2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
54 struct btrfs_iget_args
{
56 struct btrfs_root
*root
;
59 static struct inode_operations btrfs_dir_inode_operations
;
60 static struct inode_operations btrfs_symlink_inode_operations
;
61 static struct inode_operations btrfs_dir_ro_inode_operations
;
62 static struct inode_operations btrfs_special_inode_operations
;
63 static struct inode_operations btrfs_file_inode_operations
;
64 static struct address_space_operations btrfs_aops
;
65 static struct address_space_operations btrfs_symlink_aops
;
66 static struct file_operations btrfs_dir_file_operations
;
67 static struct extent_io_ops btrfs_extent_io_ops
;
69 static struct kmem_cache
*btrfs_inode_cachep
;
70 struct kmem_cache
*btrfs_trans_handle_cachep
;
71 struct kmem_cache
*btrfs_transaction_cachep
;
72 struct kmem_cache
*btrfs_path_cachep
;
75 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
76 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
77 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
78 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
79 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
80 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
81 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
82 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
85 static void btrfs_truncate(struct inode
*inode
);
86 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
87 static noinline
int cow_file_range(struct inode
*inode
,
88 struct page
*locked_page
,
89 u64 start
, u64 end
, int *page_started
,
90 unsigned long *nr_written
, int unlock
);
92 static int btrfs_init_inode_security(struct inode
*inode
, struct inode
*dir
)
96 err
= btrfs_init_acl(inode
, dir
);
98 err
= btrfs_xattr_security_init(inode
, dir
);
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
107 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
108 struct btrfs_root
*root
, struct inode
*inode
,
109 u64 start
, size_t size
, size_t compressed_size
,
110 struct page
**compressed_pages
)
112 struct btrfs_key key
;
113 struct btrfs_path
*path
;
114 struct extent_buffer
*leaf
;
115 struct page
*page
= NULL
;
118 struct btrfs_file_extent_item
*ei
;
121 size_t cur_size
= size
;
123 unsigned long offset
;
124 int use_compress
= 0;
126 if (compressed_size
&& compressed_pages
) {
128 cur_size
= compressed_size
;
131 path
= btrfs_alloc_path();
135 path
->leave_spinning
= 1;
136 btrfs_set_trans_block_group(trans
, inode
);
138 key
.objectid
= inode
->i_ino
;
140 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
141 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
143 inode_add_bytes(inode
, size
);
144 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
151 leaf
= path
->nodes
[0];
152 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
153 struct btrfs_file_extent_item
);
154 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
155 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
156 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
157 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
158 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
159 ptr
= btrfs_file_extent_inline_start(ei
);
164 while (compressed_size
> 0) {
165 cpage
= compressed_pages
[i
];
166 cur_size
= min_t(unsigned long, compressed_size
,
169 kaddr
= kmap_atomic(cpage
, KM_USER0
);
170 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
171 kunmap_atomic(kaddr
, KM_USER0
);
175 compressed_size
-= cur_size
;
177 btrfs_set_file_extent_compression(leaf
, ei
,
178 BTRFS_COMPRESS_ZLIB
);
180 page
= find_get_page(inode
->i_mapping
,
181 start
>> PAGE_CACHE_SHIFT
);
182 btrfs_set_file_extent_compression(leaf
, ei
, 0);
183 kaddr
= kmap_atomic(page
, KM_USER0
);
184 offset
= start
& (PAGE_CACHE_SIZE
- 1);
185 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
186 kunmap_atomic(kaddr
, KM_USER0
);
187 page_cache_release(page
);
189 btrfs_mark_buffer_dirty(leaf
);
190 btrfs_free_path(path
);
192 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
193 btrfs_update_inode(trans
, root
, inode
);
196 btrfs_free_path(path
);
202 * conditionally insert an inline extent into the file. This
203 * does the checks required to make sure the data is small enough
204 * to fit as an inline extent.
206 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
207 struct btrfs_root
*root
,
208 struct inode
*inode
, u64 start
, u64 end
,
209 size_t compressed_size
,
210 struct page
**compressed_pages
)
212 u64 isize
= i_size_read(inode
);
213 u64 actual_end
= min(end
+ 1, isize
);
214 u64 inline_len
= actual_end
- start
;
215 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
216 ~((u64
)root
->sectorsize
- 1);
218 u64 data_len
= inline_len
;
222 data_len
= compressed_size
;
225 actual_end
>= PAGE_CACHE_SIZE
||
226 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
228 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
230 data_len
> root
->fs_info
->max_inline
) {
234 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
235 aligned_end
, aligned_end
, start
, &hint_byte
);
238 if (isize
> actual_end
)
239 inline_len
= min_t(u64
, isize
, actual_end
);
240 ret
= insert_inline_extent(trans
, root
, inode
, start
,
241 inline_len
, compressed_size
,
244 btrfs_drop_extent_cache(inode
, start
, aligned_end
, 0);
248 struct async_extent
{
253 unsigned long nr_pages
;
254 struct list_head list
;
259 struct btrfs_root
*root
;
260 struct page
*locked_page
;
263 struct list_head extents
;
264 struct btrfs_work work
;
267 static noinline
int add_async_extent(struct async_cow
*cow
,
268 u64 start
, u64 ram_size
,
271 unsigned long nr_pages
)
273 struct async_extent
*async_extent
;
275 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
276 async_extent
->start
= start
;
277 async_extent
->ram_size
= ram_size
;
278 async_extent
->compressed_size
= compressed_size
;
279 async_extent
->pages
= pages
;
280 async_extent
->nr_pages
= nr_pages
;
281 list_add_tail(&async_extent
->list
, &cow
->extents
);
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
301 static noinline
int compress_file_range(struct inode
*inode
,
302 struct page
*locked_page
,
304 struct async_cow
*async_cow
,
307 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
308 struct btrfs_trans_handle
*trans
;
312 u64 blocksize
= root
->sectorsize
;
314 u64 isize
= i_size_read(inode
);
316 struct page
**pages
= NULL
;
317 unsigned long nr_pages
;
318 unsigned long nr_pages_ret
= 0;
319 unsigned long total_compressed
= 0;
320 unsigned long total_in
= 0;
321 unsigned long max_compressed
= 128 * 1024;
322 unsigned long max_uncompressed
= 128 * 1024;
328 actual_end
= min_t(u64
, isize
, end
+ 1);
331 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
332 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
344 if (actual_end
<= start
)
345 goto cleanup_and_bail_uncompressed
;
347 total_compressed
= actual_end
- start
;
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
359 total_compressed
= min(total_compressed
, max_uncompressed
);
360 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
361 num_bytes
= max(blocksize
, num_bytes
);
362 disk_num_bytes
= num_bytes
;
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
371 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
372 btrfs_test_opt(root
, COMPRESS
)) {
374 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
376 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
377 total_compressed
, pages
,
378 nr_pages
, &nr_pages_ret
,
384 unsigned long offset
= total_compressed
&
385 (PAGE_CACHE_SIZE
- 1);
386 struct page
*page
= pages
[nr_pages_ret
- 1];
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
393 kaddr
= kmap_atomic(page
, KM_USER0
);
394 memset(kaddr
+ offset
, 0,
395 PAGE_CACHE_SIZE
- offset
);
396 kunmap_atomic(kaddr
, KM_USER0
);
402 trans
= btrfs_join_transaction(root
, 1);
404 btrfs_set_trans_block_group(trans
, inode
);
406 /* lets try to make an inline extent */
407 if (ret
|| total_in
< (actual_end
- start
)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
411 ret
= cow_file_range_inline(trans
, root
, inode
,
412 start
, end
, 0, NULL
);
414 /* try making a compressed inline extent */
415 ret
= cow_file_range_inline(trans
, root
, inode
,
417 total_compressed
, pages
);
419 btrfs_end_transaction(trans
, root
);
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
426 extent_clear_unlock_delalloc(inode
,
427 &BTRFS_I(inode
)->io_tree
,
428 start
, end
, NULL
, 1, 0,
437 * we aren't doing an inline extent round the compressed size
438 * up to a block size boundary so the allocator does sane
441 total_compressed
= (total_compressed
+ blocksize
- 1) &
445 * one last check to make sure the compression is really a
446 * win, compare the page count read with the blocks on disk
448 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
449 ~(PAGE_CACHE_SIZE
- 1);
450 if (total_compressed
>= total_in
) {
453 disk_num_bytes
= total_compressed
;
454 num_bytes
= total_in
;
457 if (!will_compress
&& pages
) {
459 * the compression code ran but failed to make things smaller,
460 * free any pages it allocated and our page pointer array
462 for (i
= 0; i
< nr_pages_ret
; i
++) {
463 WARN_ON(pages
[i
]->mapping
);
464 page_cache_release(pages
[i
]);
468 total_compressed
= 0;
471 /* flag the file so we don't compress in the future */
472 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
477 /* the async work queues will take care of doing actual
478 * allocation on disk for these compressed pages,
479 * and will submit them to the elevator.
481 add_async_extent(async_cow
, start
, num_bytes
,
482 total_compressed
, pages
, nr_pages_ret
);
484 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
491 cleanup_and_bail_uncompressed
:
493 * No compression, but we still need to write the pages in
494 * the file we've been given so far. redirty the locked
495 * page if it corresponds to our extent and set things up
496 * for the async work queue to run cow_file_range to do
497 * the normal delalloc dance
499 if (page_offset(locked_page
) >= start
&&
500 page_offset(locked_page
) <= end
) {
501 __set_page_dirty_nobuffers(locked_page
);
502 /* unlocked later on in the async handlers */
504 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
512 for (i
= 0; i
< nr_pages_ret
; i
++) {
513 WARN_ON(pages
[i
]->mapping
);
514 page_cache_release(pages
[i
]);
522 * phase two of compressed writeback. This is the ordered portion
523 * of the code, which only gets called in the order the work was
524 * queued. We walk all the async extents created by compress_file_range
525 * and send them down to the disk.
527 static noinline
int submit_compressed_extents(struct inode
*inode
,
528 struct async_cow
*async_cow
)
530 struct async_extent
*async_extent
;
532 struct btrfs_trans_handle
*trans
;
533 struct btrfs_key ins
;
534 struct extent_map
*em
;
535 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
536 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
537 struct extent_io_tree
*io_tree
;
540 if (list_empty(&async_cow
->extents
))
543 trans
= btrfs_join_transaction(root
, 1);
545 while (!list_empty(&async_cow
->extents
)) {
546 async_extent
= list_entry(async_cow
->extents
.next
,
547 struct async_extent
, list
);
548 list_del(&async_extent
->list
);
550 io_tree
= &BTRFS_I(inode
)->io_tree
;
552 /* did the compression code fall back to uncompressed IO? */
553 if (!async_extent
->pages
) {
554 int page_started
= 0;
555 unsigned long nr_written
= 0;
557 lock_extent(io_tree
, async_extent
->start
,
558 async_extent
->start
+
559 async_extent
->ram_size
- 1, GFP_NOFS
);
561 /* allocate blocks */
562 cow_file_range(inode
, async_cow
->locked_page
,
564 async_extent
->start
+
565 async_extent
->ram_size
- 1,
566 &page_started
, &nr_written
, 0);
569 * if page_started, cow_file_range inserted an
570 * inline extent and took care of all the unlocking
571 * and IO for us. Otherwise, we need to submit
572 * all those pages down to the drive.
575 extent_write_locked_range(io_tree
,
576 inode
, async_extent
->start
,
577 async_extent
->start
+
578 async_extent
->ram_size
- 1,
586 lock_extent(io_tree
, async_extent
->start
,
587 async_extent
->start
+ async_extent
->ram_size
- 1,
590 * here we're doing allocation and writeback of the
593 btrfs_drop_extent_cache(inode
, async_extent
->start
,
594 async_extent
->start
+
595 async_extent
->ram_size
- 1, 0);
597 ret
= btrfs_reserve_extent(trans
, root
,
598 async_extent
->compressed_size
,
599 async_extent
->compressed_size
,
603 em
= alloc_extent_map(GFP_NOFS
);
604 em
->start
= async_extent
->start
;
605 em
->len
= async_extent
->ram_size
;
606 em
->orig_start
= em
->start
;
608 em
->block_start
= ins
.objectid
;
609 em
->block_len
= ins
.offset
;
610 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
611 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
612 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
615 spin_lock(&em_tree
->lock
);
616 ret
= add_extent_mapping(em_tree
, em
);
617 spin_unlock(&em_tree
->lock
);
618 if (ret
!= -EEXIST
) {
622 btrfs_drop_extent_cache(inode
, async_extent
->start
,
623 async_extent
->start
+
624 async_extent
->ram_size
- 1, 0);
627 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
629 async_extent
->ram_size
,
631 BTRFS_ORDERED_COMPRESSED
);
634 btrfs_end_transaction(trans
, root
);
637 * clear dirty, set writeback and unlock the pages.
639 extent_clear_unlock_delalloc(inode
,
640 &BTRFS_I(inode
)->io_tree
,
642 async_extent
->start
+
643 async_extent
->ram_size
- 1,
644 NULL
, 1, 1, 0, 1, 1, 0);
646 ret
= btrfs_submit_compressed_write(inode
,
648 async_extent
->ram_size
,
650 ins
.offset
, async_extent
->pages
,
651 async_extent
->nr_pages
);
654 trans
= btrfs_join_transaction(root
, 1);
655 alloc_hint
= ins
.objectid
+ ins
.offset
;
660 btrfs_end_transaction(trans
, root
);
665 * when extent_io.c finds a delayed allocation range in the file,
666 * the call backs end up in this code. The basic idea is to
667 * allocate extents on disk for the range, and create ordered data structs
668 * in ram to track those extents.
670 * locked_page is the page that writepage had locked already. We use
671 * it to make sure we don't do extra locks or unlocks.
