2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
21 #include "transaction.h"
24 #include "print-tree.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
47 * rename foo/some_dir foo2/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
93 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
94 struct btrfs_root
*root
, struct inode
*inode
,
96 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*root
,
98 struct btrfs_path
*path
, u64 objectid
);
99 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
100 struct btrfs_root
*root
,
101 struct btrfs_root
*log
,
102 struct btrfs_path
*path
,
103 u64 dirid
, int del_all
);
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
133 static int start_log_trans(struct btrfs_trans_handle
*trans
,
134 struct btrfs_root
*root
)
138 mutex_lock(&root
->log_mutex
);
139 if (root
->log_root
) {
141 atomic_inc(&root
->log_writers
);
142 mutex_unlock(&root
->log_mutex
);
145 mutex_lock(&root
->fs_info
->tree_log_mutex
);
146 if (!root
->fs_info
->log_root_tree
) {
147 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
150 if (!root
->log_root
) {
151 ret
= btrfs_add_log_tree(trans
, root
);
154 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
156 atomic_inc(&root
->log_writers
);
157 mutex_unlock(&root
->log_mutex
);
162 * returns 0 if there was a log transaction running and we were able
163 * to join, or returns -ENOENT if there were not transactions
166 static int join_running_log_trans(struct btrfs_root
*root
)
174 mutex_lock(&root
->log_mutex
);
175 if (root
->log_root
) {
177 atomic_inc(&root
->log_writers
);
179 mutex_unlock(&root
->log_mutex
);
184 * This either makes the current running log transaction wait
185 * until you call btrfs_end_log_trans() or it makes any future
186 * log transactions wait until you call btrfs_end_log_trans()
188 int btrfs_pin_log_trans(struct btrfs_root
*root
)
192 mutex_lock(&root
->log_mutex
);
193 atomic_inc(&root
->log_writers
);
194 mutex_unlock(&root
->log_mutex
);
199 * indicate we're done making changes to the log tree
200 * and wake up anyone waiting to do a sync
202 int btrfs_end_log_trans(struct btrfs_root
*root
)
204 if (atomic_dec_and_test(&root
->log_writers
)) {
206 if (waitqueue_active(&root
->log_writer_wait
))
207 wake_up(&root
->log_writer_wait
);
214 * the walk control struct is used to pass state down the chain when
215 * processing the log tree. The stage field tells us which part
216 * of the log tree processing we are currently doing. The others
217 * are state fields used for that specific part
219 struct walk_control
{
220 /* should we free the extent on disk when done? This is used
221 * at transaction commit time while freeing a log tree
225 /* should we write out the extent buffer? This is used
226 * while flushing the log tree to disk during a sync
230 /* should we wait for the extent buffer io to finish? Also used
231 * while flushing the log tree to disk for a sync
235 /* pin only walk, we record which extents on disk belong to the
240 /* what stage of the replay code we're currently in */
243 /* the root we are currently replaying */
244 struct btrfs_root
*replay_dest
;
246 /* the trans handle for the current replay */
247 struct btrfs_trans_handle
*trans
;
249 /* the function that gets used to process blocks we find in the
250 * tree. Note the extent_buffer might not be up to date when it is
251 * passed in, and it must be checked or read if you need the data
254 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
255 struct walk_control
*wc
, u64 gen
);
259 * process_func used to pin down extents, write them or wait on them
261 static int process_one_buffer(struct btrfs_root
*log
,
262 struct extent_buffer
*eb
,
263 struct walk_control
*wc
, u64 gen
)
266 btrfs_update_pinned_extents(log
->fs_info
->extent_root
,
267 eb
->start
, eb
->len
, 1);
269 if (btrfs_buffer_uptodate(eb
, gen
)) {
271 btrfs_write_tree_block(eb
);
273 btrfs_wait_tree_block_writeback(eb
);
279 * Item overwrite used by replay and tree logging. eb, slot and key all refer
280 * to the src data we are copying out.
282 * root is the tree we are copying into, and path is a scratch
283 * path for use in this function (it should be released on entry and
284 * will be released on exit).
286 * If the key is already in the destination tree the existing item is
287 * overwritten. If the existing item isn't big enough, it is extended.
288 * If it is too large, it is truncated.
290 * If the key isn't in the destination yet, a new item is inserted.
292 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
293 struct btrfs_root
*root
,
294 struct btrfs_path
*path
,
295 struct extent_buffer
*eb
, int slot
,
296 struct btrfs_key
*key
)
300 u64 saved_i_size
= 0;
301 int save_old_i_size
= 0;
302 unsigned long src_ptr
;
303 unsigned long dst_ptr
;
304 int overwrite_root
= 0;
306 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
309 item_size
= btrfs_item_size_nr(eb
, slot
);
310 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
312 /* look for the key in the destination tree */
313 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
317 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
319 if (dst_size
!= item_size
)
322 if (item_size
== 0) {
323 btrfs_release_path(root
, path
);
326 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
327 src_copy
= kmalloc(item_size
, GFP_NOFS
);
329 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
331 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
332 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
334 ret
= memcmp(dst_copy
, src_copy
, item_size
);
339 * they have the same contents, just return, this saves
340 * us from cowing blocks in the destination tree and doing
341 * extra writes that may not have been done by a previous
345 btrfs_release_path(root
, path
);
351 btrfs_release_path(root
, path
);
352 /* try to insert the key into the destination tree */
353 ret
= btrfs_insert_empty_item(trans
, root
, path
,
356 /* make sure any existing item is the correct size */
357 if (ret
== -EEXIST
) {
359 found_size
= btrfs_item_size_nr(path
->nodes
[0],
361 if (found_size
> item_size
) {
362 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
363 } else if (found_size
< item_size
) {
364 ret
= btrfs_extend_item(trans
, root
, path
,
365 item_size
- found_size
);
371 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
374 /* don't overwrite an existing inode if the generation number
375 * was logged as zero. This is done when the tree logging code
376 * is just logging an inode to make sure it exists after recovery.
378 * Also, don't overwrite i_size on directories during replay.
379 * log replay inserts and removes directory items based on the
380 * state of the tree found in the subvolume, and i_size is modified
383 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
384 struct btrfs_inode_item
*src_item
;
385 struct btrfs_inode_item
*dst_item
;
387 src_item
= (struct btrfs_inode_item
*)src_ptr
;
388 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
390 if (btrfs_inode_generation(eb
, src_item
) == 0)
393 if (overwrite_root
&&
394 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
395 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
397 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
402 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
405 if (save_old_i_size
) {
406 struct btrfs_inode_item
*dst_item
;
407 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
408 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
411 /* make sure the generation is filled in */
412 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
413 struct btrfs_inode_item
*dst_item
;
414 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
415 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
416 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
421 btrfs_mark_buffer_dirty(path
->nodes
[0]);
422 btrfs_release_path(root
, path
);
427 * simple helper to read an inode off the disk from a given root
428 * This can only be called for subvolume roots and not for the log
430 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
433 struct btrfs_key key
;
436 key
.objectid
= objectid
;
437 key
.type
= BTRFS_INODE_ITEM_KEY
;
439 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
);
442 } else if (is_bad_inode(inode
)) {
449 /* replays a single extent in 'eb' at 'slot' with 'key' into the
450 * subvolume 'root'. path is released on entry and should be released
453 * extents in the log tree have not been allocated out of the extent
454 * tree yet. So, this completes the allocation, taking a reference
455 * as required if the extent already exists or creating a new extent
456 * if it isn't in the extent allocation tree yet.
458 * The extent is inserted into the file, dropping any existing extents
459 * from the file that overlap the new one.
461 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
462 struct btrfs_root
*root
,
463 struct btrfs_path
*path
,
464 struct extent_buffer
*eb
, int slot
,
465 struct btrfs_key
*key
)
468 u64 mask
= root
->sectorsize
- 1;
471 u64 start
= key
->offset
;
473 struct btrfs_file_extent_item
*item
;
474 struct inode
*inode
= NULL
;
478 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
479 found_type
= btrfs_file_extent_type(eb
, item
);
481 if (found_type
== BTRFS_FILE_EXTENT_REG
||
482 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
483 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
484 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
485 size
= btrfs_file_extent_inline_len(eb
, item
);
486 extent_end
= (start
+ size
+ mask
) & ~mask
;
492 inode
= read_one_inode(root
, key
->objectid
);
499 * first check to see if we already have this extent in the
500 * file. This must be done before the btrfs_drop_extents run
501 * so we don't try to drop this extent.
