of/pci: Fix pci_address_to_pio() conversion of CPU address to I/O port
[linux/fpc-iii.git] / fs / buffer.c
blobc7a5602d01eed200912d3a90ca4ac6780209cb6f
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
55 EXPORT_SYMBOL(init_buffer);
57 inline void touch_buffer(struct buffer_head *bh)
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
62 EXPORT_SYMBOL(touch_buffer);
64 void __lock_buffer(struct buffer_head *bh)
66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
68 EXPORT_SYMBOL(__lock_buffer);
70 void unlock_buffer(struct buffer_head *bh)
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_atomic();
74 wake_up_bit(&bh->b_state, BH_Lock);
76 EXPORT_SYMBOL(unlock_buffer);
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
83 void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
90 BUG_ON(!PageLocked(page));
92 if (!page_has_buffers(page))
93 return;
95 if (PageWriteback(page))
96 *writeback = true;
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
104 if (buffer_dirty(bh))
105 *dirty = true;
107 bh = bh->b_this_page;
108 } while (bh != head);
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
117 void __wait_on_buffer(struct buffer_head * bh)
119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
121 EXPORT_SYMBOL(__wait_on_buffer);
123 static void
124 __clear_page_buffers(struct page *page)
126 ClearPagePrivate(page);
127 set_page_private(page, 0);
128 page_cache_release(page);
131 static void buffer_io_error(struct buffer_head *bh, char *msg)
133 char b[BDEVNAME_SIZE];
135 if (!test_bit(BH_Quiet, &bh->b_state))
136 printk_ratelimited(KERN_ERR
137 "Buffer I/O error on dev %s, logical block %llu%s\n",
138 bdevname(bh->b_bdev, b),
139 (unsigned long long)bh->b_blocknr, msg);
143 * End-of-IO handler helper function which does not touch the bh after
144 * unlocking it.
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
148 * itself.
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 /* This happens, due to failed READA attempts. */
156 clear_buffer_uptodate(bh);
158 unlock_buffer(bh);
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167 __end_buffer_read_notouch(bh, uptodate);
168 put_bh(bh);
170 EXPORT_SYMBOL(end_buffer_read_sync);
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174 if (uptodate) {
175 set_buffer_uptodate(bh);
176 } else {
177 buffer_io_error(bh, ", lost sync page write");
178 set_buffer_write_io_error(bh);
179 clear_buffer_uptodate(bh);
181 unlock_buffer(bh);
182 put_bh(bh);
184 EXPORT_SYMBOL(end_buffer_write_sync);
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
190 * private_lock.
192 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
193 * may be quite high. This code could TryLock the page, and if that
194 * succeeds, there is no need to take private_lock. (But if
195 * private_lock is contended then so is mapping->tree_lock).
197 static struct buffer_head *
198 __find_get_block_slow(struct block_device *bdev, sector_t block)
200 struct inode *bd_inode = bdev->bd_inode;
201 struct address_space *bd_mapping = bd_inode->i_mapping;
202 struct buffer_head *ret = NULL;
203 pgoff_t index;
204 struct buffer_head *bh;
205 struct buffer_head *head;
206 struct page *page;
207 int all_mapped = 1;
209 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 if (!page)
212 goto out;
214 spin_lock(&bd_mapping->private_lock);
215 if (!page_has_buffers(page))
216 goto out_unlock;
217 head = page_buffers(page);
218 bh = head;
219 do {
220 if (!buffer_mapped(bh))
221 all_mapped = 0;
222 else if (bh->b_blocknr == block) {
223 ret = bh;
224 get_bh(bh);
225 goto out_unlock;
227 bh = bh->b_this_page;
228 } while (bh != head);
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
235 if (all_mapped) {
236 char b[BDEVNAME_SIZE];
238 printk("__find_get_block_slow() failed. "
239 "block=%llu, b_blocknr=%llu\n",
240 (unsigned long long)block,
241 (unsigned long long)bh->b_blocknr);
242 printk("b_state=0x%08lx, b_size=%zu\n",
243 bh->b_state, bh->b_size);
244 printk("device %s blocksize: %d\n", bdevname(bdev, b),
245 1 << bd_inode->i_blkbits);
247 out_unlock:
248 spin_unlock(&bd_mapping->private_lock);
249 page_cache_release(page);
250 out:
251 return ret;
255 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257 static void free_more_memory(void)
259 struct zone *zone;
260 int nid;
262 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
263 yield();
265 for_each_online_node(nid) {
266 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
267 gfp_zone(GFP_NOFS), NULL,
268 &zone);
269 if (zone)
270 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
271 GFP_NOFS, NULL);
276 * I/O completion handler for block_read_full_page() - pages
277 * which come unlocked at the end of I/O.
279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281 unsigned long flags;
282 struct buffer_head *first;
283 struct buffer_head *tmp;
284 struct page *page;
285 int page_uptodate = 1;
287 BUG_ON(!buffer_async_read(bh));
289 page = bh->b_page;
290 if (uptodate) {
291 set_buffer_uptodate(bh);
292 } else {
293 clear_buffer_uptodate(bh);
294 buffer_io_error(bh, ", async page read");
295 SetPageError(page);
299 * Be _very_ careful from here on. Bad things can happen if
300 * two buffer heads end IO at almost the same time and both
301 * decide that the page is now completely done.
303 first = page_buffers(page);
304 local_irq_save(flags);
305 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
306 clear_buffer_async_read(bh);
307 unlock_buffer(bh);
308 tmp = bh;
309 do {
310 if (!buffer_uptodate(tmp))
311 page_uptodate = 0;
312 if (buffer_async_read(tmp)) {
313 BUG_ON(!buffer_locked(tmp));
314 goto still_busy;
316 tmp = tmp->b_this_page;
317 } while (tmp != bh);
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
322 * If none of the buffers had errors and they are all
323 * uptodate then we can set the page uptodate.
325 if (page_uptodate && !PageError(page))
326 SetPageUptodate(page);
327 unlock_page(page);
328 return;
330 still_busy:
331 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
332 local_irq_restore(flags);
333 return;
337 * Completion handler for block_write_full_page() - pages which are unlocked
338 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342 unsigned long flags;
343 struct buffer_head *first;
344 struct buffer_head *tmp;
345 struct page *page;
347 BUG_ON(!buffer_async_write(bh));
349 page = bh->b_page;
350 if (uptodate) {
351 set_buffer_uptodate(bh);
352 } else {
353 buffer_io_error(bh, ", lost async page write");
354 set_bit(AS_EIO, &page->mapping->flags);
355 set_buffer_write_io_error(bh);
356 clear_buffer_uptodate(bh);
357 SetPageError(page);
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
372 tmp = tmp->b_this_page;
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
376 end_page_writeback(page);
377 return;
379 still_busy:
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
382 return;
384 EXPORT_SYMBOL(end_buffer_async_write);
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
395 * The page comes unlocked when it has no locked buffer_async buffers
396 * left.
398 * PageLocked prevents anyone starting new async I/O reads any of
399 * the buffers.
401 * PageWriteback is used to prevent simultaneous writeout of the same
402 * page.
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
407 static void mark_buffer_async_read(struct buffer_head *bh)
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
416 bh->b_end_io = handler;
417 set_buffer_async_write(bh);
420 void mark_buffer_async_write(struct buffer_head *bh)
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424 EXPORT_SYMBOL(mark_buffer_async_write);
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
447 * ->private_lock.
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * queued up.
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
473 * b_inode back.
477 * The buffer's backing address_space's private_lock must be held
479 static void __remove_assoc_queue(struct buffer_head *bh)
481 list_del_init(&bh->b_assoc_buffers);
482 WARN_ON(!bh->b_assoc_map);
483 if (buffer_write_io_error(bh))
484 set_bit(AS_EIO, &bh->b_assoc_map->flags);
485 bh->b_assoc_map = NULL;
488 int inode_has_buffers(struct inode *inode)
490 return !list_empty(&inode->i_data.private_list);
494 * osync is designed to support O_SYNC io. It waits synchronously for
495 * all already-submitted IO to complete, but does not queue any new
496 * writes to the disk.
498 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
499 * you dirty the buffers, and then use osync_inode_buffers to wait for
500 * completion. Any other dirty buffers which are not yet queued for
501 * write will not be flushed to disk by the osync.
503 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
505 struct buffer_head *bh;
506 struct list_head *p;
507 int err = 0;
509 spin_lock(lock);
510 repeat:
511 list_for_each_prev(p, list) {
512 bh = BH_ENTRY(p);
513 if (buffer_locked(bh)) {
514 get_bh(bh);
515 spin_unlock(lock);
516 wait_on_buffer(bh);
517 if (!buffer_uptodate(bh))
518 err = -EIO;
519 brelse(bh);
520 spin_lock(lock);
521 goto repeat;
524 spin_unlock(lock);
525 return err;
528 static void do_thaw_one(struct super_block *sb, void *unused)
530 char b[BDEVNAME_SIZE];
531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
532 printk(KERN_WARNING "Emergency Thaw on %s\n",
533 bdevname(sb->s_bdev, b));
536 static void do_thaw_all(struct work_struct *work)
538 iterate_supers(do_thaw_one, NULL);
539 kfree(work);
540 printk(KERN_WARNING "Emergency Thaw complete\n");
544 * emergency_thaw_all -- forcibly thaw every frozen filesystem
546 * Used for emergency unfreeze of all filesystems via SysRq
548 void emergency_thaw_all(void)
550 struct work_struct *work;
552 work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 if (work) {
554 INIT_WORK(work, do_thaw_all);
555 schedule_work(work);
560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561 * @mapping: the mapping which wants those buffers written
563 * Starts I/O against the buffers at mapping->private_list, and waits upon
564 * that I/O.
566 * Basically, this is a convenience function for fsync().
567 * @mapping is a file or directory which needs those buffers to be written for
568 * a successful fsync().
570 int sync_mapping_buffers(struct address_space *mapping)
572 struct address_space *buffer_mapping = mapping->private_data;
574 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
575 return 0;
577 return fsync_buffers_list(&buffer_mapping->private_lock,
578 &mapping->private_list);
580 EXPORT_SYMBOL(sync_mapping_buffers);
583 * Called when we've recently written block `bblock', and it is known that
584 * `bblock' was for a buffer_boundary() buffer. This means that the block at
585 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
586 * dirty, schedule it for IO. So that indirects merge nicely with their data.
588 void write_boundary_block(struct block_device *bdev,
589 sector_t bblock, unsigned blocksize)
591 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
592 if (bh) {
593 if (buffer_dirty(bh))
594 ll_rw_block(WRITE, 1, &bh);
595 put_bh(bh);
599 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
601 struct address_space *mapping = inode->i_mapping;
602 struct address_space *buffer_mapping = bh->b_page->mapping;
604 mark_buffer_dirty(bh);
605 if (!mapping->private_data) {
606 mapping->private_data = buffer_mapping;
607 } else {
608 BUG_ON(mapping->private_data != buffer_mapping);
610 if (!bh->b_assoc_map) {
611 spin_lock(&buffer_mapping->private_lock);
612 list_move_tail(&bh->b_assoc_buffers,
613 &mapping->private_list);
614 bh->b_assoc_map = mapping;
615 spin_unlock(&buffer_mapping->private_lock);
618 EXPORT_SYMBOL(mark_buffer_dirty_inode);
621 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
622 * dirty.
624 * If warn is true, then emit a warning if the page is not uptodate and has
625 * not been truncated.
