
*page
)
784 int was_unevictable
= PageUnevictable(page
);
786 VM_BUG_ON_PAGE(PageLRU(page
), page
);
789 ClearPageUnevictable(page
);
791 if (page_evictable(page
)) {
793 * For evictable pages, we can use the cache.
794 * In event of a race, worst case is we end up with an
795 * unevictable page on [in]active list.
796 * We know how to handle that.
798 is_unevictable
= false;
802 * Put unevictable pages directly on zone's unevictable
805 is_unevictable
= true;
806 add_page_to_unevictable_list(page
);
808 * When racing with an mlock or AS_UNEVICTABLE clearing
809 * (page is unlocked) make sure that if the other thread
810 * does not observe our setting of PG_lru and fails
811 * isolation/check_move_unevictable_pages,
812 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
813 * the page back to the evictable list.
815 * The other side is TestClearPageMlocked() or shmem_lock().
821 * page's status can change while we move it among lru. If an evictable
822 * page is on unevictable list, it never be freed. To avoid that,
823 * check after we added it to the list, again.
825 if (is_unevictable
&& page_evictable(page
)) {
826 if (!isolate_lru_page(page
)) {
830 /* This means someone else dropped this page from LRU
831 * So, it will be freed or putback to LRU again. There is
832 * nothing to do here.
836 if (was_unevictable
&& !is_unevictable
)
837 count_vm_event(UNEVICTABLE_PGRESCUED
);
838 else if (!was_unevictable
&& is_unevictable
)
839 count_vm_event(UNEVICTABLE_PGCULLED
);
841 put_page(page
); /* drop ref from isolate */
844 enum page_references
{
846 PAGEREF_RECLAIM_CLEAN
,
851 static enum page_references
page_check_references(struct page
*page
,
852 struct scan_control
*sc
)
854 int referenced_ptes
, referenced_page
;
855 unsigned long vm_flags
;
857 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
859 referenced_page
= TestClearPageReferenced(page
);
862 * Mlock lost the isolation race with us. Let try_to_unmap()
863 * move the page to the unevictable list.
865 if (vm_flags
& VM_LOCKED
)
866 return PAGEREF_RECLAIM
;
868 if (referenced_ptes
) {
869 if (PageSwapBacked(page
))
870 return PAGEREF_ACTIVATE
;
872 * All mapped pages start out with page table
873 * references from the instantiating fault, so we need
874 * to look twice if a mapped file page is used more
877 * Mark it and spare it for another trip around the
878 * inactive list. Another page table reference will
879 * lead to its activation.
881 * Note: the mark is set for activated pages as well
882 * so that recently deactivated but used pages are
885 SetPageReferenced(page
);
887 if (referenced_page
|| referenced_ptes
> 1)
888 return PAGEREF_ACTIVATE
;
891 * Activate file-backed executable pages after first usage.
893 if (vm_flags
& VM_EXEC
)
894 return PAGEREF_ACTIVATE
;
899 /* Reclaim if clean, defer dirty pages to writeback */
900 if (referenced_page
&& !PageSwapBacked(page
))
901 return PAGEREF_RECLAIM_CLEAN
;
903 return PAGEREF_RECLAIM
;
906 /* Check if a page is dirty or under writeback */
907 static void page_check_dirty_writeback(struct page
*page
,
908 bool *dirty
, bool *writeback
)
910 struct address_space
*mapping
;
913 * Anonymous pages are not handled by flushers and must be written
914 * from reclaim context. Do not stall reclaim based on them
916 if (!page_is_file_cache(page
)) {
922 /* By default assume that the page flags are accurate */
923 *dirty
= PageDirty(page
);
924 *writeback
= PageWriteback(page
);
926 /* Verify dirty/writeback state if the filesystem supports it */
927 if (!page_has_private(page
))
930 mapping
= page_mapping(page
);
931 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
932 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
936 * shrink_page_list() returns the number of reclaimed pages
938 static unsigned long shrink_page_list(struct list_head
*page_list
,
939 struct pglist_data
*pgdat
,
940 struct scan_control
*sc
,
941 enum ttu_flags ttu_flags
,
942 unsigned long *ret_nr_dirty
,
943 unsigned long *ret_nr_unqueued_dirty
,
944 unsigned long *ret_nr_congested
,
945 unsigned long *ret_nr_writeback
,
946 unsigned long *ret_nr_immediate
,
949 LIST_HEAD(ret_pages
);
950 LIST_HEAD(free_pages
);
952 unsigned long nr_unqueued_dirty
= 0;
953 unsigned long nr_dirty
= 0;
954 unsigned long nr_congested
= 0;
955 unsigned long nr_reclaimed
= 0;
956 unsigned long nr_writeback
= 0;
957 unsigned long nr_immediate
= 0;
961 while (!list_empty(page_list
)) {
962 struct address_space
*mapping
;
965 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
966 bool dirty
, writeback
;
967 bool lazyfree
= false;
968 int ret
= SWAP_SUCCESS
;
972 page
= lru_to_page(page_list
);
973 list_del(&page
->lru
);
975 if (!trylock_page(page
))
978 VM_BUG_ON_PAGE(PageActive(page
), page
);
982 if (unlikely(!page_evictable(page
)))
985 if (!sc
->may_unmap
&& page_mapped(page
))
988 /* Double the slab pressure for mapped and swapcache pages */
989 if (page_mapped(page
) || PageSwapCache(page
))
992 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
993 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
996 * The number of dirty pages determines if a zone is marked
997 * reclaim_congested which affects wait_iff_congested. kswapd
998 * will stall and start writing pages if the tail of the LRU
999 * is all dirty unqueued pages.
1001 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1002 if (dirty
|| writeback
)
1005 if (dirty
&& !writeback
)
1006 nr_unqueued_dirty
++;
1009 * Treat this page as congested if the underlying BDI is or if
1010 * pages are cycling through the LRU so quickly that the
1011 * pages marked for immediate reclaim are making it to the
1012 * end of the LRU a second time.
1014 mapping
= page_mapping(page
);
1015 if (((dirty
|| writeback
) && mapping
&&
1016 inode_write_congested(mapping
->host
)) ||
1017 (writeback
&& PageReclaim(page
)))
1021 * If a page at the tail of the LRU is under writeback, there
1022 * are three cases to consider.
1024 * 1) If reclaim is encountering an excessive number of pages
1025 * under writeback and this page is both under writeback and
1026 * PageReclaim then it indicates that pages are being queued
1027 * for IO but are being recycled through the LRU before the
1028 * IO can complete. Waiting on the page itself risks an
1029 * indefinite stall if it is impossible to writeback the
1030 * page due to IO error or disconnected storage so instead
1031 * note that the LRU is being scanned too quickly and the
1032 * caller can stall after page list has been processed.
1034 * 2) Global or new memcg reclaim encounters a page that is
1035 * not marked for immediate reclaim, or the caller does not
1036 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1037 * not to fs). In this case mark the page for immediate
1038 * reclaim and continue scanning.
1040 * Require may_enter_fs because we would wait on fs, which
1041 * may not have submitted IO yet. And the loop driver might
1042 * enter reclaim, and deadlock if it waits on a page for
1043 * which it is needed to do the write (loop masks off
1044 * __GFP_IO|__GFP_FS for this reason); but more thought
1045 * would probably show more reasons.
1047 * 3) Legacy memcg encounters a page that is already marked
1048 * PageReclaim. memcg does not have any dirty pages
1049 * throttling so we could easily OOM just because too many
1050 * pages are in writeback and there is nothing else to
1051 * reclaim. Wait for the writeback to complete.
1053 if (PageWriteback(page
)) {
1055 if (current_is_kswapd() &&
1056 PageReclaim(page
) &&
1057 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1062 } else if (sane_reclaim(sc
) ||
1063 !PageReclaim(page
) || !may_enter_fs
) {
1065 * This is slightly racy - end_page_writeback()
1066 * might have just cleared PageReclaim, then
1067 * setting PageReclaim here end up interpreted
1068 * as PageReadahead - but that does not matter
1069 * enough to care. What we do want is for this
1070 * page to have PageReclaim set next time memcg
1071 * reclaim reaches the tests above, so it will
1072 * then wait_on_page_writeback() to avoid OOM;
1073 * and it's also appropriate in global reclaim.
1075 SetPageReclaim(page
);
1082 wait_on_page_writeback(page
);
1083 /* then go back and try same page again */
1084 list_add_tail(&page
->lru
, page_list
);
1090 references
= page_check_references(page
, sc
);
1092 switch (references
) {
1093 case PAGEREF_ACTIVATE
:
1094 goto activate_locked
;
1097 case PAGEREF_RECLAIM
:
1098 case PAGEREF_RECLAIM_CLEAN
:
1099 ; /* try to reclaim the page below */
1103 * Anonymous process memory has backing store?
1104 * Try to allocate it some swap space here.
1106 if (PageAnon(page
) && !PageSwapCache(page
)) {
1107 if (!(sc
->gfp_mask
& __GFP_IO
))
1109 if (!add_to_swap(page
, page_list
))
1110 goto activate_locked
;
1114 /* Adding to swap updated mapping */
1115 mapping
= page_mapping(page
);
1116 } else if (unlikely(PageTransHuge(page
))) {
1117 /* Split file THP */
1118 if (split_huge_page_to_list(page
, page_list
))
1122 VM_BUG_ON_PAGE(PageTransHuge(page
), page
);
1125 * The page is mapped into the page tables of one or more
1126 * processes. Try to unmap it here.
1128 if (page_mapped(page
) && mapping
) {
1129 switch (ret
= try_to_unmap(page
, lazyfree
?
1130 (ttu_flags
| TTU_BATCH_FLUSH
| TTU_LZFREE
) :
1131 (ttu_flags
| TTU_BATCH_FLUSH
))) {
1133 goto activate_locked
;
1141 ; /* try to free the page below */
1145 if (PageDirty(page
)) {
1147 * Only kswapd can writeback filesystem pages to
1148 * avoid risk of stack overflow but only writeback
1149 * if many dirty pages have been encountered.