503 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
507 (found_type
== BTRFS_FILE_EXTENT_REG
||
508 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
509 struct btrfs_file_extent_item cmp1
;
510 struct btrfs_file_extent_item cmp2
;
511 struct btrfs_file_extent_item
*existing
;
512 struct extent_buffer
*leaf
;
514 leaf
= path
->nodes
[0];
515 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
516 struct btrfs_file_extent_item
);
518 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
520 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
524 * we already have a pointer to this exact extent,
525 * we don't have to do anything
527 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
528 btrfs_release_path(root
, path
);
532 btrfs_release_path(root
, path
);
534 saved_nbytes
= inode_get_bytes(inode
);
535 /* drop any overlapping extents */
536 ret
= btrfs_drop_extents(trans
, root
, inode
,
537 start
, extent_end
, extent_end
, start
, &alloc_hint
);
540 if (found_type
== BTRFS_FILE_EXTENT_REG
||
541 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
543 unsigned long dest_offset
;
544 struct btrfs_key ins
;
546 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
549 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
551 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
552 (unsigned long)item
, sizeof(*item
));
554 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
555 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
556 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
557 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
559 if (ins
.objectid
> 0) {
562 LIST_HEAD(ordered_sums
);
564 * is this extent already allocated in the extent
565 * allocation tree? If so, just add a reference
567 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
570 ret
= btrfs_inc_extent_ref(trans
, root
,
571 ins
.objectid
, ins
.offset
,
572 0, root
->root_key
.objectid
,
573 key
->objectid
, offset
);
576 * insert the extent pointer in the extent
579 ret
= btrfs_alloc_logged_file_extent(trans
,
580 root
, root
->root_key
.objectid
,
581 key
->objectid
, offset
, &ins
);
584 btrfs_release_path(root
, path
);
586 if (btrfs_file_extent_compression(eb
, item
)) {
587 csum_start
= ins
.objectid
;
588 csum_end
= csum_start
+ ins
.offset
;
590 csum_start
= ins
.objectid
+
591 btrfs_file_extent_offset(eb
, item
);
592 csum_end
= csum_start
+
593 btrfs_file_extent_num_bytes(eb
, item
);
596 ret
= btrfs_lookup_csums_range(root
->log_root
,
597 csum_start
, csum_end
- 1,
600 while (!list_empty(&ordered_sums
)) {
601 struct btrfs_ordered_sum
*sums
;
602 sums
= list_entry(ordered_sums
.next
,
603 struct btrfs_ordered_sum
,
605 ret
= btrfs_csum_file_blocks(trans
,
606 root
->fs_info
->csum_root
,
609 list_del(&sums
->list
);
613 btrfs_release_path(root
, path
);
615 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
616 /* inline extents are easy, we just overwrite them */
617 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
621 inode_set_bytes(inode
, saved_nbytes
);
622 btrfs_update_inode(trans
, root
, inode
);
630 * when cleaning up conflicts between the directory names in the
631 * subvolume, directory names in the log and directory names in the
632 * inode back references, we may have to unlink inodes from directories.
634 * This is a helper function to do the unlink of a specific directory
637 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
638 struct btrfs_root
*root
,
639 struct btrfs_path
*path
,
641 struct btrfs_dir_item
*di
)
646 struct extent_buffer
*leaf
;
647 struct btrfs_key location
;
650 leaf
= path
->nodes
[0];
652 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
653 name_len
= btrfs_dir_name_len(leaf
, di
);
654 name
= kmalloc(name_len
, GFP_NOFS
);
655 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
656 btrfs_release_path(root
, path
);
658 inode
= read_one_inode(root
, location
.objectid
);
661 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
664 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
673 * helper function to see if a given name and sequence number found
674 * in an inode back reference are already in a directory and correctly
675 * point to this inode
677 static noinline
int inode_in_dir(struct btrfs_root
*root
,
678 struct btrfs_path
*path
,
679 u64 dirid
, u64 objectid
, u64 index
,
680 const char *name
, int name_len
)
682 struct btrfs_dir_item
*di
;
683 struct btrfs_key location
;
686 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
687 index
, name
, name_len
, 0);
688 if (di
&& !IS_ERR(di
)) {
689 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
690 if (location
.objectid
!= objectid
)
694 btrfs_release_path(root
, path
);
696 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
697 if (di
&& !IS_ERR(di
)) {
698 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
699 if (location
.objectid
!= objectid
)
705 btrfs_release_path(root
, path
);
710 * helper function to check a log tree for a named back reference in
711 * an inode. This is used to decide if a back reference that is
712 * found in the subvolume conflicts with what we find in the log.
714 * inode backreferences may have multiple refs in a single item,
715 * during replay we process one reference at a time, and we don't
716 * want to delete valid links to a file from the subvolume if that
717 * link is also in the log.
719 static noinline
int backref_in_log(struct btrfs_root
*log
,
720 struct btrfs_key
*key
,
721 char *name
, int namelen
)
723 struct btrfs_path
*path
;
724 struct btrfs_inode_ref
*ref
;
726 unsigned long ptr_end
;
727 unsigned long name_ptr
;
733 path
= btrfs_alloc_path();
734 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
738 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
739 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
740 ptr_end
= ptr
+ item_size
;
741 while (ptr
< ptr_end
) {
742 ref
= (struct btrfs_inode_ref
*)ptr
;
743 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
744 if (found_name_len
== namelen
) {
745 name_ptr
= (unsigned long)(ref
+ 1);
746 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
753 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
756 btrfs_free_path(path
);
762 * replay one inode back reference item found in the log tree.
763 * eb, slot and key refer to the buffer and key found in the log tree.
764 * root is the destination we are replaying into, and path is for temp
765 * use by this function. (it should be released on return).
767 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
768 struct btrfs_root
*root
,
769 struct btrfs_root
*log
,
770 struct btrfs_path
*path
,
771 struct extent_buffer
*eb
, int slot
,
772 struct btrfs_key
*key
)
776 struct btrfs_key location
;
777 struct btrfs_inode_ref
*ref
;
778 struct btrfs_dir_item
*di
;
782 unsigned long ref_ptr
;
783 unsigned long ref_end
;
785 location
.objectid
= key
->objectid
;
786 location
.type
= BTRFS_INODE_ITEM_KEY
;
790 * it is possible that we didn't log all the parent directories
791 * for a given inode. If we don't find the dir, just don't
792 * copy the back ref in. The link count fixup code will take
795 dir
= read_one_inode(root
, key
->offset
);
799 inode
= read_one_inode(root
, key
->objectid
);
802 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
803 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
806 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
808 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
809 name
= kmalloc(namelen
, GFP_NOFS
);
812 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
814 /* if we already have a perfect match, we're done */
815 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
816 btrfs_inode_ref_index(eb
, ref
),
822 * look for a conflicting back reference in the metadata.
823 * if we find one we have to unlink that name of the file
824 * before we add our new link. Later on, we overwrite any
825 * existing back reference, and we don't want to create
826 * dangling pointers in the directory.