627 static void __set_page_dirty(struct page *page,
628 struct address_space *mapping, int warn)
630 unsigned long flags;
632 spin_lock_irqsave(&mapping->tree_lock, flags);
633 if (page->mapping) { /* Race with truncate? */
634 WARN_ON_ONCE(warn && !PageUptodate(page));
635 account_page_dirtied(page, mapping);
636 radix_tree_tag_set(&mapping->page_tree,
637 page_index(page), PAGECACHE_TAG_DIRTY);
639 spin_unlock_irqrestore(&mapping->tree_lock, flags);
640 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
644 * Add a page to the dirty page list.
646 * It is a sad fact of life that this function is called from several places
647 * deeply under spinlocking. It may not sleep.
649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
650 * dirty-state coherency between the page and the buffers. It the page does
651 * not have buffers then when they are later attached they will all be set
652 * dirty.
654 * The buffers are dirtied before the page is dirtied. There's a small race
655 * window in which a writepage caller may see the page cleanness but not the
656 * buffer dirtiness. That's fine. If this code were to set the page dirty
657 * before the buffers, a concurrent writepage caller could clear the page dirty
658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659 * page on the dirty page list.
661 * We use private_lock to lock against try_to_free_buffers while using the
662 * page's buffer list. Also use this to protect against clean buffers being
663 * added to the page after it was set dirty.
665 * FIXME: may need to call ->reservepage here as well. That's rather up to the
666 * address_space though.
668 int __set_page_dirty_buffers(struct page *page)
670 int newly_dirty;
671 struct address_space *mapping = page_mapping(page);
673 if (unlikely(!mapping))
674 return !TestSetPageDirty(page);
676 spin_lock(&mapping->private_lock);
677 if (page_has_buffers(page)) {
678 struct buffer_head *head = page_buffers(page);
679 struct buffer_head *bh = head;
681 do {
682 set_buffer_dirty(bh);
683 bh = bh->b_this_page;
684 } while (bh != head);
686 newly_dirty = !TestSetPageDirty(page);
687 spin_unlock(&mapping->private_lock);
689 if (newly_dirty)
690 __set_page_dirty(page, mapping, 1);
691 return newly_dirty;
693 EXPORT_SYMBOL(__set_page_dirty_buffers);
696 * Write out and wait upon a list of buffers.
698 * We have conflicting pressures: we want to make sure that all
699 * initially dirty buffers get waited on, but that any subsequently
700 * dirtied buffers don't. After all, we don't want fsync to last
701 * forever if somebody is actively writing to the file.
703 * Do this in two main stages: first we copy dirty buffers to a
704 * temporary inode list, queueing the writes as we go. Then we clean
705 * up, waiting for those writes to complete.
707 * During this second stage, any subsequent updates to the file may end
708 * up refiling the buffer on the original inode's dirty list again, so
709 * there is a chance we will end up with a buffer queued for write but
710 * not yet completed on that list. So, as a final cleanup we go through
711 * the osync code to catch these locked, dirty buffers without requeuing
712 * any newly dirty buffers for write.
714 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
716 struct buffer_head *bh;
717 struct list_head tmp;
718 struct address_space *mapping;
719 int err = 0, err2;
720 struct blk_plug plug;
722 INIT_LIST_HEAD(&tmp);
723 blk_start_plug(&plug);
725 spin_lock(lock);
726 while (!list_empty(list)) {
727 bh = BH_ENTRY(list->next);
728 mapping = bh->b_assoc_map;
729 __remove_assoc_queue(bh);
730 /* Avoid race with mark_buffer_dirty_inode() which does
731 * a lockless check and we rely on seeing the dirty bit */
732 smp_mb();
733 if (buffer_dirty(bh) || buffer_locked(bh)) {
734 list_add(&bh->b_assoc_buffers, &tmp);
735 bh->b_assoc_map = mapping;
736 if (buffer_dirty(bh)) {
737 get_bh(bh);
738 spin_unlock(lock);
740 * Ensure any pending I/O completes so that
741 * write_dirty_buffer() actually writes the
742 * current contents - it is a noop if I/O is
743 * still in flight on potentially older
744 * contents.
746 write_dirty_buffer(bh, WRITE_SYNC);
749 * Kick off IO for the previous mapping. Note
750 * that we will not run the very last mapping,
751 * wait_on_buffer() will do that for us
752 * through sync_buffer().
754 brelse(bh);
755 spin_lock(lock);
760 spin_unlock(lock);
761 blk_finish_plug(&plug);
762 spin_lock(lock);
764 while (!list_empty(&tmp)) {
765 bh = BH_ENTRY(tmp.prev);
766 get_bh(bh);
767 mapping = bh->b_assoc_map;
768 __remove_assoc_queue(bh);
769 /* Avoid race with mark_buffer_dirty_inode() which does
770 * a lockless check and we rely on seeing the dirty bit */
771 smp_mb();
772 if (buffer_dirty(bh)) {
773 list_add(&bh->b_assoc_buffers,
774 &mapping->private_list);
775 bh->b_assoc_map = mapping;
777 spin_unlock(lock);
778 wait_on_buffer(bh);
779 if (!buffer_uptodate(bh))
780 err = -EIO;
781 brelse(bh);
782 spin_lock(lock);
785 spin_unlock(lock);
786 err2 = osync_buffers_list(lock, list);
787 if (err)
788 return err;
789 else
790 return err2;
794 * Invalidate any and all dirty buffers on a given inode. We are
795 * probably unmounting the fs, but that doesn't mean we have already
796 * done a sync(). Just drop the buffers from the inode list.
798 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
799 * assumes that all the buffers are against the blockdev. Not true
800 * for reiserfs.
802 void invalidate_inode_buffers(struct inode *inode)
804 if (inode_has_buffers(inode)) {
805 struct address_space *mapping = &inode->i_data;
806 struct list_head *list = &mapping->private_list;
807 struct address_space *buffer_mapping = mapping->private_data;
809 spin_lock(&buffer_mapping->private_lock);
810 while (!list_empty(list))
811 __remove_assoc_queue(BH_ENTRY(list->next));
812 spin_unlock(&buffer_mapping->private_lock);
815 EXPORT_SYMBOL(invalidate_inode_buffers);
818 * Remove any clean buffers from the inode's buffer list. This is called
819 * when we're trying to free the inode itself. Those buffers can pin it.
821 * Returns true if all buffers were removed.
823 int remove_inode_buffers(struct inode *inode)
825 int ret = 1;
827 if (inode_has_buffers(inode)) {
828 struct address_space *mapping = &inode->i_data;
829 struct list_head *list = &mapping->private_list;
830 struct address_space *buffer_mapping = mapping->private_data;
832 spin_lock(&buffer_mapping->private_lock);
833 while (!list_empty(list)) {
834 struct buffer_head *bh = BH_ENTRY(list->next);
835 if (buffer_dirty(bh)) {
836 ret = 0;
837 break;
839 __remove_assoc_queue(bh);
841 spin_unlock(&buffer_mapping->private_lock);
843 return ret;
847 * Create the appropriate buffers when given a page for data area and
848 * the size of each buffer.. Use the bh->b_this_page linked list to
849 * follow the buffers created. Return NULL if unable to create more
850 * buffers.
852 * The retry flag is used to differentiate async IO (paging, swapping)
853 * which may not fail from ordinary buffer allocations.
855 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
856 int retry)
858 struct buffer_head *bh, *head;
859 long offset;
861 try_again:
862 head = NULL;
863 offset = PAGE_SIZE;
864 while ((offset -= size) >= 0) {
865 bh = alloc_buffer_head(GFP_NOFS);
866 if (!bh)
867 goto no_grow;
869 bh->b_this_page = head;
870 bh->b_blocknr = -1;
871 head = bh;
873 bh->b_size = size;
875 /* Link the buffer to its page */
876 set_bh_page(bh, page, offset);
878 return head;
880 * In case anything failed, we just free everything we got.
882 no_grow:
883 if (head) {
884 do {
885 bh = head;
886 head = head->b_this_page;
887 free_buffer_head(bh);
888 } while (head);
892 * Return failure for non-async IO requests. Async IO requests
893 * are not allowed to fail, so we have to wait until buffer heads
894 * become available. But we don't want tasks sleeping with
895 * partially complete buffers, so all were released above.
897 if (!retry)
898 return NULL;
900 /* We're _really_ low on memory. Now we just
901 * wait for old buffer heads to become free due to
902 * finishing IO. Since this is an async request and
903 * the reserve list is empty, we're sure there are
904 * async buffer heads in use.
906 free_more_memory();
907 goto try_again;
909 EXPORT_SYMBOL_GPL(alloc_page_buffers);
911 static inline void
912 link_dev_buffers(struct page *page, struct buffer_head *head)
914 struct buffer_head *bh, *tail;
916 bh = head;
917 do {
918 tail = bh;
919 bh = bh->b_this_page;
920 } while (bh);
921 tail->b_this_page = head;
922 attach_page_buffers(page, head);
925 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
927 sector_t retval = ~((sector_t)0);
928 loff_t sz = i_size_read(bdev->bd_inode);
930 if (sz) {
931 unsigned int sizebits = blksize_bits(size);
932 retval = (sz >> sizebits);
934 return retval;
938 * Initialise the state of a blockdev page's buffers.
940 static sector_t
941 init_page_buffers(struct page *page, struct block_device *bdev,
942 sector_t block, int size)
944 struct buffer_head *head = page_buffers(page);
945 struct buffer_head *bh = head;
946 int uptodate = PageUptodate(page);
947 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
949 do {
950 if (!buffer_mapped(bh)) {
951 init_buffer(bh, NULL, NULL);
952 bh->b_bdev = bdev;
953 bh->b_blocknr = block;
954 if (uptodate)
955 set_buffer_uptodate(bh);
956 if (block < end_block)
957 set_buffer_mapped(bh);
959 block++;
960 bh = bh->b_this_page;
961 } while (bh != head);
964 * Caller needs to validate requested block against end of device.
966 return end_block;
970 * Create the page-cache page that contains the requested block.
972 * This is used purely for blockdev mappings.
974 static int
975 grow_dev_page(struct block_device *bdev, sector_t block,
976 pgoff_t index, int size, int sizebits, gfp_t gfp)
978 struct inode *inode = bdev->bd_inode;
979 struct page *page;
980 struct buffer_head *bh;
981 sector_t end_block;
982 int ret = 0; /* Will call free_more_memory() */
983 gfp_t gfp_mask;
985 gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
988 * XXX: __getblk_slow() can not really deal with failure and
989 * will endlessly loop on improvised global reclaim. Prefer
990 * looping in the allocator rather than here, at least that
991 * code knows what it's doing.
993 gfp_mask |= __GFP_NOFAIL;
995 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
996 if (!page)
997 return ret;
999 BUG_ON(!PageLocked(page));
1001 if (page_has_buffers(page)) {
1002 bh = page_buffers(page);
1003 if (bh->b_size == size) {
1004 end_block = init_page_buffers(page, bdev,
1005 (sector_t)index << sizebits,
1006 size);
1007 goto done;
1009 if (!try_to_free_buffers(page))
1010 goto failed;
1014 * Allocate some buffers for this page
1016 bh = alloc_page_buffers(page, size, 0);
1017 if (!bh)
1018 goto failed;
1021 * Link the page to the buffers and initialise them. Take the
1022 * lock to be atomic wrt __find_get_block(), which does not
1023 * run under the page lock.