1151 if (page_is_file_cache(page
) &&
1152 (!current_is_kswapd() ||
1153 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1155 * Immediately reclaim when written back.
1156 * Similar in principal to deactivate_page()
1157 * except we already have the page isolated
1158 * and know it's dirty
1160 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1161 SetPageReclaim(page
);
1166 if (references
== PAGEREF_RECLAIM_CLEAN
)
1170 if (!sc
->may_writepage
)
1174 * Page is dirty. Flush the TLB if a writable entry
1175 * potentially exists to avoid CPU writes after IO
1176 * starts and then write it out here.
1178 try_to_unmap_flush_dirty();
1179 switch (pageout(page
, mapping
, sc
)) {
1183 goto activate_locked
;
1185 if (PageWriteback(page
))
1187 if (PageDirty(page
))
1191 * A synchronous write - probably a ramdisk. Go
1192 * ahead and try to reclaim the page.
1194 if (!trylock_page(page
))
1196 if (PageDirty(page
) || PageWriteback(page
))
1198 mapping
= page_mapping(page
);
1200 ; /* try to free the page below */
1205 * If the page has buffers, try to free the buffer mappings
1206 * associated with this page. If we succeed we try to free
1209 * We do this even if the page is PageDirty().
1210 * try_to_release_page() does not perform I/O, but it is
1211 * possible for a page to have PageDirty set, but it is actually
1212 * clean (all its buffers are clean). This happens if the
1213 * buffers were written out directly, with submit_bh(). ext3
1214 * will do this, as well as the blockdev mapping.
1215 * try_to_release_page() will discover that cleanness and will
1216 * drop the buffers and mark the page clean - it can be freed.
1218 * Rarely, pages can have buffers and no ->mapping. These are
1219 * the pages which were not successfully invalidated in
1220 * truncate_complete_page(). We try to drop those buffers here
1221 * and if that worked, and the page is no longer mapped into
1222 * process address space (page_count == 1) it can be freed.
1223 * Otherwise, leave the page on the LRU so it is swappable.
1225 if (page_has_private(page
)) {
1226 if (!try_to_release_page(page
, sc
->gfp_mask
))
1227 goto activate_locked
;
1228 if (!mapping
&& page_count(page
) == 1) {
1230 if (put_page_testzero(page
))
1234 * rare race with speculative reference.
1235 * the speculative reference will free
1236 * this page shortly, so we may
1237 * increment nr_reclaimed here (and
1238 * leave it off the LRU).
1247 if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1251 * At this point, we have no other references and there is
1252 * no way to pick any more up (removed from LRU, removed
1253 * from pagecache). Can use non-atomic bitops now (and
1254 * we obviously don't have to worry about waking up a process
1255 * waiting on the page lock, because there are no references.
1257 __ClearPageLocked(page
);
1259 if (ret
== SWAP_LZFREE
)
1260 count_vm_event(PGLAZYFREED
);
1265 * Is there need to periodically free_page_list? It would
1266 * appear not as the counts should be low
1268 list_add(&page
->lru
, &free_pages
);
1272 if (PageSwapCache(page
))
1273 try_to_free_swap(page
);
1275 list_add(&page
->lru
, &ret_pages
);
1279 /* Not a candidate for swapping, so reclaim swap space. */
1280 if (PageSwapCache(page
) && mem_cgroup_swap_full(page
))
1281 try_to_free_swap(page
);
1282 VM_BUG_ON_PAGE(PageActive(page
), page
);
1283 SetPageActive(page
);
1288 list_add(&page
->lru
, &ret_pages
);
1289 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1292 mem_cgroup_uncharge_list(&free_pages
);
1293 try_to_unmap_flush();
1294 free_hot_cold_page_list(&free_pages
, true);
1296 list_splice(&ret_pages
, page_list
);
1297 count_vm_events(PGACTIVATE
, pgactivate
);
1299 *ret_nr_dirty
+= nr_dirty
;
1300 *ret_nr_congested
+= nr_congested
;
1301 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1302 *ret_nr_writeback
+= nr_writeback
;
1303 *ret_nr_immediate
+= nr_immediate
;
1304 return nr_reclaimed
;
1307 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1308 struct list_head
*page_list
)
1310 struct scan_control sc
= {
1311 .gfp_mask
= GFP_KERNEL
,
1312 .priority
= DEF_PRIORITY
,
1315 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1316 struct page
*page
, *next
;
1317 LIST_HEAD(clean_pages
);
1319 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1320 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1321 !__PageMovable(page
)) {
1322 ClearPageActive(page
);
1323 list_move(&page
->lru
, &clean_pages
);
1327 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1328 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1329 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1330 list_splice(&clean_pages
, page_list
);
1331 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1336 * Attempt to remove the specified page from its LRU. Only take this page
1337 * if it is of the appropriate PageActive status. Pages which are being
1338 * freed elsewhere are also ignored.
1340 * page: page to consider
1341 * mode: one of the LRU isolation modes defined above
1343 * returns 0 on success, -ve errno on failure.
1345 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1349 /* Only take pages on the LRU. */
1353 /* Compaction should not handle unevictable pages but CMA can do so */
1354 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1360 * To minimise LRU disruption, the caller can indicate that it only
1361 * wants to isolate pages it will be able to operate on without
1362 * blocking - clean pages for the most part.
1364 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1365 * is used by reclaim when it is cannot write to backing storage
1367 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1368 * that it is possible to migrate without blocking
1370 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1371 /* All the caller can do on PageWriteback is block */
1372 if (PageWriteback(page
))
1375 if (PageDirty(page
)) {
1376 struct address_space
*mapping
;
1379 /* ISOLATE_CLEAN means only clean pages */
1380 if (mode
& ISOLATE_CLEAN
)
1384 * Only pages without mappings or that have a
1385 * ->migratepage callback are possible to migrate
1386 * without blocking. However, we can be racing with
1387 * truncation so it's necessary to lock the page
1388 * to stabilise the mapping as truncation holds
1389 * the page lock until after the page is removed
1390 * from the page cache.
1392 if (!trylock_page(page
))
1395 mapping
= page_mapping(page
);
1396 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1403 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1406 if (likely(get_page_unless_zero(page
))) {
1408 * Be careful not to clear PageLRU until after we're
1409 * sure the page is not being freed elsewhere -- the
1410 * page release code relies on it.
1421 * Update LRU sizes after isolating pages. The LRU size updates must
1422 * be complete before mem_cgroup_update_lru_size due to a santity check.
1424 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1425 enum lru_list lru
, unsigned long *nr_zone_taken
)
1429 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1430 if (!nr_zone_taken
[zid
])
1433 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1435 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1442 * zone_lru_lock is heavily contended. Some of the functions that
1443 * shrink the lists perform better by taking out a batch of pages
1444 * and working on them outside the LRU lock.
1446 * For pagecache intensive workloads, this function is the hottest
1447 * spot in the kernel (apart from copy_*_user functions).
1449 * Appropriate locks must be held before calling this function.
1451 * @nr_to_scan: The number of pages to look through on the list.
1452 * @lruvec: The LRU vector to pull pages from.
1453 * @dst: The temp list to put pages on to.
1454 * @nr_scanned: The number of pages that were scanned.
1455 * @sc: The scan_control struct for this reclaim session
1456 * @mode: One of the LRU isolation modes
1457 * @lru: LRU list id for isolating
1459 * returns how many pages were moved onto *@dst.
1461 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1462 struct lruvec
*lruvec
, struct list_head
*dst
,
1463 unsigned long *nr_scanned
, struct scan_control
*sc
,
1464 isolate_mode_t mode
, enum lru_list lru
)
1466 struct list_head
*src
= &lruvec
->lists
[lru
];
1467 unsigned long nr_taken
= 0;
1468 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1469 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1470 unsigned long scan
, nr_pages
;
1471 LIST_HEAD(pages_skipped
);
1473 for (scan
= 0; scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&&
1474 !list_empty(src
);) {
1477 page
= lru_to_page(src
);
1478 prefetchw_prev_lru_page(page
, src
, flags
);
1480 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1482 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1483 list_move(&page
->lru
, &pages_skipped
);
1484 nr_skipped
[page_zonenum(page
)]++;
1489 * Account for scanned and skipped separetly to avoid the pgdat
1490 * being prematurely marked unreclaimable by pgdat_reclaimable.
1494 switch (__isolate_lru_page(page
, mode
)) {
1496 nr_pages
= hpage_nr_pages(page
);
1497 nr_taken
+= nr_pages
;
1498 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1499 list_move(&page
->lru
, dst
);
1503 /* else it is being freed elsewhere */
1504 list_move(&page
->lru
, src
);
1513 * Splice any skipped pages to the start of the LRU list. Note that
1514 * this disrupts the LRU order when reclaiming for lower zones but
1515 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1516 * scanning would soon rescan the same pages to skip and put the
1517 * system at risk of premature OOM.
1519 if (!list_empty(&pages_skipped
)) {
1521 unsigned long total_skipped
= 0;
1523 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1524 if (!nr_skipped
[zid
])
1527 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1528 total_skipped
+= nr_skipped
[zid
];
1532 * Account skipped pages as a partial scan as the pgdat may be
1533 * close to unreclaimable. If the LRU list is empty, account
1534 * skipped pages as a full scan.
1536 scan
+= list_empty(src
) ? total_skipped
: total_skipped
>> 2;
1538 list_splice(&pages_skipped
, src
);
1541 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
, scan
,
1542 nr_taken
, mode
, is_file_lru(lru
));
1543 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1548 * isolate_lru_page - tries to isolate a page from its LRU list
1549 * @page: page to isolate from its LRU list
1551 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1552 * vmstat statistic corresponding to whatever LRU list the page was on.
1554 * Returns 0 if the page was removed from an LRU list.
