Merge tag 'usb-serial-4.0-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/johan...
[linux/fpc-iii.git] / net / openvswitch / flow.c
blob50ec42f170a06713e086d66abb2ea0d1aa998d74
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/mpls.h>
47 #include <net/ndisc.h>
49 #include "datapath.h"
50 #include "flow.h"
51 #include "flow_netlink.h"
53 u64 ovs_flow_used_time(unsigned long flow_jiffies)
55 struct timespec cur_ts;
56 u64 cur_ms, idle_ms;
58 ktime_get_ts(&cur_ts);
59 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
60 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
61 cur_ts.tv_nsec / NSEC_PER_MSEC;
63 return cur_ms - idle_ms;
66 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
68 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
69 const struct sk_buff *skb)
71 struct flow_stats *stats;
72 int node = numa_node_id();
73 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
75 stats = rcu_dereference(flow->stats[node]);
77 /* Check if already have node-specific stats. */
78 if (likely(stats)) {
79 spin_lock(&stats->lock);
80 /* Mark if we write on the pre-allocated stats. */
81 if (node == 0 && unlikely(flow->stats_last_writer != node))
82 flow->stats_last_writer = node;
83 } else {
84 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
85 spin_lock(&stats->lock);
87 /* If the current NUMA-node is the only writer on the
88 * pre-allocated stats keep using them.
90 if (unlikely(flow->stats_last_writer != node)) {
91 /* A previous locker may have already allocated the
92 * stats, so we need to check again. If node-specific
93 * stats were already allocated, we update the pre-
94 * allocated stats as we have already locked them.
96 if (likely(flow->stats_last_writer != NUMA_NO_NODE)
97 && likely(!rcu_access_pointer(flow->stats[node]))) {
98 /* Try to allocate node-specific stats. */
99 struct flow_stats *new_stats;
101 new_stats =
102 kmem_cache_alloc_node(flow_stats_cache,
103 GFP_THISNODE |
104 __GFP_NOMEMALLOC,
105 node);
106 if (likely(new_stats)) {
107 new_stats->used = jiffies;
108 new_stats->packet_count = 1;
109 new_stats->byte_count = len;
110 new_stats->tcp_flags = tcp_flags;
111 spin_lock_init(&new_stats->lock);
113 rcu_assign_pointer(flow->stats[node],
114 new_stats);
115 goto unlock;
118 flow->stats_last_writer = node;
122 stats->used = jiffies;
123 stats->packet_count++;
124 stats->byte_count += len;
125 stats->tcp_flags |= tcp_flags;
126 unlock:
127 spin_unlock(&stats->lock);
130 /* Must be called with rcu_read_lock or ovs_mutex. */
131 void ovs_flow_stats_get(const struct sw_flow *flow,
132 struct ovs_flow_stats *ovs_stats,
133 unsigned long *used, __be16 *tcp_flags)
135 int node;
137 *used = 0;
138 *tcp_flags = 0;
139 memset(ovs_stats, 0, sizeof(*ovs_stats));
141 for_each_node(node) {
142 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
144 if (stats) {
145 /* Local CPU may write on non-local stats, so we must
146 * block bottom-halves here.