673 * *page_started is set to one if we unlock locked_page and do everything
674 * required to start IO on it. It may be clean and already done with
677 static noinline
int cow_file_range(struct inode
*inode
,
678 struct page
*locked_page
,
679 u64 start
, u64 end
, int *page_started
,
680 unsigned long *nr_written
,
683 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
684 struct btrfs_trans_handle
*trans
;
687 unsigned long ram_size
;
690 u64 blocksize
= root
->sectorsize
;
692 u64 isize
= i_size_read(inode
);
693 struct btrfs_key ins
;
694 struct extent_map
*em
;
695 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
698 trans
= btrfs_join_transaction(root
, 1);
700 btrfs_set_trans_block_group(trans
, inode
);
702 actual_end
= min_t(u64
, isize
, end
+ 1);
704 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
705 num_bytes
= max(blocksize
, num_bytes
);
706 disk_num_bytes
= num_bytes
;
710 /* lets try to make an inline extent */
711 ret
= cow_file_range_inline(trans
, root
, inode
,
712 start
, end
, 0, NULL
);
714 extent_clear_unlock_delalloc(inode
,
715 &BTRFS_I(inode
)->io_tree
,
716 start
, end
, NULL
, 1, 1,
718 *nr_written
= *nr_written
+
719 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
726 BUG_ON(disk_num_bytes
>
727 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
729 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
731 while (disk_num_bytes
> 0) {
732 cur_alloc_size
= min(disk_num_bytes
, root
->fs_info
->max_extent
);
733 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
734 root
->sectorsize
, 0, alloc_hint
,
738 em
= alloc_extent_map(GFP_NOFS
);
740 em
->orig_start
= em
->start
;
742 ram_size
= ins
.offset
;
743 em
->len
= ins
.offset
;
745 em
->block_start
= ins
.objectid
;
746 em
->block_len
= ins
.offset
;
747 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
748 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
751 spin_lock(&em_tree
->lock
);
752 ret
= add_extent_mapping(em_tree
, em
);
753 spin_unlock(&em_tree
->lock
);
754 if (ret
!= -EEXIST
) {
758 btrfs_drop_extent_cache(inode
, start
,
759 start
+ ram_size
- 1, 0);
762 cur_alloc_size
= ins
.offset
;
763 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
764 ram_size
, cur_alloc_size
, 0);
767 if (root
->root_key
.objectid
==
768 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
769 ret
= btrfs_reloc_clone_csums(inode
, start
,
774 if (disk_num_bytes
< cur_alloc_size
)
777 /* we're not doing compressed IO, don't unlock the first
778 * page (which the caller expects to stay locked), don't
779 * clear any dirty bits and don't set any writeback bits
781 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
782 start
, start
+ ram_size
- 1,
783 locked_page
, unlock
, 1,
785 disk_num_bytes
-= cur_alloc_size
;
786 num_bytes
-= cur_alloc_size
;
787 alloc_hint
= ins
.objectid
+ ins
.offset
;
788 start
+= cur_alloc_size
;
792 btrfs_end_transaction(trans
, root
);
798 * work queue call back to started compression on a file and pages
800 static noinline
void async_cow_start(struct btrfs_work
*work
)
802 struct async_cow
*async_cow
;
804 async_cow
= container_of(work
, struct async_cow
, work
);
806 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
807 async_cow
->start
, async_cow
->end
, async_cow
,
810 async_cow
->inode
= NULL
;
814 * work queue call back to submit previously compressed pages
816 static noinline
void async_cow_submit(struct btrfs_work
*work
)
818 struct async_cow
*async_cow
;
819 struct btrfs_root
*root
;
820 unsigned long nr_pages
;
822 async_cow
= container_of(work
, struct async_cow
, work
);
824 root
= async_cow
->root
;
825 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
828 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
830 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
832 waitqueue_active(&root
->fs_info
->async_submit_wait
))
833 wake_up(&root
->fs_info
->async_submit_wait
);
835 if (async_cow
->inode
)
836 submit_compressed_extents(async_cow
->inode
, async_cow
);
839 static noinline
void async_cow_free(struct btrfs_work
*work
)
841 struct async_cow
*async_cow
;
842 async_cow
= container_of(work
, struct async_cow
, work
);
846 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
847 u64 start
, u64 end
, int *page_started
,
848 unsigned long *nr_written
)
850 struct async_cow
*async_cow
;
851 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
852 unsigned long nr_pages
;
854 int limit
= 10 * 1024 * 1042;
856 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
|
857 EXTENT_DELALLOC
, 1, 0, GFP_NOFS
);
858 while (start
< end
) {
859 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
860 async_cow
->inode
= inode
;
861 async_cow
->root
= root
;
862 async_cow
->locked_page
= locked_page
;
863 async_cow
->start
= start
;
865 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
868 cur_end
= min(end
, start
+ 512 * 1024 - 1);
870 async_cow
->end
= cur_end
;
871 INIT_LIST_HEAD(&async_cow
->extents
);
873 async_cow
->work
.func
= async_cow_start
;
874 async_cow
->work
.ordered_func
= async_cow_submit
;
875 async_cow
->work
.ordered_free
= async_cow_free
;
876 async_cow
->work
.flags
= 0;
878 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
880 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
882 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
885 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
886 wait_event(root
->fs_info
->async_submit_wait
,
887 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
891 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
892 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
893 wait_event(root
->fs_info
->async_submit_wait
,
894 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
898 *nr_written
+= nr_pages
;
905 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
906 u64 bytenr
, u64 num_bytes
)
909 struct btrfs_ordered_sum
*sums
;
912 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
913 bytenr
+ num_bytes
- 1, &list
);
914 if (ret
== 0 && list_empty(&list
))
917 while (!list_empty(&list
)) {
918 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
919 list_del(&sums
->list
);
926 * when nowcow writeback call back. This checks for snapshots or COW copies
927 * of the extents that exist in the file, and COWs the file as required.
929 * If no cow copies or snapshots exist, we write directly to the existing
932 static noinline
int run_delalloc_nocow(struct inode
*inode
,
933 struct page
*locked_page
,
934 u64 start
, u64 end
, int *page_started
, int force
,
935 unsigned long *nr_written
)
937 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
938 struct btrfs_trans_handle
*trans
;
939 struct extent_buffer
*leaf
;
940 struct btrfs_path
*path
;
941 struct btrfs_file_extent_item
*fi
;
942 struct btrfs_key found_key
;
955 path
= btrfs_alloc_path();
957 trans
= btrfs_join_transaction(root
, 1);
963 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
966 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
967 leaf
= path
->nodes
[0];
968 btrfs_item_key_to_cpu(leaf
, &found_key
,
970 if (found_key
.objectid
== inode
->i_ino
&&
971 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
976 leaf
= path
->nodes
[0];
977 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
978 ret
= btrfs_next_leaf(root
, path
);
983 leaf
= path
->nodes
[0];
989 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
991 if (found_key
.objectid
> inode
->i_ino
||
992 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
993 found_key
.offset
> end
)
996 if (found_key
.offset
> cur_offset
) {
997 extent_end
= found_key
.offset
;
1001 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1002 struct btrfs_file_extent_item
);
1003 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1005 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1006 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1007 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1008 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1009 extent_end
= found_key
.offset
+
1010 btrfs_file_extent_num_bytes(leaf
, fi
);
1011 if (extent_end
<= start
) {
1015 if (disk_bytenr
== 0)
1017 if (btrfs_file_extent_compression(leaf
, fi
) ||
1018 btrfs_file_extent_encryption(leaf
, fi
) ||
1019 btrfs_file_extent_other_encoding(leaf
, fi
))
1021 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1023 if (btrfs_extent_readonly(root
, disk_bytenr
))
1025 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1027 extent_offset
, disk_bytenr
))
1029 disk_bytenr
+= extent_offset
;
1030 disk_bytenr
+= cur_offset
- found_key
.offset
;
1031 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1033 * force cow if csum exists in the range.
1034 * this ensure that csum for a given extent are
1035 * either valid or do not exist.
1037 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1040 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1041 extent_end
= found_key
.offset
+
1042 btrfs_file_extent_inline_len(leaf
, fi
);
1043 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1048 if (extent_end
<= start
) {
1053 if (cow_start
== (u64
)-1)
1054 cow_start
= cur_offset
;
1055 cur_offset
= extent_end
;
1056 if (cur_offset
> end
)
1062 btrfs_release_path(root
, path
);
1063 if (cow_start
!= (u64
)-1) {
1064 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1065 found_key
.offset
- 1, page_started
,
1068 cow_start
= (u64
)-1;
1071 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1072 struct extent_map
*em
;
1073 struct extent_map_tree
*em_tree
;
1074 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1075 em
= alloc_extent_map(GFP_NOFS
);
1076 em
->start
= cur_offset
;
1077 em
->orig_start
= em
->start
;
1078 em
->len
= num_bytes
;
1079 em
->block_len
= num_bytes
;
1080 em
->block_start
= disk_bytenr
;
1081 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1082 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1084 spin_lock(&em_tree
->lock
);
1085 ret
= add_extent_mapping(em_tree
, em
);
1086 spin_unlock(&em_tree
->lock
);
1087 if (ret
!= -EEXIST
) {
1088 free_extent_map(em
);
1091 btrfs_drop_extent_cache(inode
, em
->start
,
1092 em
->start
+ em
->len
- 1, 0);
1094 type
= BTRFS_ORDERED_PREALLOC
;
1096 type
= BTRFS_ORDERED_NOCOW
;
1099 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1100 num_bytes
, num_bytes
, type
);
1103 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1104 cur_offset
, cur_offset
+ num_bytes
- 1,
1105 locked_page
, 1, 1, 1, 0, 0, 0);
1106 cur_offset
= extent_end
;
1107 if (cur_offset
> end
)
1110 btrfs_release_path(root
, path
);
1112 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1113 cow_start
= cur_offset
;
1114 if (cow_start
!= (u64
)-1) {
1115 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1116 page_started
, nr_written
, 1);
1120 ret
= btrfs_end_transaction(trans
, root
);
1122 btrfs_free_path(path
);
1127 * extent_io.c call back to do delayed allocation processing
1129 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1130 u64 start
, u64 end
, int *page_started
,
1131 unsigned long *nr_written
)
1134 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1136 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1137 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1138 page_started
, 1, nr_written
);
1139 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1140 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1141 page_started
, 0, nr_written
);
1142 else if (!btrfs_test_opt(root
, COMPRESS
))
1143 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1144 page_started
, nr_written
, 1);
1146 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1147 page_started
, nr_written
);
1152 * extent_io.c set_bit_hook, used to track delayed allocation
1153 * bytes in this file, and to maintain the list of inodes that
1154 * have pending delalloc work to be done.
1156 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1157 unsigned long old
, unsigned long bits
)
1160 * set_bit and clear bit hooks normally require _irqsave/restore
1161 * but in this case, we are only testeing for the DELALLOC
1162 * bit, which is only set or cleared with irqs on
1164 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1165 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1166 btrfs_delalloc_reserve_space(root
, inode
, end
- start
+ 1);
1167 spin_lock(&root
->fs_info
->delalloc_lock
);
1168 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1169 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1170 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1171 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1172 &root
->fs_info
->delalloc_inodes
);
1174 spin_unlock(&root
->fs_info
->delalloc_lock
);
1180 * extent_io.c clear_bit_hook, see set_bit_hook for why
1182 static int btrfs_clear_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1183 unsigned long old
, unsigned long bits
)
1186 * set_bit and clear bit hooks normally require _irqsave/restore
1187 * but in this case, we are only testeing for the DELALLOC
1188 * bit, which is only set or cleared with irqs on
1190 if ((old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1191 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1193 spin_lock(&root
->fs_info
->delalloc_lock
);
1194 if (end
- start
+ 1 > root
->fs_info
->delalloc_bytes
) {
1195 printk(KERN_INFO
"btrfs warning: delalloc account "
1197 (unsigned long long)end
- start
+ 1,
1198 (unsigned long long)
1199 root
->fs_info
->delalloc_bytes
);
1200 btrfs_delalloc_free_space(root
, inode
, (u64
)-1);
1201 root
->fs_info
->delalloc_bytes
= 0;
1202 BTRFS_I(inode
)->delalloc_bytes
= 0;
1204 btrfs_delalloc_free_space(root
, inode
,
1206 root
->fs_info
->delalloc_bytes
-= end
- start
+ 1;
1207 BTRFS_I(inode
)->delalloc_bytes
-= end
- start
+ 1;
1209 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1210 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1211 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1213 spin_unlock(&root
->fs_info
->delalloc_lock
);
1219 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1220 * we don't create bios that span stripes or chunks
1222 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1223 size_t size
, struct bio
*bio
,
1224 unsigned long bio_flags
)
1226 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1227 struct btrfs_mapping_tree
*map_tree
;
1228 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1233 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1236 length
= bio
->bi_size
;
1237 map_tree
= &root
->fs_info
->mapping_tree
;
1238 map_length
= length
;
1239 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1240 &map_length
, NULL
, 0);
1242 if (map_length
< length
+ size
)
1248 * in order to insert checksums into the metadata in large chunks,
1249 * we wait until bio submission time. All the pages in the bio are
1250 * checksummed and sums are attached onto the ordered extent record.
1252 * At IO completion time the cums attached on the ordered extent record
1253 * are inserted into the btree
1255 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1256 struct bio
*bio
, int mirror_num
,
1257 unsigned long bio_flags
)
1259 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1262 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1268 * in order to insert checksums into the metadata in large chunks,
1269 * we wait until bio submission time. All the pages in the bio are
1270 * checksummed and sums are attached onto the ordered extent record.
1272 * At IO completion time the cums attached on the ordered extent record
1273 * are inserted into the btree
1275 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1276 int mirror_num
, unsigned long bio_flags
)
1278 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1279 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1283 * extent_io.c submission hook. This does the right thing for csum calculation
1284 * on write, or reading the csums from the tree before a read
1286 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1287 int mirror_num
, unsigned long bio_flags
)
1289 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1293 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1295 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1298 if (!(rw
& (1 << BIO_RW
))) {
1299 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1300 return btrfs_submit_compressed_read(inode
, bio
,
1301 mirror_num
, bio_flags
);
1302 } else if (!skip_sum
)
1303 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1305 } else if (!skip_sum
) {
1306 /* csum items have already been cloned */
1307 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1309 /* we're doing a write, do the async checksumming */
1310 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1311 inode
, rw
, bio
, mirror_num
,
1312 bio_flags
, __btrfs_submit_bio_start
,
1313 __btrfs_submit_bio_done
);
1317 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1321 * given a list of ordered sums record them in the inode. This happens
1322 * at IO completion time based on sums calculated at bio submission time.
1324 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1325 struct inode
*inode
, u64 file_offset
,
1326 struct list_head
*list
)
1328 struct btrfs_ordered_sum
*sum
;
1330 btrfs_set_trans_block_group(trans
, inode
);
1332 list_for_each_entry(sum
, list
, list
) {
1333 btrfs_csum_file_blocks(trans
,
1334 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1339 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
)
1341 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1343 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1347 /* see btrfs_writepage_start_hook for details on why this is required */
1348 struct btrfs_writepage_fixup
{
1350 struct btrfs_work work
;
1353 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1355 struct btrfs_writepage_fixup
*fixup
;
1356 struct btrfs_ordered_extent
*ordered
;
1358 struct inode
*inode
;
1362 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1366 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1367 ClearPageChecked(page
);
1371 inode
= page
->mapping
->host
;
1372 page_start
= page_offset(page
);
1373 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1375 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1377 /* already ordered? We're done */
1378 if (test_range_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1379 EXTENT_ORDERED
, 0)) {
1383 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1385 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
,
1386 page_end
, GFP_NOFS
);
1388 btrfs_start_ordered_extent(inode
, ordered
, 1);
1392 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
1393 ClearPageChecked(page
);
1395 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1398 page_cache_release(page
);
1402 * There are a few paths in the higher layers of the kernel that directly
1403 * set the page dirty bit without asking the filesystem if it is a
1404 * good idea. This causes problems because we want to make sure COW
1405 * properly happens and the data=ordered rules are followed.