1555 * Returns -EBUSY if the page was not on an LRU list.
1557 * The returned page will have PageLRU() cleared. If it was found on
1558 * the active list, it will have PageActive set. If it was found on
1559 * the unevictable list, it will have the PageUnevictable bit set. That flag
1560 * may need to be cleared by the caller before letting the page go.
1562 * The vmstat statistic corresponding to the list on which the page was
1563 * found will be decremented.
1566 * (1) Must be called with an elevated refcount on the page. This is a
1567 * fundamentnal difference from isolate_lru_pages (which is called
1568 * without a stable reference).
1569 * (2) the lru_lock must not be held.
1570 * (3) interrupts must be enabled.
1572 int isolate_lru_page(struct page
*page
)
1576 VM_BUG_ON_PAGE(!page_count(page
), page
);
1577 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1579 if (PageLRU(page
)) {
1580 struct zone
*zone
= page_zone(page
);
1581 struct lruvec
*lruvec
;
1583 spin_lock_irq(zone_lru_lock(zone
));
1584 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1585 if (PageLRU(page
)) {
1586 int lru
= page_lru(page
);
1589 del_page_from_lru_list(page
, lruvec
, lru
);
1592 spin_unlock_irq(zone_lru_lock(zone
));
1598 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1599 * then get resheduled. When there are massive number of tasks doing page
1600 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1601 * the LRU list will go small and be scanned faster than necessary, leading to
1602 * unnecessary swapping, thrashing and OOM.
1604 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1605 struct scan_control
*sc
)
1607 unsigned long inactive
, isolated
;
1609 if (current_is_kswapd())
1612 if (!sane_reclaim(sc
))
1616 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1617 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1619 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1620 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1624 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1625 * won't get blocked by normal direct-reclaimers, forming a circular
1628 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1631 return isolated
> inactive
;
1634 static noinline_for_stack
void
1635 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1637 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1638 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1639 LIST_HEAD(pages_to_free
);
1642 * Put back any unfreeable pages.
1644 while (!list_empty(page_list
)) {
1645 struct page
*page
= lru_to_page(page_list
);
1648 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1649 list_del(&page
->lru
);
1650 if (unlikely(!page_evictable(page
))) {
1651 spin_unlock_irq(&pgdat
->lru_lock
);
1652 putback_lru_page(page
);
1653 spin_lock_irq(&pgdat
->lru_lock
);
1657 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1660 lru
= page_lru(page
);
1661 add_page_to_lru_list(page
, lruvec
, lru
);
1663 if (is_active_lru(lru
)) {
1664 int file
= is_file_lru(lru
);
1665 int numpages
= hpage_nr_pages(page
);
1666 reclaim_stat
->recent_rotated
[file
] += numpages
;
1668 if (put_page_testzero(page
)) {
1669 __ClearPageLRU(page
);
1670 __ClearPageActive(page
);
1671 del_page_from_lru_list(page
, lruvec
, lru
);
1673 if (unlikely(PageCompound(page
))) {
1674 spin_unlock_irq(&pgdat
->lru_lock
);
1675 mem_cgroup_uncharge(page
);
1676 (*get_compound_page_dtor(page
))(page
);
1677 spin_lock_irq(&pgdat
->lru_lock
);
1679 list_add(&page
->lru
, &pages_to_free
);
1684 * To save our caller's stack, now use input list for pages to free.
1686 list_splice(&pages_to_free
, page_list
);
1690 * If a kernel thread (such as nfsd for loop-back mounts) services
1691 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1692 * In that case we should only throttle if the backing device it is
1693 * writing to is congested. In other cases it is safe to throttle.
1695 static int current_may_throttle(void)
1697 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1698 current
->backing_dev_info
== NULL
||
1699 bdi_write_congested(current
->backing_dev_info
);
1702 static bool inactive_reclaimable_pages(struct lruvec
*lruvec
,
1703 struct scan_control
*sc
, enum lru_list lru
)
1707 int file
= is_file_lru(lru
);
1708 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1710 if (!global_reclaim(sc
))
1713 for (zid
= sc
->reclaim_idx
; zid
>= 0; zid
--) {
1714 zone
= &pgdat
->node_zones
[zid
];
1715 if (!managed_zone(zone
))
1718 if (zone_page_state_snapshot(zone
, NR_ZONE_LRU_BASE
+
1719 LRU_FILE
* file
) >= SWAP_CLUSTER_MAX
)
1727 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1728 * of reclaimed pages
1730 static noinline_for_stack
unsigned long
1731 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1732 struct scan_control
*sc
, enum lru_list lru
)
1734 LIST_HEAD(page_list
);
1735 unsigned long nr_scanned
;
1736 unsigned long nr_reclaimed
= 0;
1737 unsigned long nr_taken
;
1738 unsigned long nr_dirty
= 0;
1739 unsigned long nr_congested
= 0;
1740 unsigned long nr_unqueued_dirty
= 0;
1741 unsigned long nr_writeback
= 0;
1742 unsigned long nr_immediate
= 0;
1743 isolate_mode_t isolate_mode
= 0;
1744 int file
= is_file_lru(lru
);
1745 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1746 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1748 if (!inactive_reclaimable_pages(lruvec
, sc
, lru
))
1751 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1752 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1754 /* We are about to die and free our memory. Return now. */
1755 if (fatal_signal_pending(current
))
1756 return SWAP_CLUSTER_MAX
;
1762 isolate_mode
|= ISOLATE_UNMAPPED
;
1763 if (!sc
->may_writepage
)
1764 isolate_mode
|= ISOLATE_CLEAN
;
1766 spin_lock_irq(&pgdat
->lru_lock
);
1768 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1769 &nr_scanned
, sc
, isolate_mode
, lru
);
1771 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1772 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1774 if (global_reclaim(sc
)) {
1775 __mod_node_page_state(pgdat
, NR_PAGES_SCANNED
, nr_scanned
);
1776 if (current_is_kswapd())
1777 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1779 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1781 spin_unlock_irq(&pgdat
->lru_lock
);
1786 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, TTU_UNMAP
,
1787 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1788 &nr_writeback
, &nr_immediate
,
1791 spin_lock_irq(&pgdat
->lru_lock
);
1793 if (global_reclaim(sc
)) {
1794 if (current_is_kswapd())
1795 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1797 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1800 putback_inactive_pages(lruvec
, &page_list
);
1802 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1804 spin_unlock_irq(&pgdat
->lru_lock
);
1806 mem_cgroup_uncharge_list(&page_list
);
1807 free_hot_cold_page_list(&page_list
, true);
1810 * If reclaim is isolating dirty pages under writeback, it implies
1811 * that the long-lived page allocation rate is exceeding the page
1812 * laundering rate. Either the global limits are not being effective
1813 * at throttling processes due to the page distribution throughout
1814 * zones or there is heavy usage of a slow backing device. The
1815 * only option is to throttle from reclaim context which is not ideal
1816 * as there is no guarantee the dirtying process is throttled in the
1817 * same way balance_dirty_pages() manages.
1819 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1820 * of pages under pages flagged for immediate reclaim and stall if any
1821 * are encountered in the nr_immediate check below.
1823 if (nr_writeback
&& nr_writeback
== nr_taken
)
1824 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
1827 * Legacy memcg will stall in page writeback so avoid forcibly
1830 if (sane_reclaim(sc
)) {
1832 * Tag a zone as congested if all the dirty pages scanned were
1833 * backed by a congested BDI and wait_iff_congested will stall.
1835 if (nr_dirty
&& nr_dirty
== nr_congested
)
1836 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
1839 * If dirty pages are scanned that are not queued for IO, it
1840 * implies that flushers are not keeping up. In this case, flag
1841 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1844 if (nr_unqueued_dirty
== nr_taken
)
1845 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
1848 * If kswapd scans pages marked marked for immediate
1849 * reclaim and under writeback (nr_immediate), it implies
1850 * that pages are cycling through the LRU faster than
1851 * they are written so also forcibly stall.
1853 if (nr_immediate
&& current_may_throttle())
1854 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1858 * Stall direct reclaim for IO completions if underlying BDIs or zone
1859 * is congested. Allow kswapd to continue until it starts encountering
1860 * unqueued dirty pages or cycling through the LRU too quickly.
1862 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1863 current_may_throttle())
1864 wait_iff_congested(pgdat
, BLK_RW_ASYNC
, HZ
/10);
1866 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1867 nr_scanned
, nr_reclaimed
,
1868 sc
->priority
, file
);
1869 return nr_reclaimed
;
1873 * This moves pages from the active list to the inactive list.
1875 * We move them the other way if the page is referenced by one or more
1876 * processes, from rmap.
1878 * If the pages are mostly unmapped, the processing is fast and it is
1879 * appropriate to hold zone_lru_lock across the whole operation. But if
1880 * the pages are mapped, the processing is slow (page_referenced()) so we
1881 * should drop zone_lru_lock around each page. It's impossible to balance
1882 * this, so instead we remove the pages from the LRU while processing them.
1883 * It is safe to rely on PG_active against the non-LRU pages in here because
1884 * nobody will play with that bit on a non-LRU page.
1886 * The downside is that we have to touch page->_refcount against each page.
1887 * But we had to alter page->flags anyway.