1025 spin_lock(&inode->i_mapping->private_lock);
1026 link_dev_buffers(page, bh);
1027 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1028 size);
1029 spin_unlock(&inode->i_mapping->private_lock);
1030 done:
1031 ret = (block < end_block) ? 1 : -ENXIO;
1032 failed:
1033 unlock_page(page);
1034 page_cache_release(page);
1035 return ret;
1039 * Create buffers for the specified block device block's page. If
1040 * that page was dirty, the buffers are set dirty also.
1042 static int
1043 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1045 pgoff_t index;
1046 int sizebits;
1048 sizebits = -1;
1049 do {
1050 sizebits++;
1051 } while ((size << sizebits) < PAGE_SIZE);
1053 index = block >> sizebits;
1056 * Check for a block which wants to lie outside our maximum possible
1057 * pagecache index. (this comparison is done using sector_t types).
1059 if (unlikely(index != block >> sizebits)) {
1060 char b[BDEVNAME_SIZE];
1062 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063 "device %s\n",
1064 __func__, (unsigned long long)block,
1065 bdevname(bdev, b));
1066 return -EIO;
1069 /* Create a page with the proper size buffers.. */
1070 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1073 struct buffer_head *
1074 __getblk_slow(struct block_device *bdev, sector_t block,
1075 unsigned size, gfp_t gfp)
1077 /* Size must be multiple of hard sectorsize */
1078 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1079 (size < 512 || size > PAGE_SIZE))) {
1080 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1081 size);
1082 printk(KERN_ERR "logical block size: %d\n",
1083 bdev_logical_block_size(bdev));
1085 dump_stack();
1086 return NULL;
1089 for (;;) {
1090 struct buffer_head *bh;
1091 int ret;
1093 bh = __find_get_block(bdev, block, size);
1094 if (bh)
1095 return bh;
1097 ret = grow_buffers(bdev, block, size, gfp);
1098 if (ret < 0)
1099 return NULL;
1100 if (ret == 0)
1101 free_more_memory();
1104 EXPORT_SYMBOL(__getblk_slow);
1107 * The relationship between dirty buffers and dirty pages:
1109 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1110 * the page is tagged dirty in its radix tree.
1112 * At all times, the dirtiness of the buffers represents the dirtiness of
1113 * subsections of the page. If the page has buffers, the page dirty bit is
1114 * merely a hint about the true dirty state.
1116 * When a page is set dirty in its entirety, all its buffers are marked dirty
1117 * (if the page has buffers).
1119 * When a buffer is marked dirty, its page is dirtied, but the page's other
1120 * buffers are not.
1122 * Also. When blockdev buffers are explicitly read with bread(), they
1123 * individually become uptodate. But their backing page remains not
1124 * uptodate - even if all of its buffers are uptodate. A subsequent
1125 * block_read_full_page() against that page will discover all the uptodate
1126 * buffers, will set the page uptodate and will perform no I/O.
1130 * mark_buffer_dirty - mark a buffer_head as needing writeout
1131 * @bh: the buffer_head to mark dirty
1133 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1134 * backing page dirty, then tag the page as dirty in its address_space's radix
1135 * tree and then attach the address_space's inode to its superblock's dirty
1136 * inode list.
1138 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1139 * mapping->tree_lock and mapping->host->i_lock.
1141 void mark_buffer_dirty(struct buffer_head *bh)
1143 WARN_ON_ONCE(!buffer_uptodate(bh));
1145 trace_block_dirty_buffer(bh);
1148 * Very *carefully* optimize the it-is-already-dirty case.
1150 * Don't let the final "is it dirty" escape to before we
1151 * perhaps modified the buffer.
1153 if (buffer_dirty(bh)) {
1154 smp_mb();
1155 if (buffer_dirty(bh))
1156 return;
1159 if (!test_set_buffer_dirty(bh)) {
1160 struct page *page = bh->b_page;
1161 if (!TestSetPageDirty(page)) {
1162 struct address_space *mapping = page_mapping(page);
1163 if (mapping)
1164 __set_page_dirty(page, mapping, 0);
1168 EXPORT_SYMBOL(mark_buffer_dirty);
1171 * Decrement a buffer_head's reference count. If all buffers against a page
1172 * have zero reference count, are clean and unlocked, and if the page is clean
1173 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1174 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1175 * a page but it ends up not being freed, and buffers may later be reattached).
1177 void __brelse(struct buffer_head * buf)
1179 if (atomic_read(&buf->b_count)) {
1180 put_bh(buf);
1181 return;
1183 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1185 EXPORT_SYMBOL(__brelse);
1188 * bforget() is like brelse(), except it discards any
1189 * potentially dirty data.
1191 void __bforget(struct buffer_head *bh)
1193 clear_buffer_dirty(bh);
1194 if (bh->b_assoc_map) {
1195 struct address_space *buffer_mapping = bh->b_page->mapping;
1197 spin_lock(&buffer_mapping->private_lock);
1198 list_del_init(&bh->b_assoc_buffers);
1199 bh->b_assoc_map = NULL;
1200 spin_unlock(&buffer_mapping->private_lock);
1202 __brelse(bh);
1204 EXPORT_SYMBOL(__bforget);
1206 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1208 lock_buffer(bh);
1209 if (buffer_uptodate(bh)) {
1210 unlock_buffer(bh);
1211 return bh;
1212 } else {
1213 get_bh(bh);
1214 bh->b_end_io = end_buffer_read_sync;
1215 submit_bh(READ, bh);
1216 wait_on_buffer(bh);
1217 if (buffer_uptodate(bh))
1218 return bh;
1220 brelse(bh);
1221 return NULL;
1225 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1226 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1227 * refcount elevated by one when they're in an LRU. A buffer can only appear
1228 * once in a particular CPU's LRU. A single buffer can be present in multiple
1229 * CPU's LRUs at the same time.
1231 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1232 * sb_find_get_block().
1234 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1235 * a local interrupt disable for that.
1238 #define BH_LRU_SIZE 16
1240 struct bh_lru {
1241 struct buffer_head *bhs[BH_LRU_SIZE];
1244 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1246 #ifdef CONFIG_SMP
1247 #define bh_lru_lock() local_irq_disable()
1248 #define bh_lru_unlock() local_irq_enable()
1249 #else
1250 #define bh_lru_lock() preempt_disable()
1251 #define bh_lru_unlock() preempt_enable()
1252 #endif
1254 static inline void check_irqs_on(void)
1256 #ifdef irqs_disabled
1257 BUG_ON(irqs_disabled());
1258 #endif
1262 * The LRU management algorithm is dopey-but-simple. Sorry.
1264 static void bh_lru_install(struct buffer_head *bh)
1266 struct buffer_head *evictee = NULL;
1268 check_irqs_on();
1269 bh_lru_lock();
1270 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1271 struct buffer_head *bhs[BH_LRU_SIZE];
1272 int in;
1273 int out = 0;
1275 get_bh(bh);
1276 bhs[out++] = bh;
1277 for (in = 0; in < BH_LRU_SIZE; in++) {
1278 struct buffer_head *bh2 =
1279 __this_cpu_read(bh_lrus.bhs[in]);
1281 if (bh2 == bh) {
1282 __brelse(bh2);
1283 } else {
1284 if (out >= BH_LRU_SIZE) {
1285 BUG_ON(evictee != NULL);
1286 evictee = bh2;
1287 } else {
1288 bhs[out++] = bh2;
1292 while (out < BH_LRU_SIZE)
1293 bhs[out++] = NULL;
1294 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1296 bh_lru_unlock();
1298 if (evictee)
1299 __brelse(evictee);
1303 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1305 static struct buffer_head *
1306 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1308 struct buffer_head *ret = NULL;
1309 unsigned int i;
1311 check_irqs_on();
1312 bh_lru_lock();
1313 for (i = 0; i < BH_LRU_SIZE; i++) {
1314 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1316 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1317 bh->b_size == size) {
1318 if (i) {
1319 while (i) {
1320 __this_cpu_write(bh_lrus.bhs[i],
1321 __this_cpu_read(bh_lrus.bhs[i - 1]));
1322 i--;
1324 __this_cpu_write(bh_lrus.bhs[0], bh);
1326 get_bh(bh);
1327 ret = bh;
1328 break;
1331 bh_lru_unlock();
1332 return ret;
1336 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1337 * it in the LRU and mark it as accessed. If it is not present then return
1338 * NULL
1340 struct buffer_head *
1341 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1343 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1345 if (bh == NULL) {
1346 /* __find_get_block_slow will mark the page accessed */
1347 bh = __find_get_block_slow(bdev, block);
1348 if (bh)
1349 bh_lru_install(bh);
1350 } else
1351 touch_buffer(bh);
1353 return bh;
1355 EXPORT_SYMBOL(__find_get_block);
1358 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1359 * which corresponds to the passed block_device, block and size. The
1360 * returned buffer has its reference count incremented.
1362 * __getblk_gfp() will lock up the machine if grow_dev_page's
1363 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1365 struct buffer_head *
1366 __getblk_gfp(struct block_device *bdev, sector_t block,
1367 unsigned size, gfp_t gfp)
1369 struct buffer_head *bh = __find_get_block(bdev, block, size);
1371 might_sleep();
1372 if (bh == NULL)
1373 bh = __getblk_slow(bdev, block, size, gfp);
1374 return bh;
1376 EXPORT_SYMBOL(__getblk_gfp);
1379 * Do async read-ahead on a buffer..
1381 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1383 struct buffer_head *bh = __getblk(bdev, block, size);
1384 if (likely(bh)) {
1385 ll_rw_block(READA, 1, &bh);
1386 brelse(bh);
1389 EXPORT_SYMBOL(__breadahead);
1392 * __bread_gfp() - reads a specified block and returns the bh
1393 * @bdev: the block_device to read from
1394 * @block: number of block
1395 * @size: size (in bytes) to read
1396 * @gfp: page allocation flag
1398 * Reads a specified block, and returns buffer head that contains it.
1399 * The page cache can be allocated from non-movable area
1400 * not to prevent page migration if you set gfp to zero.
1401 * It returns NULL if the block was unreadable.
1403 struct buffer_head *
1404 __bread_gfp(struct block_device *bdev, sector_t block,
1405 unsigned size, gfp_t gfp)
1407 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1409 if (likely(bh) && !buffer_uptodate(bh))
1410 bh = __bread_slow(bh);
1411 return bh;
1413 EXPORT_SYMBOL(__bread_gfp);
1416 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1417 * This doesn't race because it runs in each cpu either in irq
1418 * or with preempt disabled.
1420 static void invalidate_bh_lru(void *arg)
1422 struct bh_lru *b = &get_cpu_var(bh_lrus);
1423 int i;
1425 for (i = 0; i < BH_LRU_SIZE; i++) {
1426 brelse(b->bhs[i]);
1427 b->bhs[i] = NULL;
1429 put_cpu_var(bh_lrus);
1432 static bool has_bh_in_lru(int cpu, void *dummy)
1434 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1435 int i;
1437 for (i = 0; i < BH_LRU_SIZE; i++) {
1438 if (b->bhs[i])
1439 return 1;
1442 return 0;
1445 void invalidate_bh_lrus(void)
1447 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1449 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1451 void set_bh_page(struct buffer_head *bh,
1452 struct page *page, unsigned long offset)
1454 bh->b_page = page;
1455 BUG_ON(offset >= PAGE_SIZE);
1456 if (PageHighMem(page))
1458 * This catches illegal uses and preserves the offset:
1460 bh->b_data = (char *)(0 + offset);
1461 else
1462 bh->b_data = page_address(page) + offset;
1464 EXPORT_SYMBOL(set_bh_page);
1467 * Called when truncating a buffer on a page completely.