1407 * In our case any range that doesn't have the ORDERED bit set
1408 * hasn't been properly setup for IO. We kick off an async process
1409 * to fix it up. The async helper will wait for ordered extents, set
1410 * the delalloc bit and make it safe to write the page.
1412 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1414 struct inode
*inode
= page
->mapping
->host
;
1415 struct btrfs_writepage_fixup
*fixup
;
1416 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1419 ret
= test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1424 if (PageChecked(page
))
1427 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1431 SetPageChecked(page
);
1432 page_cache_get(page
);
1433 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1435 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1439 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1440 struct inode
*inode
, u64 file_pos
,
1441 u64 disk_bytenr
, u64 disk_num_bytes
,
1442 u64 num_bytes
, u64 ram_bytes
,
1444 u8 compression
, u8 encryption
,
1445 u16 other_encoding
, int extent_type
)
1447 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1448 struct btrfs_file_extent_item
*fi
;
1449 struct btrfs_path
*path
;
1450 struct extent_buffer
*leaf
;
1451 struct btrfs_key ins
;
1455 path
= btrfs_alloc_path();
1458 path
->leave_spinning
= 1;
1459 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1460 file_pos
+ num_bytes
, locked_end
,
1464 ins
.objectid
= inode
->i_ino
;
1465 ins
.offset
= file_pos
;
1466 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1467 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1469 leaf
= path
->nodes
[0];
1470 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1471 struct btrfs_file_extent_item
);
1472 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1473 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1474 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1475 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1476 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1477 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1478 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1479 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1480 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1481 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1483 btrfs_unlock_up_safe(path
, 1);
1484 btrfs_set_lock_blocking(leaf
);
1486 btrfs_mark_buffer_dirty(leaf
);
1488 inode_add_bytes(inode
, num_bytes
);
1489 btrfs_drop_extent_cache(inode
, file_pos
, file_pos
+ num_bytes
- 1, 0);
1491 ins
.objectid
= disk_bytenr
;
1492 ins
.offset
= disk_num_bytes
;
1493 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1494 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1495 root
->root_key
.objectid
,
1496 inode
->i_ino
, file_pos
, &ins
);
1498 btrfs_free_path(path
);
1504 * helper function for btrfs_finish_ordered_io, this
1505 * just reads in some of the csum leaves to prime them into ram
1506 * before we start the transaction. It limits the amount of btree
1507 * reads required while inside the transaction.
1509 static noinline
void reada_csum(struct btrfs_root
*root
,
1510 struct btrfs_path
*path
,
1511 struct btrfs_ordered_extent
*ordered_extent
)
1513 struct btrfs_ordered_sum
*sum
;
1516 sum
= list_entry(ordered_extent
->list
.next
, struct btrfs_ordered_sum
,
1518 bytenr
= sum
->sums
[0].bytenr
;
1521 * we don't care about the results, the point of this search is
1522 * just to get the btree leaves into ram
1524 btrfs_lookup_csum(NULL
, root
->fs_info
->csum_root
, path
, bytenr
, 0);
1527 /* as ordered data IO finishes, this gets called so we can finish
1528 * an ordered extent if the range of bytes in the file it covers are
1531 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1533 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1534 struct btrfs_trans_handle
*trans
;
1535 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1536 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1537 struct btrfs_path
*path
;
1541 ret
= btrfs_dec_test_ordered_pending(inode
, start
, end
- start
+ 1);
1546 * before we join the transaction, try to do some of our IO.
1547 * This will limit the amount of IO that we have to do with
1548 * the transaction running. We're unlikely to need to do any
1549 * IO if the file extents are new, the disk_i_size checks
1550 * covers the most common case.
1552 if (start
< BTRFS_I(inode
)->disk_i_size
) {
1553 path
= btrfs_alloc_path();
1555 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
1558 ordered_extent
= btrfs_lookup_ordered_extent(inode
,
1560 if (!list_empty(&ordered_extent
->list
)) {
1561 btrfs_release_path(root
, path
);
1562 reada_csum(root
, path
, ordered_extent
);
1564 btrfs_free_path(path
);
1568 trans
= btrfs_join_transaction(root
, 1);
1570 if (!ordered_extent
)
1571 ordered_extent
= btrfs_lookup_ordered_extent(inode
, start
);
1572 BUG_ON(!ordered_extent
);
1573 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
))
1576 lock_extent(io_tree
, ordered_extent
->file_offset
,
1577 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1580 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1582 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1584 ret
= btrfs_mark_extent_written(trans
, root
, inode
,
1585 ordered_extent
->file_offset
,
1586 ordered_extent
->file_offset
+
1587 ordered_extent
->len
);
1590 ret
= insert_reserved_file_extent(trans
, inode
,
1591 ordered_extent
->file_offset
,
1592 ordered_extent
->start
,
1593 ordered_extent
->disk_len
,
1594 ordered_extent
->len
,
1595 ordered_extent
->len
,
1596 ordered_extent
->file_offset
+
1597 ordered_extent
->len
,
1599 BTRFS_FILE_EXTENT_REG
);
1602 unlock_extent(io_tree
, ordered_extent
->file_offset
,
1603 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1606 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1607 &ordered_extent
->list
);
1609 mutex_lock(&BTRFS_I(inode
)->extent_mutex
);
1610 btrfs_ordered_update_i_size(inode
, ordered_extent
);
1611 btrfs_update_inode(trans
, root
, inode
);
1612 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1613 mutex_unlock(&BTRFS_I(inode
)->extent_mutex
);
1616 btrfs_put_ordered_extent(ordered_extent
);
1617 /* once for the tree */
1618 btrfs_put_ordered_extent(ordered_extent
);
1620 btrfs_end_transaction(trans
, root
);
1624 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1625 struct extent_state
*state
, int uptodate
)
1627 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1631 * When IO fails, either with EIO or csum verification fails, we
1632 * try other mirrors that might have a good copy of the data. This
1633 * io_failure_record is used to record state as we go through all the
1634 * mirrors. If another mirror has good data, the page is set up to date
1635 * and things continue. If a good mirror can't be found, the original
1636 * bio end_io callback is called to indicate things have failed.
1638 struct io_failure_record
{
1643 unsigned long bio_flags
;
1647 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1648 struct page
*page
, u64 start
, u64 end
,
1649 struct extent_state
*state
)
1651 struct io_failure_record
*failrec
= NULL
;
1653 struct extent_map
*em
;
1654 struct inode
*inode
= page
->mapping
->host
;
1655 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1656 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1663 ret
= get_state_private(failure_tree
, start
, &private);
1665 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1668 failrec
->start
= start
;
1669 failrec
->len
= end
- start
+ 1;
1670 failrec
->last_mirror
= 0;
1671 failrec
->bio_flags
= 0;
1673 spin_lock(&em_tree
->lock
);
1674 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1675 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1676 free_extent_map(em
);
1679 spin_unlock(&em_tree
->lock
);
1681 if (!em
|| IS_ERR(em
)) {
1685 logical
= start
- em
->start
;
1686 logical
= em
->block_start
+ logical
;
1687 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1688 logical
= em
->block_start
;
1689 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1691 failrec
->logical
= logical
;
1692 free_extent_map(em
);
1693 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1694 EXTENT_DIRTY
, GFP_NOFS
);
1695 set_state_private(failure_tree
, start
,
1696 (u64
)(unsigned long)failrec
);
1698 failrec
= (struct io_failure_record
*)(unsigned long)private;
1700 num_copies
= btrfs_num_copies(
1701 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1702 failrec
->logical
, failrec
->len
);
1703 failrec
->last_mirror
++;
1705 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1706 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1709 if (state
&& state
->start
!= failrec
->start
)
1711 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1713 if (!state
|| failrec
->last_mirror
> num_copies
) {
1714 set_state_private(failure_tree
, failrec
->start
, 0);
1715 clear_extent_bits(failure_tree
, failrec
->start
,
1716 failrec
->start
+ failrec
->len
- 1,
1717 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1721 bio
= bio_alloc(GFP_NOFS
, 1);
1722 bio
->bi_private
= state
;
1723 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1724 bio
->bi_sector
= failrec
->logical
>> 9;
1725 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1728 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1729 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1734 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1735 failrec
->last_mirror
,
1736 failrec
->bio_flags
);
1741 * each time an IO finishes, we do a fast check in the IO failure tree
1742 * to see if we need to process or clean up an io_failure_record
1744 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1747 u64 private_failure
;
1748 struct io_failure_record
*failure
;
1752 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1753 (u64
)-1, 1, EXTENT_DIRTY
)) {
1754 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1755 start
, &private_failure
);
1757 failure
= (struct io_failure_record
*)(unsigned long)
1759 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1761 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1763 failure
->start
+ failure
->len
- 1,
1764 EXTENT_DIRTY
| EXTENT_LOCKED
,
1773 * when reads are done, we need to check csums to verify the data is correct
1774 * if there's a match, we allow the bio to finish. If not, we go through
1775 * the io_failure_record routines to find good copies
1777 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1778 struct extent_state
*state
)
1780 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1781 struct inode
*inode
= page
->mapping
->host
;
1782 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1784 u64
private = ~(u32
)0;
1786 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1789 if (PageChecked(page
)) {
1790 ClearPageChecked(page
);
1794 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1797 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1798 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1)) {
1799 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1804 if (state
&& state
->start
== start
) {
1805 private = state
->private;
1808 ret
= get_state_private(io_tree
, start
, &private);
1810 kaddr
= kmap_atomic(page
, KM_USER0
);
1814 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1815 btrfs_csum_final(csum
, (char *)&csum
);
1816 if (csum
!= private)
1819 kunmap_atomic(kaddr
, KM_USER0
);
1821 /* if the io failure tree for this inode is non-empty,
1822 * check to see if we've recovered from a failed IO
1824 btrfs_clean_io_failures(inode
, start
);
1828 if (printk_ratelimit()) {
1829 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1830 "private %llu\n", page
->mapping
->host
->i_ino
,
1831 (unsigned long long)start
, csum
,
1832 (unsigned long long)private);
1834 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1835 flush_dcache_page(page
);
1836 kunmap_atomic(kaddr
, KM_USER0
);
1843 * This creates an orphan entry for the given inode in case something goes
1844 * wrong in the middle of an unlink/truncate.
1846 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1848 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1851 spin_lock(&root
->list_lock
);
1853 /* already on the orphan list, we're good */
1854 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1855 spin_unlock(&root
->list_lock
);
1859 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1861 spin_unlock(&root
->list_lock
);
1864 * insert an orphan item to track this unlinked/truncated file
1866 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
1872 * We have done the truncate/delete so we can go ahead and remove the orphan
1873 * item for this particular inode.
1875 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1877 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1880 spin_lock(&root
->list_lock
);
1882 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1883 spin_unlock(&root
->list_lock
);
1887 list_del_init(&BTRFS_I(inode
)->i_orphan
);
1889 spin_unlock(&root
->list_lock
);
1893 spin_unlock(&root
->list_lock
);
1895 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
1901 * this cleans up any orphans that may be left on the list from the last use
1904 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
1906 struct btrfs_path
*path
;
1907 struct extent_buffer
*leaf
;
1908 struct btrfs_item
*item
;
1909 struct btrfs_key key
, found_key
;
1910 struct btrfs_trans_handle
*trans
;
1911 struct inode
*inode
;
1912 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
1914 path
= btrfs_alloc_path();
1919 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1920 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1921 key
.offset
= (u64
)-1;
1925 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1927 printk(KERN_ERR
"Error searching slot for orphan: %d"
1933 * if ret == 0 means we found what we were searching for, which
1934 * is weird, but possible, so only screw with path if we didnt
1935 * find the key and see if we have stuff that matches
1938 if (path
->slots
[0] == 0)
1943 /* pull out the item */
1944 leaf
= path
->nodes
[0];
1945 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
1946 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1948 /* make sure the item matches what we want */
1949 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
1951 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
1954 /* release the path since we're done with it */
1955 btrfs_release_path(root
, path
);
1958 * this is where we are basically btrfs_lookup, without the
1959 * crossing root thing. we store the inode number in the
1960 * offset of the orphan item.
1962 found_key
.objectid
= found_key
.offset
;
1963 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
1964 found_key
.offset
= 0;
1965 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
);
1970 * add this inode to the orphan list so btrfs_orphan_del does
1971 * the proper thing when we hit it
1973 spin_lock(&root
->list_lock
);
1974 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1975 spin_unlock(&root
->list_lock
);
1978 * if this is a bad inode, means we actually succeeded in
1979 * removing the inode, but not the orphan record, which means
1980 * we need to manually delete the orphan since iput will just
1981 * do a destroy_inode
1983 if (is_bad_inode(inode
)) {
1984 trans
= btrfs_start_transaction(root
, 1);
1985 btrfs_orphan_del(trans
, inode
);
1986 btrfs_end_transaction(trans
, root
);
1991 /* if we have links, this was a truncate, lets do that */
1992 if (inode
->i_nlink
) {
1994 btrfs_truncate(inode
);
1999 /* this will do delete_inode and everything for us */
2004 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2006 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2008 btrfs_free_path(path
);
2012 * very simple check to peek ahead in the leaf looking for xattrs. If we
2013 * don't find any xattrs, we know there can't be any acls.