1890 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1891 struct list_head
*list
,
1892 struct list_head
*pages_to_free
,
1895 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1896 unsigned long pgmoved
= 0;
1900 while (!list_empty(list
)) {
1901 page
= lru_to_page(list
);
1902 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1904 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1907 nr_pages
= hpage_nr_pages(page
);
1908 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1909 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1910 pgmoved
+= nr_pages
;
1912 if (put_page_testzero(page
)) {
1913 __ClearPageLRU(page
);
1914 __ClearPageActive(page
);
1915 del_page_from_lru_list(page
, lruvec
, lru
);
1917 if (unlikely(PageCompound(page
))) {
1918 spin_unlock_irq(&pgdat
->lru_lock
);
1919 mem_cgroup_uncharge(page
);
1920 (*get_compound_page_dtor(page
))(page
);
1921 spin_lock_irq(&pgdat
->lru_lock
);
1923 list_add(&page
->lru
, pages_to_free
);
1927 if (!is_active_lru(lru
))
1928 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1931 static void shrink_active_list(unsigned long nr_to_scan
,
1932 struct lruvec
*lruvec
,
1933 struct scan_control
*sc
,
1936 unsigned long nr_taken
;
1937 unsigned long nr_scanned
;
1938 unsigned long vm_flags
;
1939 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1940 LIST_HEAD(l_active
);
1941 LIST_HEAD(l_inactive
);
1943 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1944 unsigned long nr_rotated
= 0;
1945 isolate_mode_t isolate_mode
= 0;
1946 int file
= is_file_lru(lru
);
1947 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1952 isolate_mode
|= ISOLATE_UNMAPPED
;
1953 if (!sc
->may_writepage
)
1954 isolate_mode
|= ISOLATE_CLEAN
;
1956 spin_lock_irq(&pgdat
->lru_lock
);
1958 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1959 &nr_scanned
, sc
, isolate_mode
, lru
);
1961 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1962 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1964 if (global_reclaim(sc
))
1965 __mod_node_page_state(pgdat
, NR_PAGES_SCANNED
, nr_scanned
);
1966 __count_vm_events(PGREFILL
, nr_scanned
);
1968 spin_unlock_irq(&pgdat
->lru_lock
);
1970 while (!list_empty(&l_hold
)) {
1972 page
= lru_to_page(&l_hold
);
1973 list_del(&page
->lru
);
1975 if (unlikely(!page_evictable(page
))) {
1976 putback_lru_page(page
);
1980 if (unlikely(buffer_heads_over_limit
)) {
1981 if (page_has_private(page
) && trylock_page(page
)) {
1982 if (page_has_private(page
))
1983 try_to_release_page(page
, 0);
1988 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1990 nr_rotated
+= hpage_nr_pages(page
);
1992 * Identify referenced, file-backed active pages and
1993 * give them one more trip around the active list. So
1994 * that executable code get better chances to stay in
1995 * memory under moderate memory pressure. Anon pages
1996 * are not likely to be evicted by use-once streaming
1997 * IO, plus JVM can create lots of anon VM_EXEC pages,
1998 * so we ignore them here.
2000 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2001 list_add(&page
->lru
, &l_active
);
2006 ClearPageActive(page
); /* we are de-activating */
2007 list_add(&page
->lru
, &l_inactive
);
2011 * Move pages back to the lru list.
2013 spin_lock_irq(&pgdat
->lru_lock
);
2015 * Count referenced pages from currently used mappings as rotated,
2016 * even though only some of them are actually re-activated. This
2017 * helps balance scan pressure between file and anonymous pages in
2020 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2022 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2023 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2024 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2025 spin_unlock_irq(&pgdat
->lru_lock
);
2027 mem_cgroup_uncharge_list(&l_hold
);
2028 free_hot_cold_page_list(&l_hold
, true);
2032 * The inactive anon list should be small enough that the VM never has
2033 * to do too much work.
2035 * The inactive file list should be small enough to leave most memory
2036 * to the established workingset on the scan-resistant active list,
2037 * but large enough to avoid thrashing the aggregate readahead window.
2039 * Both inactive lists should also be large enough that each inactive
2040 * page has a chance to be referenced again before it is reclaimed.
2042 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2043 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2044 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2047 * memory ratio inactive
2048 * -------------------------------------
2057 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2058 struct scan_control
*sc
)
2060 unsigned long inactive_ratio
;
2061 unsigned long inactive
, active
;
2062 enum lru_list inactive_lru
= file
* LRU_FILE
;
2063 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2067 * If we don't have swap space, anonymous page deactivation
2070 if (!file
&& !total_swap_pages
)
2073 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2074 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2076 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2078 inactive_ratio
= int_sqrt(10 * gb
);
2082 return inactive
* inactive_ratio
< active
;
2085 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2086 struct lruvec
*lruvec
, struct scan_control
*sc
)
2088 if (is_active_lru(lru
)) {
2089 if (inactive_list_is_low(lruvec
, is_file_lru(lru
), sc
))
2090 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2094 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2105 * Determine how aggressively the anon and file LRU lists should be
2106 * scanned. The relative value of each set of LRU lists is determined
2107 * by looking at the fraction of the pages scanned we did rotate back
2108 * onto the active list instead of evict.
2110 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2111 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2114 struct scan_control
*sc
, unsigned long *nr
,
2115 unsigned long *lru_pages
)
2117 int swappiness
= mem_cgroup_swappiness(memcg
);
2118 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2120 u64 denominator
= 0; /* gcc */
2121 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2122 unsigned long anon_prio
, file_prio
;
2123 enum scan_balance scan_balance
;
2124 unsigned long anon
, file
;
2125 bool force_scan
= false;
2126 unsigned long ap
, fp
;
2132 * If the zone or memcg is small, nr[l] can be 0. This
2133 * results in no scanning on this priority and a potential
2134 * priority drop. Global direct reclaim can go to the next
2135 * zone and tends to have no problems. Global kswapd is for
2136 * zone balancing and it needs to scan a minimum amount. When
2137 * reclaiming for a memcg, a priority drop can cause high
2138 * latencies, so it's better to scan a minimum amount there as
2141 if (current_is_kswapd()) {
2142 if (!pgdat_reclaimable(pgdat
))
2144 if (!mem_cgroup_online(memcg
))
2147 if (!global_reclaim(sc
))
2150 /* If we have no swap space, do not bother scanning anon pages. */
2151 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2152 scan_balance
= SCAN_FILE
;
2157 * Global reclaim will swap to prevent OOM even with no
2158 * swappiness, but memcg users want to use this knob to
2159 * disable swapping for individual groups completely when
2160 * using the memory controller's swap limit feature would be
2163 if (!global_reclaim(sc
) && !swappiness
) {
2164 scan_balance
= SCAN_FILE
;
2169 * Do not apply any pressure balancing cleverness when the
2170 * system is close to OOM, scan both anon and file equally
2171 * (unless the swappiness setting disagrees with swapping).
2173 if (!sc
->priority
&& swappiness
) {
2174 scan_balance
= SCAN_EQUAL
;
2179 * Prevent the reclaimer from falling into the cache trap: as
2180 * cache pages start out inactive, every cache fault will tip
2181 * the scan balance towards the file LRU. And as the file LRU
2182 * shrinks, so does the window for rotation from references.
2183 * This means we have a runaway feedback loop where a tiny
2184 * thrashing file LRU becomes infinitely more attractive than
2185 * anon pages. Try to detect this based on file LRU size.
2187 if (global_reclaim(sc
)) {
2188 unsigned long pgdatfile
;
2189 unsigned long pgdatfree
;
2191 unsigned long total_high_wmark
= 0;
2193 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2194 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2195 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2197 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2198 struct zone
*zone
= &pgdat
->node_zones
[z
];
2199 if (!managed_zone(zone
))
2202 total_high_wmark
+= high_wmark_pages(zone
);
2205 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2206 scan_balance
= SCAN_ANON
;
2212 * If there is enough inactive page cache, i.e. if the size of the
2213 * inactive list is greater than that of the active list *and* the
2214 * inactive list actually has some pages to scan on this priority, we
2215 * do not reclaim anything from the anonymous working set right now.
2216 * Without the second condition we could end up never scanning an
2217 * lruvec even if it has plenty of old anonymous pages unless the
2218 * system is under heavy pressure.
2220 if (!inactive_list_is_low(lruvec
, true, sc
) &&
2221 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2222 scan_balance
= SCAN_FILE
;
2226 scan_balance
= SCAN_FRACT
;
2229 * With swappiness at 100, anonymous and file have the same priority.
2230 * This scanning priority is essentially the inverse of IO cost.
2232 anon_prio
= swappiness
;
2233 file_prio
= 200 - anon_prio
;
2236 * OK, so we have swap space and a fair amount of page cache
2237 * pages. We use the recently rotated / recently scanned
2238 * ratios to determine how valuable each cache is.
2240 * Because workloads change over time (and to avoid overflow)
2241 * we keep these statistics as a floating average, which ends
2242 * up weighing recent references more than old ones.
2244 * anon in [0], file in [1]
2247 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2248 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2249 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2250 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2252 spin_lock_irq(&pgdat
->lru_lock
);
2253 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2254 reclaim_stat
->recent_scanned
[0] /= 2;
2255 reclaim_stat
->recent_rotated
[0] /= 2;
2258 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2259 reclaim_stat
->recent_scanned
[1] /= 2;
2260 reclaim_stat
->recent_rotated
[1] /= 2;
2264 * The amount of pressure on anon vs file pages is inversely
2265 * proportional to the fraction of recently scanned pages on
2266 * each list that were recently referenced and in active use.
2268 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2269 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2271 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2272 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2273 spin_unlock_irq(&pgdat
->lru_lock
);
2277 denominator
= ap
+ fp
+ 1;
2279 some_scanned
= false;
2280 /* Only use force_scan on second pass. */
2281 for (pass
= 0; !some_scanned
&& pass
< 2; pass
++) {
2283 for_each_evictable_lru(lru
) {
2284 int file
= is_file_lru(lru
);
2288 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2289 scan
= size
>> sc
->priority
;
2291 if (!scan
&& pass
&& force_scan
)
2292 scan
= min(size
, SWAP_CLUSTER_MAX
);
2294 switch (scan_balance
) {
2296 /* Scan lists relative to size */
2300 * Scan types proportional to swappiness and
2301 * their relative recent reclaim efficiency.
2303 scan
= div64_u64(scan
* fraction
[file
],
2308 /* Scan one type exclusively */
2309 if ((scan_balance
== SCAN_FILE
) != file
) {
2315 /* Look ma, no brain */
2323 * Skip the second pass and don't force_scan,
2324 * if we found something to scan.