829 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
833 struct btrfs_inode_ref
*victim_ref
;
835 unsigned long ptr_end
;
836 struct extent_buffer
*leaf
= path
->nodes
[0];
838 /* are we trying to overwrite a back ref for the root directory
839 * if so, just jump out, we're done
841 if (key
->objectid
== key
->offset
)
844 /* check all the names in this back reference to see
845 * if they are in the log. if so, we allow them to stay
846 * otherwise they must be unlinked as a conflict
848 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
849 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
850 while (ptr
< ptr_end
) {
851 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
852 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
854 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
855 BUG_ON(!victim_name
);
857 read_extent_buffer(leaf
, victim_name
,
858 (unsigned long)(victim_ref
+ 1),
861 if (!backref_in_log(log
, key
, victim_name
,
863 btrfs_inc_nlink(inode
);
864 btrfs_release_path(root
, path
);
866 ret
= btrfs_unlink_inode(trans
, root
, dir
,
870 btrfs_release_path(root
, path
);
874 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
878 btrfs_release_path(root
, path
);
880 /* look for a conflicting sequence number */
881 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
882 btrfs_inode_ref_index(eb
, ref
),
884 if (di
&& !IS_ERR(di
)) {
885 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
888 btrfs_release_path(root
, path
);
891 /* look for a conflicting name */
892 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
894 if (di
&& !IS_ERR(di
)) {
895 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
898 btrfs_release_path(root
, path
);
900 /* insert our name */
901 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
902 btrfs_inode_ref_index(eb
, ref
));
905 btrfs_update_inode(trans
, root
, inode
);
908 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
910 if (ref_ptr
< ref_end
)
913 /* finally write the back reference in the inode */
914 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
918 btrfs_release_path(root
, path
);
925 * There are a few corners where the link count of the file can't
926 * be properly maintained during replay. So, instead of adding
927 * lots of complexity to the log code, we just scan the backrefs
928 * for any file that has been through replay.
930 * The scan will update the link count on the inode to reflect the
931 * number of back refs found. If it goes down to zero, the iput
932 * will free the inode.
934 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
935 struct btrfs_root
*root
,
938 struct btrfs_path
*path
;
940 struct btrfs_key key
;
943 unsigned long ptr_end
;
946 key
.objectid
= inode
->i_ino
;
947 key
.type
= BTRFS_INODE_REF_KEY
;
948 key
.offset
= (u64
)-1;
950 path
= btrfs_alloc_path();
953 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
957 if (path
->slots
[0] == 0)
961 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
963 if (key
.objectid
!= inode
->i_ino
||
964 key
.type
!= BTRFS_INODE_REF_KEY
)
966 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
967 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
969 while (ptr
< ptr_end
) {
970 struct btrfs_inode_ref
*ref
;
972 ref
= (struct btrfs_inode_ref
*)ptr
;
973 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
975 ptr
= (unsigned long)(ref
+ 1) + name_len
;
982 btrfs_release_path(root
, path
);
984 btrfs_release_path(root
, path
);
985 if (nlink
!= inode
->i_nlink
) {
986 inode
->i_nlink
= nlink
;
987 btrfs_update_inode(trans
, root
, inode
);
989 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
991 if (inode
->i_nlink
== 0 && S_ISDIR(inode
->i_mode
)) {
992 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
996 btrfs_free_path(path
);
1001 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1002 struct btrfs_root
*root
,
1003 struct btrfs_path
*path
)
1006 struct btrfs_key key
;
1007 struct inode
*inode
;
1009 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1010 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1011 key
.offset
= (u64
)-1;
1013 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1018 if (path
->slots
[0] == 0)
1023 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1024 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1025 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1028 ret
= btrfs_del_item(trans
, root
, path
);
1031 btrfs_release_path(root
, path
);
1032 inode
= read_one_inode(root
, key
.offset
);
1035 ret
= fixup_inode_link_count(trans
, root
, inode
);
1041 * fixup on a directory may create new entries,
1042 * make sure we always look for the highset possible
1045 key
.offset
= (u64
)-1;
1047 btrfs_release_path(root
, path
);
1053 * record a given inode in the fixup dir so we can check its link
1054 * count when replay is done. The link count is incremented here
1055 * so the inode won't go away until we check it
1057 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1058 struct btrfs_root
*root
,
1059 struct btrfs_path
*path
,
1062 struct btrfs_key key
;
1064 struct inode
*inode
;
1066 inode
= read_one_inode(root
, objectid
);
1069 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1070 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1071 key
.offset
= objectid
;
1073 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1075 btrfs_release_path(root
, path
);
1077 btrfs_inc_nlink(inode
);
1078 btrfs_update_inode(trans
, root
, inode
);
1079 } else if (ret
== -EEXIST
) {
1090 * when replaying the log for a directory, we only insert names
1091 * for inodes that actually exist. This means an fsync on a directory
1092 * does not implicitly fsync all the new files in it
1094 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1095 struct btrfs_root
*root
,
1096 struct btrfs_path
*path
,
1097 u64 dirid
, u64 index
,
1098 char *name
, int name_len
, u8 type
,
1099 struct btrfs_key
*location
)
1101 struct inode
*inode
;
1105 inode
= read_one_inode(root
, location
->objectid
);
1109 dir
= read_one_inode(root
, dirid
);
1114 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1116 /* FIXME, put inode into FIXUP list */
1124 * take a single entry in a log directory item and replay it into
1127 * if a conflicting item exists in the subdirectory already,
1128 * the inode it points to is unlinked and put into the link count
1131 * If a name from the log points to a file or directory that does
1132 * not exist in the FS, it is skipped. fsyncs on directories
1133 * do not force down inodes inside that directory, just changes to the
1134 * names or unlinks in a directory.
1136 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1137 struct btrfs_root
*root
,
1138 struct btrfs_path
*path
,
1139 struct extent_buffer
*eb
,
1140 struct btrfs_dir_item
*di
,
1141 struct btrfs_key
*key
)
1145 struct btrfs_dir_item
*dst_di
;
1146 struct btrfs_key found_key
;
1147 struct btrfs_key log_key
;
1153 dir
= read_one_inode(root
, key
->objectid
);
1156 name_len
= btrfs_dir_name_len(eb
, di
);
1157 name
= kmalloc(name_len
, GFP_NOFS
);
1158 log_type
= btrfs_dir_type(eb
, di
);
1159 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1162 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1163 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1168 btrfs_release_path(root
, path
);
1170 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1171 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1173 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1174 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1181 if (!dst_di
|| IS_ERR(dst_di
)) {
1182 /* we need a sequence number to insert, so we only
1183 * do inserts for the BTRFS_DIR_INDEX_KEY types
1185 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1190 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1191 /* the existing item matches the logged item */
1192 if (found_key
.objectid
== log_key
.objectid
&&
1193 found_key
.type
== log_key
.type
&&
1194 found_key
.offset
== log_key
.offset
&&
1195 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1200 * don't drop the conflicting directory entry if the inode
1201 * for the new entry doesn't exist
1206 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1209 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1212 btrfs_release_path(root
, path
);
1218 btrfs_release_path(root
, path
);
1219 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1220 name
, name_len
, log_type
, &log_key
);
1222 BUG_ON(ret
&& ret
!= -ENOENT
);
1227 * find all the names in a directory item and reconcile them into
1228 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1229 * one name in a directory item, but the same code gets used for
1230 * both directory index types
1232 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1233 struct btrfs_root
*root
,
1234 struct btrfs_path
*path
,
1235 struct extent_buffer
*eb
, int slot
,
1236 struct btrfs_key
*key
)
1239 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1240 struct btrfs_dir_item
*di
;
1243 unsigned long ptr_end
;
1245 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1246 ptr_end
= ptr
+ item_size
;
1247 while (ptr
< ptr_end
) {
1248 di
= (struct btrfs_dir_item
*)ptr
;
1249 name_len
= btrfs_dir_name_len(eb
, di
);
1250 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1252 ptr
= (unsigned long)(di
+ 1);
1259 * directory replay has two parts. There are the standard directory
1260 * items in the log copied from the subvolume, and range items
1261 * created in the log while the subvolume was logged.
1263 * The range items tell us which parts of the key space the log
1264 * is authoritative for. During replay, if a key in the subvolume
1265 * directory is in a logged range item, but not actually in the log
1266 * that means it was deleted from the directory before the fsync
1267 * and should be removed.