2015 * slot is the slot the inode is in, objectid is the objectid of the inode
2017 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2018 int slot
, u64 objectid
)
2020 u32 nritems
= btrfs_header_nritems(leaf
);
2021 struct btrfs_key found_key
;
2025 while (slot
< nritems
) {
2026 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2028 /* we found a different objectid, there must not be acls */
2029 if (found_key
.objectid
!= objectid
)
2032 /* we found an xattr, assume we've got an acl */
2033 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2037 * we found a key greater than an xattr key, there can't
2038 * be any acls later on
2040 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2047 * it goes inode, inode backrefs, xattrs, extents,
2048 * so if there are a ton of hard links to an inode there can
2049 * be a lot of backrefs. Don't waste time searching too hard,
2050 * this is just an optimization
2055 /* we hit the end of the leaf before we found an xattr or
2056 * something larger than an xattr. We have to assume the inode
2063 * read an inode from the btree into the in-memory inode
2065 static void btrfs_read_locked_inode(struct inode
*inode
)
2067 struct btrfs_path
*path
;
2068 struct extent_buffer
*leaf
;
2069 struct btrfs_inode_item
*inode_item
;
2070 struct btrfs_timespec
*tspec
;
2071 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2072 struct btrfs_key location
;
2074 u64 alloc_group_block
;
2078 path
= btrfs_alloc_path();
2080 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2082 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2086 leaf
= path
->nodes
[0];
2087 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2088 struct btrfs_inode_item
);
2090 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2091 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2092 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2093 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2094 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2096 tspec
= btrfs_inode_atime(inode_item
);
2097 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2098 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2100 tspec
= btrfs_inode_mtime(inode_item
);
2101 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2102 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2104 tspec
= btrfs_inode_ctime(inode_item
);
2105 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2106 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2108 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2109 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2110 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2111 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2113 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2115 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2116 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2118 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2121 * try to precache a NULL acl entry for files that don't have
2122 * any xattrs or acls
2124 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2126 BTRFS_I(inode
)->i_acl
= NULL
;
2127 BTRFS_I(inode
)->i_default_acl
= NULL
;
2130 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2131 alloc_group_block
, 0);
2132 btrfs_free_path(path
);
2135 switch (inode
->i_mode
& S_IFMT
) {
2137 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2138 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2139 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2140 inode
->i_fop
= &btrfs_file_operations
;
2141 inode
->i_op
= &btrfs_file_inode_operations
;
2144 inode
->i_fop
= &btrfs_dir_file_operations
;
2145 if (root
== root
->fs_info
->tree_root
)
2146 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2148 inode
->i_op
= &btrfs_dir_inode_operations
;
2151 inode
->i_op
= &btrfs_symlink_inode_operations
;
2152 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2153 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2156 inode
->i_op
= &btrfs_special_inode_operations
;
2157 init_special_inode(inode
, inode
->i_mode
, rdev
);
2161 btrfs_update_iflags(inode
);
2165 btrfs_free_path(path
);
2166 make_bad_inode(inode
);
2170 * given a leaf and an inode, copy the inode fields into the leaf
2172 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2173 struct extent_buffer
*leaf
,
2174 struct btrfs_inode_item
*item
,
2175 struct inode
*inode
)
2177 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2178 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2179 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2180 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2181 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2183 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2184 inode
->i_atime
.tv_sec
);
2185 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2186 inode
->i_atime
.tv_nsec
);
2188 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2189 inode
->i_mtime
.tv_sec
);
2190 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2191 inode
->i_mtime
.tv_nsec
);
2193 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2194 inode
->i_ctime
.tv_sec
);
2195 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2196 inode
->i_ctime
.tv_nsec
);
2198 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2199 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2200 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2201 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2202 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2203 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2204 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2208 * copy everything in the in-memory inode into the btree.
2210 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2211 struct btrfs_root
*root
, struct inode
*inode
)
2213 struct btrfs_inode_item
*inode_item
;
2214 struct btrfs_path
*path
;
2215 struct extent_buffer
*leaf
;
2218 path
= btrfs_alloc_path();
2220 path
->leave_spinning
= 1;
2221 ret
= btrfs_lookup_inode(trans
, root
, path
,
2222 &BTRFS_I(inode
)->location
, 1);
2229 btrfs_unlock_up_safe(path
, 1);
2230 leaf
= path
->nodes
[0];
2231 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2232 struct btrfs_inode_item
);
2234 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2235 btrfs_mark_buffer_dirty(leaf
);
2236 btrfs_set_inode_last_trans(trans
, inode
);
2239 btrfs_free_path(path
);
2245 * unlink helper that gets used here in inode.c and in the tree logging
2246 * recovery code. It remove a link in a directory with a given name, and
2247 * also drops the back refs in the inode to the directory
2249 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2250 struct btrfs_root
*root
,
2251 struct inode
*dir
, struct inode
*inode
,
2252 const char *name
, int name_len
)
2254 struct btrfs_path
*path
;
2256 struct extent_buffer
*leaf
;
2257 struct btrfs_dir_item
*di
;
2258 struct btrfs_key key
;
2261 path
= btrfs_alloc_path();
2267 path
->leave_spinning
= 1;
2268 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2269 name
, name_len
, -1);
2278 leaf
= path
->nodes
[0];
2279 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2280 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2283 btrfs_release_path(root
, path
);
2285 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2287 dir
->i_ino
, &index
);
2289 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2290 "inode %lu parent %lu\n", name_len
, name
,
2291 inode
->i_ino
, dir
->i_ino
);
2295 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2296 index
, name
, name_len
, -1);
2305 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2306 btrfs_release_path(root
, path
);
2308 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2310 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2312 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2316 btrfs_free_path(path
);
2320 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2321 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2322 btrfs_update_inode(trans
, root
, dir
);
2323 btrfs_drop_nlink(inode
);
2324 ret
= btrfs_update_inode(trans
, root
, inode
);
2329 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2331 struct btrfs_root
*root
;
2332 struct btrfs_trans_handle
*trans
;
2333 struct inode
*inode
= dentry
->d_inode
;
2335 unsigned long nr
= 0;
2337 root
= BTRFS_I(dir
)->root
;
2339 trans
= btrfs_start_transaction(root
, 1);
2341 btrfs_set_trans_block_group(trans
, dir
);
2343 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2345 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2346 dentry
->d_name
.name
, dentry
->d_name
.len
);
2348 if (inode
->i_nlink
== 0)
2349 ret
= btrfs_orphan_add(trans
, inode
);
2351 nr
= trans
->blocks_used
;
2353 btrfs_end_transaction_throttle(trans
, root
);
2354 btrfs_btree_balance_dirty(root
, nr
);
2358 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2360 struct inode
*inode
= dentry
->d_inode
;
2363 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2364 struct btrfs_trans_handle
*trans
;
2365 unsigned long nr
= 0;
2368 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2369 * the root of a subvolume or snapshot
2371 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2372 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
2376 trans
= btrfs_start_transaction(root
, 1);
2377 btrfs_set_trans_block_group(trans
, dir
);
2379 err
= btrfs_orphan_add(trans
, inode
);
2383 /* now the directory is empty */
2384 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2385 dentry
->d_name
.name
, dentry
->d_name
.len
);
2387 btrfs_i_size_write(inode
, 0);
2390 nr
= trans
->blocks_used
;
2391 ret
= btrfs_end_transaction_throttle(trans
, root
);
2392 btrfs_btree_balance_dirty(root
, nr
);
2401 * when truncating bytes in a file, it is possible to avoid reading
2402 * the leaves that contain only checksum items. This can be the
2403 * majority of the IO required to delete a large file, but it must
2404 * be done carefully.
2406 * The keys in the level just above the leaves are checked to make sure
2407 * the lowest key in a given leaf is a csum key, and starts at an offset
2408 * after the new size.
2410 * Then the key for the next leaf is checked to make sure it also has
2411 * a checksum item for the same file. If it does, we know our target leaf
2412 * contains only checksum items, and it can be safely freed without reading
2415 * This is just an optimization targeted at large files. It may do
2416 * nothing. It will return 0 unless things went badly.
2418 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2419 struct btrfs_root
*root
,
2420 struct btrfs_path
*path
,
2421 struct inode
*inode
, u64 new_size
)
2423 struct btrfs_key key
;
2426 struct btrfs_key found_key
;
2427 struct btrfs_key other_key
;
2428 struct btrfs_leaf_ref
*ref
;
2432 path
->lowest_level
= 1;
2433 key
.objectid
= inode
->i_ino
;
2434 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2435 key
.offset
= new_size
;
2437 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2441 if (path
->nodes
[1] == NULL
) {
2446 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2447 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2452 if (path
->slots
[1] >= nritems
)
2455 /* did we find a key greater than anything we want to delete? */
2456 if (found_key
.objectid
> inode
->i_ino
||
2457 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2460 /* we check the next key in the node to make sure the leave contains
2461 * only checksum items. This comparison doesn't work if our
2462 * leaf is the last one in the node
2464 if (path
->slots
[1] + 1 >= nritems
) {
2466 /* search forward from the last key in the node, this
2467 * will bring us into the next node in the tree
2469 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2471 /* unlikely, but we inc below, so check to be safe */
2472 if (found_key
.offset
== (u64
)-1)
2475 /* search_forward needs a path with locks held, do the
2476 * search again for the original key. It is possible
2477 * this will race with a balance and return a path that
2478 * we could modify, but this drop is just an optimization
2479 * and is allowed to miss some leaves.
2481 btrfs_release_path(root
, path
);
2484 /* setup a max key for search_forward */
2485 other_key
.offset
= (u64
)-1;
2486 other_key
.type
= key
.type
;
2487 other_key
.objectid
= key
.objectid
;
2489 path
->keep_locks
= 1;
2490 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2492 path
->keep_locks
= 0;
2493 if (ret
|| found_key
.objectid
!= key
.objectid
||
2494 found_key
.type
!= key
.type
) {
2499 key
.offset
= found_key
.offset
;
2500 btrfs_release_path(root
, path
);
2505 /* we know there's one more slot after us in the tree,
2506 * read that key so we can verify it is also a checksum item
2508 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2510 if (found_key
.objectid
< inode
->i_ino
)
2513 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2517 * if the key for the next leaf isn't a csum key from this objectid,
2518 * we can't be sure there aren't good items inside this leaf.
2521 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2524 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2525 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2527 * it is safe to delete this leaf, it contains only
2528 * csum items from this inode at an offset >= new_size
2530 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2533 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2534 ref
= btrfs_alloc_leaf_ref(root
, 0);
2536 ref
->root_gen
= root
->root_key
.offset
;
2537 ref
->bytenr
= leaf_start
;
2539 ref
->generation
= leaf_gen
;
2542 btrfs_sort_leaf_ref(ref
);
2544 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2546 btrfs_free_leaf_ref(root
, ref
);
2552 btrfs_release_path(root
, path
);
2554 if (other_key
.objectid
== inode
->i_ino
&&
2555 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2556 key
.offset
= other_key
.offset
;
2562 /* fixup any changes we've made to the path */
2563 path
->lowest_level
= 0;
2564 path
->keep_locks
= 0;
2565 btrfs_release_path(root
, path
);
2572 * this can truncate away extent items, csum items and directory items.
2573 * It starts at a high offset and removes keys until it can't find
2574 * any higher than new_size
2576 * csum items that cross the new i_size are truncated to the new size
2579 * min_type is the minimum key type to truncate down to. If set to 0, this
2580 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2582 noinline
int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2583 struct btrfs_root
*root
,
2584 struct inode
*inode
,
2585 u64 new_size
, u32 min_type
)
2588 struct btrfs_path
*path
;
2589 struct btrfs_key key
;
2590 struct btrfs_key found_key
;
2591 u32 found_type
= (u8
)-1;
2592 struct extent_buffer
*leaf
;
2593 struct btrfs_file_extent_item
*fi
;
2594 u64 extent_start
= 0;
2595 u64 extent_num_bytes
= 0;
2596 u64 extent_offset
= 0;
2600 int pending_del_nr
= 0;
2601 int pending_del_slot
= 0;
2602 int extent_type
= -1;
2604 u64 mask
= root
->sectorsize
- 1;
2607 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2608 path
= btrfs_alloc_path();
2612 /* FIXME, add redo link to tree so we don't leak on crash */
2613 key
.objectid
= inode
->i_ino
;
2614 key
.offset
= (u64
)-1;
2618 path
->leave_spinning
= 1;
2619 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2624 /* there are no items in the tree for us to truncate, we're
2627 if (path
->slots
[0] == 0) {
2636 leaf
= path
->nodes
[0];
2637 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2638 found_type
= btrfs_key_type(&found_key
);
2641 if (found_key
.objectid
!= inode
->i_ino
)
2644 if (found_type
< min_type
)
2647 item_end
= found_key
.offset
;
2648 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2649 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2650 struct btrfs_file_extent_item
);
2651 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2652 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2653 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2654 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2656 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2658 btrfs_file_extent_num_bytes(leaf
, fi
);
2659 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2660 item_end
+= btrfs_file_extent_inline_len(leaf
,
2665 if (item_end
< new_size
) {
2666 if (found_type
== BTRFS_DIR_ITEM_KEY
)
2667 found_type
= BTRFS_INODE_ITEM_KEY
;
2668 else if (found_type
== BTRFS_EXTENT_ITEM_KEY
)
2669 found_type
= BTRFS_EXTENT_DATA_KEY
;
2670 else if (found_type
== BTRFS_EXTENT_DATA_KEY
)
2671 found_type
= BTRFS_XATTR_ITEM_KEY
;
2672 else if (found_type
== BTRFS_XATTR_ITEM_KEY
)
2673 found_type
= BTRFS_INODE_REF_KEY
;
2674 else if (found_type
)
2678 btrfs_set_key_type(&key
, found_type
);
2681 if (found_key
.offset
>= new_size
)
2687 /* FIXME, shrink the extent if the ref count is only 1 */
2688 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2691 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2693 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2694 if (!del_item
&& !encoding
) {
2695 u64 orig_num_bytes
=
2696 btrfs_file_extent_num_bytes(leaf
, fi
);
2697 extent_num_bytes
= new_size
-
2698 found_key
.offset
+ root
->sectorsize
- 1;
2699 extent_num_bytes
= extent_num_bytes
&
2700 ~((u64
)root
->sectorsize
- 1);
2701 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2703 num_dec
= (orig_num_bytes
-
2705 if (root
->ref_cows
&& extent_start
!= 0)
2706 inode_sub_bytes(inode
, num_dec
);
2707 btrfs_mark_buffer_dirty(leaf
);
2710 btrfs_file_extent_disk_num_bytes(leaf
,
2712 extent_offset
= found_key
.offset
-
2713 btrfs_file_extent_offset(leaf
, fi
);
2715 /* FIXME blocksize != 4096 */
2716 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2717 if (extent_start
!= 0) {
2720 inode_sub_bytes(inode
, num_dec
);
2723 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2725 * we can't truncate inline items that have had
2729 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2730 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2731 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2732 u32 size
= new_size
- found_key
.offset
;
2734 if (root
->ref_cows
) {
2735 inode_sub_bytes(inode
, item_end
+ 1 -
2739 btrfs_file_extent_calc_inline_size(size
);
2740 ret
= btrfs_truncate_item(trans
, root
, path
,
2743 } else if (root
->ref_cows
) {
2744 inode_sub_bytes(inode
, item_end
+ 1 -
2750 if (!pending_del_nr
) {
2751 /* no pending yet, add ourselves */
2752 pending_del_slot
= path
->slots
[0];
2754 } else if (pending_del_nr
&&
2755 path
->slots
[0] + 1 == pending_del_slot
) {
2756 /* hop on the pending chunk */
2758 pending_del_slot
= path
->slots
[0];
2765 if (found_extent
&& root
->ref_cows
) {
2766 btrfs_set_path_blocking(path
);
2767 ret
= btrfs_free_extent(trans
, root
, extent_start
,
2768 extent_num_bytes
, 0,
2769 btrfs_header_owner(leaf
),
2770 inode
->i_ino
, extent_offset
);
2774 if (path
->slots
[0] == 0) {
2777 btrfs_release_path(root
, path
);
2778 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2784 if (pending_del_nr
&&
2785 path
->slots
[0] + 1 != pending_del_slot
) {
2786 struct btrfs_key debug
;
2788 btrfs_item_key_to_cpu(path
->nodes
[0], &debug
,
2790 ret
= btrfs_del_items(trans
, root
, path
,
2795 btrfs_release_path(root
, path
);
2796 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2803 if (pending_del_nr
) {
2804 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
2807 btrfs_free_path(path
);
2812 * taken from block_truncate_page, but does cow as it zeros out
2813 * any bytes left in the last page in the file.