1470 /* Bits that are cleared during an invalidate */
1471 #define BUFFER_FLAGS_DISCARD \
1472 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1473 1 << BH_Delay | 1 << BH_Unwritten)
1475 static void discard_buffer(struct buffer_head * bh)
1477 unsigned long b_state, b_state_old;
1479 lock_buffer(bh);
1480 clear_buffer_dirty(bh);
1481 bh->b_bdev = NULL;
1482 b_state = bh->b_state;
1483 for (;;) {
1484 b_state_old = cmpxchg(&bh->b_state, b_state,
1485 (b_state & ~BUFFER_FLAGS_DISCARD));
1486 if (b_state_old == b_state)
1487 break;
1488 b_state = b_state_old;
1490 unlock_buffer(bh);
1494 * block_invalidatepage - invalidate part or all of a buffer-backed page
1496 * @page: the page which is affected
1497 * @offset: start of the range to invalidate
1498 * @length: length of the range to invalidate
1500 * block_invalidatepage() is called when all or part of the page has become
1501 * invalidated by a truncate operation.
1503 * block_invalidatepage() does not have to release all buffers, but it must
1504 * ensure that no dirty buffer is left outside @offset and that no I/O
1505 * is underway against any of the blocks which are outside the truncation
1506 * point. Because the caller is about to free (and possibly reuse) those
1507 * blocks on-disk.
1509 void block_invalidatepage(struct page *page, unsigned int offset,
1510 unsigned int length)
1512 struct buffer_head *head, *bh, *next;
1513 unsigned int curr_off = 0;
1514 unsigned int stop = length + offset;
1516 BUG_ON(!PageLocked(page));
1517 if (!page_has_buffers(page))
1518 goto out;
1521 * Check for overflow
1523 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1525 head = page_buffers(page);
1526 bh = head;
1527 do {
1528 unsigned int next_off = curr_off + bh->b_size;
1529 next = bh->b_this_page;
1532 * Are we still fully in range ?
1534 if (next_off > stop)
1535 goto out;
1538 * is this block fully invalidated?
1540 if (offset <= curr_off)
1541 discard_buffer(bh);
1542 curr_off = next_off;
1543 bh = next;
1544 } while (bh != head);
1547 * We release buffers only if the entire page is being invalidated.
1548 * The get_block cached value has been unconditionally invalidated,
1549 * so real IO is not possible anymore.
1551 if (offset == 0)
1552 try_to_release_page(page, 0);
1553 out:
1554 return;
1556 EXPORT_SYMBOL(block_invalidatepage);
1560 * We attach and possibly dirty the buffers atomically wrt
1561 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1562 * is already excluded via the page lock.
1564 void create_empty_buffers(struct page *page,
1565 unsigned long blocksize, unsigned long b_state)
1567 struct buffer_head *bh, *head, *tail;
1569 head = alloc_page_buffers(page, blocksize, 1);
1570 bh = head;
1571 do {
1572 bh->b_state |= b_state;
1573 tail = bh;
1574 bh = bh->b_this_page;
1575 } while (bh);
1576 tail->b_this_page = head;
1578 spin_lock(&page->mapping->private_lock);
1579 if (PageUptodate(page) || PageDirty(page)) {
1580 bh = head;
1581 do {
1582 if (PageDirty(page))
1583 set_buffer_dirty(bh);
1584 if (PageUptodate(page))
1585 set_buffer_uptodate(bh);
1586 bh = bh->b_this_page;
1587 } while (bh != head);
1589 attach_page_buffers(page, head);
1590 spin_unlock(&page->mapping->private_lock);
1592 EXPORT_SYMBOL(create_empty_buffers);
1595 * We are taking a block for data and we don't want any output from any
1596 * buffer-cache aliases starting from return from that function and
1597 * until the moment when something will explicitly mark the buffer
1598 * dirty (hopefully that will not happen until we will free that block ;-)
1599 * We don't even need to mark it not-uptodate - nobody can expect
1600 * anything from a newly allocated buffer anyway. We used to used
1601 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1602 * don't want to mark the alias unmapped, for example - it would confuse
1603 * anyone who might pick it with bread() afterwards...
1605 * Also.. Note that bforget() doesn't lock the buffer. So there can
1606 * be writeout I/O going on against recently-freed buffers. We don't
1607 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1608 * only if we really need to. That happens here.
1610 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1612 struct buffer_head *old_bh;
1614 might_sleep();
1616 old_bh = __find_get_block_slow(bdev, block);
1617 if (old_bh) {
1618 clear_buffer_dirty(old_bh);
1619 wait_on_buffer(old_bh);
1620 clear_buffer_req(old_bh);
1621 __brelse(old_bh);
1624 EXPORT_SYMBOL(unmap_underlying_metadata);
1627 * Size is a power-of-two in the range 512..PAGE_SIZE,
1628 * and the case we care about most is PAGE_SIZE.
1630 * So this *could* possibly be written with those
1631 * constraints in mind (relevant mostly if some
1632 * architecture has a slow bit-scan instruction)
1634 static inline int block_size_bits(unsigned int blocksize)
1636 return ilog2(blocksize);
1639 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1641 BUG_ON(!PageLocked(page));
1643 if (!page_has_buffers(page))
1644 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1645 return page_buffers(page);
1649 * NOTE! All mapped/uptodate combinations are valid:
1651 * Mapped Uptodate Meaning
1653 * No No "unknown" - must do get_block()
1654 * No Yes "hole" - zero-filled
1655 * Yes No "allocated" - allocated on disk, not read in
1656 * Yes Yes "valid" - allocated and up-to-date in memory.
1658 * "Dirty" is valid only with the last case (mapped+uptodate).
1662 * While block_write_full_page is writing back the dirty buffers under
1663 * the page lock, whoever dirtied the buffers may decide to clean them
1664 * again at any time. We handle that by only looking at the buffer
1665 * state inside lock_buffer().
1667 * If block_write_full_page() is called for regular writeback
1668 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1669 * locked buffer. This only can happen if someone has written the buffer
1670 * directly, with submit_bh(). At the address_space level PageWriteback
1671 * prevents this contention from occurring.
1673 * If block_write_full_page() is called with wbc->sync_mode ==
1674 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1675 * causes the writes to be flagged as synchronous writes.
1677 static int __block_write_full_page(struct inode *inode, struct page *page,
1678 get_block_t *get_block, struct writeback_control *wbc,
1679 bh_end_io_t *handler)
1681 int err;
1682 sector_t block;
1683 sector_t last_block;
1684 struct buffer_head *bh, *head;
1685 unsigned int blocksize, bbits;
1686 int nr_underway = 0;
1687 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1688 WRITE_SYNC : WRITE);
1690 head = create_page_buffers(page, inode,
1691 (1 << BH_Dirty)|(1 << BH_Uptodate));
1694 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1695 * here, and the (potentially unmapped) buffers may become dirty at
1696 * any time. If a buffer becomes dirty here after we've inspected it
1697 * then we just miss that fact, and the page stays dirty.
1699 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1700 * handle that here by just cleaning them.
1703 bh = head;
1704 blocksize = bh->b_size;
1705 bbits = block_size_bits(blocksize);
1707 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1708 last_block = (i_size_read(inode) - 1) >> bbits;
1711 * Get all the dirty buffers mapped to disk addresses and
1712 * handle any aliases from the underlying blockdev's mapping.
1714 do {
1715 if (block > last_block) {
1717 * mapped buffers outside i_size will occur, because
1718 * this page can be outside i_size when there is a
1719 * truncate in progress.
1722 * The buffer was zeroed by block_write_full_page()
1724 clear_buffer_dirty(bh);
1725 set_buffer_uptodate(bh);
1726 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1727 buffer_dirty(bh)) {
1728 WARN_ON(bh->b_size != blocksize);
1729 err = get_block(inode, block, bh, 1);
1730 if (err)
1731 goto recover;
1732 clear_buffer_delay(bh);
1733 if (buffer_new(bh)) {
1734 /* blockdev mappings never come here */
1735 clear_buffer_new(bh);
1736 unmap_underlying_metadata(bh->b_bdev,
1737 bh->b_blocknr);
1740 bh = bh->b_this_page;
1741 block++;
1742 } while (bh != head);
1744 do {
1745 if (!buffer_mapped(bh))
1746 continue;
1748 * If it's a fully non-blocking write attempt and we cannot
1749 * lock the buffer then redirty the page. Note that this can
1750 * potentially cause a busy-wait loop from writeback threads
1751 * and kswapd activity, but those code paths have their own
1752 * higher-level throttling.
1754 if (wbc->sync_mode != WB_SYNC_NONE) {
1755 lock_buffer(bh);
1756 } else if (!trylock_buffer(bh)) {
1757 redirty_page_for_writepage(wbc, page);
1758 continue;
1760 if (test_clear_buffer_dirty(bh)) {
1761 mark_buffer_async_write_endio(bh, handler);
1762 } else {
1763 unlock_buffer(bh);
1765 } while ((bh = bh->b_this_page) != head);
1768 * The page and its buffers are protected by PageWriteback(), so we can
1769 * drop the bh refcounts early.
1771 BUG_ON(PageWriteback(page));
1772 set_page_writeback(page);
1774 do {
1775 struct buffer_head *next = bh->b_this_page;
1776 if (buffer_async_write(bh)) {
1777 submit_bh(write_op, bh);
1778 nr_underway++;
1780 bh = next;
1781 } while (bh != head);
1782 unlock_page(page);
1784 err = 0;
1785 done:
1786 if (nr_underway == 0) {
1788 * The page was marked dirty, but the buffers were
1789 * clean. Someone wrote them back by hand with
1790 * ll_rw_block/submit_bh. A rare case.
1792 end_page_writeback(page);
1795 * The page and buffer_heads can be released at any time from
1796 * here on.
1799 return err;
1801 recover:
1803 * ENOSPC, or some other error. We may already have added some
1804 * blocks to the file, so we need to write these out to avoid
1805 * exposing stale data.
1806 * The page is currently locked and not marked for writeback
1808 bh = head;
1809 /* Recovery: lock and submit the mapped buffers */
1810 do {
1811 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1812 !buffer_delay(bh)) {
1813 lock_buffer(bh);
1814 mark_buffer_async_write_endio(bh, handler);
1815 } else {
1817 * The buffer may have been set dirty during
1818 * attachment to a dirty page.
1820 clear_buffer_dirty(bh);
1822 } while ((bh = bh->b_this_page) != head);
1823 SetPageError(page);
1824 BUG_ON(PageWriteback(page));
1825 mapping_set_error(page->mapping, err);
1826 set_page_writeback(page);
1827 do {
1828 struct buffer_head *next = bh->b_this_page;
1829 if (buffer_async_write(bh)) {
1830 clear_buffer_dirty(bh);
1831 submit_bh(write_op, bh);
1832 nr_underway++;
1834 bh = next;
1835 } while (bh != head);
1836 unlock_page(page);
1837 goto done;
1841 * If a page has any new buffers, zero them out here, and mark them uptodate
1842 * and dirty so they'll be written out (in order to prevent uninitialised
1843 * block data from leaking). And clear the new bit.