1269 static noinline
int find_dir_range(struct btrfs_root
*root
,
1270 struct btrfs_path
*path
,
1271 u64 dirid
, int key_type
,
1272 u64
*start_ret
, u64
*end_ret
)
1274 struct btrfs_key key
;
1276 struct btrfs_dir_log_item
*item
;
1280 if (*start_ret
== (u64
)-1)
1283 key
.objectid
= dirid
;
1284 key
.type
= key_type
;
1285 key
.offset
= *start_ret
;
1287 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1291 if (path
->slots
[0] == 0)
1296 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1298 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1302 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1303 struct btrfs_dir_log_item
);
1304 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1306 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1308 *start_ret
= key
.offset
;
1309 *end_ret
= found_end
;
1314 /* check the next slot in the tree to see if it is a valid item */
1315 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1316 if (path
->slots
[0] >= nritems
) {
1317 ret
= btrfs_next_leaf(root
, path
);
1324 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1326 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1330 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1331 struct btrfs_dir_log_item
);
1332 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1333 *start_ret
= key
.offset
;
1334 *end_ret
= found_end
;
1337 btrfs_release_path(root
, path
);
1342 * this looks for a given directory item in the log. If the directory
1343 * item is not in the log, the item is removed and the inode it points
1346 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1347 struct btrfs_root
*root
,
1348 struct btrfs_root
*log
,
1349 struct btrfs_path
*path
,
1350 struct btrfs_path
*log_path
,
1352 struct btrfs_key
*dir_key
)
1355 struct extent_buffer
*eb
;
1358 struct btrfs_dir_item
*di
;
1359 struct btrfs_dir_item
*log_di
;
1362 unsigned long ptr_end
;
1364 struct inode
*inode
;
1365 struct btrfs_key location
;
1368 eb
= path
->nodes
[0];
1369 slot
= path
->slots
[0];
1370 item_size
= btrfs_item_size_nr(eb
, slot
);
1371 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1372 ptr_end
= ptr
+ item_size
;
1373 while (ptr
< ptr_end
) {
1374 di
= (struct btrfs_dir_item
*)ptr
;
1375 name_len
= btrfs_dir_name_len(eb
, di
);
1376 name
= kmalloc(name_len
, GFP_NOFS
);
1381 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1384 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1385 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1388 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1389 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1395 if (!log_di
|| IS_ERR(log_di
)) {
1396 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1397 btrfs_release_path(root
, path
);
1398 btrfs_release_path(log
, log_path
);
1399 inode
= read_one_inode(root
, location
.objectid
);
1402 ret
= link_to_fixup_dir(trans
, root
,
1403 path
, location
.objectid
);
1405 btrfs_inc_nlink(inode
);
1406 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1412 /* there might still be more names under this key
1413 * check and repeat if required
1415 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1422 btrfs_release_path(log
, log_path
);
1425 ptr
= (unsigned long)(di
+ 1);
1430 btrfs_release_path(root
, path
);
1431 btrfs_release_path(log
, log_path
);
1436 * deletion replay happens before we copy any new directory items
1437 * out of the log or out of backreferences from inodes. It
1438 * scans the log to find ranges of keys that log is authoritative for,
1439 * and then scans the directory to find items in those ranges that are
1440 * not present in the log.
1442 * Anything we don't find in the log is unlinked and removed from the
1445 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1446 struct btrfs_root
*root
,
1447 struct btrfs_root
*log
,
1448 struct btrfs_path
*path
,
1449 u64 dirid
, int del_all
)
1453 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1455 struct btrfs_key dir_key
;
1456 struct btrfs_key found_key
;
1457 struct btrfs_path
*log_path
;
1460 dir_key
.objectid
= dirid
;
1461 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1462 log_path
= btrfs_alloc_path();
1466 dir
= read_one_inode(root
, dirid
);
1467 /* it isn't an error if the inode isn't there, that can happen
1468 * because we replay the deletes before we copy in the inode item
1472 btrfs_free_path(log_path
);
1480 range_end
= (u64
)-1;
1482 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1483 &range_start
, &range_end
);
1488 dir_key
.offset
= range_start
;
1491 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1496 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1497 if (path
->slots
[0] >= nritems
) {
1498 ret
= btrfs_next_leaf(root
, path
);
1502 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1504 if (found_key
.objectid
!= dirid
||
1505 found_key
.type
!= dir_key
.type
)
1508 if (found_key
.offset
> range_end
)
1511 ret
= check_item_in_log(trans
, root
, log
, path
,
1515 if (found_key
.offset
== (u64
)-1)
1517 dir_key
.offset
= found_key
.offset
+ 1;
1519 btrfs_release_path(root
, path
);
1520 if (range_end
== (u64
)-1)
1522 range_start
= range_end
+ 1;
1527 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1528 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1529 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1530 btrfs_release_path(root
, path
);
1534 btrfs_release_path(root
, path
);
1535 btrfs_free_path(log_path
);
1541 * the process_func used to replay items from the log tree. This
1542 * gets called in two different stages. The first stage just looks
1543 * for inodes and makes sure they are all copied into the subvolume.
1545 * The second stage copies all the other item types from the log into
1546 * the subvolume. The two stage approach is slower, but gets rid of
1547 * lots of complexity around inodes referencing other inodes that exist
1548 * only in the log (references come from either directory items or inode
1551 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1552 struct walk_control
*wc
, u64 gen
)
1555 struct btrfs_path
*path
;
1556 struct btrfs_root
*root
= wc
->replay_dest
;
1557 struct btrfs_key key
;
1563 btrfs_read_buffer(eb
, gen
);
1565 level
= btrfs_header_level(eb
);
1570 path
= btrfs_alloc_path();
1573 nritems
= btrfs_header_nritems(eb
);
1574 for (i
= 0; i
< nritems
; i
++) {
1575 btrfs_item_key_to_cpu(eb
, &key
, i
);
1576 item_size
= btrfs_item_size_nr(eb
, i
);
1578 /* inode keys are done during the first stage */
1579 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1580 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1581 struct inode
*inode
;
1582 struct btrfs_inode_item
*inode_item
;
1585 inode_item
= btrfs_item_ptr(eb
, i
,
1586 struct btrfs_inode_item
);
1587 mode
= btrfs_inode_mode(eb
, inode_item
);
1588 if (S_ISDIR(mode
)) {
1589 ret
= replay_dir_deletes(wc
->trans
,
1590 root
, log
, path
, key
.objectid
, 0);
1593 ret
= overwrite_item(wc
->trans
, root
, path
,
1597 /* for regular files, truncate away
1598 * extents past the new EOF
1600 if (S_ISREG(mode
)) {
1601 inode
= read_one_inode(root
,
1605 ret
= btrfs_truncate_inode_items(wc
->trans
,
1606 root
, inode
, inode
->i_size
,
1607 BTRFS_EXTENT_DATA_KEY
);
1610 /* if the nlink count is zero here, the iput
1611 * will free the inode. We bump it to make
1612 * sure it doesn't get freed until the link
1613 * count fixup is done
1615 if (inode
->i_nlink
== 0) {
1616 btrfs_inc_nlink(inode
);
1617 btrfs_update_inode(wc
->trans
,
1622 ret
= link_to_fixup_dir(wc
->trans
, root
,
1623 path
, key
.objectid
);
1626 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1629 /* these keys are simply copied */
1630 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1631 ret
= overwrite_item(wc
->trans
, root
, path
,
1634 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1635 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1637 BUG_ON(ret
&& ret
!= -ENOENT
);
1638 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1639 ret
= replay_one_extent(wc
->trans
, root
, path
,
1642 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1643 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1644 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1649 btrfs_free_path(path
);
1653 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1654 struct btrfs_root
*root
,
1655 struct btrfs_path
*path
, int *level
,
1656 struct walk_control
*wc
)
1662 struct extent_buffer
*next
;
1663 struct extent_buffer
*cur
;
1664 struct extent_buffer
*parent
;
1668 WARN_ON(*level
< 0);
1669 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1671 while (*level
> 0) {