2815 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
2817 struct inode
*inode
= mapping
->host
;
2818 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2819 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2820 struct btrfs_ordered_extent
*ordered
;
2822 u32 blocksize
= root
->sectorsize
;
2823 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2824 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2830 if ((offset
& (blocksize
- 1)) == 0)
2835 page
= grab_cache_page(mapping
, index
);
2839 page_start
= page_offset(page
);
2840 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2842 if (!PageUptodate(page
)) {
2843 ret
= btrfs_readpage(NULL
, page
);
2845 if (page
->mapping
!= mapping
) {
2847 page_cache_release(page
);
2850 if (!PageUptodate(page
)) {
2855 wait_on_page_writeback(page
);
2857 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2858 set_page_extent_mapped(page
);
2860 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
2862 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2864 page_cache_release(page
);
2865 btrfs_start_ordered_extent(inode
, ordered
, 1);
2866 btrfs_put_ordered_extent(ordered
);
2870 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
2872 if (offset
!= PAGE_CACHE_SIZE
) {
2874 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2875 flush_dcache_page(page
);
2878 ClearPageChecked(page
);
2879 set_page_dirty(page
);
2880 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2884 page_cache_release(page
);
2889 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
2891 struct btrfs_trans_handle
*trans
;
2892 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2893 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2894 struct extent_map
*em
;
2895 u64 mask
= root
->sectorsize
- 1;
2896 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
2897 u64 block_end
= (size
+ mask
) & ~mask
;
2903 if (size
<= hole_start
)
2906 err
= btrfs_check_metadata_free_space(root
);
2910 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
2913 struct btrfs_ordered_extent
*ordered
;
2914 btrfs_wait_ordered_range(inode
, hole_start
,
2915 block_end
- hole_start
);
2916 lock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2917 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
2920 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2921 btrfs_put_ordered_extent(ordered
);
2924 trans
= btrfs_start_transaction(root
, 1);
2925 btrfs_set_trans_block_group(trans
, inode
);
2927 cur_offset
= hole_start
;
2929 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2930 block_end
- cur_offset
, 0);
2931 BUG_ON(IS_ERR(em
) || !em
);
2932 last_byte
= min(extent_map_end(em
), block_end
);
2933 last_byte
= (last_byte
+ mask
) & ~mask
;
2934 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2936 hole_size
= last_byte
- cur_offset
;
2937 err
= btrfs_drop_extents(trans
, root
, inode
,
2939 cur_offset
+ hole_size
,
2941 cur_offset
, &hint_byte
);
2944 err
= btrfs_insert_file_extent(trans
, root
,
2945 inode
->i_ino
, cur_offset
, 0,
2946 0, hole_size
, 0, hole_size
,
2948 btrfs_drop_extent_cache(inode
, hole_start
,
2951 free_extent_map(em
);
2952 cur_offset
= last_byte
;
2953 if (err
|| cur_offset
>= block_end
)
2957 btrfs_end_transaction(trans
, root
);
2958 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2962 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2964 struct inode
*inode
= dentry
->d_inode
;
2967 err
= inode_change_ok(inode
, attr
);
2971 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
2972 if (attr
->ia_size
> inode
->i_size
) {
2973 err
= btrfs_cont_expand(inode
, attr
->ia_size
);
2976 } else if (inode
->i_size
> 0 &&
2977 attr
->ia_size
== 0) {
2979 /* we're truncating a file that used to have good
2980 * data down to zero. Make sure it gets into
2981 * the ordered flush list so that any new writes
2982 * get down to disk quickly.
2984 BTRFS_I(inode
)->ordered_data_close
= 1;
2988 err
= inode_setattr(inode
, attr
);
2990 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
2991 err
= btrfs_acl_chmod(inode
);
2995 void btrfs_delete_inode(struct inode
*inode
)
2997 struct btrfs_trans_handle
*trans
;
2998 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3002 truncate_inode_pages(&inode
->i_data
, 0);
3003 if (is_bad_inode(inode
)) {
3004 btrfs_orphan_del(NULL
, inode
);
3007 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3009 btrfs_i_size_write(inode
, 0);
3010 trans
= btrfs_join_transaction(root
, 1);
3012 btrfs_set_trans_block_group(trans
, inode
);
3013 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
, 0);
3015 btrfs_orphan_del(NULL
, inode
);
3016 goto no_delete_lock
;
3019 btrfs_orphan_del(trans
, inode
);
3021 nr
= trans
->blocks_used
;
3024 btrfs_end_transaction(trans
, root
);
3025 btrfs_btree_balance_dirty(root
, nr
);
3029 nr
= trans
->blocks_used
;
3030 btrfs_end_transaction(trans
, root
);
3031 btrfs_btree_balance_dirty(root
, nr
);
3037 * this returns the key found in the dir entry in the location pointer.
3038 * If no dir entries were found, location->objectid is 0.
3040 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3041 struct btrfs_key
*location
)
3043 const char *name
= dentry
->d_name
.name
;
3044 int namelen
= dentry
->d_name
.len
;
3045 struct btrfs_dir_item
*di
;
3046 struct btrfs_path
*path
;
3047 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3050 path
= btrfs_alloc_path();
3053 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3058 if (!di
|| IS_ERR(di
))
3061 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3063 btrfs_free_path(path
);
3066 location
->objectid
= 0;
3071 * when we hit a tree root in a directory, the btrfs part of the inode
3072 * needs to be changed to reflect the root directory of the tree root. This
3073 * is kind of like crossing a mount point.
3075 static int fixup_tree_root_location(struct btrfs_root
*root
,
3076 struct btrfs_key
*location
,
3077 struct btrfs_root
**sub_root
,
3078 struct dentry
*dentry
)
3080 struct btrfs_root_item
*ri
;
3082 if (btrfs_key_type(location
) != BTRFS_ROOT_ITEM_KEY
)
3084 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
3087 *sub_root
= btrfs_read_fs_root(root
->fs_info
, location
,
3088 dentry
->d_name
.name
,
3089 dentry
->d_name
.len
);
3090 if (IS_ERR(*sub_root
))
3091 return PTR_ERR(*sub_root
);
3093 ri
= &(*sub_root
)->root_item
;
3094 location
->objectid
= btrfs_root_dirid(ri
);
3095 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3096 location
->offset
= 0;
3101 static void inode_tree_add(struct inode
*inode
)
3103 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3104 struct btrfs_inode
*entry
;
3105 struct rb_node
**p
= &root
->inode_tree
.rb_node
;
3106 struct rb_node
*parent
= NULL
;
3108 spin_lock(&root
->inode_lock
);
3111 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3113 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3115 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3116 p
= &(*p
)->rb_right
;
3118 WARN_ON(!(entry
->vfs_inode
.i_state
&
3119 (I_WILL_FREE
| I_FREEING
| I_CLEAR
)));
3123 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3124 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3125 spin_unlock(&root
->inode_lock
);
3128 static void inode_tree_del(struct inode
*inode
)
3130 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3132 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3133 spin_lock(&root
->inode_lock
);
3134 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3135 spin_unlock(&root
->inode_lock
);
3136 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3140 static noinline
void init_btrfs_i(struct inode
*inode
)
3142 struct btrfs_inode
*bi
= BTRFS_I(inode
);
3144 bi
->i_acl
= BTRFS_ACL_NOT_CACHED
;
3145 bi
->i_default_acl
= BTRFS_ACL_NOT_CACHED
;
3150 bi
->logged_trans
= 0;
3151 bi
->delalloc_bytes
= 0;
3152 bi
->reserved_bytes
= 0;
3153 bi
->disk_i_size
= 0;
3155 bi
->index_cnt
= (u64
)-1;
3156 bi
->last_unlink_trans
= 0;
3157 bi
->ordered_data_close
= 0;
3158 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
3159 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
3160 inode
->i_mapping
, GFP_NOFS
);
3161 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
3162 inode
->i_mapping
, GFP_NOFS
);
3163 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
3164 INIT_LIST_HEAD(&BTRFS_I(inode
)->ordered_operations
);
3165 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3166 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
3167 mutex_init(&BTRFS_I(inode
)->extent_mutex
);
3168 mutex_init(&BTRFS_I(inode
)->log_mutex
);
3171 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3173 struct btrfs_iget_args
*args
= p
;
3174 inode
->i_ino
= args
->ino
;
3175 init_btrfs_i(inode
);
3176 BTRFS_I(inode
)->root
= args
->root
;
3177 btrfs_set_inode_space_info(args
->root
, inode
);
3181 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3183 struct btrfs_iget_args
*args
= opaque
;
3184 return args
->ino
== inode
->i_ino
&&
3185 args
->root
== BTRFS_I(inode
)->root
;
3188 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3190 struct btrfs_root
*root
)
3192 struct inode
*inode
;
3193 struct btrfs_iget_args args
;
3194 args
.ino
= objectid
;
3197 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3198 btrfs_init_locked_inode
,
3203 /* Get an inode object given its location and corresponding root.
3204 * Returns in *is_new if the inode was read from disk
3206 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3207 struct btrfs_root
*root
)
3209 struct inode
*inode
;
3211 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3213 return ERR_PTR(-ENOMEM
);
3215 if (inode
->i_state
& I_NEW
) {
3216 BTRFS_I(inode
)->root
= root
;
3217 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3218 btrfs_read_locked_inode(inode
);
3220 inode_tree_add(inode
);
3221 unlock_new_inode(inode
);
3227 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3229 struct inode
*inode
;
3230 struct btrfs_inode
*bi
= BTRFS_I(dir
);
3231 struct btrfs_root
*root
= bi
->root
;
3232 struct btrfs_root
*sub_root
= root
;
3233 struct btrfs_key location
;
3236 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3237 return ERR_PTR(-ENAMETOOLONG
);
3239 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3242 return ERR_PTR(ret
);
3245 if (location
.objectid
) {
3246 ret
= fixup_tree_root_location(root
, &location
, &sub_root
,
3249 return ERR_PTR(ret
);
3251 return ERR_PTR(-ENOENT
);
3252 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
);
3254 return ERR_CAST(inode
);
3259 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3260 struct nameidata
*nd
)
3262 struct inode
*inode
;
3264 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3265 return ERR_PTR(-ENAMETOOLONG
);
3267 inode
= btrfs_lookup_dentry(dir
, dentry
);
3269 return ERR_CAST(inode
);
3271 return d_splice_alias(inode
, dentry
);
3274 static unsigned char btrfs_filetype_table
[] = {
3275 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3278 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3281 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3282 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3283 struct btrfs_item
*item
;
3284 struct btrfs_dir_item
*di
;
3285 struct btrfs_key key
;
3286 struct btrfs_key found_key
;
3287 struct btrfs_path
*path
;
3290 struct extent_buffer
*leaf
;
3293 unsigned char d_type
;
3298 int key_type
= BTRFS_DIR_INDEX_KEY
;
3303 /* FIXME, use a real flag for deciding about the key type */
3304 if (root
->fs_info
->tree_root
== root
)
3305 key_type
= BTRFS_DIR_ITEM_KEY
;
3307 /* special case for "." */
3308 if (filp
->f_pos
== 0) {
3309 over
= filldir(dirent
, ".", 1,
3316 /* special case for .., just use the back ref */
3317 if (filp
->f_pos
== 1) {
3318 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3319 over
= filldir(dirent
, "..", 2,
3325 path
= btrfs_alloc_path();
3328 btrfs_set_key_type(&key
, key_type
);
3329 key
.offset
= filp
->f_pos
;
3330 key
.objectid
= inode
->i_ino
;
3332 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3338 leaf
= path
->nodes
[0];
3339 nritems
= btrfs_header_nritems(leaf
);
3340 slot
= path
->slots
[0];
3341 if (advance
|| slot
>= nritems
) {
3342 if (slot
>= nritems
- 1) {
3343 ret
= btrfs_next_leaf(root
, path
);
3346 leaf
= path
->nodes
[0];
3347 nritems
= btrfs_header_nritems(leaf
);
3348 slot
= path
->slots
[0];
3356 item
= btrfs_item_nr(leaf
, slot
);
3357 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3359 if (found_key
.objectid
!= key
.objectid
)
3361 if (btrfs_key_type(&found_key
) != key_type
)
3363 if (found_key
.offset
< filp
->f_pos
)
3366 filp
->f_pos
= found_key
.offset
;
3368 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3370 di_total
= btrfs_item_size(leaf
, item
);
3372 while (di_cur
< di_total
) {
3373 struct btrfs_key location
;
3375 name_len
= btrfs_dir_name_len(leaf
, di
);
3376 if (name_len
<= sizeof(tmp_name
)) {
3377 name_ptr
= tmp_name
;
3379 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3385 read_extent_buffer(leaf
, name_ptr
,
3386 (unsigned long)(di
+ 1), name_len
);
3388 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3389 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3391 /* is this a reference to our own snapshot? If so
3394 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3395 location
.objectid
== root
->root_key
.objectid
) {
3399 over
= filldir(dirent
, name_ptr
, name_len
,
3400 found_key
.offset
, location
.objectid
,
3404 if (name_ptr
!= tmp_name
)
3409 di_len
= btrfs_dir_name_len(leaf
, di
) +
3410 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3412 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3416 /* Reached end of directory/root. Bump pos past the last item. */
3417 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3418 filp
->f_pos
= INT_LIMIT(off_t
);
3424 btrfs_free_path(path
);
3428 int btrfs_write_inode(struct inode
*inode
, int wait
)
3430 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3431 struct btrfs_trans_handle
*trans
;
3434 if (root
->fs_info
->btree_inode
== inode
)
3438 trans
= btrfs_join_transaction(root
, 1);
3439 btrfs_set_trans_block_group(trans
, inode
);
3440 ret
= btrfs_commit_transaction(trans
, root
);
3446 * This is somewhat expensive, updating the tree every time the
3447 * inode changes. But, it is most likely to find the inode in cache.
3448 * FIXME, needs more benchmarking...there are no reasons other than performance
3449 * to keep or drop this code.