1845 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1847 unsigned int block_start, block_end;
1848 struct buffer_head *head, *bh;
1850 BUG_ON(!PageLocked(page));
1851 if (!page_has_buffers(page))
1852 return;
1854 bh = head = page_buffers(page);
1855 block_start = 0;
1856 do {
1857 block_end = block_start + bh->b_size;
1859 if (buffer_new(bh)) {
1860 if (block_end > from && block_start < to) {
1861 if (!PageUptodate(page)) {
1862 unsigned start, size;
1864 start = max(from, block_start);
1865 size = min(to, block_end) - start;
1867 zero_user(page, start, size);
1868 set_buffer_uptodate(bh);
1871 clear_buffer_new(bh);
1872 mark_buffer_dirty(bh);
1876 block_start = block_end;
1877 bh = bh->b_this_page;
1878 } while (bh != head);
1880 EXPORT_SYMBOL(page_zero_new_buffers);
1882 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1883 get_block_t *get_block)
1885 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1886 unsigned to = from + len;
1887 struct inode *inode = page->mapping->host;
1888 unsigned block_start, block_end;
1889 sector_t block;
1890 int err = 0;
1891 unsigned blocksize, bbits;
1892 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1894 BUG_ON(!PageLocked(page));
1895 BUG_ON(from > PAGE_CACHE_SIZE);
1896 BUG_ON(to > PAGE_CACHE_SIZE);
1897 BUG_ON(from > to);
1899 head = create_page_buffers(page, inode, 0);
1900 blocksize = head->b_size;
1901 bbits = block_size_bits(blocksize);
1903 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1905 for(bh = head, block_start = 0; bh != head || !block_start;
1906 block++, block_start=block_end, bh = bh->b_this_page) {
1907 block_end = block_start + blocksize;
1908 if (block_end <= from || block_start >= to) {
1909 if (PageUptodate(page)) {
1910 if (!buffer_uptodate(bh))
1911 set_buffer_uptodate(bh);
1913 continue;
1915 if (buffer_new(bh))
1916 clear_buffer_new(bh);
1917 if (!buffer_mapped(bh)) {
1918 WARN_ON(bh->b_size != blocksize);
1919 err = get_block(inode, block, bh, 1);
1920 if (err)
1921 break;
1922 if (buffer_new(bh)) {
1923 unmap_underlying_metadata(bh->b_bdev,
1924 bh->b_blocknr);
1925 if (PageUptodate(page)) {
1926 clear_buffer_new(bh);
1927 set_buffer_uptodate(bh);
1928 mark_buffer_dirty(bh);
1929 continue;
1931 if (block_end > to || block_start < from)
1932 zero_user_segments(page,
1933 to, block_end,
1934 block_start, from);
1935 continue;
1938 if (PageUptodate(page)) {
1939 if (!buffer_uptodate(bh))
1940 set_buffer_uptodate(bh);
1941 continue;
1943 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1944 !buffer_unwritten(bh) &&
1945 (block_start < from || block_end > to)) {
1946 ll_rw_block(READ, 1, &bh);
1947 *wait_bh++=bh;
1951 * If we issued read requests - let them complete.
1953 while(wait_bh > wait) {
1954 wait_on_buffer(*--wait_bh);
1955 if (!buffer_uptodate(*wait_bh))
1956 err = -EIO;
1958 if (unlikely(err))
1959 page_zero_new_buffers(page, from, to);
1960 return err;
1962 EXPORT_SYMBOL(__block_write_begin);
1964 static int __block_commit_write(struct inode *inode, struct page *page,
1965 unsigned from, unsigned to)
1967 unsigned block_start, block_end;
1968 int partial = 0;
1969 unsigned blocksize;
1970 struct buffer_head *bh, *head;
1972 bh = head = page_buffers(page);
1973 blocksize = bh->b_size;
1975 block_start = 0;
1976 do {
1977 block_end = block_start + blocksize;
1978 if (block_end <= from || block_start >= to) {
1979 if (!buffer_uptodate(bh))
1980 partial = 1;
1981 } else {
1982 set_buffer_uptodate(bh);
1983 mark_buffer_dirty(bh);
1985 clear_buffer_new(bh);
1987 block_start = block_end;
1988 bh = bh->b_this_page;
1989 } while (bh != head);
1992 * If this is a partial write which happened to make all buffers
1993 * uptodate then we can optimize away a bogus readpage() for
1994 * the next read(). Here we 'discover' whether the page went
1995 * uptodate as a result of this (potentially partial) write.
1997 if (!partial)
1998 SetPageUptodate(page);
1999 return 0;
2003 * block_write_begin takes care of the basic task of block allocation and
2004 * bringing partial write blocks uptodate first.
2006 * The filesystem needs to handle block truncation upon failure.
2008 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2009 unsigned flags, struct page **pagep, get_block_t *get_block)
2011 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2012 struct page *page;
2013 int status;
2015 page = grab_cache_page_write_begin(mapping, index, flags);
2016 if (!page)
2017 return -ENOMEM;
2019 status = __block_write_begin(page, pos, len, get_block);
2020 if (unlikely(status)) {
2021 unlock_page(page);
2022 page_cache_release(page);
2023 page = NULL;
2026 *pagep = page;
2027 return status;
2029 EXPORT_SYMBOL(block_write_begin);
2031 int block_write_end(struct file *file, struct address_space *mapping,
2032 loff_t pos, unsigned len, unsigned copied,
2033 struct page *page, void *fsdata)
2035 struct inode *inode = mapping->host;
2036 unsigned start;
2038 start = pos & (PAGE_CACHE_SIZE - 1);
2040 if (unlikely(copied < len)) {
2042 * The buffers that were written will now be uptodate, so we
2043 * don't have to worry about a readpage reading them and
2044 * overwriting a partial write. However if we have encountered
2045 * a short write and only partially written into a buffer, it
2046 * will not be marked uptodate, so a readpage might come in and
2047 * destroy our partial write.
2049 * Do the simplest thing, and just treat any short write to a
2050 * non uptodate page as a zero-length write, and force the
2051 * caller to redo the whole thing.
2053 if (!PageUptodate(page))
2054 copied = 0;
2056 page_zero_new_buffers(page, start+copied, start+len);
2058 flush_dcache_page(page);
2060 /* This could be a short (even 0-length) commit */
2061 __block_commit_write(inode, page, start, start+copied);
2063 return copied;
2065 EXPORT_SYMBOL(block_write_end);
2067 int generic_write_end(struct file *file, struct address_space *mapping,
2068 loff_t pos, unsigned len, unsigned copied,
2069 struct page *page, void *fsdata)
2071 struct inode *inode = mapping->host;
2072 loff_t old_size = inode->i_size;
2073 int i_size_changed = 0;
2075 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2078 * No need to use i_size_read() here, the i_size
2079 * cannot change under us because we hold i_mutex.
2081 * But it's important to update i_size while still holding page lock:
2082 * page writeout could otherwise come in and zero beyond i_size.
2084 if (pos+copied > inode->i_size) {
2085 i_size_write(inode, pos+copied);
2086 i_size_changed = 1;
2089 unlock_page(page);
2090 page_cache_release(page);
2092 if (old_size < pos)
2093 pagecache_isize_extended(inode, old_size, pos);
2095 * Don't mark the inode dirty under page lock. First, it unnecessarily
2096 * makes the holding time of page lock longer. Second, it forces lock
2097 * ordering of page lock and transaction start for journaling
2098 * filesystems.
2100 if (i_size_changed)
2101 mark_inode_dirty(inode);
2103 return copied;
2105 EXPORT_SYMBOL(generic_write_end);
2108 * block_is_partially_uptodate checks whether buffers within a page are
2109 * uptodate or not.
2111 * Returns true if all buffers which correspond to a file portion
2112 * we want to read are uptodate.
2114 int block_is_partially_uptodate(struct page *page, unsigned long from,
2115 unsigned long count)
2117 unsigned block_start, block_end, blocksize;
2118 unsigned to;
2119 struct buffer_head *bh, *head;
2120 int ret = 1;
2122 if (!page_has_buffers(page))
2123 return 0;
2125 head = page_buffers(page);
2126 blocksize = head->b_size;
2127 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2128 to = from + to;
2129 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2130 return 0;
2132 bh = head;
2133 block_start = 0;
2134 do {
2135 block_end = block_start + blocksize;
2136 if (block_end > from && block_start < to) {
2137 if (!buffer_uptodate(bh)) {
2138 ret = 0;
2139 break;
2141 if (block_end >= to)
2142 break;
2144 block_start = block_end;
2145 bh = bh->b_this_page;
2146 } while (bh != head);
2148 return ret;
2150 EXPORT_SYMBOL(block_is_partially_uptodate);
2153 * Generic "read page" function for block devices that have the normal
2154 * get_block functionality. This is most of the block device filesystems.
2155 * Reads the page asynchronously --- the unlock_buffer() and
2156 * set/clear_buffer_uptodate() functions propagate buffer state into the
2157 * page struct once IO has completed.
2159 int block_read_full_page(struct page *page, get_block_t *get_block)
2161 struct inode *inode = page->mapping->host;
2162 sector_t iblock, lblock;
2163 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2164 unsigned int blocksize, bbits;
2165 int nr, i;
2166 int fully_mapped = 1;
2168 head = create_page_buffers(page, inode, 0);
2169 blocksize = head->b_size;
2170 bbits = block_size_bits(blocksize);
2172 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2173 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2174 bh = head;
2175 nr = 0;
2176 i = 0;
2178 do {
2179 if (buffer_uptodate(bh))
2180 continue;
2182 if (!buffer_mapped(bh)) {
2183 int err = 0;
2185 fully_mapped = 0;
2186 if (iblock < lblock) {
2187 WARN_ON(bh->b_size != blocksize);
2188 err = get_block(inode, iblock, bh, 0);
2189 if (err)
2190 SetPageError(page);
2192 if (!buffer_mapped(bh)) {
2193 zero_user(page, i * blocksize, blocksize);
2194 if (!err)
2195 set_buffer_uptodate(bh);
2196 continue;
2199 * get_block() might have updated the buffer
2200 * synchronously
2202 if (buffer_uptodate(bh))
2203 continue;
2205 arr[nr++] = bh;
2206 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2208 if (fully_mapped)
2209 SetPageMappedToDisk(page);
2211 if (!nr) {
2213 * All buffers are uptodate - we can set the page uptodate
2214 * as well. But not if get_block() returned an error.
2216 if (!PageError(page))
2217 SetPageUptodate(page);
2218 unlock_page(page);
2219 return 0;
2222 /* Stage two: lock the buffers */
2223 for (i = 0; i < nr; i++) {
2224 bh = arr[i];
2225 lock_buffer(bh);
2226 mark_buffer_async_read(bh);
2230 * Stage 3: start the IO. Check for uptodateness
2231 * inside the buffer lock in case another process reading
2232 * the underlying blockdev brought it uptodate (the sct fix).
2234 for (i = 0; i < nr; i++) {
2235 bh = arr[i];
2236 if (buffer_uptodate(bh))
2237 end_buffer_async_read(bh, 1);
2238 else
2239 submit_bh(READ, bh);
2241 return 0;
2243 EXPORT_SYMBOL(block_read_full_page);
2245 /* utility function for filesystems that need to do work on expanding
2246 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2247 * deal with the hole.