1672 WARN_ON(*level
< 0);
1673 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1674 cur
= path
->nodes
[*level
];
1676 if (btrfs_header_level(cur
) != *level
)
1679 if (path
->slots
[*level
] >=
1680 btrfs_header_nritems(cur
))
1683 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1684 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1685 blocksize
= btrfs_level_size(root
, *level
- 1);
1687 parent
= path
->nodes
[*level
];
1688 root_owner
= btrfs_header_owner(parent
);
1689 root_gen
= btrfs_header_generation(parent
);
1691 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1693 wc
->process_func(root
, next
, wc
, ptr_gen
);
1696 path
->slots
[*level
]++;
1698 btrfs_read_buffer(next
, ptr_gen
);
1700 btrfs_tree_lock(next
);
1701 clean_tree_block(trans
, root
, next
);
1702 btrfs_set_lock_blocking(next
);
1703 btrfs_wait_tree_block_writeback(next
);
1704 btrfs_tree_unlock(next
);
1706 WARN_ON(root_owner
!=
1707 BTRFS_TREE_LOG_OBJECTID
);
1708 ret
= btrfs_free_reserved_extent(root
,
1712 free_extent_buffer(next
);
1715 btrfs_read_buffer(next
, ptr_gen
);
1717 WARN_ON(*level
<= 0);
1718 if (path
->nodes
[*level
-1])
1719 free_extent_buffer(path
->nodes
[*level
-1]);
1720 path
->nodes
[*level
-1] = next
;
1721 *level
= btrfs_header_level(next
);
1722 path
->slots
[*level
] = 0;
1725 WARN_ON(*level
< 0);
1726 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1728 if (path
->nodes
[*level
] == root
->node
)
1729 parent
= path
->nodes
[*level
];
1731 parent
= path
->nodes
[*level
+ 1];
1733 bytenr
= path
->nodes
[*level
]->start
;
1735 blocksize
= btrfs_level_size(root
, *level
);
1736 root_owner
= btrfs_header_owner(parent
);
1737 root_gen
= btrfs_header_generation(parent
);
1739 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1740 btrfs_header_generation(path
->nodes
[*level
]));
1743 next
= path
->nodes
[*level
];
1744 btrfs_tree_lock(next
);
1745 clean_tree_block(trans
, root
, next
);
1746 btrfs_set_lock_blocking(next
);
1747 btrfs_wait_tree_block_writeback(next
);
1748 btrfs_tree_unlock(next
);
1750 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1751 ret
= btrfs_free_reserved_extent(root
, bytenr
, blocksize
);
1754 free_extent_buffer(path
->nodes
[*level
]);
1755 path
->nodes
[*level
] = NULL
;
1762 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1763 struct btrfs_root
*root
,
1764 struct btrfs_path
*path
, int *level
,
1765 struct walk_control
*wc
)
1773 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1774 slot
= path
->slots
[i
];
1775 if (slot
< btrfs_header_nritems(path
->nodes
[i
]) - 1) {
1776 struct extent_buffer
*node
;
1777 node
= path
->nodes
[i
];
1780 WARN_ON(*level
== 0);
1783 struct extent_buffer
*parent
;
1784 if (path
->nodes
[*level
] == root
->node
)
1785 parent
= path
->nodes
[*level
];
1787 parent
= path
->nodes
[*level
+ 1];
1789 root_owner
= btrfs_header_owner(parent
);
1790 root_gen
= btrfs_header_generation(parent
);
1791 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1792 btrfs_header_generation(path
->nodes
[*level
]));
1794 struct extent_buffer
*next
;
1796 next
= path
->nodes
[*level
];
1798 btrfs_tree_lock(next
);
1799 clean_tree_block(trans
, root
, next
);
1800 btrfs_set_lock_blocking(next
);
1801 btrfs_wait_tree_block_writeback(next
);
1802 btrfs_tree_unlock(next
);
1804 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1805 ret
= btrfs_free_reserved_extent(root
,
1806 path
->nodes
[*level
]->start
,
1807 path
->nodes
[*level
]->len
);
1810 free_extent_buffer(path
->nodes
[*level
]);
1811 path
->nodes
[*level
] = NULL
;
1819 * drop the reference count on the tree rooted at 'snap'. This traverses
1820 * the tree freeing any blocks that have a ref count of zero after being
1823 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1824 struct btrfs_root
*log
, struct walk_control
*wc
)
1829 struct btrfs_path
*path
;
1833 path
= btrfs_alloc_path();
1836 level
= btrfs_header_level(log
->node
);
1838 path
->nodes
[level
] = log
->node
;
1839 extent_buffer_get(log
->node
);
1840 path
->slots
[level
] = 0;
1843 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1849 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1856 /* was the root node processed? if not, catch it here */
1857 if (path
->nodes
[orig_level
]) {
1858 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1859 btrfs_header_generation(path
->nodes
[orig_level
]));
1861 struct extent_buffer
*next
;
1863 next
= path
->nodes
[orig_level
];
1865 btrfs_tree_lock(next
);
1866 clean_tree_block(trans
, log
, next
);
1867 btrfs_set_lock_blocking(next
);
1868 btrfs_wait_tree_block_writeback(next
);
1869 btrfs_tree_unlock(next
);
1871 WARN_ON(log
->root_key
.objectid
!=
1872 BTRFS_TREE_LOG_OBJECTID
);
1873 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1879 for (i
= 0; i
<= orig_level
; i
++) {
1880 if (path
->nodes
[i
]) {
1881 free_extent_buffer(path
->nodes
[i
]);
1882 path
->nodes
[i
] = NULL
;
1885 btrfs_free_path(path
);
1890 * helper function to update the item for a given subvolumes log root
1891 * in the tree of log roots
1893 static int update_log_root(struct btrfs_trans_handle
*trans
,
1894 struct btrfs_root
*log
)
1898 if (log
->log_transid
== 1) {
1899 /* insert root item on the first sync */
1900 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1901 &log
->root_key
, &log
->root_item
);
1903 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1904 &log
->root_key
, &log
->root_item
);
1909 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1910 struct btrfs_root
*root
, unsigned long transid
)
1913 int index
= transid
% 2;
1916 * we only allow two pending log transactions at a time,
1917 * so we know that if ours is more than 2 older than the
1918 * current transaction, we're done
1921 prepare_to_wait(&root
->log_commit_wait
[index
],
1922 &wait
, TASK_UNINTERRUPTIBLE
);
1923 mutex_unlock(&root
->log_mutex
);
1925 if (root
->fs_info
->last_trans_log_full_commit
!=
1926 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1927 atomic_read(&root
->log_commit
[index
]))
1930 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1931 mutex_lock(&root
->log_mutex
);
1932 } while (root
->log_transid
< transid
+ 2 &&
1933 atomic_read(&root
->log_commit
[index
]));
1937 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1938 struct btrfs_root
*root
)
1941 while (atomic_read(&root
->log_writers
)) {
1942 prepare_to_wait(&root
->log_writer_wait
,
1943 &wait
, TASK_UNINTERRUPTIBLE
);
1944 mutex_unlock(&root
->log_mutex
);
1945 if (root
->fs_info
->last_trans_log_full_commit
!=
1946 trans
->transid
&& atomic_read(&root
->log_writers
))
1948 mutex_lock(&root
->log_mutex
);
1949 finish_wait(&root
->log_writer_wait
, &wait
);
1955 * btrfs_sync_log does sends a given tree log down to the disk and
1956 * updates the super blocks to record it. When this call is done,
1957 * you know that any inodes previously logged are safely on disk only
1960 * Any other return value means you need to call btrfs_commit_transaction.
1961 * Some of the edge cases for fsyncing directories that have had unlinks
1962 * or renames done in the past mean that sometimes the only safe
1963 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1964 * that has happened.
1966 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1967 struct btrfs_root
*root
)
1972 struct btrfs_root
*log
= root
->log_root
;
1973 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1975 mutex_lock(&root
->log_mutex
);
1976 index1
= root
->log_transid
% 2;
1977 if (atomic_read(&root
->log_commit
[index1
])) {
1978 wait_log_commit(trans
, root
, root
->log_transid
);
1979 mutex_unlock(&root
->log_mutex
);
1982 atomic_set(&root
->log_commit
[index1
], 1);
1984 /* wait for previous tree log sync to complete */
1985 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1986 wait_log_commit(trans
, root
, root
->log_transid
- 1);
1989 unsigned long batch
= root
->log_batch
;
1990 mutex_unlock(&root
->log_mutex
);
1991 schedule_timeout_uninterruptible(1);
1992 mutex_lock(&root
->log_mutex
);
1994 wait_for_writer(trans
, root
);
1995 if (batch
== root
->log_batch
)
1999 /* bail out if we need to do a full commit */
2000 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2002 mutex_unlock(&root
->log_mutex
);
2006 ret
= btrfs_write_and_wait_marked_extents(log
, &log
->dirty_log_pages
);
2009 btrfs_set_root_node(&log
->root_item
, log
->node
);
2011 root
->log_batch
= 0;
2012 root
->log_transid
++;
2013 log
->log_transid
= root
->log_transid
;
2016 * log tree has been flushed to disk, new modifications of
2017 * the log will be written to new positions. so it's safe to
2018 * allow log writers to go in.