3451 void btrfs_dirty_inode(struct inode
*inode
)
3453 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3454 struct btrfs_trans_handle
*trans
;
3456 trans
= btrfs_join_transaction(root
, 1);
3457 btrfs_set_trans_block_group(trans
, inode
);
3458 btrfs_update_inode(trans
, root
, inode
);
3459 btrfs_end_transaction(trans
, root
);
3463 * find the highest existing sequence number in a directory
3464 * and then set the in-memory index_cnt variable to reflect
3465 * free sequence numbers
3467 static int btrfs_set_inode_index_count(struct inode
*inode
)
3469 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3470 struct btrfs_key key
, found_key
;
3471 struct btrfs_path
*path
;
3472 struct extent_buffer
*leaf
;
3475 key
.objectid
= inode
->i_ino
;
3476 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3477 key
.offset
= (u64
)-1;
3479 path
= btrfs_alloc_path();
3483 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3486 /* FIXME: we should be able to handle this */
3492 * MAGIC NUMBER EXPLANATION:
3493 * since we search a directory based on f_pos we have to start at 2
3494 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3495 * else has to start at 2
3497 if (path
->slots
[0] == 0) {
3498 BTRFS_I(inode
)->index_cnt
= 2;
3504 leaf
= path
->nodes
[0];
3505 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3507 if (found_key
.objectid
!= inode
->i_ino
||
3508 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
3509 BTRFS_I(inode
)->index_cnt
= 2;
3513 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
3515 btrfs_free_path(path
);
3520 * helper to find a free sequence number in a given directory. This current
3521 * code is very simple, later versions will do smarter things in the btree
3523 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
3527 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
3528 ret
= btrfs_set_inode_index_count(dir
);
3533 *index
= BTRFS_I(dir
)->index_cnt
;
3534 BTRFS_I(dir
)->index_cnt
++;
3539 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
3540 struct btrfs_root
*root
,
3542 const char *name
, int name_len
,
3543 u64 ref_objectid
, u64 objectid
,
3544 u64 alloc_hint
, int mode
, u64
*index
)
3546 struct inode
*inode
;
3547 struct btrfs_inode_item
*inode_item
;
3548 struct btrfs_key
*location
;
3549 struct btrfs_path
*path
;
3550 struct btrfs_inode_ref
*ref
;
3551 struct btrfs_key key
[2];
3557 path
= btrfs_alloc_path();
3560 inode
= new_inode(root
->fs_info
->sb
);
3562 return ERR_PTR(-ENOMEM
);
3565 ret
= btrfs_set_inode_index(dir
, index
);
3568 return ERR_PTR(ret
);
3572 * index_cnt is ignored for everything but a dir,
3573 * btrfs_get_inode_index_count has an explanation for the magic
3576 init_btrfs_i(inode
);
3577 BTRFS_I(inode
)->index_cnt
= 2;
3578 BTRFS_I(inode
)->root
= root
;
3579 BTRFS_I(inode
)->generation
= trans
->transid
;
3580 btrfs_set_inode_space_info(root
, inode
);
3586 BTRFS_I(inode
)->block_group
=
3587 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
3588 if ((mode
& S_IFREG
)) {
3589 if (btrfs_test_opt(root
, NODATASUM
))
3590 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
3591 if (btrfs_test_opt(root
, NODATACOW
))
3592 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
3595 key
[0].objectid
= objectid
;
3596 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
3599 key
[1].objectid
= objectid
;
3600 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
3601 key
[1].offset
= ref_objectid
;
3603 sizes
[0] = sizeof(struct btrfs_inode_item
);
3604 sizes
[1] = name_len
+ sizeof(*ref
);
3606 path
->leave_spinning
= 1;
3607 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
3611 if (objectid
> root
->highest_inode
)
3612 root
->highest_inode
= objectid
;
3614 inode
->i_uid
= current_fsuid();
3616 if (dir
&& (dir
->i_mode
& S_ISGID
)) {
3617 inode
->i_gid
= dir
->i_gid
;
3621 inode
->i_gid
= current_fsgid();
3623 inode
->i_mode
= mode
;
3624 inode
->i_ino
= objectid
;
3625 inode_set_bytes(inode
, 0);
3626 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3627 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3628 struct btrfs_inode_item
);
3629 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
3631 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
3632 struct btrfs_inode_ref
);
3633 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
3634 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
3635 ptr
= (unsigned long)(ref
+ 1);
3636 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
3638 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3639 btrfs_free_path(path
);
3641 location
= &BTRFS_I(inode
)->location
;
3642 location
->objectid
= objectid
;
3643 location
->offset
= 0;
3644 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3646 btrfs_inherit_iflags(inode
, dir
);
3648 insert_inode_hash(inode
);
3649 inode_tree_add(inode
);
3653 BTRFS_I(dir
)->index_cnt
--;
3654 btrfs_free_path(path
);
3656 return ERR_PTR(ret
);
3659 static inline u8
btrfs_inode_type(struct inode
*inode
)
3661 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
3665 * utility function to add 'inode' into 'parent_inode' with
3666 * a give name and a given sequence number.
3667 * if 'add_backref' is true, also insert a backref from the
3668 * inode to the parent directory.
3670 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
3671 struct inode
*parent_inode
, struct inode
*inode
,
3672 const char *name
, int name_len
, int add_backref
, u64 index
)
3675 struct btrfs_key key
;
3676 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
3678 key
.objectid
= inode
->i_ino
;
3679 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
3682 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
3683 parent_inode
->i_ino
,
3684 &key
, btrfs_inode_type(inode
),
3688 ret
= btrfs_insert_inode_ref(trans
, root
,
3691 parent_inode
->i_ino
,
3694 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
3696 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
3697 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
3702 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
3703 struct dentry
*dentry
, struct inode
*inode
,
3704 int backref
, u64 index
)
3706 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3707 inode
, dentry
->d_name
.name
,
3708 dentry
->d_name
.len
, backref
, index
);
3710 d_instantiate(dentry
, inode
);
3718 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
3719 int mode
, dev_t rdev
)
3721 struct btrfs_trans_handle
*trans
;
3722 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3723 struct inode
*inode
= NULL
;
3727 unsigned long nr
= 0;
3730 if (!new_valid_dev(rdev
))
3733 err
= btrfs_check_metadata_free_space(root
);
3737 trans
= btrfs_start_transaction(root
, 1);
3738 btrfs_set_trans_block_group(trans
, dir
);
3740 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3746 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3748 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3749 BTRFS_I(dir
)->block_group
, mode
, &index
);
3750 err
= PTR_ERR(inode
);
3754 err
= btrfs_init_inode_security(inode
, dir
);
3760 btrfs_set_trans_block_group(trans
, inode
);
3761 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3765 inode
->i_op
= &btrfs_special_inode_operations
;
3766 init_special_inode(inode
, inode
->i_mode
, rdev
);
3767 btrfs_update_inode(trans
, root
, inode
);
3769 btrfs_update_inode_block_group(trans
, inode
);
3770 btrfs_update_inode_block_group(trans
, dir
);
3772 nr
= trans
->blocks_used
;
3773 btrfs_end_transaction_throttle(trans
, root
);
3776 inode_dec_link_count(inode
);
3779 btrfs_btree_balance_dirty(root
, nr
);
3783 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
3784 int mode
, struct nameidata
*nd
)
3786 struct btrfs_trans_handle
*trans
;
3787 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3788 struct inode
*inode
= NULL
;
3791 unsigned long nr
= 0;
3795 err
= btrfs_check_metadata_free_space(root
);
3798 trans
= btrfs_start_transaction(root
, 1);
3799 btrfs_set_trans_block_group(trans
, dir
);
3801 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3807 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3809 dentry
->d_parent
->d_inode
->i_ino
,
3810 objectid
, BTRFS_I(dir
)->block_group
, mode
,
3812 err
= PTR_ERR(inode
);
3816 err
= btrfs_init_inode_security(inode
, dir
);
3822 btrfs_set_trans_block_group(trans
, inode
);
3823 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3827 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3828 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3829 inode
->i_fop
= &btrfs_file_operations
;
3830 inode
->i_op
= &btrfs_file_inode_operations
;
3831 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3833 btrfs_update_inode_block_group(trans
, inode
);
3834 btrfs_update_inode_block_group(trans
, dir
);
3836 nr
= trans
->blocks_used
;
3837 btrfs_end_transaction_throttle(trans
, root
);
3840 inode_dec_link_count(inode
);
3843 btrfs_btree_balance_dirty(root
, nr
);
3847 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
3848 struct dentry
*dentry
)
3850 struct btrfs_trans_handle
*trans
;
3851 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3852 struct inode
*inode
= old_dentry
->d_inode
;
3854 unsigned long nr
= 0;
3858 if (inode
->i_nlink
== 0)
3861 btrfs_inc_nlink(inode
);
3862 err
= btrfs_check_metadata_free_space(root
);
3865 err
= btrfs_set_inode_index(dir
, &index
);
3869 trans
= btrfs_start_transaction(root
, 1);
3871 btrfs_set_trans_block_group(trans
, dir
);
3872 atomic_inc(&inode
->i_count
);
3874 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
3879 btrfs_update_inode_block_group(trans
, dir
);
3880 err
= btrfs_update_inode(trans
, root
, inode
);
3885 nr
= trans
->blocks_used
;
3887 btrfs_log_new_name(trans
, inode
, NULL
, dentry
->d_parent
);
3888 btrfs_end_transaction_throttle(trans
, root
);
3891 inode_dec_link_count(inode
);
3894 btrfs_btree_balance_dirty(root
, nr
);
3898 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3900 struct inode
*inode
= NULL
;
3901 struct btrfs_trans_handle
*trans
;
3902 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3904 int drop_on_err
= 0;
3907 unsigned long nr
= 1;
3909 err
= btrfs_check_metadata_free_space(root
);
3913 trans
= btrfs_start_transaction(root
, 1);
3914 btrfs_set_trans_block_group(trans
, dir
);
3916 if (IS_ERR(trans
)) {
3917 err
= PTR_ERR(trans
);
3921 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3927 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3929 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3930 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
3932 if (IS_ERR(inode
)) {
3933 err
= PTR_ERR(inode
);
3939 err
= btrfs_init_inode_security(inode
, dir
);
3943 inode
->i_op
= &btrfs_dir_inode_operations
;
3944 inode
->i_fop
= &btrfs_dir_file_operations
;
3945 btrfs_set_trans_block_group(trans
, inode
);
3947 btrfs_i_size_write(inode
, 0);
3948 err
= btrfs_update_inode(trans
, root
, inode
);
3952 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3953 inode
, dentry
->d_name
.name
,
3954 dentry
->d_name
.len
, 0, index
);
3958 d_instantiate(dentry
, inode
);
3960 btrfs_update_inode_block_group(trans
, inode
);
3961 btrfs_update_inode_block_group(trans
, dir
);
3964 nr
= trans
->blocks_used
;
3965 btrfs_end_transaction_throttle(trans
, root
);
3970 btrfs_btree_balance_dirty(root
, nr
);
3974 /* helper for btfs_get_extent. Given an existing extent in the tree,
3975 * and an extent that you want to insert, deal with overlap and insert
3976 * the new extent into the tree.
3978 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
3979 struct extent_map
*existing
,
3980 struct extent_map
*em
,
3981 u64 map_start
, u64 map_len
)
3985 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
3986 start_diff
= map_start
- em
->start
;
3987 em
->start
= map_start
;
3989 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
3990 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3991 em
->block_start
+= start_diff
;
3992 em
->block_len
-= start_diff
;
3994 return add_extent_mapping(em_tree
, em
);
3997 static noinline
int uncompress_inline(struct btrfs_path
*path
,
3998 struct inode
*inode
, struct page
*page
,
3999 size_t pg_offset
, u64 extent_offset
,
4000 struct btrfs_file_extent_item
*item
)
4003 struct extent_buffer
*leaf
= path
->nodes
[0];
4006 unsigned long inline_size
;
4009 WARN_ON(pg_offset
!= 0);
4010 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4011 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4012 btrfs_item_nr(leaf
, path
->slots
[0]));
4013 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4014 ptr
= btrfs_file_extent_inline_start(item
);
4016 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4018 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4019 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
4020 inline_size
, max_size
);
4022 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4023 unsigned long copy_size
= min_t(u64
,
4024 PAGE_CACHE_SIZE
- pg_offset
,
4025 max_size
- extent_offset
);
4026 memset(kaddr
+ pg_offset
, 0, copy_size
);
4027 kunmap_atomic(kaddr
, KM_USER0
);
4034 * a bit scary, this does extent mapping from logical file offset to the disk.
4035 * the ugly parts come from merging extents from the disk with the in-ram
4036 * representation. This gets more complex because of the data=ordered code,
4037 * where the in-ram extents might be locked pending data=ordered completion.
4039 * This also copies inline extents directly into the page.