2326 some_scanned
|= !!scan
;
2332 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2334 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2335 struct scan_control
*sc
, unsigned long *lru_pages
)
2337 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2338 unsigned long nr
[NR_LRU_LISTS
];
2339 unsigned long targets
[NR_LRU_LISTS
];
2340 unsigned long nr_to_scan
;
2342 unsigned long nr_reclaimed
= 0;
2343 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2344 struct blk_plug plug
;
2347 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2349 /* Record the original scan target for proportional adjustments later */
2350 memcpy(targets
, nr
, sizeof(nr
));
2353 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2354 * event that can occur when there is little memory pressure e.g.
2355 * multiple streaming readers/writers. Hence, we do not abort scanning
2356 * when the requested number of pages are reclaimed when scanning at
2357 * DEF_PRIORITY on the assumption that the fact we are direct
2358 * reclaiming implies that kswapd is not keeping up and it is best to
2359 * do a batch of work at once. For memcg reclaim one check is made to
2360 * abort proportional reclaim if either the file or anon lru has already
2361 * dropped to zero at the first pass.
2363 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2364 sc
->priority
== DEF_PRIORITY
);
2366 blk_start_plug(&plug
);
2367 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2368 nr
[LRU_INACTIVE_FILE
]) {
2369 unsigned long nr_anon
, nr_file
, percentage
;
2370 unsigned long nr_scanned
;
2372 for_each_evictable_lru(lru
) {
2374 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2375 nr
[lru
] -= nr_to_scan
;
2377 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2384 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2388 * For kswapd and memcg, reclaim at least the number of pages
2389 * requested. Ensure that the anon and file LRUs are scanned
2390 * proportionally what was requested by get_scan_count(). We
2391 * stop reclaiming one LRU and reduce the amount scanning
2392 * proportional to the original scan target.
2394 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2395 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2398 * It's just vindictive to attack the larger once the smaller
2399 * has gone to zero. And given the way we stop scanning the
2400 * smaller below, this makes sure that we only make one nudge
2401 * towards proportionality once we've got nr_to_reclaim.
2403 if (!nr_file
|| !nr_anon
)
2406 if (nr_file
> nr_anon
) {
2407 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2408 targets
[LRU_ACTIVE_ANON
] + 1;
2410 percentage
= nr_anon
* 100 / scan_target
;
2412 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2413 targets
[LRU_ACTIVE_FILE
] + 1;
2415 percentage
= nr_file
* 100 / scan_target
;
2418 /* Stop scanning the smaller of the LRU */
2420 nr
[lru
+ LRU_ACTIVE
] = 0;
2423 * Recalculate the other LRU scan count based on its original
2424 * scan target and the percentage scanning already complete
2426 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2427 nr_scanned
= targets
[lru
] - nr
[lru
];
2428 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2429 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2432 nr_scanned
= targets
[lru
] - nr
[lru
];
2433 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2434 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2436 scan_adjusted
= true;
2438 blk_finish_plug(&plug
);
2439 sc
->nr_reclaimed
+= nr_reclaimed
;
2442 * Even if we did not try to evict anon pages at all, we want to
2443 * rebalance the anon lru active/inactive ratio.
2445 if (inactive_list_is_low(lruvec
, false, sc
))
2446 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2447 sc
, LRU_ACTIVE_ANON
);
2450 /* Use reclaim/compaction for costly allocs or under memory pressure */
2451 static bool in_reclaim_compaction(struct scan_control
*sc
)
2453 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2454 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2455 sc
->priority
< DEF_PRIORITY
- 2))
2462 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2463 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2464 * true if more pages should be reclaimed such that when the page allocator
2465 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2466 * It will give up earlier than that if there is difficulty reclaiming pages.
2468 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2469 unsigned long nr_reclaimed
,
2470 unsigned long nr_scanned
,
2471 struct scan_control
*sc
)
2473 unsigned long pages_for_compaction
;
2474 unsigned long inactive_lru_pages
;
2477 /* If not in reclaim/compaction mode, stop */
2478 if (!in_reclaim_compaction(sc
))
2481 /* Consider stopping depending on scan and reclaim activity */
2482 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2484 * For __GFP_REPEAT allocations, stop reclaiming if the
2485 * full LRU list has been scanned and we are still failing
2486 * to reclaim pages. This full LRU scan is potentially
2487 * expensive but a __GFP_REPEAT caller really wants to succeed
2489 if (!nr_reclaimed
&& !nr_scanned
)
2493 * For non-__GFP_REPEAT allocations which can presumably
2494 * fail without consequence, stop if we failed to reclaim
2495 * any pages from the last SWAP_CLUSTER_MAX number of
2496 * pages that were scanned. This will return to the
2497 * caller faster at the risk reclaim/compaction and
2498 * the resulting allocation attempt fails
2505 * If we have not reclaimed enough pages for compaction and the
2506 * inactive lists are large enough, continue reclaiming
2508 pages_for_compaction
= compact_gap(sc
->order
);
2509 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2510 if (get_nr_swap_pages() > 0)
2511 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2512 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2513 inactive_lru_pages
> pages_for_compaction
)
2516 /* If compaction would go ahead or the allocation would succeed, stop */
2517 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2518 struct zone
*zone
= &pgdat
->node_zones
[z
];
2519 if (!managed_zone(zone
))
2522 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2523 case COMPACT_SUCCESS
:
2524 case COMPACT_CONTINUE
:
2527 /* check next zone */
2534 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2536 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2537 unsigned long nr_reclaimed
, nr_scanned
;
2538 bool reclaimable
= false;
2541 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2542 struct mem_cgroup_reclaim_cookie reclaim
= {
2544 .priority
= sc
->priority
,
2546 unsigned long node_lru_pages
= 0;
2547 struct mem_cgroup
*memcg
;
2549 nr_reclaimed
= sc
->nr_reclaimed
;
2550 nr_scanned
= sc
->nr_scanned
;
2552 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2554 unsigned long lru_pages
;
2555 unsigned long reclaimed
;
2556 unsigned long scanned
;
2558 if (mem_cgroup_low(root
, memcg
)) {
2559 if (!sc
->may_thrash
)
2561 mem_cgroup_events(memcg
, MEMCG_LOW
, 1);
2564 reclaimed
= sc
->nr_reclaimed
;
2565 scanned
= sc
->nr_scanned
;
2567 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2568 node_lru_pages
+= lru_pages
;
2571 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2572 memcg
, sc
->nr_scanned
- scanned
,
2575 /* Record the group's reclaim efficiency */
2576 vmpressure(sc
->gfp_mask
, memcg
, false,
2577 sc
->nr_scanned
- scanned
,
2578 sc
->nr_reclaimed
- reclaimed
);
2581 * Direct reclaim and kswapd have to scan all memory
2582 * cgroups to fulfill the overall scan target for the
2585 * Limit reclaim, on the other hand, only cares about
2586 * nr_to_reclaim pages to be reclaimed and it will
2587 * retry with decreasing priority if one round over the
2588 * whole hierarchy is not sufficient.
2590 if (!global_reclaim(sc
) &&
2591 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2592 mem_cgroup_iter_break(root
, memcg
);
2595 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2598 * Shrink the slab caches in the same proportion that
2599 * the eligible LRU pages were scanned.
2601 if (global_reclaim(sc
))
2602 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, NULL
,
2603 sc
->nr_scanned
- nr_scanned
,
2606 if (reclaim_state
) {
2607 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2608 reclaim_state
->reclaimed_slab
= 0;
2611 /* Record the subtree's reclaim efficiency */
2612 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2613 sc
->nr_scanned
- nr_scanned
,
2614 sc
->nr_reclaimed
- nr_reclaimed
);
2616 if (sc
->nr_reclaimed
- nr_reclaimed
)
2619 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2620 sc
->nr_scanned
- nr_scanned
, sc
));
2623 * Kswapd gives up on balancing particular nodes after too
2624 * many failures to reclaim anything from them and goes to
2625 * sleep. On reclaim progress, reset the failure counter. A
2626 * successful direct reclaim run will revive a dormant kswapd.
2629 pgdat
->kswapd_failures
= 0;
2635 * Returns true if compaction should go ahead for a costly-order request, or
2636 * the allocation would already succeed without compaction. Return false if we
2637 * should reclaim first.
2639 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2641 unsigned long watermark
;
2642 enum compact_result suitable
;
2644 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2645 if (suitable
== COMPACT_SUCCESS
)
2646 /* Allocation should succeed already. Don't reclaim. */
2648 if (suitable
== COMPACT_SKIPPED
)
2649 /* Compaction cannot yet proceed. Do reclaim. */
2653 * Compaction is already possible, but it takes time to run and there
2654 * are potentially other callers using the pages just freed. So proceed
2655 * with reclaim to make a buffer of free pages available to give
2656 * compaction a reasonable chance of completing and allocating the page.
2657 * Note that we won't actually reclaim the whole buffer in one attempt
2658 * as the target watermark in should_continue_reclaim() is lower. But if
2659 * we are already above the high+gap watermark, don't reclaim at all.
2661 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2663 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2667 * This is the direct reclaim path, for page-allocating processes. We only
2668 * try to reclaim pages from zones which will satisfy the caller's allocation
2671 * If a zone is deemed to be full of pinned pages then just give it a light
2672 * scan then give up on it.
2674 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2678 unsigned long nr_soft_reclaimed
;
2679 unsigned long nr_soft_scanned
;
2681 pg_data_t
*last_pgdat
= NULL
;
2684 * If the number of buffer_heads in the machine exceeds the maximum
2685 * allowed level, force direct reclaim to scan the highmem zone as
2686 * highmem pages could be pinning lowmem pages storing buffer_heads
2688 orig_mask
= sc
->gfp_mask
;
2689 if (buffer_heads_over_limit
) {
2690 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2691 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2694 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2695 sc
->reclaim_idx
, sc
->nodemask
) {
2697 * Take care memory controller reclaiming has small influence
2700 if (global_reclaim(sc
)) {
2701 if (!cpuset_zone_allowed(zone
,
2702 GFP_KERNEL
| __GFP_HARDWALL
))
2706 * If we already have plenty of memory free for
2707 * compaction in this zone, don't free any more.
