Linux 2.6.32.47
[linux/fpc-iii.git] / kernel / pid.c
blobfce71981384f49873035e84c7b9f94da94168fcd
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
40 #define pid_hashfn(nr, ns) \
41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head *pid_hash;
43 static unsigned int pidhash_shift = 4;
44 struct pid init_struct_pid = INIT_STRUCT_PID;
46 int pid_max = PID_MAX_DEFAULT;
48 #define RESERVED_PIDS 300
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
53 #define BITS_PER_PAGE (PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
71 struct pid_namespace init_pid_ns = {
72 .kref = {
73 .refcount = ATOMIC_INIT(2),
75 .pidmap = {
76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
78 .last_pid = 0,
79 .level = 0,
80 .child_reaper = &init_task,
82 EXPORT_SYMBOL_GPL(init_pid_ns);
84 int is_container_init(struct task_struct *tsk)
86 int ret = 0;
87 struct pid *pid;
89 rcu_read_lock();
90 pid = task_pid(tsk);
91 if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 ret = 1;
93 rcu_read_unlock();
95 return ret;
97 EXPORT_SYMBOL(is_container_init);
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
115 static void free_pidmap(struct upid *upid)
117 int nr = upid->nr;
118 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119 int offset = nr & BITS_PER_PAGE_MASK;
121 clear_bit(offset, map->page);
122 atomic_inc(&map->nr_free);
125 static int alloc_pidmap(struct pid_namespace *pid_ns)
127 int i, offset, max_scan, pid, last = pid_ns->last_pid;
128 struct pidmap *map;
130 pid = last + 1;
131 if (pid >= pid_max)
132 pid = RESERVED_PIDS;
133 offset = pid & BITS_PER_PAGE_MASK;
134 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
135 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
136 for (i = 0; i <= max_scan; ++i) {
137 if (unlikely(!map->page)) {
138 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
140 * Free the page if someone raced with us
141 * installing it:
143 spin_lock_irq(&pidmap_lock);
144 if (map->page)
145 kfree(page);
146 else
147 map->page = page;
148 spin_unlock_irq(&pidmap_lock);
149 if (unlikely(!map->page))
150 break;
152 if (likely(atomic_read(&map->nr_free))) {
153 do {
154 if (!test_and_set_bit(offset, map->page)) {
155 atomic_dec(&map->nr_free);
156 pid_ns->last_pid = pid;
157 return pid;
159 offset = find_next_offset(map, offset);
160 pid = mk_pid(pid_ns, map, offset);
162 * find_next_offset() found a bit, the pid from it
163 * is in-bounds, and if we fell back to the last
164 * bitmap block and the final block was the same
165 * as the starting point, pid is before last_pid.
167 } while (offset < BITS_PER_PAGE && pid < pid_max &&
168 (i != max_scan || pid < last ||
169 !((last+1) & BITS_PER_PAGE_MASK)));
171 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
172 ++map;
173 offset = 0;
174 } else {
175 map = &pid_ns->pidmap[0];
176 offset = RESERVED_PIDS;
177 if (unlikely(last == offset))
178 break;
180 pid = mk_pid(pid_ns, map, offset);
182 return -1;
185 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
187 int offset;
188 struct pidmap *map, *end;
190 if (last >= PID_MAX_LIMIT)
191 return -1;
193 offset = (last + 1) & BITS_PER_PAGE_MASK;
194 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
195 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
196 for (; map < end; map++, offset = 0) {
197 if (unlikely(!map->page))
198 continue;
199 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
200 if (offset < BITS_PER_PAGE)
201 return mk_pid(pid_ns, map, offset);
203 return -1;
206 void put_pid(struct pid *pid)
208 struct pid_namespace *ns;
210 if (!pid)
211 return;
213 ns = pid->numbers[pid->level].ns;
214 if ((atomic_read(&pid->count) == 1) ||
215 atomic_dec_and_test(&pid->count)) {
216 kmem_cache_free(ns->pid_cachep, pid);
217 put_pid_ns(ns);
220 EXPORT_SYMBOL_GPL(put_pid);
222 static void delayed_put_pid(struct rcu_head *rhp)
224 struct pid *pid = container_of(rhp, struct pid, rcu);
225 put_pid(pid);
228 void free_pid(struct pid *pid)
230 /* We can be called with write_lock_irq(&tasklist_lock) held */
231 int i;
232 unsigned long flags;
234 spin_lock_irqsave(&pidmap_lock, flags);
235 for (i = 0; i <= pid->level; i++)
236 hlist_del_rcu(&pid->numbers[i].pid_chain);
237 spin_unlock_irqrestore(&pidmap_lock, flags);
239 for (i = 0; i <= pid->level; i++)
240 free_pidmap(pid->numbers + i);
242 call_rcu(&pid->rcu, delayed_put_pid);
245 struct pid *alloc_pid(struct pid_namespace *ns)
247 struct pid *pid;
248 enum pid_type type;
249 int i, nr;
250 struct pid_namespace *tmp;
251 struct upid *upid;
253 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
254 if (!pid)
255 goto out;
257 tmp = ns;
258 for (i = ns->level; i >= 0; i--) {
259 nr = alloc_pidmap(tmp);
260 if (nr < 0)
261 goto out_free;
263 pid->numbers[i].nr = nr;
264 pid->numbers[i].ns = tmp;
265 tmp = tmp->parent;
268 get_pid_ns(ns);
269 pid->level = ns->level;
270 atomic_set(&pid->count, 1);
271 for (type = 0; type < PIDTYPE_MAX; ++type)
272 INIT_HLIST_HEAD(&pid->tasks[type]);
274 spin_lock_irq(&pidmap_lock);
275 for (i = ns->level; i >= 0; i--) {
276 upid = &pid->numbers[i];
277 hlist_add_head_rcu(&upid->pid_chain,
278 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
280 spin_unlock_irq(&pidmap_lock);
282 out:
283 return pid;
285 out_free:
286 while (++i <= ns->level)
287 free_pidmap(pid->numbers + i);
289 kmem_cache_free(ns->pid_cachep, pid);
290 pid = NULL;
291 goto out;
294 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
296 struct hlist_node *elem;
297 struct upid *pnr;
299 hlist_for_each_entry_rcu(pnr, elem,
300 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
301 if (pnr->nr == nr && pnr->ns == ns)
302 return container_of(pnr, struct pid,
303 numbers[ns->level]);
305 return NULL;
307 EXPORT_SYMBOL_GPL(find_pid_ns);
309 struct pid *find_vpid(int nr)
311 return find_pid_ns(nr, current->nsproxy->pid_ns);
313 EXPORT_SYMBOL_GPL(find_vpid);
316 * attach_pid() must be called with the tasklist_lock write-held.