4042 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4043 size_t pg_offset
, u64 start
, u64 len
,
4049 u64 extent_start
= 0;
4051 u64 objectid
= inode
->i_ino
;
4053 struct btrfs_path
*path
= NULL
;
4054 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4055 struct btrfs_file_extent_item
*item
;
4056 struct extent_buffer
*leaf
;
4057 struct btrfs_key found_key
;
4058 struct extent_map
*em
= NULL
;
4059 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4060 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4061 struct btrfs_trans_handle
*trans
= NULL
;
4065 spin_lock(&em_tree
->lock
);
4066 em
= lookup_extent_mapping(em_tree
, start
, len
);
4068 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4069 spin_unlock(&em_tree
->lock
);
4072 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4073 free_extent_map(em
);
4074 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4075 free_extent_map(em
);
4079 em
= alloc_extent_map(GFP_NOFS
);
4084 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4085 em
->start
= EXTENT_MAP_HOLE
;
4086 em
->orig_start
= EXTENT_MAP_HOLE
;
4088 em
->block_len
= (u64
)-1;
4091 path
= btrfs_alloc_path();
4095 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4096 objectid
, start
, trans
!= NULL
);
4103 if (path
->slots
[0] == 0)
4108 leaf
= path
->nodes
[0];
4109 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4110 struct btrfs_file_extent_item
);
4111 /* are we inside the extent that was found? */
4112 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4113 found_type
= btrfs_key_type(&found_key
);
4114 if (found_key
.objectid
!= objectid
||
4115 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4119 found_type
= btrfs_file_extent_type(leaf
, item
);
4120 extent_start
= found_key
.offset
;
4121 compressed
= btrfs_file_extent_compression(leaf
, item
);
4122 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4123 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4124 extent_end
= extent_start
+
4125 btrfs_file_extent_num_bytes(leaf
, item
);
4126 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4128 size
= btrfs_file_extent_inline_len(leaf
, item
);
4129 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
4130 ~((u64
)root
->sectorsize
- 1);
4133 if (start
>= extent_end
) {
4135 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
4136 ret
= btrfs_next_leaf(root
, path
);
4143 leaf
= path
->nodes
[0];
4145 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4146 if (found_key
.objectid
!= objectid
||
4147 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4149 if (start
+ len
<= found_key
.offset
)
4152 em
->len
= found_key
.offset
- start
;
4156 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4157 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4158 em
->start
= extent_start
;
4159 em
->len
= extent_end
- extent_start
;
4160 em
->orig_start
= extent_start
-
4161 btrfs_file_extent_offset(leaf
, item
);
4162 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4164 em
->block_start
= EXTENT_MAP_HOLE
;
4168 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4169 em
->block_start
= bytenr
;
4170 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4173 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4174 em
->block_start
= bytenr
;
4175 em
->block_len
= em
->len
;
4176 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4177 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4180 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4184 size_t extent_offset
;
4187 em
->block_start
= EXTENT_MAP_INLINE
;
4188 if (!page
|| create
) {
4189 em
->start
= extent_start
;
4190 em
->len
= extent_end
- extent_start
;
4194 size
= btrfs_file_extent_inline_len(leaf
, item
);
4195 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4196 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4197 size
- extent_offset
);
4198 em
->start
= extent_start
+ extent_offset
;
4199 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4200 ~((u64
)root
->sectorsize
- 1);
4201 em
->orig_start
= EXTENT_MAP_INLINE
;
4203 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4204 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4205 if (create
== 0 && !PageUptodate(page
)) {
4206 if (btrfs_file_extent_compression(leaf
, item
) ==
4207 BTRFS_COMPRESS_ZLIB
) {
4208 ret
= uncompress_inline(path
, inode
, page
,
4210 extent_offset
, item
);
4214 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4218 flush_dcache_page(page
);
4219 } else if (create
&& PageUptodate(page
)) {
4222 free_extent_map(em
);
4224 btrfs_release_path(root
, path
);
4225 trans
= btrfs_join_transaction(root
, 1);
4229 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4232 btrfs_mark_buffer_dirty(leaf
);
4234 set_extent_uptodate(io_tree
, em
->start
,
4235 extent_map_end(em
) - 1, GFP_NOFS
);
4238 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4245 em
->block_start
= EXTENT_MAP_HOLE
;
4246 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4248 btrfs_release_path(root
, path
);
4249 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4250 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4251 "[%llu %llu]\n", (unsigned long long)em
->start
,
4252 (unsigned long long)em
->len
,
4253 (unsigned long long)start
,
4254 (unsigned long long)len
);
4260 spin_lock(&em_tree
->lock
);
4261 ret
= add_extent_mapping(em_tree
, em
);
4262 /* it is possible that someone inserted the extent into the tree
4263 * while we had the lock dropped. It is also possible that
4264 * an overlapping map exists in the tree
4266 if (ret
== -EEXIST
) {
4267 struct extent_map
*existing
;
4271 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4272 if (existing
&& (existing
->start
> start
||
4273 existing
->start
+ existing
->len
<= start
)) {
4274 free_extent_map(existing
);
4278 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4281 err
= merge_extent_mapping(em_tree
, existing
,
4284 free_extent_map(existing
);
4286 free_extent_map(em
);
4291 free_extent_map(em
);
4295 free_extent_map(em
);
4300 spin_unlock(&em_tree
->lock
);
4303 btrfs_free_path(path
);
4305 ret
= btrfs_end_transaction(trans
, root
);
4310 free_extent_map(em
);
4311 return ERR_PTR(err
);
4316 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4317 const struct iovec
*iov
, loff_t offset
,
4318 unsigned long nr_segs
)
4323 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4324 __u64 start
, __u64 len
)
4326 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
4329 int btrfs_readpage(struct file
*file
, struct page
*page
)
4331 struct extent_io_tree
*tree
;
4332 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4333 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4336 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4338 struct extent_io_tree
*tree
;
4341 if (current
->flags
& PF_MEMALLOC
) {
4342 redirty_page_for_writepage(wbc
, page
);
4346 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4347 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4350 int btrfs_writepages(struct address_space
*mapping
,
4351 struct writeback_control
*wbc
)
4353 struct extent_io_tree
*tree
;
4355 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4356 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4360 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4361 struct list_head
*pages
, unsigned nr_pages
)
4363 struct extent_io_tree
*tree
;
4364 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4365 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4368 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4370 struct extent_io_tree
*tree
;
4371 struct extent_map_tree
*map
;
4374 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4375 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4376 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4378 ClearPagePrivate(page
);
4379 set_page_private(page
, 0);
4380 page_cache_release(page
);
4385 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4387 if (PageWriteback(page
) || PageDirty(page
))
4389 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
4392 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4394 struct extent_io_tree
*tree
;
4395 struct btrfs_ordered_extent
*ordered
;
4396 u64 page_start
= page_offset(page
);
4397 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4399 wait_on_page_writeback(page
);
4400 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4402 btrfs_releasepage(page
, GFP_NOFS
);
4406 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4407 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4411 * IO on this page will never be started, so we need
4412 * to account for any ordered extents now
4414 clear_extent_bit(tree
, page_start
, page_end
,
4415 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4416 EXTENT_LOCKED
, 1, 0, GFP_NOFS
);
4417 btrfs_finish_ordered_io(page
->mapping
->host
,
4418 page_start
, page_end
);
4419 btrfs_put_ordered_extent(ordered
);
4420 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4422 clear_extent_bit(tree
, page_start
, page_end
,
4423 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4426 __btrfs_releasepage(page
, GFP_NOFS
);
4428 ClearPageChecked(page
);
4429 if (PagePrivate(page
)) {
4430 ClearPagePrivate(page
);
4431 set_page_private(page
, 0);
4432 page_cache_release(page
);
4437 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4438 * called from a page fault handler when a page is first dirtied. Hence we must
4439 * be careful to check for EOF conditions here. We set the page up correctly
4440 * for a written page which means we get ENOSPC checking when writing into
4441 * holes and correct delalloc and unwritten extent mapping on filesystems that
4442 * support these features.
4444 * We are not allowed to take the i_mutex here so we have to play games to
4445 * protect against truncate races as the page could now be beyond EOF. Because
4446 * vmtruncate() writes the inode size before removing pages, once we have the
4447 * page lock we can determine safely if the page is beyond EOF. If it is not
4448 * beyond EOF, then the page is guaranteed safe against truncation until we
4451 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4453 struct page
*page
= vmf
->page
;
4454 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
4455 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4456 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4457 struct btrfs_ordered_extent
*ordered
;
4459 unsigned long zero_start
;
4465 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
4469 else /* -ENOSPC, -EIO, etc */
4470 ret
= VM_FAULT_SIGBUS
;
4474 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
4477 size
= i_size_read(inode
);
4478 page_start
= page_offset(page
);
4479 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4481 if ((page
->mapping
!= inode
->i_mapping
) ||
4482 (page_start
>= size
)) {
4483 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4484 /* page got truncated out from underneath us */
4487 wait_on_page_writeback(page
);
4489 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4490 set_page_extent_mapped(page
);
4493 * we can't set the delalloc bits if there are pending ordered
4494 * extents. Drop our locks and wait for them to finish
4496 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4498 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4500 btrfs_start_ordered_extent(inode
, ordered
, 1);
4501 btrfs_put_ordered_extent(ordered
);
4505 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
4508 /* page is wholly or partially inside EOF */
4509 if (page_start
+ PAGE_CACHE_SIZE
> size
)
4510 zero_start
= size
& ~PAGE_CACHE_MASK
;
4512 zero_start
= PAGE_CACHE_SIZE
;
4514 if (zero_start
!= PAGE_CACHE_SIZE
) {
4516 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
4517 flush_dcache_page(page
);
4520 ClearPageChecked(page
);
4521 set_page_dirty(page
);
4523 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
4524 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4532 static void btrfs_truncate(struct inode
*inode
)
4534 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4536 struct btrfs_trans_handle
*trans
;
4538 u64 mask
= root
->sectorsize
- 1;
4540 if (!S_ISREG(inode
->i_mode
))
4542 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4545 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
4546 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
4548 trans
= btrfs_start_transaction(root
, 1);
4551 * setattr is responsible for setting the ordered_data_close flag,
4552 * but that is only tested during the last file release. That
4553 * could happen well after the next commit, leaving a great big
4554 * window where new writes may get lost if someone chooses to write
4555 * to this file after truncating to zero
4557 * The inode doesn't have any dirty data here, and so if we commit
4558 * this is a noop. If someone immediately starts writing to the inode
4559 * it is very likely we'll catch some of their writes in this
4560 * transaction, and the commit will find this file on the ordered
4561 * data list with good things to send down.
4563 * This is a best effort solution, there is still a window where
4564 * using truncate to replace the contents of the file will
4565 * end up with a zero length file after a crash.
4567 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
4568 btrfs_add_ordered_operation(trans
, root
, inode
);
4570 btrfs_set_trans_block_group(trans
, inode
);
4571 btrfs_i_size_write(inode
, inode
->i_size
);
4573 ret
= btrfs_orphan_add(trans
, inode
);
4576 /* FIXME, add redo link to tree so we don't leak on crash */
4577 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
,
4578 BTRFS_EXTENT_DATA_KEY
);
4579 btrfs_update_inode(trans
, root
, inode
);
4581 ret
= btrfs_orphan_del(trans
, inode
);
4585 nr
= trans
->blocks_used
;
4586 ret
= btrfs_end_transaction_throttle(trans
, root
);
4588 btrfs_btree_balance_dirty(root
, nr
);
4592 * create a new subvolume directory/inode (helper for the ioctl).
4594 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
4595 struct btrfs_root
*new_root
, struct dentry
*dentry
,
4596 u64 new_dirid
, u64 alloc_hint
)
4598 struct inode
*inode
;
4602 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
4603 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
4605 return PTR_ERR(inode
);
4606 inode
->i_op
= &btrfs_dir_inode_operations
;
4607 inode
->i_fop
= &btrfs_dir_file_operations
;
4610 btrfs_i_size_write(inode
, 0);
4612 error
= btrfs_update_inode(trans
, new_root
, inode
);
4616 d_instantiate(dentry
, inode
);
4620 /* helper function for file defrag and space balancing. This
4621 * forces readahead on a given range of bytes in an inode
4623 unsigned long btrfs_force_ra(struct address_space
*mapping
,
4624 struct file_ra_state
*ra
, struct file
*file
,
4625 pgoff_t offset
, pgoff_t last_index
)
4627 pgoff_t req_size
= last_index
- offset
+ 1;
4629 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
4630 return offset
+ req_size
;
4633 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
4635 struct btrfs_inode
*ei
;
4637 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
4641 ei
->logged_trans
= 0;
4642 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
4643 ei
->i_acl
= BTRFS_ACL_NOT_CACHED
;
4644 ei
->i_default_acl
= BTRFS_ACL_NOT_CACHED
;
4645 INIT_LIST_HEAD(&ei
->i_orphan
);
4646 INIT_LIST_HEAD(&ei
->ordered_operations
);
4647 return &ei
->vfs_inode
;
4650 void btrfs_destroy_inode(struct inode
*inode
)
4652 struct btrfs_ordered_extent
*ordered
;
4653 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4655 WARN_ON(!list_empty(&inode
->i_dentry
));
4656 WARN_ON(inode
->i_data
.nrpages
);
4658 if (BTRFS_I(inode
)->i_acl
&&
4659 BTRFS_I(inode
)->i_acl
!= BTRFS_ACL_NOT_CACHED
)
4660 posix_acl_release(BTRFS_I(inode
)->i_acl
);
4661 if (BTRFS_I(inode
)->i_default_acl
&&
4662 BTRFS_I(inode
)->i_default_acl
!= BTRFS_ACL_NOT_CACHED
)
4663 posix_acl_release(BTRFS_I(inode
)->i_default_acl
);
4666 * Make sure we're properly removed from the ordered operation
4670 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
4671 spin_lock(&root
->fs_info
->ordered_extent_lock
);
4672 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
4673 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
4676 spin_lock(&root
->list_lock
);
4677 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
4678 printk(KERN_ERR
"BTRFS: inode %lu: inode still on the orphan"
4679 " list\n", inode
->i_ino
);
4682 spin_unlock(&root
->list_lock
);
4685 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
4689 printk(KERN_ERR
"btrfs found ordered "
4690 "extent %llu %llu on inode cleanup\n",
4691 (unsigned long long)ordered
->file_offset
,
4692 (unsigned long long)ordered
->len
);
4693 btrfs_remove_ordered_extent(inode
, ordered
);
4694 btrfs_put_ordered_extent(ordered
);
4695 btrfs_put_ordered_extent(ordered
);
4698 inode_tree_del(inode
);
4699 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
4700 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
4703 static void init_once(void *foo
)
4705 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
4707 inode_init_once(&ei
->vfs_inode
);
4710 void btrfs_destroy_cachep(void)
4712 if (btrfs_inode_cachep
)
4713 kmem_cache_destroy(btrfs_inode_cachep
);
4714 if (btrfs_trans_handle_cachep
)
4715 kmem_cache_destroy(btrfs_trans_handle_cachep
);
4716 if (btrfs_transaction_cachep
)
4717 kmem_cache_destroy(btrfs_transaction_cachep
);
4718 if (btrfs_path_cachep
)
4719 kmem_cache_destroy(btrfs_path_cachep
);
4722 int btrfs_init_cachep(void)
4724 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
4725 sizeof(struct btrfs_inode
), 0,
4726 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
4727 if (!btrfs_inode_cachep
)
4730 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
4731 sizeof(struct btrfs_trans_handle
), 0,
4732 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4733 if (!btrfs_trans_handle_cachep
)
4736 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
4737 sizeof(struct btrfs_transaction
), 0,
4738 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4739 if (!btrfs_transaction_cachep
)
4742 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
4743 sizeof(struct btrfs_path
), 0,
4744 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4745 if (!btrfs_path_cachep
)
4750 btrfs_destroy_cachep();
4754 static int btrfs_getattr(struct vfsmount
*mnt
,
4755 struct dentry
*dentry
, struct kstat
*stat
)
4757 struct inode
*inode
= dentry
->d_inode
;
4758 generic_fillattr(inode
, stat
);
4759 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
4760 stat
->blksize
= PAGE_CACHE_SIZE
;
4761 stat
->blocks
= (inode_get_bytes(inode
) +
4762 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
4766 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
4767 struct inode
*new_dir
, struct dentry
*new_dentry
)
4769 struct btrfs_trans_handle
*trans
;
4770 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
4771 struct inode
*new_inode
= new_dentry
->d_inode
;
4772 struct inode
*old_inode
= old_dentry
->d_inode
;
4773 struct timespec ctime
= CURRENT_TIME
;
4777 /* we're not allowed to rename between subvolumes */
4778 if (BTRFS_I(old_inode
)->root
->root_key
.objectid
!=
4779 BTRFS_I(new_dir
)->root
->root_key
.objectid
)
4782 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
4783 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
) {
4787 /* to rename a snapshot or subvolume, we need to juggle the
4788 * backrefs. This isn't coded yet
4790 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
4793 ret
= btrfs_check_metadata_free_space(root
);
4798 * we're using rename to replace one file with another.