2708 * Even though compaction is invoked for any
2709 * non-zero order, only frequent costly order
2710 * reclamation is disruptive enough to become a
2711 * noticeable problem, like transparent huge
2714 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2715 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2716 compaction_ready(zone
, sc
)) {
2717 sc
->compaction_ready
= true;
2722 * Shrink each node in the zonelist once. If the
2723 * zonelist is ordered by zone (not the default) then a
2724 * node may be shrunk multiple times but in that case
2725 * the user prefers lower zones being preserved.
2727 if (zone
->zone_pgdat
== last_pgdat
)
2731 * This steals pages from memory cgroups over softlimit
2732 * and returns the number of reclaimed pages and
2733 * scanned pages. This works for global memory pressure
2734 * and balancing, not for a memcg's limit.
2736 nr_soft_scanned
= 0;
2737 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2738 sc
->order
, sc
->gfp_mask
,
2740 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2741 sc
->nr_scanned
+= nr_soft_scanned
;
2742 /* need some check for avoid more shrink_zone() */
2745 /* See comment about same check for global reclaim above */
2746 if (zone
->zone_pgdat
== last_pgdat
)
2748 last_pgdat
= zone
->zone_pgdat
;
2749 shrink_node(zone
->zone_pgdat
, sc
);
2753 * Restore to original mask to avoid the impact on the caller if we
2754 * promoted it to __GFP_HIGHMEM.
2756 sc
->gfp_mask
= orig_mask
;
2760 * This is the main entry point to direct page reclaim.
2762 * If a full scan of the inactive list fails to free enough memory then we
2763 * are "out of memory" and something needs to be killed.
2765 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2766 * high - the zone may be full of dirty or under-writeback pages, which this
2767 * caller can't do much about. We kick the writeback threads and take explicit
2768 * naps in the hope that some of these pages can be written. But if the
2769 * allocating task holds filesystem locks which prevent writeout this might not
2770 * work, and the allocation attempt will fail.
2772 * returns: 0, if no pages reclaimed
2773 * else, the number of pages reclaimed
2775 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2776 struct scan_control
*sc
)
2778 int initial_priority
= sc
->priority
;
2779 unsigned long total_scanned
= 0;
2780 unsigned long writeback_threshold
;
2782 delayacct_freepages_start();
2784 if (global_reclaim(sc
))
2785 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
2788 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2791 shrink_zones(zonelist
, sc
);
2793 total_scanned
+= sc
->nr_scanned
;
2794 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2797 if (sc
->compaction_ready
)
2801 * If we're getting trouble reclaiming, start doing
2802 * writepage even in laptop mode.
2804 if (sc
->priority
< DEF_PRIORITY
- 2)
2805 sc
->may_writepage
= 1;
2808 * Try to write back as many pages as we just scanned. This
2809 * tends to cause slow streaming writers to write data to the
2810 * disk smoothly, at the dirtying rate, which is nice. But
2811 * that's undesirable in laptop mode, where we *want* lumpy
2812 * writeout. So in laptop mode, write out the whole world.
2814 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2815 if (total_scanned
> writeback_threshold
) {
2816 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2817 WB_REASON_TRY_TO_FREE_PAGES
);
2818 sc
->may_writepage
= 1;
2820 } while (--sc
->priority
>= 0);
2822 delayacct_freepages_end();
2824 if (sc
->nr_reclaimed
)
2825 return sc
->nr_reclaimed
;
2827 /* Aborted reclaim to try compaction? don't OOM, then */
2828 if (sc
->compaction_ready
)
2831 /* Untapped cgroup reserves? Don't OOM, retry. */
2832 if (!sc
->may_thrash
) {
2833 sc
->priority
= initial_priority
;
2841 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
2844 unsigned long pfmemalloc_reserve
= 0;
2845 unsigned long free_pages
= 0;
2849 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
2852 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2853 zone
= &pgdat
->node_zones
[i
];
2854 if (!managed_zone(zone
))
2857 if (!zone_reclaimable_pages(zone
))
2860 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2861 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2864 /* If there are no reserves (unexpected config) then do not throttle */
2865 if (!pfmemalloc_reserve
)
2868 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2870 /* kswapd must be awake if processes are being throttled */
2871 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2872 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
2873 (enum zone_type
)ZONE_NORMAL
);
2874 wake_up_interruptible(&pgdat
->kswapd_wait
);
2881 * Throttle direct reclaimers if backing storage is backed by the network
2882 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2883 * depleted. kswapd will continue to make progress and wake the processes
2884 * when the low watermark is reached.
2886 * Returns true if a fatal signal was delivered during throttling. If this
2887 * happens, the page allocator should not consider triggering the OOM killer.
2889 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2890 nodemask_t
*nodemask
)
2894 pg_data_t
*pgdat
= NULL
;
2897 * Kernel threads should not be throttled as they may be indirectly
2898 * responsible for cleaning pages necessary for reclaim to make forward
2899 * progress. kjournald for example may enter direct reclaim while
2900 * committing a transaction where throttling it could forcing other
2901 * processes to block on log_wait_commit().
2903 if (current
->flags
& PF_KTHREAD
)
2907 * If a fatal signal is pending, this process should not throttle.
2908 * It should return quickly so it can exit and free its memory
2910 if (fatal_signal_pending(current
))
2914 * Check if the pfmemalloc reserves are ok by finding the first node
2915 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2916 * GFP_KERNEL will be required for allocating network buffers when
2917 * swapping over the network so ZONE_HIGHMEM is unusable.
2919 * Throttling is based on the first usable node and throttled processes
2920 * wait on a queue until kswapd makes progress and wakes them. There
2921 * is an affinity then between processes waking up and where reclaim
2922 * progress has been made assuming the process wakes on the same node.
2923 * More importantly, processes running on remote nodes will not compete
2924 * for remote pfmemalloc reserves and processes on different nodes
2925 * should make reasonable progress.
2927 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2928 gfp_zone(gfp_mask
), nodemask
) {
2929 if (zone_idx(zone
) > ZONE_NORMAL
)
2932 /* Throttle based on the first usable node */
2933 pgdat
= zone
->zone_pgdat
;
2934 if (allow_direct_reclaim(pgdat
))
2939 /* If no zone was usable by the allocation flags then do not throttle */
2943 /* Account for the throttling */
2944 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2947 * If the caller cannot enter the filesystem, it's possible that it
2948 * is due to the caller holding an FS lock or performing a journal
2949 * transaction in the case of a filesystem like ext[3|4]. In this case,
2950 * it is not safe to block on pfmemalloc_wait as kswapd could be
2951 * blocked waiting on the same lock. Instead, throttle for up to a
2952 * second before continuing.
2954 if (!(gfp_mask
& __GFP_FS
)) {
2955 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2956 allow_direct_reclaim(pgdat
), HZ
);
2961 /* Throttle until kswapd wakes the process */
2962 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2963 allow_direct_reclaim(pgdat
));
2966 if (fatal_signal_pending(current
))
2973 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2974 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2976 unsigned long nr_reclaimed
;
2977 struct scan_control sc
= {
2978 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2979 .gfp_mask
= memalloc_noio_flags(gfp_mask
),
2980 .reclaim_idx
= gfp_zone(gfp_mask
),
2982 .nodemask
= nodemask
,
2983 .priority
= DEF_PRIORITY
,
2984 .may_writepage
= !laptop_mode
,
2990 * Do not enter reclaim if fatal signal was delivered while throttled.
2991 * 1 is returned so that the page allocator does not OOM kill at this
2994 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
2997 trace_mm_vmscan_direct_reclaim_begin(order
,
3002 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3004 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3006 return nr_reclaimed
;
3011 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3012 gfp_t gfp_mask
, bool noswap
,
3014 unsigned long *nr_scanned
)
3016 struct scan_control sc
= {
3017 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3018 .target_mem_cgroup
= memcg
,
3019 .may_writepage
= !laptop_mode
,
3021 .reclaim_idx
= MAX_NR_ZONES
- 1,
3022 .may_swap
= !noswap
,
3024 unsigned long lru_pages
;
3026 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3027 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3029 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3035 * NOTE: Although we can get the priority field, using it
3036 * here is not a good idea, since it limits the pages we can scan.
3037 * if we don't reclaim here, the shrink_node from balance_pgdat
3038 * will pick up pages from other mem cgroup's as well. We hack
3039 * the priority and make it zero.
3041 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3043 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3045 *nr_scanned
= sc
.nr_scanned
;
3046 return sc
.nr_reclaimed
;
3049 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3050 unsigned long nr_pages
,
3054 struct zonelist
*zonelist
;
3055 unsigned long nr_reclaimed
;
3057 struct scan_control sc
= {
3058 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3059 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3060 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3061 .reclaim_idx
= MAX_NR_ZONES
- 1,
3062 .target_mem_cgroup
= memcg
,
3063 .priority
= DEF_PRIORITY
,
3064 .may_writepage
= !laptop_mode
,
3066 .may_swap
= may_swap
,
3070 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3071 * take care of from where we get pages. So the node where we start the
3072 * scan does not need to be the current node.