318 void attach_pid(struct task_struct *task, enum pid_type type,
319 struct pid *pid)
321 struct pid_link *link;
323 link = &task->pids[type];
324 link->pid = pid;
325 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
328 static void __change_pid(struct task_struct *task, enum pid_type type,
329 struct pid *new)
331 struct pid_link *link;
332 struct pid *pid;
333 int tmp;
335 link = &task->pids[type];
336 pid = link->pid;
338 hlist_del_rcu(&link->node);
339 link->pid = new;
341 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
342 if (!hlist_empty(&pid->tasks[tmp]))
343 return;
345 free_pid(pid);
348 void detach_pid(struct task_struct *task, enum pid_type type)
350 __change_pid(task, type, NULL);
353 void change_pid(struct task_struct *task, enum pid_type type,
354 struct pid *pid)
356 __change_pid(task, type, pid);
357 attach_pid(task, type, pid);
360 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
361 void transfer_pid(struct task_struct *old, struct task_struct *new,
362 enum pid_type type)
364 new->pids[type].pid = old->pids[type].pid;
365 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
368 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
370 struct task_struct *result = NULL;
371 if (pid) {
372 struct hlist_node *first;
373 first = rcu_dereference(pid->tasks[type].first);
374 if (first)
375 result = hlist_entry(first, struct task_struct, pids[(type)].node);
377 return result;
379 EXPORT_SYMBOL(pid_task);
382 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
384 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
386 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
389 struct task_struct *find_task_by_vpid(pid_t vnr)
391 return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
394 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
396 struct pid *pid;
397 rcu_read_lock();
398 if (type != PIDTYPE_PID)
399 task = task->group_leader;
400 pid = get_pid(task->pids[type].pid);
401 rcu_read_unlock();
402 return pid;
405 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
407 struct task_struct *result;
408 rcu_read_lock();
409 result = pid_task(pid, type);
410 if (result)
411 get_task_struct(result);
412 rcu_read_unlock();
413 return result;
416 struct pid *find_get_pid(pid_t nr)
418 struct pid *pid;
420 rcu_read_lock();
421 pid = get_pid(find_vpid(nr));
422 rcu_read_unlock();
424 return pid;
426 EXPORT_SYMBOL_GPL(find_get_pid);
428 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
430 struct upid *upid;
431 pid_t nr = 0;
433 if (pid && ns->level <= pid->level) {
434 upid = &pid->numbers[ns->level];
435 if (upid->ns == ns)
436 nr = upid->nr;
438 return nr;
441 pid_t pid_vnr(struct pid *pid)
443 return pid_nr_ns(pid, current->nsproxy->pid_ns);
445 EXPORT_SYMBOL_GPL(pid_vnr);
447 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
448 struct pid_namespace *ns)
450 pid_t nr = 0;
452 rcu_read_lock();
453 if (!ns)
454 ns = current->nsproxy->pid_ns;
455 if (likely(pid_alive(task))) {
456 if (type != PIDTYPE_PID)
457 task = task->group_leader;
458 nr = pid_nr_ns(task->pids[type].pid, ns);
460 rcu_read_unlock();
462 return nr;
464 EXPORT_SYMBOL(__task_pid_nr_ns);
466 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
468 return pid_nr_ns(task_tgid(tsk), ns);
470 EXPORT_SYMBOL(task_tgid_nr_ns);
472 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
474 return ns_of_pid(task_pid(tsk));
476 EXPORT_SYMBOL_GPL(task_active_pid_ns);
479 * Used by proc to find the first pid that is greater than or equal to nr.
481 * If there is a pid at nr this function is exactly the same as find_pid_ns.
483 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
485 struct pid *pid;
487 do {
488 pid = find_pid_ns(nr, ns);
489 if (pid)
490 break;
491 nr = next_pidmap(ns, nr);
492 } while (nr > 0);
494 return pid;
498 * The pid hash table is scaled according to the amount of memory in the
499 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
500 * more.
502 void __init pidhash_init(void)
504 int i, pidhash_size;
506 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
507 HASH_EARLY | HASH_SMALL,
508 &pidhash_shift, NULL, 4096);
509 pidhash_size = 1 << pidhash_shift;
511 for (i = 0; i < pidhash_size; i++)
512 INIT_HLIST_HEAD(&pid_hash[i]);
515 void __init pidmap_init(void)
517 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
518 /* Reserve PID 0. We never call free_pidmap(0) */
519 set_bit(0, init_pid_ns.pidmap[0].page);
520 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
522 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
523 SLAB_HWCACHE_ALIGN | SLAB_PANIC);