2249 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2251 struct address_space *mapping = inode->i_mapping;
2252 struct page *page;
2253 void *fsdata;
2254 int err;
2256 err = inode_newsize_ok(inode, size);
2257 if (err)
2258 goto out;
2260 err = pagecache_write_begin(NULL, mapping, size, 0,
2261 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2262 &page, &fsdata);
2263 if (err)
2264 goto out;
2266 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2267 BUG_ON(err > 0);
2269 out:
2270 return err;
2272 EXPORT_SYMBOL(generic_cont_expand_simple);
2274 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2275 loff_t pos, loff_t *bytes)
2277 struct inode *inode = mapping->host;
2278 unsigned blocksize = 1 << inode->i_blkbits;
2279 struct page *page;
2280 void *fsdata;
2281 pgoff_t index, curidx;
2282 loff_t curpos;
2283 unsigned zerofrom, offset, len;
2284 int err = 0;
2286 index = pos >> PAGE_CACHE_SHIFT;
2287 offset = pos & ~PAGE_CACHE_MASK;
2289 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2290 zerofrom = curpos & ~PAGE_CACHE_MASK;
2291 if (zerofrom & (blocksize-1)) {
2292 *bytes |= (blocksize-1);
2293 (*bytes)++;
2295 len = PAGE_CACHE_SIZE - zerofrom;
2297 err = pagecache_write_begin(file, mapping, curpos, len,
2298 AOP_FLAG_UNINTERRUPTIBLE,
2299 &page, &fsdata);
2300 if (err)
2301 goto out;
2302 zero_user(page, zerofrom, len);
2303 err = pagecache_write_end(file, mapping, curpos, len, len,
2304 page, fsdata);
2305 if (err < 0)
2306 goto out;
2307 BUG_ON(err != len);
2308 err = 0;
2310 balance_dirty_pages_ratelimited(mapping);
2312 if (unlikely(fatal_signal_pending(current))) {
2313 err = -EINTR;
2314 goto out;
2318 /* page covers the boundary, find the boundary offset */
2319 if (index == curidx) {
2320 zerofrom = curpos & ~PAGE_CACHE_MASK;
2321 /* if we will expand the thing last block will be filled */
2322 if (offset <= zerofrom) {
2323 goto out;
2325 if (zerofrom & (blocksize-1)) {
2326 *bytes |= (blocksize-1);
2327 (*bytes)++;
2329 len = offset - zerofrom;
2331 err = pagecache_write_begin(file, mapping, curpos, len,
2332 AOP_FLAG_UNINTERRUPTIBLE,
2333 &page, &fsdata);
2334 if (err)
2335 goto out;
2336 zero_user(page, zerofrom, len);
2337 err = pagecache_write_end(file, mapping, curpos, len, len,
2338 page, fsdata);
2339 if (err < 0)
2340 goto out;
2341 BUG_ON(err != len);
2342 err = 0;
2344 out:
2345 return err;
2349 * For moronic filesystems that do not allow holes in file.
2350 * We may have to extend the file.
2352 int cont_write_begin(struct file *file, struct address_space *mapping,
2353 loff_t pos, unsigned len, unsigned flags,
2354 struct page **pagep, void **fsdata,
2355 get_block_t *get_block, loff_t *bytes)
2357 struct inode *inode = mapping->host;
2358 unsigned blocksize = 1 << inode->i_blkbits;
2359 unsigned zerofrom;
2360 int err;
2362 err = cont_expand_zero(file, mapping, pos, bytes);
2363 if (err)
2364 return err;
2366 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2367 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2368 *bytes |= (blocksize-1);
2369 (*bytes)++;
2372 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2374 EXPORT_SYMBOL(cont_write_begin);
2376 int block_commit_write(struct page *page, unsigned from, unsigned to)
2378 struct inode *inode = page->mapping->host;
2379 __block_commit_write(inode,page,from,to);
2380 return 0;
2382 EXPORT_SYMBOL(block_commit_write);
2385 * block_page_mkwrite() is not allowed to change the file size as it gets
2386 * called from a page fault handler when a page is first dirtied. Hence we must
2387 * be careful to check for EOF conditions here. We set the page up correctly
2388 * for a written page which means we get ENOSPC checking when writing into
2389 * holes and correct delalloc and unwritten extent mapping on filesystems that
2390 * support these features.
2392 * We are not allowed to take the i_mutex here so we have to play games to
2393 * protect against truncate races as the page could now be beyond EOF. Because
2394 * truncate writes the inode size before removing pages, once we have the
2395 * page lock we can determine safely if the page is beyond EOF. If it is not
2396 * beyond EOF, then the page is guaranteed safe against truncation until we
2397 * unlock the page.
2399 * Direct callers of this function should protect against filesystem freezing
2400 * using sb_start_write() - sb_end_write() functions.
2402 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2403 get_block_t get_block)
2405 struct page *page = vmf->page;
2406 struct inode *inode = file_inode(vma->vm_file);
2407 unsigned long end;
2408 loff_t size;
2409 int ret;
2411 lock_page(page);
2412 size = i_size_read(inode);
2413 if ((page->mapping != inode->i_mapping) ||
2414 (page_offset(page) > size)) {
2415 /* We overload EFAULT to mean page got truncated */
2416 ret = -EFAULT;
2417 goto out_unlock;
2420 /* page is wholly or partially inside EOF */
2421 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2422 end = size & ~PAGE_CACHE_MASK;
2423 else
2424 end = PAGE_CACHE_SIZE;
2426 ret = __block_write_begin(page, 0, end, get_block);
2427 if (!ret)
2428 ret = block_commit_write(page, 0, end);
2430 if (unlikely(ret < 0))
2431 goto out_unlock;
2432 set_page_dirty(page);
2433 wait_for_stable_page(page);
2434 return 0;
2435 out_unlock:
2436 unlock_page(page);
2437 return ret;
2439 EXPORT_SYMBOL(__block_page_mkwrite);
2441 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2442 get_block_t get_block)
2444 int ret;
2445 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2447 sb_start_pagefault(sb);
2450 * Update file times before taking page lock. We may end up failing the
2451 * fault so this update may be superfluous but who really cares...
2453 file_update_time(vma->vm_file);
2455 ret = __block_page_mkwrite(vma, vmf, get_block);
2456 sb_end_pagefault(sb);
2457 return block_page_mkwrite_return(ret);
2459 EXPORT_SYMBOL(block_page_mkwrite);
2462 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2463 * immediately, while under the page lock. So it needs a special end_io
2464 * handler which does not touch the bh after unlocking it.
2466 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2468 __end_buffer_read_notouch(bh, uptodate);
2472 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2473 * the page (converting it to circular linked list and taking care of page
2474 * dirty races).
2476 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2478 struct buffer_head *bh;
2480 BUG_ON(!PageLocked(page));
2482 spin_lock(&page->mapping->private_lock);
2483 bh = head;
2484 do {
2485 if (PageDirty(page))
2486 set_buffer_dirty(bh);
2487 if (!bh->b_this_page)
2488 bh->b_this_page = head;
2489 bh = bh->b_this_page;
2490 } while (bh != head);
2491 attach_page_buffers(page, head);
2492 spin_unlock(&page->mapping->private_lock);
2496 * On entry, the page is fully not uptodate.
2497 * On exit the page is fully uptodate in the areas outside (from,to)
2498 * The filesystem needs to handle block truncation upon failure.
2500 int nobh_write_begin(struct address_space *mapping,
2501 loff_t pos, unsigned len, unsigned flags,
2502 struct page **pagep, void **fsdata,
2503 get_block_t *get_block)
2505 struct inode *inode = mapping->host;
2506 const unsigned blkbits = inode->i_blkbits;
2507 const unsigned blocksize = 1 << blkbits;
2508 struct buffer_head *head, *bh;
2509 struct page *page;
2510 pgoff_t index;
2511 unsigned from, to;
2512 unsigned block_in_page;
2513 unsigned block_start, block_end;
2514 sector_t block_in_file;
2515 int nr_reads = 0;
2516 int ret = 0;
2517 int is_mapped_to_disk = 1;
2519 index = pos >> PAGE_CACHE_SHIFT;
2520 from = pos & (PAGE_CACHE_SIZE - 1);
2521 to = from + len;
2523 page = grab_cache_page_write_begin(mapping, index, flags);
2524 if (!page)
2525 return -ENOMEM;
2526 *pagep = page;
2527 *fsdata = NULL;
2529 if (page_has_buffers(page)) {
2530 ret = __block_write_begin(page, pos, len, get_block);
2531 if (unlikely(ret))
2532 goto out_release;
2533 return ret;
2536 if (PageMappedToDisk(page))
2537 return 0;
2540 * Allocate buffers so that we can keep track of state, and potentially
2541 * attach them to the page if an error occurs. In the common case of
2542 * no error, they will just be freed again without ever being attached
2543 * to the page (which is all OK, because we're under the page lock).
2545 * Be careful: the buffer linked list is a NULL terminated one, rather
2546 * than the circular one we're used to.
2548 head = alloc_page_buffers(page, blocksize, 0);
2549 if (!head) {
2550 ret = -ENOMEM;
2551 goto out_release;
2554 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2557 * We loop across all blocks in the page, whether or not they are
2558 * part of the affected region. This is so we can discover if the
2559 * page is fully mapped-to-disk.
2561 for (block_start = 0, block_in_page = 0, bh = head;
2562 block_start < PAGE_CACHE_SIZE;
2563 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2564 int create;
2566 block_end = block_start + blocksize;
2567 bh->b_state = 0;
2568 create = 1;
2569 if (block_start >= to)
2570 create = 0;
2571 ret = get_block(inode, block_in_file + block_in_page,
2572 bh, create);
2573 if (ret)
2574 goto failed;
2575 if (!buffer_mapped(bh))
2576 is_mapped_to_disk = 0;
2577 if (buffer_new(bh))
2578 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2579 if (PageUptodate(page)) {
2580 set_buffer_uptodate(bh);
2581 continue;
2583 if (buffer_new(bh) || !buffer_mapped(bh)) {
2584 zero_user_segments(page, block_start, from,
2585 to, block_end);
2586 continue;
2588 if (buffer_uptodate(bh))
2589 continue; /* reiserfs does this */
2590 if (block_start < from || block_end > to) {
2591 lock_buffer(bh);
2592 bh->b_end_io = end_buffer_read_nobh;
2593 submit_bh(READ, bh);
2594 nr_reads++;
2598 if (nr_reads) {
2600 * The page is locked, so these buffers are protected from
2601 * any VM or truncate activity. Hence we don't need to care
2602 * for the buffer_head refcounts.
2604 for (bh = head; bh; bh = bh->b_this_page) {
2605 wait_on_buffer(bh);
2606 if (!buffer_uptodate(bh))
2607 ret = -EIO;
2609 if (ret)
2610 goto failed;
2613 if (is_mapped_to_disk)
2614 SetPageMappedToDisk(page);
2616 *fsdata = head; /* to be released by nobh_write_end */
2618 return 0;
2620 failed:
2621 BUG_ON(!ret);
2623 * Error recovery is a bit difficult. We need to zero out blocks that
2624 * were newly allocated, and dirty them to ensure they get written out.
2625 * Buffers need to be attached to the page at this point, otherwise
2626 * the handling of potential IO errors during writeout would be hard
2627 * (could try doing synchronous writeout, but what if that fails too?)