3074 nid
= mem_cgroup_select_victim_node(memcg
);
3076 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3078 trace_mm_vmscan_memcg_reclaim_begin(0,
3083 current
->flags
|= PF_MEMALLOC
;
3084 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3085 current
->flags
&= ~PF_MEMALLOC
;
3087 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3089 return nr_reclaimed
;
3093 static void age_active_anon(struct pglist_data
*pgdat
,
3094 struct scan_control
*sc
)
3096 struct mem_cgroup
*memcg
;
3098 if (!total_swap_pages
)
3101 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3103 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3105 if (inactive_list_is_low(lruvec
, false, sc
))
3106 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3107 sc
, LRU_ACTIVE_ANON
);
3109 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3113 static bool zone_balanced(struct zone
*zone
, int order
, int classzone_idx
)
3115 unsigned long mark
= high_wmark_pages(zone
);
3117 if (!zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3121 * If any eligible zone is balanced then the node is not considered
3122 * to be congested or dirty
3124 clear_bit(PGDAT_CONGESTED
, &zone
->zone_pgdat
->flags
);
3125 clear_bit(PGDAT_DIRTY
, &zone
->zone_pgdat
->flags
);
3126 clear_bit(PGDAT_WRITEBACK
, &zone
->zone_pgdat
->flags
);
3132 * Prepare kswapd for sleeping. This verifies that there are no processes
3133 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3135 * Returns true if kswapd is ready to sleep
3137 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3142 * The throttled processes are normally woken up in balance_pgdat() as
3143 * soon as allow_direct_reclaim() is true. But there is a potential
3144 * race between when kswapd checks the watermarks and a process gets
3145 * throttled. There is also a potential race if processes get
3146 * throttled, kswapd wakes, a large process exits thereby balancing the
3147 * zones, which causes kswapd to exit balance_pgdat() before reaching
3148 * the wake up checks. If kswapd is going to sleep, no process should
3149 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3150 * the wake up is premature, processes will wake kswapd and get
3151 * throttled again. The difference from wake ups in balance_pgdat() is
3152 * that here we are under prepare_to_wait().
3154 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3155 wake_up_all(&pgdat
->pfmemalloc_wait
);
3157 /* Hopeless node, leave it to direct reclaim */
3158 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3161 for (i
= 0; i
<= classzone_idx
; i
++) {
3162 struct zone
*zone
= pgdat
->node_zones
+ i
;
3164 if (!managed_zone(zone
))
3167 if (!zone_balanced(zone
, order
, classzone_idx
))
3175 * kswapd shrinks a node of pages that are at or below the highest usable
3176 * zone that is currently unbalanced.
3178 * Returns true if kswapd scanned at least the requested number of pages to
3179 * reclaim or if the lack of progress was due to pages under writeback.
3180 * This is used to determine if the scanning priority needs to be raised.
3182 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3183 struct scan_control
*sc
)
3188 /* Reclaim a number of pages proportional to the number of zones */
3189 sc
->nr_to_reclaim
= 0;
3190 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3191 zone
= pgdat
->node_zones
+ z
;
3192 if (!managed_zone(zone
))
3195 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3199 * Historically care was taken to put equal pressure on all zones but
3200 * now pressure is applied based on node LRU order.
3202 shrink_node(pgdat
, sc
);
3205 * Fragmentation may mean that the system cannot be rebalanced for
3206 * high-order allocations. If twice the allocation size has been
3207 * reclaimed then recheck watermarks only at order-0 to prevent
3208 * excessive reclaim. Assume that a process requested a high-order
3209 * can direct reclaim/compact.
3211 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3214 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3218 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3219 * that are eligible for use by the caller until at least one zone is
3222 * Returns the order kswapd finished reclaiming at.
3224 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3225 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3226 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3227 * or lower is eligible for reclaim until at least one usable zone is
3230 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3233 unsigned long nr_soft_reclaimed
;
3234 unsigned long nr_soft_scanned
;
3236 struct scan_control sc
= {
3237 .gfp_mask
= GFP_KERNEL
,
3239 .priority
= DEF_PRIORITY
,
3240 .may_writepage
= !laptop_mode
,
3244 count_vm_event(PAGEOUTRUN
);
3247 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3248 bool raise_priority
= true;
3250 sc
.reclaim_idx
= classzone_idx
;
3253 * If the number of buffer_heads exceeds the maximum allowed
3254 * then consider reclaiming from all zones. This has a dual
3255 * purpose -- on 64-bit systems it is expected that
3256 * buffer_heads are stripped during active rotation. On 32-bit
3257 * systems, highmem pages can pin lowmem memory and shrinking
3258 * buffers can relieve lowmem pressure. Reclaim may still not
3259 * go ahead if all eligible zones for the original allocation
3260 * request are balanced to avoid excessive reclaim from kswapd.
3262 if (buffer_heads_over_limit
) {
3263 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3264 zone
= pgdat
->node_zones
+ i
;
3265 if (!managed_zone(zone
))
3274 * Only reclaim if there are no eligible zones. Check from
3275 * high to low zone as allocations prefer higher zones.
3276 * Scanning from low to high zone would allow congestion to be
3277 * cleared during a very small window when a small low
3278 * zone was balanced even under extreme pressure when the
3279 * overall node may be congested. Note that sc.reclaim_idx
3280 * is not used as buffer_heads_over_limit may have adjusted
3283 for (i
= classzone_idx
; i
>= 0; i
--) {
3284 zone
= pgdat
->node_zones
+ i
;
3285 if (!managed_zone(zone
))
3288 if (zone_balanced(zone
, sc
.order
, classzone_idx
))
3293 * Do some background aging of the anon list, to give
3294 * pages a chance to be referenced before reclaiming. All
3295 * pages are rotated regardless of classzone as this is
3296 * about consistent aging.
3298 age_active_anon(pgdat
, &sc
);
3301 * If we're getting trouble reclaiming, start doing writepage
3302 * even in laptop mode.
3304 if (sc
.priority
< DEF_PRIORITY
- 2)
3305 sc
.may_writepage
= 1;
3307 /* Call soft limit reclaim before calling shrink_node. */
3309 nr_soft_scanned
= 0;
3310 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3311 sc
.gfp_mask
, &nr_soft_scanned
);
3312 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3315 * There should be no need to raise the scanning priority if
3316 * enough pages are already being scanned that that high
3317 * watermark would be met at 100% efficiency.
3319 if (kswapd_shrink_node(pgdat
, &sc
))
3320 raise_priority
= false;
3323 * If the low watermark is met there is no need for processes
3324 * to be throttled on pfmemalloc_wait as they should not be
3325 * able to safely make forward progress. Wake them
3327 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3328 allow_direct_reclaim(pgdat
))
3329 wake_up_all(&pgdat
->pfmemalloc_wait
);
3331 /* Check if kswapd should be suspending */
3332 if (try_to_freeze() || kthread_should_stop())
3336 * Raise priority if scanning rate is too low or there was no
3337 * progress in reclaiming pages
3339 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3340 if (raise_priority
|| !nr_reclaimed
)
3342 } while (sc
.priority
>= 1);
3344 if (!sc
.nr_reclaimed
)
3345 pgdat
->kswapd_failures
++;
3349 * Return the order kswapd stopped reclaiming at as
3350 * prepare_kswapd_sleep() takes it into account. If another caller
3351 * entered the allocator slow path while kswapd was awake, order will
3352 * remain at the higher level.
3357 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3358 unsigned int classzone_idx
)
3363 if (freezing(current
) || kthread_should_stop())
3366 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3368 /* Try to sleep for a short interval */
3369 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3371 * Compaction records what page blocks it recently failed to
3372 * isolate pages from and skips them in the future scanning.
3373 * When kswapd is going to sleep, it is reasonable to assume
3374 * that pages and compaction may succeed so reset the cache.
3376 reset_isolation_suitable(pgdat
);
3379 * We have freed the memory, now we should compact it to make
3380 * allocation of the requested order possible.
3382 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3384 remaining
= schedule_timeout(HZ
/10);
3387 * If woken prematurely then reset kswapd_classzone_idx and
3388 * order. The values will either be from a wakeup request or
3389 * the previous request that slept prematurely.
3392 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3393 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3396 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3397 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3401 * After a short sleep, check if it was a premature sleep. If not, then
3402 * go fully to sleep until explicitly woken up.
3405 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3406 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3409 * vmstat counters are not perfectly accurate and the estimated
3410 * value for counters such as NR_FREE_PAGES can deviate from the
3411 * true value by nr_online_cpus * threshold. To avoid the zone
3412 * watermarks being breached while under pressure, we reduce the
3413 * per-cpu vmstat threshold while kswapd is awake and restore
3414 * them before going back to sleep.
3416 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3418 if (!kthread_should_stop())
3421 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3424 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3426 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3428 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3432 * The background pageout daemon, started as a kernel thread
3433 * from the init process.
3435 * This basically trickles out pages so that we have _some_
3436 * free memory available even if there is no other activity
3437 * that frees anything up. This is needed for things like routing
3438 * etc, where we otherwise might have all activity going on in
3439 * asynchronous contexts that cannot page things out.
3441 * If there are applications that are active memory-allocators
3442 * (most normal use), this basically shouldn't matter.
3444 static int kswapd(void *p
)
3446 unsigned int alloc_order
, reclaim_order
, classzone_idx
;
3447 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3448 struct task_struct
*tsk
= current
;
3450 struct reclaim_state reclaim_state
= {
3451 .reclaimed_slab
= 0,
3453 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3455 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3457 if (!cpumask_empty(cpumask
))
3458 set_cpus_allowed_ptr(tsk
, cpumask
);
3459 current
->reclaim_state
= &reclaim_state
;
3462 * Tell the memory management that we're a "memory allocator",
3463 * and that if we need more memory we should get access to it
3464 * regardless (see "__alloc_pages()"). "kswapd" should
3465 * never get caught in the normal page freeing logic.
3467 * (Kswapd normally doesn't need memory anyway, but sometimes
3468 * you need a small amount of memory in order to be able to
3469 * page out something else, and this flag essentially protects
3470 * us from recursively trying to free more memory as we're
3471 * trying to free the first piece of memory in the first place).