2020 mutex_unlock(&root
->log_mutex
);
2022 mutex_lock(&log_root_tree
->log_mutex
);
2023 log_root_tree
->log_batch
++;
2024 atomic_inc(&log_root_tree
->log_writers
);
2025 mutex_unlock(&log_root_tree
->log_mutex
);
2027 ret
= update_log_root(trans
, log
);
2030 mutex_lock(&log_root_tree
->log_mutex
);
2031 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2033 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2034 wake_up(&log_root_tree
->log_writer_wait
);
2037 index2
= log_root_tree
->log_transid
% 2;
2038 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2039 wait_log_commit(trans
, log_root_tree
,
2040 log_root_tree
->log_transid
);
2041 mutex_unlock(&log_root_tree
->log_mutex
);
2044 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2046 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2047 wait_log_commit(trans
, log_root_tree
,
2048 log_root_tree
->log_transid
- 1);
2051 wait_for_writer(trans
, log_root_tree
);
2054 * now that we've moved on to the tree of log tree roots,
2055 * check the full commit flag again
2057 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2058 mutex_unlock(&log_root_tree
->log_mutex
);
2060 goto out_wake_log_root
;
2063 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2064 &log_root_tree
->dirty_log_pages
);
2067 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2068 log_root_tree
->node
->start
);
2069 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2070 btrfs_header_level(log_root_tree
->node
));
2072 log_root_tree
->log_batch
= 0;
2073 log_root_tree
->log_transid
++;
2076 mutex_unlock(&log_root_tree
->log_mutex
);
2079 * nobody else is going to jump in and write the the ctree
2080 * super here because the log_commit atomic below is protecting
2081 * us. We must be called with a transaction handle pinning
2082 * the running transaction open, so a full commit can't hop
2083 * in and cause problems either.
2085 write_ctree_super(trans
, root
->fs_info
->tree_root
, 2);
2089 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2091 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2092 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2094 atomic_set(&root
->log_commit
[index1
], 0);
2096 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2097 wake_up(&root
->log_commit_wait
[index1
]);
2102 * free all the extents used by the tree log. This should be called
2103 * at commit time of the full transaction
2105 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2108 struct btrfs_root
*log
;
2112 struct walk_control wc
= {
2114 .process_func
= process_one_buffer
2117 if (!root
->log_root
|| root
->fs_info
->log_root_recovering
)
2120 log
= root
->log_root
;
2121 ret
= walk_log_tree(trans
, log
, &wc
);
2125 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2126 0, &start
, &end
, EXTENT_DIRTY
);
2130 clear_extent_dirty(&log
->dirty_log_pages
,
2131 start
, end
, GFP_NOFS
);
2134 if (log
->log_transid
> 0) {
2135 ret
= btrfs_del_root(trans
, root
->fs_info
->log_root_tree
,
2139 root
->log_root
= NULL
;
2140 free_extent_buffer(log
->node
);
2146 * If both a file and directory are logged, and unlinks or renames are
2147 * mixed in, we have a few interesting corners:
2149 * create file X in dir Y
2150 * link file X to X.link in dir Y
2152 * unlink file X but leave X.link
2155 * After a crash we would expect only X.link to exist. But file X
2156 * didn't get fsync'd again so the log has back refs for X and X.link.
2158 * We solve this by removing directory entries and inode backrefs from the
2159 * log when a file that was logged in the current transaction is
2160 * unlinked. Any later fsync will include the updated log entries, and
2161 * we'll be able to reconstruct the proper directory items from backrefs.
2163 * This optimizations allows us to avoid relogging the entire inode
2164 * or the entire directory.
2166 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2167 struct btrfs_root
*root
,
2168 const char *name
, int name_len
,
2169 struct inode
*dir
, u64 index
)
2171 struct btrfs_root
*log
;
2172 struct btrfs_dir_item
*di
;
2173 struct btrfs_path
*path
;
2177 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2180 ret
= join_running_log_trans(root
);
2184 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2186 log
= root
->log_root
;
2187 path
= btrfs_alloc_path();
2188 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2189 name
, name_len
, -1);
2190 if (di
&& !IS_ERR(di
)) {
2191 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2192 bytes_del
+= name_len
;
2195 btrfs_release_path(log
, path
);
2196 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2197 index
, name
, name_len
, -1);
2198 if (di
&& !IS_ERR(di
)) {
2199 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2200 bytes_del
+= name_len
;
2204 /* update the directory size in the log to reflect the names
2208 struct btrfs_key key
;
2210 key
.objectid
= dir
->i_ino
;
2212 key
.type
= BTRFS_INODE_ITEM_KEY
;
2213 btrfs_release_path(log
, path
);
2215 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2217 struct btrfs_inode_item
*item
;
2220 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2221 struct btrfs_inode_item
);
2222 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2223 if (i_size
> bytes_del
)
2224 i_size
-= bytes_del
;
2227 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2228 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2231 btrfs_release_path(log
, path
);
2234 btrfs_free_path(path
);
2235 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2236 btrfs_end_log_trans(root
);
2241 /* see comments for btrfs_del_dir_entries_in_log */
2242 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2243 struct btrfs_root
*root
,
2244 const char *name
, int name_len
,
2245 struct inode
*inode
, u64 dirid
)
2247 struct btrfs_root
*log
;
2251 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2254 ret
= join_running_log_trans(root
);
2257 log
= root
->log_root
;
2258 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2260 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2262 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2263 btrfs_end_log_trans(root
);
2269 * creates a range item in the log for 'dirid'. first_offset and
2270 * last_offset tell us which parts of the key space the log should
2271 * be considered authoritative for.
2273 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2274 struct btrfs_root
*log
,
2275 struct btrfs_path
*path
,
2276 int key_type
, u64 dirid
,
2277 u64 first_offset
, u64 last_offset
)
2280 struct btrfs_key key
;
2281 struct btrfs_dir_log_item
*item
;
2283 key
.objectid
= dirid
;
2284 key
.offset
= first_offset
;
2285 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2286 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2288 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2289 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2292 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2293 struct btrfs_dir_log_item
);
2294 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2295 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2296 btrfs_release_path(log
, path
);
2301 * log all the items included in the current transaction for a given
2302 * directory. This also creates the range items in the log tree required
2303 * to replay anything deleted before the fsync
2305 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2306 struct btrfs_root
*root
, struct inode
*inode
,
2307 struct btrfs_path
*path
,
2308 struct btrfs_path
*dst_path
, int key_type
,
2309 u64 min_offset
, u64
*last_offset_ret
)
2311 struct btrfs_key min_key
;
2312 struct btrfs_key max_key
;
2313 struct btrfs_root
*log
= root
->log_root
;
2314 struct extent_buffer
*src
;
2318 u64 first_offset
= min_offset
;
2319 u64 last_offset
= (u64
)-1;
2321 log
= root
->log_root
;
2322 max_key
.objectid
= inode
->i_ino
;
2323 max_key
.offset
= (u64
)-1;
2324 max_key
.type
= key_type
;
2326 min_key
.objectid
= inode
->i_ino
;
2327 min_key
.type
= key_type
;
2328 min_key
.offset
= min_offset
;
2330 path
->keep_locks
= 1;
2332 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2333 path
, 0, trans
->transid
);
2336 * we didn't find anything from this transaction, see if there
2337 * is anything at all
2339 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2340 min_key
.type
!= key_type
) {
2341 min_key
.objectid
= inode
->i_ino
;
2342 min_key
.type
= key_type
;
2343 min_key
.offset
= (u64
)-1;
2344 btrfs_release_path(root
, path
);
2345 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2347 btrfs_release_path(root
, path
);
2350 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2352 /* if ret == 0 there are items for this type,
2353 * create a range to tell us the last key of this type.
2354 * otherwise, there are no items in this directory after
2355 * *min_offset, and we create a range to indicate that.