2629 attach_nobh_buffers(page, head);
2630 page_zero_new_buffers(page, from, to);
2632 out_release:
2633 unlock_page(page);
2634 page_cache_release(page);
2635 *pagep = NULL;
2637 return ret;
2639 EXPORT_SYMBOL(nobh_write_begin);
2641 int nobh_write_end(struct file *file, struct address_space *mapping,
2642 loff_t pos, unsigned len, unsigned copied,
2643 struct page *page, void *fsdata)
2645 struct inode *inode = page->mapping->host;
2646 struct buffer_head *head = fsdata;
2647 struct buffer_head *bh;
2648 BUG_ON(fsdata != NULL && page_has_buffers(page));
2650 if (unlikely(copied < len) && head)
2651 attach_nobh_buffers(page, head);
2652 if (page_has_buffers(page))
2653 return generic_write_end(file, mapping, pos, len,
2654 copied, page, fsdata);
2656 SetPageUptodate(page);
2657 set_page_dirty(page);
2658 if (pos+copied > inode->i_size) {
2659 i_size_write(inode, pos+copied);
2660 mark_inode_dirty(inode);
2663 unlock_page(page);
2664 page_cache_release(page);
2666 while (head) {
2667 bh = head;
2668 head = head->b_this_page;
2669 free_buffer_head(bh);
2672 return copied;
2674 EXPORT_SYMBOL(nobh_write_end);
2677 * nobh_writepage() - based on block_full_write_page() except
2678 * that it tries to operate without attaching bufferheads to
2679 * the page.
2681 int nobh_writepage(struct page *page, get_block_t *get_block,
2682 struct writeback_control *wbc)
2684 struct inode * const inode = page->mapping->host;
2685 loff_t i_size = i_size_read(inode);
2686 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2687 unsigned offset;
2688 int ret;
2690 /* Is the page fully inside i_size? */
2691 if (page->index < end_index)
2692 goto out;
2694 /* Is the page fully outside i_size? (truncate in progress) */
2695 offset = i_size & (PAGE_CACHE_SIZE-1);
2696 if (page->index >= end_index+1 || !offset) {
2698 * The page may have dirty, unmapped buffers. For example,
2699 * they may have been added in ext3_writepage(). Make them
2700 * freeable here, so the page does not leak.
2702 #if 0
2703 /* Not really sure about this - do we need this ? */
2704 if (page->mapping->a_ops->invalidatepage)
2705 page->mapping->a_ops->invalidatepage(page, offset);
2706 #endif
2707 unlock_page(page);
2708 return 0; /* don't care */
2712 * The page straddles i_size. It must be zeroed out on each and every
2713 * writepage invocation because it may be mmapped. "A file is mapped
2714 * in multiples of the page size. For a file that is not a multiple of
2715 * the page size, the remaining memory is zeroed when mapped, and
2716 * writes to that region are not written out to the file."
2718 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2719 out:
2720 ret = mpage_writepage(page, get_block, wbc);
2721 if (ret == -EAGAIN)
2722 ret = __block_write_full_page(inode, page, get_block, wbc,
2723 end_buffer_async_write);
2724 return ret;
2726 EXPORT_SYMBOL(nobh_writepage);
2728 int nobh_truncate_page(struct address_space *mapping,
2729 loff_t from, get_block_t *get_block)
2731 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2732 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2733 unsigned blocksize;
2734 sector_t iblock;
2735 unsigned length, pos;
2736 struct inode *inode = mapping->host;
2737 struct page *page;
2738 struct buffer_head map_bh;
2739 int err;
2741 blocksize = 1 << inode->i_blkbits;
2742 length = offset & (blocksize - 1);
2744 /* Block boundary? Nothing to do */
2745 if (!length)
2746 return 0;
2748 length = blocksize - length;
2749 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2751 page = grab_cache_page(mapping, index);
2752 err = -ENOMEM;
2753 if (!page)
2754 goto out;
2756 if (page_has_buffers(page)) {
2757 has_buffers:
2758 unlock_page(page);
2759 page_cache_release(page);
2760 return block_truncate_page(mapping, from, get_block);
2763 /* Find the buffer that contains "offset" */
2764 pos = blocksize;
2765 while (offset >= pos) {
2766 iblock++;
2767 pos += blocksize;
2770 map_bh.b_size = blocksize;
2771 map_bh.b_state = 0;
2772 err = get_block(inode, iblock, &map_bh, 0);
2773 if (err)
2774 goto unlock;
2775 /* unmapped? It's a hole - nothing to do */
2776 if (!buffer_mapped(&map_bh))
2777 goto unlock;
2779 /* Ok, it's mapped. Make sure it's up-to-date */
2780 if (!PageUptodate(page)) {
2781 err = mapping->a_ops->readpage(NULL, page);
2782 if (err) {
2783 page_cache_release(page);
2784 goto out;
2786 lock_page(page);
2787 if (!PageUptodate(page)) {
2788 err = -EIO;
2789 goto unlock;
2791 if (page_has_buffers(page))
2792 goto has_buffers;
2794 zero_user(page, offset, length);
2795 set_page_dirty(page);
2796 err = 0;
2798 unlock:
2799 unlock_page(page);
2800 page_cache_release(page);
2801 out:
2802 return err;
2804 EXPORT_SYMBOL(nobh_truncate_page);
2806 int block_truncate_page(struct address_space *mapping,
2807 loff_t from, get_block_t *get_block)
2809 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2810 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2811 unsigned blocksize;
2812 sector_t iblock;
2813 unsigned length, pos;
2814 struct inode *inode = mapping->host;
2815 struct page *page;
2816 struct buffer_head *bh;
2817 int err;
2819 blocksize = 1 << inode->i_blkbits;
2820 length = offset & (blocksize - 1);
2822 /* Block boundary? Nothing to do */
2823 if (!length)
2824 return 0;
2826 length = blocksize - length;
2827 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2829 page = grab_cache_page(mapping, index);
2830 err = -ENOMEM;
2831 if (!page)
2832 goto out;
2834 if (!page_has_buffers(page))
2835 create_empty_buffers(page, blocksize, 0);
2837 /* Find the buffer that contains "offset" */
2838 bh = page_buffers(page);
2839 pos = blocksize;
2840 while (offset >= pos) {
2841 bh = bh->b_this_page;
2842 iblock++;
2843 pos += blocksize;
2846 err = 0;
2847 if (!buffer_mapped(bh)) {
2848 WARN_ON(bh->b_size != blocksize);
2849 err = get_block(inode, iblock, bh, 0);
2850 if (err)
2851 goto unlock;
2852 /* unmapped? It's a hole - nothing to do */
2853 if (!buffer_mapped(bh))
2854 goto unlock;
2857 /* Ok, it's mapped. Make sure it's up-to-date */
2858 if (PageUptodate(page))
2859 set_buffer_uptodate(bh);
2861 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2862 err = -EIO;
2863 ll_rw_block(READ, 1, &bh);
2864 wait_on_buffer(bh);
2865 /* Uhhuh. Read error. Complain and punt. */
2866 if (!buffer_uptodate(bh))
2867 goto unlock;
2870 zero_user(page, offset, length);
2871 mark_buffer_dirty(bh);
2872 err = 0;
2874 unlock:
2875 unlock_page(page);
2876 page_cache_release(page);
2877 out:
2878 return err;
2880 EXPORT_SYMBOL(block_truncate_page);
2883 * The generic ->writepage function for buffer-backed address_spaces
2885 int block_write_full_page(struct page *page, get_block_t *get_block,
2886 struct writeback_control *wbc)
2888 struct inode * const inode = page->mapping->host;
2889 loff_t i_size = i_size_read(inode);
2890 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2891 unsigned offset;
2893 /* Is the page fully inside i_size? */
2894 if (page->index < end_index)
2895 return __block_write_full_page(inode, page, get_block, wbc,
2896 end_buffer_async_write);
2898 /* Is the page fully outside i_size? (truncate in progress) */
2899 offset = i_size & (PAGE_CACHE_SIZE-1);
2900 if (page->index >= end_index+1 || !offset) {
2902 * The page may have dirty, unmapped buffers. For example,
2903 * they may have been added in ext3_writepage(). Make them
2904 * freeable here, so the page does not leak.
2906 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2907 unlock_page(page);
2908 return 0; /* don't care */
2912 * The page straddles i_size. It must be zeroed out on each and every
2913 * writepage invocation because it may be mmapped. "A file is mapped
2914 * in multiples of the page size. For a file that is not a multiple of
2915 * the page size, the remaining memory is zeroed when mapped, and
2916 * writes to that region are not written out to the file."
2918 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2919 return __block_write_full_page(inode, page, get_block, wbc,
2920 end_buffer_async_write);
2922 EXPORT_SYMBOL(block_write_full_page);
2924 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2925 get_block_t *get_block)
2927 struct buffer_head tmp;
2928 struct inode *inode = mapping->host;
2929 tmp.b_state = 0;
2930 tmp.b_blocknr = 0;
2931 tmp.b_size = 1 << inode->i_blkbits;
2932 get_block(inode, block, &tmp, 0);
2933 return tmp.b_blocknr;
2935 EXPORT_SYMBOL(generic_block_bmap);
2937 static void end_bio_bh_io_sync(struct bio *bio, int err)
2939 struct buffer_head *bh = bio->bi_private;
2941 if (err == -EOPNOTSUPP) {
2942 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2945 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2946 set_bit(BH_Quiet, &bh->b_state);
2948 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2949 bio_put(bio);
2953 * This allows us to do IO even on the odd last sectors
2954 * of a device, even if the block size is some multiple
2955 * of the physical sector size.
2957 * We'll just truncate the bio to the size of the device,
2958 * and clear the end of the buffer head manually.
2960 * Truly out-of-range accesses will turn into actual IO
2961 * errors, this only handles the "we need to be able to
2962 * do IO at the final sector" case.
2964 void guard_bio_eod(int rw, struct bio *bio)
2966 sector_t maxsector;
2967 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2968 unsigned truncated_bytes;
2970 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2971 if (!maxsector)
2972 return;
2975 * If the *whole* IO is past the end of the device,
2976 * let it through, and the IO layer will turn it into
2977 * an EIO.