3473 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3476 pgdat
->kswapd_order
= alloc_order
= reclaim_order
= 0;
3477 pgdat
->kswapd_classzone_idx
= classzone_idx
= 0;
3482 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3485 /* Read the new order and classzone_idx */
3486 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3487 classzone_idx
= pgdat
->kswapd_classzone_idx
;
3488 pgdat
->kswapd_order
= 0;
3489 pgdat
->kswapd_classzone_idx
= 0;
3491 ret
= try_to_freeze();
3492 if (kthread_should_stop())
3496 * We can speed up thawing tasks if we don't call balance_pgdat
3497 * after returning from the refrigerator
3503 * Reclaim begins at the requested order but if a high-order
3504 * reclaim fails then kswapd falls back to reclaiming for
3505 * order-0. If that happens, kswapd will consider sleeping
3506 * for the order it finished reclaiming at (reclaim_order)
3507 * but kcompactd is woken to compact for the original
3508 * request (alloc_order).
3510 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3512 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3513 if (reclaim_order
< alloc_order
)
3514 goto kswapd_try_sleep
;
3516 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3517 classzone_idx
= pgdat
->kswapd_classzone_idx
;
3520 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3521 current
->reclaim_state
= NULL
;
3522 lockdep_clear_current_reclaim_state();
3528 * A zone is low on free memory, so wake its kswapd task to service it.
3530 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3535 if (!managed_zone(zone
))
3538 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3540 pgdat
= zone
->zone_pgdat
;
3541 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3542 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3543 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3546 /* Hopeless node, leave it to direct reclaim */
3547 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3550 /* Only wake kswapd if all zones are unbalanced */
3551 for (z
= 0; z
<= classzone_idx
; z
++) {
3552 zone
= pgdat
->node_zones
+ z
;
3553 if (!managed_zone(zone
))
3556 if (zone_balanced(zone
, order
, classzone_idx
))
3560 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3561 wake_up_interruptible(&pgdat
->kswapd_wait
);
3564 #ifdef CONFIG_HIBERNATION
3566 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3569 * Rather than trying to age LRUs the aim is to preserve the overall
3570 * LRU order by reclaiming preferentially
3571 * inactive > active > active referenced > active mapped
3573 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3575 struct reclaim_state reclaim_state
;
3576 struct scan_control sc
= {
3577 .nr_to_reclaim
= nr_to_reclaim
,
3578 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3579 .reclaim_idx
= MAX_NR_ZONES
- 1,
3580 .priority
= DEF_PRIORITY
,
3584 .hibernation_mode
= 1,
3586 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3587 struct task_struct
*p
= current
;
3588 unsigned long nr_reclaimed
;
3590 p
->flags
|= PF_MEMALLOC
;
3591 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3592 reclaim_state
.reclaimed_slab
= 0;
3593 p
->reclaim_state
= &reclaim_state
;
3595 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3597 p
->reclaim_state
= NULL
;
3598 lockdep_clear_current_reclaim_state();
3599 p
->flags
&= ~PF_MEMALLOC
;
3601 return nr_reclaimed
;
3603 #endif /* CONFIG_HIBERNATION */
3605 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3606 not required for correctness. So if the last cpu in a node goes
3607 away, we get changed to run anywhere: as the first one comes back,
3608 restore their cpu bindings. */
3609 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3614 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3615 for_each_node_state(nid
, N_MEMORY
) {
3616 pg_data_t
*pgdat
= NODE_DATA(nid
);
3617 const struct cpumask
*mask
;
3619 mask
= cpumask_of_node(pgdat
->node_id
);
3621 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3622 /* One of our CPUs online: restore mask */
3623 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3630 * This kswapd start function will be called by init and node-hot-add.
3631 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3633 int kswapd_run(int nid
)
3635 pg_data_t
*pgdat
= NODE_DATA(nid
);
3641 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3642 if (IS_ERR(pgdat
->kswapd
)) {
3643 /* failure at boot is fatal */
3644 BUG_ON(system_state
== SYSTEM_BOOTING
);
3645 pr_err("Failed to start kswapd on node %d\n", nid
);
3646 ret
= PTR_ERR(pgdat
->kswapd
);
3647 pgdat
->kswapd
= NULL
;
3653 * Called by memory hotplug when all memory in a node is offlined. Caller must
3654 * hold mem_hotplug_begin/end().
3656 void kswapd_stop(int nid
)
3658 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3661 kthread_stop(kswapd
);
3662 NODE_DATA(nid
)->kswapd
= NULL
;
3666 static int __init
kswapd_init(void)
3671 for_each_node_state(nid
, N_MEMORY
)
3673 hotcpu_notifier(cpu_callback
, 0);
3677 module_init(kswapd_init
)
3683 * If non-zero call node_reclaim when the number of free pages falls below
3686 int node_reclaim_mode __read_mostly
;
3688 #define RECLAIM_OFF 0
3689 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3690 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3691 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3694 * Priority for NODE_RECLAIM. This determines the fraction of pages
3695 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3698 #define NODE_RECLAIM_PRIORITY 4
3701 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3704 int sysctl_min_unmapped_ratio
= 1;
3707 * If the number of slab pages in a zone grows beyond this percentage then
3708 * slab reclaim needs to occur.
3710 int sysctl_min_slab_ratio
= 5;
3712 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
3714 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
3715 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
3716 node_page_state(pgdat
, NR_ACTIVE_FILE
);
3719 * It's possible for there to be more file mapped pages than
3720 * accounted for by the pages on the file LRU lists because
3721 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3723 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3726 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3727 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
3729 unsigned long nr_pagecache_reclaimable
;
3730 unsigned long delta
= 0;
3733 * If RECLAIM_UNMAP is set, then all file pages are considered
3734 * potentially reclaimable. Otherwise, we have to worry about
3735 * pages like swapcache and node_unmapped_file_pages() provides
3738 if (node_reclaim_mode
& RECLAIM_UNMAP
)
3739 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
3741 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
3743 /* If we can't clean pages, remove dirty pages from consideration */
3744 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
3745 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
3747 /* Watch for any possible underflows due to delta */
3748 if (unlikely(delta
> nr_pagecache_reclaimable
))
3749 delta
= nr_pagecache_reclaimable
;
3751 return nr_pagecache_reclaimable
- delta
;
3755 * Try to free up some pages from this node through reclaim.
3757 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3759 /* Minimum pages needed in order to stay on node */
3760 const unsigned long nr_pages
= 1 << order
;
3761 struct task_struct
*p
= current
;
3762 struct reclaim_state reclaim_state
;
3763 struct scan_control sc
= {
3764 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3765 .gfp_mask
= memalloc_noio_flags(gfp_mask
),
3767 .priority
= NODE_RECLAIM_PRIORITY
,
3768 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
3769 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
3771 .reclaim_idx
= gfp_zone(gfp_mask
),
3776 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3777 * and we also need to be able to write out pages for RECLAIM_WRITE
3778 * and RECLAIM_UNMAP.
3780 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3781 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3782 reclaim_state
.reclaimed_slab
= 0;
3783 p
->reclaim_state
= &reclaim_state
;
3785 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
3787 * Free memory by calling shrink zone with increasing
3788 * priorities until we have enough memory freed.
3791 shrink_node(pgdat
, &sc
);
3792 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3795 p
->reclaim_state
= NULL
;
3796 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3797 lockdep_clear_current_reclaim_state();
3798 return sc
.nr_reclaimed
>= nr_pages
;
3801 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3806 * Node reclaim reclaims unmapped file backed pages and
3807 * slab pages if we are over the defined limits.
3809 * A small portion of unmapped file backed pages is needed for
3810 * file I/O otherwise pages read by file I/O will be immediately
3811 * thrown out if the node is overallocated. So we do not reclaim
3812 * if less than a specified percentage of the node is used by
3813 * unmapped file backed pages.
3815 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
3816 sum_zone_node_page_state(pgdat
->node_id
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
3817 return NODE_RECLAIM_FULL
;
3820 * Do not scan if the allocation should not be delayed.
3822 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3823 return NODE_RECLAIM_NOSCAN
;
3826 * Only run node reclaim on the local node or on nodes that do not
3827 * have associated processors. This will favor the local processor
3828 * over remote processors and spread off node memory allocations
3829 * as wide as possible.
3831 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
3832 return NODE_RECLAIM_NOSCAN
;
3834 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
3835 return NODE_RECLAIM_NOSCAN
;
3837 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
3838 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
3841 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3848 * page_evictable - test whether a page is evictable
3849 * @page: the page to test
3851 * Test whether page is evictable--i.e., should be placed on active/inactive
3852 * lists vs unevictable list.
3854 * Reasons page might not be evictable:
3855 * (1) page's mapping marked unevictable
3856 * (2) page is part of an mlocked VMA
3859 int page_evictable(struct page
*page
)
3863 /* Prevent address_space of inode and swap cache from being freed */
3865 ret
= !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3872 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3873 * @pages: array of pages to check
3874 * @nr_pages: number of pages to check
3876 * Checks pages for evictability and moves them to the appropriate lru list.
3878 * This function is only used for SysV IPC SHM_UNLOCK.
3880 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3882 struct lruvec
*lruvec
;
3883 struct pglist_data
*pgdat
= NULL
;
3888 for (i
= 0; i
< nr_pages
; i
++) {
3889 struct page
*page
= pages
[i
];
3890 struct pglist_data
*pagepgdat
= page_pgdat(page
);
3893 if (pagepgdat
!= pgdat
) {
3895 spin_unlock_irq(&pgdat
->lru_lock
);
3897 spin_lock_irq(&pgdat
->lru_lock
);
3899 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
3901 if (!PageLRU(page
) || !PageUnevictable(page
))
3904 if (page_evictable(page
)) {
3905 enum lru_list lru
= page_lru_base_type(page
);
3907 VM_BUG_ON_PAGE(PageActive(page
), page
);
3908 ClearPageUnevictable(page
);
3909 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3910 add_page_to_lru_list(page
, lruvec
, lru
);
3916 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3917 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3918 spin_unlock_irq(&pgdat
->lru_lock
);
3921 #endif /* CONFIG_SHMEM */