2358 struct btrfs_key tmp
;
2359 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2361 if (key_type
== tmp
.type
)
2362 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2367 /* go backward to find any previous key */
2368 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2370 struct btrfs_key tmp
;
2371 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2372 if (key_type
== tmp
.type
) {
2373 first_offset
= tmp
.offset
;
2374 ret
= overwrite_item(trans
, log
, dst_path
,
2375 path
->nodes
[0], path
->slots
[0],
2379 btrfs_release_path(root
, path
);
2381 /* find the first key from this transaction again */
2382 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2389 * we have a block from this transaction, log every item in it
2390 * from our directory
2393 struct btrfs_key tmp
;
2394 src
= path
->nodes
[0];
2395 nritems
= btrfs_header_nritems(src
);
2396 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2397 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2399 if (min_key
.objectid
!= inode
->i_ino
||
2400 min_key
.type
!= key_type
)
2402 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2406 path
->slots
[0] = nritems
;
2409 * look ahead to the next item and see if it is also
2410 * from this directory and from this transaction
2412 ret
= btrfs_next_leaf(root
, path
);
2414 last_offset
= (u64
)-1;
2417 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2418 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2419 last_offset
= (u64
)-1;
2422 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2423 ret
= overwrite_item(trans
, log
, dst_path
,
2424 path
->nodes
[0], path
->slots
[0],
2428 last_offset
= tmp
.offset
;
2433 *last_offset_ret
= last_offset
;
2434 btrfs_release_path(root
, path
);
2435 btrfs_release_path(log
, dst_path
);
2437 /* insert the log range keys to indicate where the log is valid */
2438 ret
= insert_dir_log_key(trans
, log
, path
, key_type
, inode
->i_ino
,
2439 first_offset
, last_offset
);
2445 * logging directories is very similar to logging inodes, We find all the items
2446 * from the current transaction and write them to the log.
2448 * The recovery code scans the directory in the subvolume, and if it finds a
2449 * key in the range logged that is not present in the log tree, then it means
2450 * that dir entry was unlinked during the transaction.
2452 * In order for that scan to work, we must include one key smaller than
2453 * the smallest logged by this transaction and one key larger than the largest
2454 * key logged by this transaction.
2456 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2457 struct btrfs_root
*root
, struct inode
*inode
,
2458 struct btrfs_path
*path
,
2459 struct btrfs_path
*dst_path
)
2464 int key_type
= BTRFS_DIR_ITEM_KEY
;
2470 ret
= log_dir_items(trans
, root
, inode
, path
,
2471 dst_path
, key_type
, min_key
,
2474 if (max_key
== (u64
)-1)
2476 min_key
= max_key
+ 1;
2479 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2480 key_type
= BTRFS_DIR_INDEX_KEY
;
2487 * a helper function to drop items from the log before we relog an
2488 * inode. max_key_type indicates the highest item type to remove.
2489 * This cannot be run for file data extents because it does not
2490 * free the extents they point to.
2492 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2493 struct btrfs_root
*log
,
2494 struct btrfs_path
*path
,
2495 u64 objectid
, int max_key_type
)
2498 struct btrfs_key key
;
2499 struct btrfs_key found_key
;
2501 key
.objectid
= objectid
;
2502 key
.type
= max_key_type
;
2503 key
.offset
= (u64
)-1;
2506 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2511 if (path
->slots
[0] == 0)
2515 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2518 if (found_key
.objectid
!= objectid
)
2521 ret
= btrfs_del_item(trans
, log
, path
);
2523 btrfs_release_path(log
, path
);
2525 btrfs_release_path(log
, path
);
2529 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2530 struct btrfs_root
*log
,
2531 struct btrfs_path
*dst_path
,
2532 struct extent_buffer
*src
,
2533 int start_slot
, int nr
, int inode_only
)
2535 unsigned long src_offset
;
2536 unsigned long dst_offset
;
2537 struct btrfs_file_extent_item
*extent
;
2538 struct btrfs_inode_item
*inode_item
;
2540 struct btrfs_key
*ins_keys
;
2544 struct list_head ordered_sums
;
2546 INIT_LIST_HEAD(&ordered_sums
);
2548 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2549 nr
* sizeof(u32
), GFP_NOFS
);
2550 ins_sizes
= (u32
*)ins_data
;
2551 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2553 for (i
= 0; i
< nr
; i
++) {
2554 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2555 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2557 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2558 ins_keys
, ins_sizes
, nr
);
2561 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2562 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2563 dst_path
->slots
[0]);
2565 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2567 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2568 src_offset
, ins_sizes
[i
]);
2570 if (inode_only
== LOG_INODE_EXISTS
&&
2571 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2572 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2574 struct btrfs_inode_item
);
2575 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2577 /* set the generation to zero so the recover code
2578 * can tell the difference between an logging
2579 * just to say 'this inode exists' and a logging
2580 * to say 'update this inode with these values'
2582 btrfs_set_inode_generation(dst_path
->nodes
[0],
2585 /* take a reference on file data extents so that truncates
2586 * or deletes of this inode don't have to relog the inode
2589 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2591 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2592 struct btrfs_file_extent_item
);
2594 found_type
= btrfs_file_extent_type(src
, extent
);
2595 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2596 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2598 ds
= btrfs_file_extent_disk_bytenr(src
,
2600 /* ds == 0 is a hole */
2604 dl
= btrfs_file_extent_disk_num_bytes(src
,
2606 cs
= btrfs_file_extent_offset(src
, extent
);
2607 cl
= btrfs_file_extent_num_bytes(src
,
2609 if (btrfs_file_extent_compression(src
,
2615 ret
= btrfs_lookup_csums_range(
2616 log
->fs_info
->csum_root
,
2617 ds
+ cs
, ds
+ cs
+ cl
- 1,
2624 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2625 btrfs_release_path(log
, dst_path
);
2629 * we have to do this after the loop above to avoid changing the
2630 * log tree while trying to change the log tree.
2632 while (!list_empty(&ordered_sums
)) {
2633 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2634 struct btrfs_ordered_sum
,
2636 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2638 list_del(&sums
->list
);
2644 /* log a single inode in the tree log.
2645 * At least one parent directory for this inode must exist in the tree
2646 * or be logged already.
2648 * Any items from this inode changed by the current transaction are copied
2649 * to the log tree. An extra reference is taken on any extents in this
2650 * file, allowing us to avoid a whole pile of corner cases around logging
2651 * blocks that have been removed from the tree.
2653 * See LOG_INODE_ALL and related defines for a description of what inode_only
2656 * This handles both files and directories.
2658 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2659 struct btrfs_root
*root
, struct inode
*inode
,
2662 struct btrfs_path
*path
;
2663 struct btrfs_path
*dst_path
;
2664 struct btrfs_key min_key
;
2665 struct btrfs_key max_key
;
2666 struct btrfs_root
*log
= root
->log_root
;
2667 struct extent_buffer
*src
= NULL
;
2671 int ins_start_slot
= 0;
2674 log
= root
->log_root
;
2676 path
= btrfs_alloc_path();
2677 dst_path
= btrfs_alloc_path();
2679 min_key
.objectid
= inode
->i_ino
;
2680 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2683 max_key
.objectid
= inode
->i_ino
;
2685 /* today the code can only do partial logging of directories */
2686 if (!S_ISDIR(inode
->i_mode
))
2687 inode_only
= LOG_INODE_ALL
;
2689 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2690 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2692 max_key
.type
= (u8
)-1;
2693 max_key
.offset
= (u64
)-1;
2695 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2698 * a brute force approach to making sure we get the most uptodate
2699 * copies of everything.