4799 * and the replacement file is large. Start IO on it now so
4800 * we don't add too much work to the end of the transaction
4802 if (new_inode
&& old_inode
&& S_ISREG(old_inode
->i_mode
) &&
4803 new_inode
->i_size
&&
4804 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
4805 filemap_flush(old_inode
->i_mapping
);
4807 trans
= btrfs_start_transaction(root
, 1);
4810 * make sure the inode gets flushed if it is replacing
4813 if (new_inode
&& new_inode
->i_size
&&
4814 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
4815 btrfs_add_ordered_operation(trans
, root
, old_inode
);
4819 * this is an ugly little race, but the rename is required to make
4820 * sure that if we crash, the inode is either at the old name
4821 * or the new one. pinning the log transaction lets us make sure
4822 * we don't allow a log commit to come in after we unlink the
4823 * name but before we add the new name back in.
4825 btrfs_pin_log_trans(root
);
4827 btrfs_set_trans_block_group(trans
, new_dir
);
4829 btrfs_inc_nlink(old_dentry
->d_inode
);
4830 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
4831 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
4832 old_inode
->i_ctime
= ctime
;
4834 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
4835 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
4837 ret
= btrfs_unlink_inode(trans
, root
, old_dir
, old_dentry
->d_inode
,
4838 old_dentry
->d_name
.name
,
4839 old_dentry
->d_name
.len
);
4844 new_inode
->i_ctime
= CURRENT_TIME
;
4845 ret
= btrfs_unlink_inode(trans
, root
, new_dir
,
4846 new_dentry
->d_inode
,
4847 new_dentry
->d_name
.name
,
4848 new_dentry
->d_name
.len
);
4851 if (new_inode
->i_nlink
== 0) {
4852 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
4858 ret
= btrfs_set_inode_index(new_dir
, &index
);
4862 ret
= btrfs_add_link(trans
, new_dentry
->d_parent
->d_inode
,
4863 old_inode
, new_dentry
->d_name
.name
,
4864 new_dentry
->d_name
.len
, 1, index
);
4868 btrfs_log_new_name(trans
, old_inode
, old_dir
,
4869 new_dentry
->d_parent
);
4872 /* this btrfs_end_log_trans just allows the current
4873 * log-sub transaction to complete
4875 btrfs_end_log_trans(root
);
4876 btrfs_end_transaction_throttle(trans
, root
);
4882 * some fairly slow code that needs optimization. This walks the list
4883 * of all the inodes with pending delalloc and forces them to disk.
4885 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
4887 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
4888 struct btrfs_inode
*binode
;
4889 struct inode
*inode
;
4891 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
4894 spin_lock(&root
->fs_info
->delalloc_lock
);
4895 while (!list_empty(head
)) {
4896 binode
= list_entry(head
->next
, struct btrfs_inode
,
4898 inode
= igrab(&binode
->vfs_inode
);
4900 list_del_init(&binode
->delalloc_inodes
);
4901 spin_unlock(&root
->fs_info
->delalloc_lock
);
4903 filemap_flush(inode
->i_mapping
);
4907 spin_lock(&root
->fs_info
->delalloc_lock
);
4909 spin_unlock(&root
->fs_info
->delalloc_lock
);
4911 /* the filemap_flush will queue IO into the worker threads, but
4912 * we have to make sure the IO is actually started and that
4913 * ordered extents get created before we return
4915 atomic_inc(&root
->fs_info
->async_submit_draining
);
4916 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
4917 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
4918 wait_event(root
->fs_info
->async_submit_wait
,
4919 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
4920 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
4922 atomic_dec(&root
->fs_info
->async_submit_draining
);
4926 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
4927 const char *symname
)
4929 struct btrfs_trans_handle
*trans
;
4930 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4931 struct btrfs_path
*path
;
4932 struct btrfs_key key
;
4933 struct inode
*inode
= NULL
;
4941 struct btrfs_file_extent_item
*ei
;
4942 struct extent_buffer
*leaf
;
4943 unsigned long nr
= 0;
4945 name_len
= strlen(symname
) + 1;
4946 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
4947 return -ENAMETOOLONG
;
4949 err
= btrfs_check_metadata_free_space(root
);
4953 trans
= btrfs_start_transaction(root
, 1);
4954 btrfs_set_trans_block_group(trans
, dir
);
4956 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4962 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4964 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4965 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
4967 err
= PTR_ERR(inode
);
4971 err
= btrfs_init_inode_security(inode
, dir
);
4977 btrfs_set_trans_block_group(trans
, inode
);
4978 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4982 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4983 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4984 inode
->i_fop
= &btrfs_file_operations
;
4985 inode
->i_op
= &btrfs_file_inode_operations
;
4986 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4988 btrfs_update_inode_block_group(trans
, inode
);
4989 btrfs_update_inode_block_group(trans
, dir
);
4993 path
= btrfs_alloc_path();
4995 key
.objectid
= inode
->i_ino
;
4997 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
4998 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
4999 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
5005 leaf
= path
->nodes
[0];
5006 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
5007 struct btrfs_file_extent_item
);
5008 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
5009 btrfs_set_file_extent_type(leaf
, ei
,
5010 BTRFS_FILE_EXTENT_INLINE
);
5011 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
5012 btrfs_set_file_extent_compression(leaf
, ei
, 0);
5013 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
5014 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
5016 ptr
= btrfs_file_extent_inline_start(ei
);
5017 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
5018 btrfs_mark_buffer_dirty(leaf
);
5019 btrfs_free_path(path
);
5021 inode
->i_op
= &btrfs_symlink_inode_operations
;
5022 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
5023 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5024 inode_set_bytes(inode
, name_len
);
5025 btrfs_i_size_write(inode
, name_len
- 1);
5026 err
= btrfs_update_inode(trans
, root
, inode
);
5031 nr
= trans
->blocks_used
;
5032 btrfs_end_transaction_throttle(trans
, root
);
5035 inode_dec_link_count(inode
);
5038 btrfs_btree_balance_dirty(root
, nr
);
5042 static int prealloc_file_range(struct btrfs_trans_handle
*trans
,
5043 struct inode
*inode
, u64 start
, u64 end
,
5044 u64 locked_end
, u64 alloc_hint
, int mode
)
5046 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5047 struct btrfs_key ins
;
5049 u64 cur_offset
= start
;
5050 u64 num_bytes
= end
- start
;
5053 while (num_bytes
> 0) {
5054 alloc_size
= min(num_bytes
, root
->fs_info
->max_extent
);
5055 ret
= btrfs_reserve_extent(trans
, root
, alloc_size
,
5056 root
->sectorsize
, 0, alloc_hint
,
5062 ret
= insert_reserved_file_extent(trans
, inode
,
5063 cur_offset
, ins
.objectid
,
5064 ins
.offset
, ins
.offset
,
5065 ins
.offset
, locked_end
,
5067 BTRFS_FILE_EXTENT_PREALLOC
);
5069 num_bytes
-= ins
.offset
;
5070 cur_offset
+= ins
.offset
;
5071 alloc_hint
= ins
.objectid
+ ins
.offset
;
5074 if (cur_offset
> start
) {
5075 inode
->i_ctime
= CURRENT_TIME
;
5076 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
5077 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
5078 cur_offset
> i_size_read(inode
))
5079 btrfs_i_size_write(inode
, cur_offset
);
5080 ret
= btrfs_update_inode(trans
, root
, inode
);
5087 static long btrfs_fallocate(struct inode
*inode
, int mode
,
5088 loff_t offset
, loff_t len
)
5096 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
5097 struct extent_map
*em
;
5098 struct btrfs_trans_handle
*trans
;
5101 alloc_start
= offset
& ~mask
;
5102 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
5105 * wait for ordered IO before we have any locks. We'll loop again
5106 * below with the locks held.
5108 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
5110 mutex_lock(&inode
->i_mutex
);
5111 if (alloc_start
> inode
->i_size
) {
5112 ret
= btrfs_cont_expand(inode
, alloc_start
);
5117 locked_end
= alloc_end
- 1;
5119 struct btrfs_ordered_extent
*ordered
;
5121 trans
= btrfs_start_transaction(BTRFS_I(inode
)->root
, 1);
5127 /* the extent lock is ordered inside the running
5130 lock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5132 ordered
= btrfs_lookup_first_ordered_extent(inode
,
5135 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
5136 ordered
->file_offset
< alloc_end
) {
5137 btrfs_put_ordered_extent(ordered
);
5138 unlock_extent(&BTRFS_I(inode
)->io_tree
,
5139 alloc_start
, locked_end
, GFP_NOFS
);
5140 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5143 * we can't wait on the range with the transaction
5144 * running or with the extent lock held
5146 btrfs_wait_ordered_range(inode
, alloc_start
,
5147 alloc_end
- alloc_start
);
5150 btrfs_put_ordered_extent(ordered
);
5155 cur_offset
= alloc_start
;
5157 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
5158 alloc_end
- cur_offset
, 0);
5159 BUG_ON(IS_ERR(em
) || !em
);
5160 last_byte
= min(extent_map_end(em
), alloc_end
);
5161 last_byte
= (last_byte
+ mask
) & ~mask
;
5162 if (em
->block_start
== EXTENT_MAP_HOLE
) {
5163 ret
= prealloc_file_range(trans
, inode
, cur_offset
,
5164 last_byte
, locked_end
+ 1,
5167 free_extent_map(em
);
5171 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
5172 alloc_hint
= em
->block_start
;
5173 free_extent_map(em
);
5175 cur_offset
= last_byte
;
5176 if (cur_offset
>= alloc_end
) {
5181 unlock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5184 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5186 mutex_unlock(&inode
->i_mutex
);
5190 static int btrfs_set_page_dirty(struct page
*page
)
5192 return __set_page_dirty_nobuffers(page
);
5195 static int btrfs_permission(struct inode
*inode
, int mask
)
5197 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
5199 return generic_permission(inode
, mask
, btrfs_check_acl
);
5202 static struct inode_operations btrfs_dir_inode_operations
= {
5203 .getattr
= btrfs_getattr
,
5204 .lookup
= btrfs_lookup
,
5205 .create
= btrfs_create
,
5206 .unlink
= btrfs_unlink
,
5208 .mkdir
= btrfs_mkdir
,
5209 .rmdir
= btrfs_rmdir
,
5210 .rename
= btrfs_rename
,
5211 .symlink
= btrfs_symlink
,
5212 .setattr
= btrfs_setattr
,
5213 .mknod
= btrfs_mknod
,
5214 .setxattr
= btrfs_setxattr
,
5215 .getxattr
= btrfs_getxattr
,
5216 .listxattr
= btrfs_listxattr
,
5217 .removexattr
= btrfs_removexattr
,
5218 .permission
= btrfs_permission
,
5220 static struct inode_operations btrfs_dir_ro_inode_operations
= {
5221 .lookup
= btrfs_lookup
,
5222 .permission
= btrfs_permission
,
5224 static struct file_operations btrfs_dir_file_operations
= {
5225 .llseek
= generic_file_llseek
,
5226 .read
= generic_read_dir
,
5227 .readdir
= btrfs_real_readdir
,
5228 .unlocked_ioctl
= btrfs_ioctl
,
5229 #ifdef CONFIG_COMPAT
5230 .compat_ioctl
= btrfs_ioctl
,
5232 .release
= btrfs_release_file
,
5233 .fsync
= btrfs_sync_file
,
5236 static struct extent_io_ops btrfs_extent_io_ops
= {
5237 .fill_delalloc
= run_delalloc_range
,
5238 .submit_bio_hook
= btrfs_submit_bio_hook
,
5239 .merge_bio_hook
= btrfs_merge_bio_hook
,
5240 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
5241 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
5242 .writepage_start_hook
= btrfs_writepage_start_hook
,
5243 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
5244 .set_bit_hook
= btrfs_set_bit_hook
,
5245 .clear_bit_hook
= btrfs_clear_bit_hook
,
5249 * btrfs doesn't support the bmap operation because swapfiles
5250 * use bmap to make a mapping of extents in the file. They assume
5251 * these extents won't change over the life of the file and they
5252 * use the bmap result to do IO directly to the drive.
5254 * the btrfs bmap call would return logical addresses that aren't
5255 * suitable for IO and they also will change frequently as COW
5256 * operations happen. So, swapfile + btrfs == corruption.
5258 * For now we're avoiding this by dropping bmap.
5260 static struct address_space_operations btrfs_aops
= {
5261 .readpage
= btrfs_readpage
,
5262 .writepage
= btrfs_writepage
,
5263 .writepages
= btrfs_writepages
,
5264 .readpages
= btrfs_readpages
,
5265 .sync_page
= block_sync_page
,
5266 .direct_IO
= btrfs_direct_IO
,
5267 .invalidatepage
= btrfs_invalidatepage
,
5268 .releasepage
= btrfs_releasepage
,
5269 .set_page_dirty
= btrfs_set_page_dirty
,
5272 static struct address_space_operations btrfs_symlink_aops
= {
5273 .readpage
= btrfs_readpage
,
5274 .writepage
= btrfs_writepage
,
5275 .invalidatepage
= btrfs_invalidatepage
,
5276 .releasepage
= btrfs_releasepage
,
5279 static struct inode_operations btrfs_file_inode_operations
= {
5280 .truncate
= btrfs_truncate
,
5281 .getattr
= btrfs_getattr
,
5282 .setattr
= btrfs_setattr
,
5283 .setxattr
= btrfs_setxattr
,
5284 .getxattr
= btrfs_getxattr
,
5285 .listxattr
= btrfs_listxattr
,
5286 .removexattr
= btrfs_removexattr
,
5287 .permission
= btrfs_permission
,
5288 .fallocate
= btrfs_fallocate
,
5289 .fiemap
= btrfs_fiemap
,
5291 static struct inode_operations btrfs_special_inode_operations
= {
5292 .getattr
= btrfs_getattr
,
5293 .setattr
= btrfs_setattr
,
5294 .permission
= btrfs_permission
,
5295 .setxattr
= btrfs_setxattr
,
5296 .getxattr
= btrfs_getxattr
,
5297 .listxattr
= btrfs_listxattr
,
5298 .removexattr
= btrfs_removexattr
,
5300 static struct inode_operations btrfs_symlink_inode_operations
= {
5301 .readlink
= generic_readlink
,
5302 .follow_link
= page_follow_link_light
,
5303 .put_link
= page_put_link
,
5304 .permission
= btrfs_permission
,
5305 .setxattr
= btrfs_setxattr
,
5306 .getxattr
= btrfs_getxattr
,
5307 .listxattr
= btrfs_listxattr
,
5308 .removexattr
= btrfs_removexattr
,