2979 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2980 return;
2982 maxsector -= bio->bi_iter.bi_sector;
2983 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2984 return;
2986 /* Uhhuh. We've got a bio that straddles the device size! */
2987 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2989 /* Truncate the bio.. */
2990 bio->bi_iter.bi_size -= truncated_bytes;
2991 bvec->bv_len -= truncated_bytes;
2993 /* ..and clear the end of the buffer for reads */
2994 if ((rw & RW_MASK) == READ) {
2995 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2996 truncated_bytes);
3000 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3002 struct bio *bio;
3003 int ret = 0;
3005 BUG_ON(!buffer_locked(bh));
3006 BUG_ON(!buffer_mapped(bh));
3007 BUG_ON(!bh->b_end_io);
3008 BUG_ON(buffer_delay(bh));
3009 BUG_ON(buffer_unwritten(bh));
3012 * Only clear out a write error when rewriting
3014 if (test_set_buffer_req(bh) && (rw & WRITE))
3015 clear_buffer_write_io_error(bh);
3018 * from here on down, it's all bio -- do the initial mapping,
3019 * submit_bio -> generic_make_request may further map this bio around
3021 bio = bio_alloc(GFP_NOIO, 1);
3023 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3024 bio->bi_bdev = bh->b_bdev;
3025 bio->bi_io_vec[0].bv_page = bh->b_page;
3026 bio->bi_io_vec[0].bv_len = bh->b_size;
3027 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3029 bio->bi_vcnt = 1;
3030 bio->bi_iter.bi_size = bh->b_size;
3032 bio->bi_end_io = end_bio_bh_io_sync;
3033 bio->bi_private = bh;
3034 bio->bi_flags |= bio_flags;
3036 /* Take care of bh's that straddle the end of the device */
3037 guard_bio_eod(rw, bio);
3039 if (buffer_meta(bh))
3040 rw |= REQ_META;
3041 if (buffer_prio(bh))
3042 rw |= REQ_PRIO;
3044 bio_get(bio);
3045 submit_bio(rw, bio);
3047 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3048 ret = -EOPNOTSUPP;
3050 bio_put(bio);
3051 return ret;
3053 EXPORT_SYMBOL_GPL(_submit_bh);
3055 int submit_bh(int rw, struct buffer_head *bh)
3057 return _submit_bh(rw, bh, 0);
3059 EXPORT_SYMBOL(submit_bh);
3062 * ll_rw_block: low-level access to block devices (DEPRECATED)
3063 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3064 * @nr: number of &struct buffer_heads in the array
3065 * @bhs: array of pointers to &struct buffer_head
3067 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3068 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3069 * %READA option is described in the documentation for generic_make_request()
3070 * which ll_rw_block() calls.
3072 * This function drops any buffer that it cannot get a lock on (with the
3073 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3074 * request, and any buffer that appears to be up-to-date when doing read
3075 * request. Further it marks as clean buffers that are processed for
3076 * writing (the buffer cache won't assume that they are actually clean
3077 * until the buffer gets unlocked).
3079 * ll_rw_block sets b_end_io to simple completion handler that marks
3080 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3081 * any waiters.
3083 * All of the buffers must be for the same device, and must also be a
3084 * multiple of the current approved size for the device.
3086 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3088 int i;
3090 for (i = 0; i < nr; i++) {
3091 struct buffer_head *bh = bhs[i];
3093 if (!trylock_buffer(bh))
3094 continue;
3095 if (rw == WRITE) {
3096 if (test_clear_buffer_dirty(bh)) {
3097 bh->b_end_io = end_buffer_write_sync;
3098 get_bh(bh);
3099 submit_bh(WRITE, bh);
3100 continue;
3102 } else {
3103 if (!buffer_uptodate(bh)) {
3104 bh->b_end_io = end_buffer_read_sync;
3105 get_bh(bh);
3106 submit_bh(rw, bh);
3107 continue;
3110 unlock_buffer(bh);
3113 EXPORT_SYMBOL(ll_rw_block);
3115 void write_dirty_buffer(struct buffer_head *bh, int rw)
3117 lock_buffer(bh);
3118 if (!test_clear_buffer_dirty(bh)) {
3119 unlock_buffer(bh);
3120 return;
3122 bh->b_end_io = end_buffer_write_sync;
3123 get_bh(bh);
3124 submit_bh(rw, bh);
3126 EXPORT_SYMBOL(write_dirty_buffer);
3129 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3130 * and then start new I/O and then wait upon it. The caller must have a ref on
3131 * the buffer_head.
3133 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3135 int ret = 0;
3137 WARN_ON(atomic_read(&bh->b_count) < 1);
3138 lock_buffer(bh);
3139 if (test_clear_buffer_dirty(bh)) {
3140 get_bh(bh);
3141 bh->b_end_io = end_buffer_write_sync;
3142 ret = submit_bh(rw, bh);
3143 wait_on_buffer(bh);
3144 if (!ret && !buffer_uptodate(bh))
3145 ret = -EIO;
3146 } else {
3147 unlock_buffer(bh);
3149 return ret;
3151 EXPORT_SYMBOL(__sync_dirty_buffer);
3153 int sync_dirty_buffer(struct buffer_head *bh)
3155 return __sync_dirty_buffer(bh, WRITE_SYNC);
3157 EXPORT_SYMBOL(sync_dirty_buffer);
3160 * try_to_free_buffers() checks if all the buffers on this particular page
3161 * are unused, and releases them if so.
3163 * Exclusion against try_to_free_buffers may be obtained by either
3164 * locking the page or by holding its mapping's private_lock.
3166 * If the page is dirty but all the buffers are clean then we need to
3167 * be sure to mark the page clean as well. This is because the page
3168 * may be against a block device, and a later reattachment of buffers
3169 * to a dirty page will set *all* buffers dirty. Which would corrupt
3170 * filesystem data on the same device.
3172 * The same applies to regular filesystem pages: if all the buffers are
3173 * clean then we set the page clean and proceed. To do that, we require
3174 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3175 * private_lock.
3177 * try_to_free_buffers() is non-blocking.
3179 static inline int buffer_busy(struct buffer_head *bh)
3181 return atomic_read(&bh->b_count) |
3182 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3185 static int
3186 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3188 struct buffer_head *head = page_buffers(page);
3189 struct buffer_head *bh;
3191 bh = head;
3192 do {
3193 if (buffer_write_io_error(bh) && page->mapping)
3194 set_bit(AS_EIO, &page->mapping->flags);
3195 if (buffer_busy(bh))
3196 goto failed;
3197 bh = bh->b_this_page;
3198 } while (bh != head);
3200 do {
3201 struct buffer_head *next = bh->b_this_page;
3203 if (bh->b_assoc_map)
3204 __remove_assoc_queue(bh);
3205 bh = next;
3206 } while (bh != head);
3207 *buffers_to_free = head;
3208 __clear_page_buffers(page);
3209 return 1;
3210 failed:
3211 return 0;
3214 int try_to_free_buffers(struct page *page)
3216 struct address_space * const mapping = page->mapping;
3217 struct buffer_head *buffers_to_free = NULL;
3218 int ret = 0;
3220 BUG_ON(!PageLocked(page));
3221 if (PageWriteback(page))
3222 return 0;
3224 if (mapping == NULL) { /* can this still happen? */
3225 ret = drop_buffers(page, &buffers_to_free);
3226 goto out;
3229 spin_lock(&mapping->private_lock);
3230 ret = drop_buffers(page, &buffers_to_free);
3233 * If the filesystem writes its buffers by hand (eg ext3)
3234 * then we can have clean buffers against a dirty page. We
3235 * clean the page here; otherwise the VM will never notice
3236 * that the filesystem did any IO at all.
3238 * Also, during truncate, discard_buffer will have marked all
3239 * the page's buffers clean. We discover that here and clean
3240 * the page also.
3242 * private_lock must be held over this entire operation in order
3243 * to synchronise against __set_page_dirty_buffers and prevent the
3244 * dirty bit from being lost.
3246 if (ret && TestClearPageDirty(page))
3247 account_page_cleaned(page, mapping);
3248 spin_unlock(&mapping->private_lock);
3249 out:
3250 if (buffers_to_free) {
3251 struct buffer_head *bh = buffers_to_free;
3253 do {
3254 struct buffer_head *next = bh->b_this_page;
3255 free_buffer_head(bh);
3256 bh = next;
3257 } while (bh != buffers_to_free);
3259 return ret;
3261 EXPORT_SYMBOL(try_to_free_buffers);
3264 * There are no bdflush tunables left. But distributions are
3265 * still running obsolete flush daemons, so we terminate them here.
3267 * Use of bdflush() is deprecated and will be removed in a future kernel.
3268 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3270 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3272 static int msg_count;
3274 if (!capable(CAP_SYS_ADMIN))
3275 return -EPERM;
3277 if (msg_count < 5) {
3278 msg_count++;
3279 printk(KERN_INFO
3280 "warning: process `%s' used the obsolete bdflush"
3281 " system call\n", current->comm);
3282 printk(KERN_INFO "Fix your initscripts?\n");
3285 if (func == 1)
3286 do_exit(0);
3287 return 0;
3291 * Buffer-head allocation
3293 static struct kmem_cache *bh_cachep __read_mostly;
3296 * Once the number of bh's in the machine exceeds this level, we start
3297 * stripping them in writeback.
3299 static unsigned long max_buffer_heads;
3301 int buffer_heads_over_limit;
3303 struct bh_accounting {
3304 int nr; /* Number of live bh's */
3305 int ratelimit; /* Limit cacheline bouncing */
3308 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3310 static void recalc_bh_state(void)
3312 int i;
3313 int tot = 0;
3315 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3316 return;
3317 __this_cpu_write(bh_accounting.ratelimit, 0);
3318 for_each_online_cpu(i)
3319 tot += per_cpu(bh_accounting, i).nr;
3320 buffer_heads_over_limit = (tot > max_buffer_heads);
3323 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3325 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3326 if (ret) {
3327 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3328 preempt_disable();
3329 __this_cpu_inc(bh_accounting.nr);
3330 recalc_bh_state();
3331 preempt_enable();
3333 return ret;
3335 EXPORT_SYMBOL(alloc_buffer_head);
3337 void free_buffer_head(struct buffer_head *bh)
3339 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3340 kmem_cache_free(bh_cachep, bh);
3341 preempt_disable();
3342 __this_cpu_dec(bh_accounting.nr);
3343 recalc_bh_state();
3344 preempt_enable();
3346 EXPORT_SYMBOL(free_buffer_head);
3348 static void buffer_exit_cpu(int cpu)
3350 int i;
3351 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3353 for (i = 0; i < BH_LRU_SIZE; i++) {
3354 brelse(b->bhs[i]);
3355 b->bhs[i] = NULL;
3357 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3358 per_cpu(bh_accounting, cpu).nr = 0;
3361 static int buffer_cpu_notify(struct notifier_block *self,
3362 unsigned long action, void *hcpu)
3364 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3365 buffer_exit_cpu((unsigned long)hcpu);
3366 return NOTIFY_OK;
3370 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3371 * @bh: struct buffer_head
3373 * Return true if the buffer is up-to-date and false,
3374 * with the buffer locked, if not.
3376 int bh_uptodate_or_lock(struct buffer_head *bh)
3378 if (!buffer_uptodate(bh)) {
3379 lock_buffer(bh);
3380 if (!buffer_uptodate(bh))
3381 return 0;
3382 unlock_buffer(bh);
3384 return 1;
3386 EXPORT_SYMBOL(bh_uptodate_or_lock);
3389 * bh_submit_read - Submit a locked buffer for reading
3390 * @bh: struct buffer_head
3392 * Returns zero on success and -EIO on error.
3394 int bh_submit_read(struct buffer_head *bh)
3396 BUG_ON(!buffer_locked(bh));
3398 if (buffer_uptodate(bh)) {
3399 unlock_buffer(bh);
3400 return 0;
3403 get_bh(bh);
3404 bh->b_end_io = end_buffer_read_sync;
3405 submit_bh(READ, bh);
3406 wait_on_buffer(bh);
3407 if (buffer_uptodate(bh))
3408 return 0;
3409 return -EIO;
3411 EXPORT_SYMBOL(bh_submit_read);
3413 void __init buffer_init(void)
3415 unsigned long nrpages;
3417 bh_cachep = kmem_cache_create("buffer_head",
3418 sizeof(struct buffer_head), 0,
3419 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3420 SLAB_MEM_SPREAD),
3421 NULL);
3424 * Limit the bh occupancy to 10% of ZONE_NORMAL
3426 nrpages = (nr_free_buffer_pages() * 10) / 100;
3427 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3428 hotcpu_notifier(buffer_cpu_notify, 0);