2701 if (S_ISDIR(inode
->i_mode
)) {
2702 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2704 if (inode_only
== LOG_INODE_EXISTS
)
2705 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2706 ret
= drop_objectid_items(trans
, log
, path
,
2707 inode
->i_ino
, max_key_type
);
2709 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2712 path
->keep_locks
= 1;
2716 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2717 path
, 0, trans
->transid
);
2721 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2722 if (min_key
.objectid
!= inode
->i_ino
)
2724 if (min_key
.type
> max_key
.type
)
2727 src
= path
->nodes
[0];
2728 size
= btrfs_item_size_nr(src
, path
->slots
[0]);
2729 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2732 } else if (!ins_nr
) {
2733 ins_start_slot
= path
->slots
[0];
2738 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2739 ins_nr
, inode_only
);
2742 ins_start_slot
= path
->slots
[0];
2745 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2747 if (path
->slots
[0] < nritems
) {
2748 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2753 ret
= copy_items(trans
, log
, dst_path
, src
,
2755 ins_nr
, inode_only
);
2759 btrfs_release_path(root
, path
);
2761 if (min_key
.offset
< (u64
)-1)
2763 else if (min_key
.type
< (u8
)-1)
2765 else if (min_key
.objectid
< (u64
)-1)
2771 ret
= copy_items(trans
, log
, dst_path
, src
,
2773 ins_nr
, inode_only
);
2778 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2779 btrfs_release_path(root
, path
);
2780 btrfs_release_path(log
, dst_path
);
2781 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2784 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2785 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2787 btrfs_free_path(path
);
2788 btrfs_free_path(dst_path
);
2793 * follow the dentry parent pointers up the chain and see if any
2794 * of the directories in it require a full commit before they can
2795 * be logged. Returns zero if nothing special needs to be done or 1 if
2796 * a full commit is required.
2798 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2799 struct inode
*inode
,
2800 struct dentry
*parent
,
2801 struct super_block
*sb
,
2805 struct btrfs_root
*root
;
2808 * for regular files, if its inode is already on disk, we don't
2809 * have to worry about the parents at all. This is because
2810 * we can use the last_unlink_trans field to record renames
2811 * and other fun in this file.
2813 if (S_ISREG(inode
->i_mode
) &&
2814 BTRFS_I(inode
)->generation
<= last_committed
&&
2815 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2818 if (!S_ISDIR(inode
->i_mode
)) {
2819 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2821 inode
= parent
->d_inode
;
2825 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2828 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2829 root
= BTRFS_I(inode
)->root
;
2832 * make sure any commits to the log are forced
2833 * to be full commits
2835 root
->fs_info
->last_trans_log_full_commit
=
2841 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2844 if (parent
== sb
->s_root
)
2847 parent
= parent
->d_parent
;
2848 inode
= parent
->d_inode
;
2856 * helper function around btrfs_log_inode to make sure newly created
2857 * parent directories also end up in the log. A minimal inode and backref
2858 * only logging is done of any parent directories that are older than
2859 * the last committed transaction
2861 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
2862 struct btrfs_root
*root
, struct inode
*inode
,
2863 struct dentry
*parent
, int exists_only
)
2865 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
2866 struct super_block
*sb
;
2868 u64 last_committed
= root
->fs_info
->last_trans_committed
;
2872 if (btrfs_test_opt(root
, NOTREELOG
)) {
2877 if (root
->fs_info
->last_trans_log_full_commit
>
2878 root
->fs_info
->last_trans_committed
) {
2883 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
2884 sb
, last_committed
);
2888 start_log_trans(trans
, root
);
2890 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2894 * for regular files, if its inode is already on disk, we don't
2895 * have to worry about the parents at all. This is because
2896 * we can use the last_unlink_trans field to record renames
2897 * and other fun in this file.
2899 if (S_ISREG(inode
->i_mode
) &&
2900 BTRFS_I(inode
)->generation
<= last_committed
&&
2901 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2904 inode_only
= LOG_INODE_EXISTS
;
2906 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2909 inode
= parent
->d_inode
;
2910 if (BTRFS_I(inode
)->generation
>
2911 root
->fs_info
->last_trans_committed
) {
2912 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2915 if (parent
== sb
->s_root
)
2918 parent
= parent
->d_parent
;
2922 btrfs_end_log_trans(root
);
2928 * it is not safe to log dentry if the chunk root has added new
2929 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2930 * If this returns 1, you must commit the transaction to safely get your
2933 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
2934 struct btrfs_root
*root
, struct dentry
*dentry
)
2936 return btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
,
2937 dentry
->d_parent
, 0);
2941 * should be called during mount to recover any replay any log trees
2944 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
2947 struct btrfs_path
*path
;
2948 struct btrfs_trans_handle
*trans
;
2949 struct btrfs_key key
;
2950 struct btrfs_key found_key
;
2951 struct btrfs_key tmp_key
;
2952 struct btrfs_root
*log
;
2953 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
2955 struct walk_control wc
= {
2956 .process_func
= process_one_buffer
,
2960 fs_info
->log_root_recovering
= 1;
2961 path
= btrfs_alloc_path();
2964 trans
= btrfs_start_transaction(fs_info
->tree_root
, 1);
2969 walk_log_tree(trans
, log_root_tree
, &wc
);
2972 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
2973 key
.offset
= (u64
)-1;
2974 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
2977 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
2981 if (path
->slots
[0] == 0)
2985 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2987 btrfs_release_path(log_root_tree
, path
);
2988 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
2991 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
2996 tmp_key
.objectid
= found_key
.offset
;
2997 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
2998 tmp_key
.offset
= (u64
)-1;
3000 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3001 BUG_ON(!wc
.replay_dest
);
3003 wc
.replay_dest
->log_root
= log
;
3004 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3005 ret
= walk_log_tree(trans
, log
, &wc
);
3008 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3009 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3013 ret
= btrfs_find_highest_inode(wc
.replay_dest
, &highest_inode
);
3015 wc
.replay_dest
->highest_inode
= highest_inode
;
3016 wc
.replay_dest
->last_inode_alloc
= highest_inode
;
3019 key
.offset
= found_key
.offset
- 1;
3020 wc
.replay_dest
->log_root
= NULL
;
3021 free_extent_buffer(log
->node
);
3022 free_extent_buffer(log
->commit_root
);
3025 if (found_key
.offset
== 0)
3028 btrfs_release_path(log_root_tree
, path
);
3030 /* step one is to pin it all, step two is to replay just inodes */
3033 wc
.process_func
= replay_one_buffer
;
3034 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3037 /* step three is to replay everything */
3038 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3043 btrfs_free_path(path
);
3045 free_extent_buffer(log_root_tree
->node
);
3046 log_root_tree
->log_root
= NULL
;
3047 fs_info
->log_root_recovering
= 0;
3049 /* step 4: commit the transaction, which also unpins the blocks */
3050 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3052 kfree(log_root_tree
);
3057 * there are some corner cases where we want to force a full
3058 * commit instead of allowing a directory to be logged.
3060 * They revolve around files there were unlinked from the directory, and
3061 * this function updates the parent directory so that a full commit is
3062 * properly done if it is fsync'd later after the unlinks are done.
3064 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3065 struct inode
*dir
, struct inode
*inode
,
3069 * when we're logging a file, if it hasn't been renamed
3070 * or unlinked, and its inode is fully committed on disk,
3071 * we don't have to worry about walking up the directory chain
3072 * to log its parents.
3074 * So, we use the last_unlink_trans field to put this transid
3075 * into the file. When the file is logged we check it and
3076 * don't log the parents if the file is fully on disk.
3078 if (S_ISREG(inode
->i_mode
))
3079 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3082 * if this directory was already logged any new
3083 * names for this file/dir will get recorded
3086 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3090 * if the inode we're about to unlink was logged,
3091 * the log will be properly updated for any new names
3093 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3097 * when renaming files across directories, if the directory
3098 * there we're unlinking from gets fsync'd later on, there's
3099 * no way to find the destination directory later and fsync it
3100 * properly. So, we have to be conservative and force commits
3101 * so the new name gets discovered.
3106 /* we can safely do the unlink without any special recording */
3110 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3114 * Call this after adding a new name for a file and it will properly
3115 * update the log to reflect the new name.
3117 * It will return zero if all goes well, and it will return 1 if a
3118 * full transaction commit is required.
3120 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3121 struct inode
*inode
, struct inode
*old_dir
,
3122 struct dentry
*parent
)
3124 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3127 * this will force the logging code to walk the dentry chain
3130 if (S_ISREG(inode
->i_mode
))
3131 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3134 * if this inode hasn't been logged and directory we're renaming it
3135 * from hasn't been logged, we don't need to log it
3137 if (BTRFS_I(inode
)->logged_trans
<=
3138 root
->fs_info
->last_trans_committed
&&
3139 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3140 root
->fs_info
->last_trans_committed
))
3143 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);