148 spin_lock_bh(&stats->lock);
149 if (!*used || time_after(stats->used, *used))
150 *used = stats->used;
151 *tcp_flags |= stats->tcp_flags;
152 ovs_stats->n_packets += stats->packet_count;
153 ovs_stats->n_bytes += stats->byte_count;
154 spin_unlock_bh(&stats->lock);
159 /* Called with ovs_mutex. */
160 void ovs_flow_stats_clear(struct sw_flow *flow)
162 int node;
164 for_each_node(node) {
165 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
167 if (stats) {
168 spin_lock_bh(&stats->lock);
169 stats->used = 0;
170 stats->packet_count = 0;
171 stats->byte_count = 0;
172 stats->tcp_flags = 0;
173 spin_unlock_bh(&stats->lock);
178 static int check_header(struct sk_buff *skb, int len)
180 if (unlikely(skb->len < len))
181 return -EINVAL;
182 if (unlikely(!pskb_may_pull(skb, len)))
183 return -ENOMEM;
184 return 0;
187 static bool arphdr_ok(struct sk_buff *skb)
189 return pskb_may_pull(skb, skb_network_offset(skb) +
190 sizeof(struct arp_eth_header));
193 static int check_iphdr(struct sk_buff *skb)
195 unsigned int nh_ofs = skb_network_offset(skb);
196 unsigned int ip_len;
197 int err;
199 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
200 if (unlikely(err))
201 return err;
203 ip_len = ip_hdrlen(skb);
204 if (unlikely(ip_len < sizeof(struct iphdr) ||
205 skb->len < nh_ofs + ip_len))
206 return -EINVAL;
208 skb_set_transport_header(skb, nh_ofs + ip_len);
209 return 0;
212 static bool tcphdr_ok(struct sk_buff *skb)
214 int th_ofs = skb_transport_offset(skb);
215 int tcp_len;
217 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
218 return false;
220 tcp_len = tcp_hdrlen(skb);
221 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
222 skb->len < th_ofs + tcp_len))
223 return false;
225 return true;
228 static bool udphdr_ok(struct sk_buff *skb)
230 return pskb_may_pull(skb, skb_transport_offset(skb) +
231 sizeof(struct udphdr));
234 static bool sctphdr_ok(struct sk_buff *skb)
236 return pskb_may_pull(skb, skb_transport_offset(skb) +
237 sizeof(struct sctphdr));
240 static bool icmphdr_ok(struct sk_buff *skb)
242 return pskb_may_pull(skb, skb_transport_offset(skb) +
243 sizeof(struct icmphdr));
246 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
248 unsigned int nh_ofs = skb_network_offset(skb);
249 unsigned int nh_len;
250 int payload_ofs;
251 struct ipv6hdr *nh;
252 uint8_t nexthdr;
253 __be16 frag_off;
254 int err;
256 err = check_header(skb, nh_ofs + sizeof(*nh));
257 if (unlikely(err))
258 return err;
260 nh = ipv6_hdr(skb);
261 nexthdr = nh->nexthdr;
262 payload_ofs = (u8 *)(nh + 1) - skb->data;
264 key->ip.proto = NEXTHDR_NONE;
265 key->ip.tos = ipv6_get_dsfield(nh);
266 key->ip.ttl = nh->hop_limit;
267 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
268 key->ipv6.addr.src = nh->saddr;
269 key->ipv6.addr.dst = nh->daddr;
271 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
272 if (unlikely(payload_ofs < 0))
273 return -EINVAL;
275 if (frag_off) {
276 if (frag_off & htons(~0x7))
277 key->ip.frag = OVS_FRAG_TYPE_LATER;
278 else
279 key->ip.frag = OVS_FRAG_TYPE_FIRST;
280 } else {
281 key->ip.frag = OVS_FRAG_TYPE_NONE;
284 nh_len = payload_ofs - nh_ofs;
285 skb_set_transport_header(skb, nh_ofs + nh_len);
286 key->ip.proto = nexthdr;
287 return nh_len;
290 static bool icmp6hdr_ok(struct sk_buff *skb)
292 return pskb_may_pull(skb, skb_transport_offset(skb) +
293 sizeof(struct icmp6hdr));
296 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
298 struct qtag_prefix {
299 __be16 eth_type; /* ETH_P_8021Q */
300 __be16 tci;
302 struct qtag_prefix *qp;
304 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
305 return 0;
307 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
308 sizeof(__be16))))
309 return -ENOMEM;
311 qp = (struct qtag_prefix *) skb->data;
312 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
313 __skb_pull(skb, sizeof(struct qtag_prefix));
315 return 0;
318 static __be16 parse_ethertype(struct sk_buff *skb)
320 struct llc_snap_hdr {
321 u8 dsap; /* Always 0xAA */
322 u8 ssap; /* Always 0xAA */
323 u8 ctrl;
324 u8 oui[3];
325 __be16 ethertype;
327 struct llc_snap_hdr *llc;
328 __be16 proto;
330 proto = *(__be16 *) skb->data;
331 __skb_pull(skb, sizeof(__be16));
333 if (ntohs(proto) >= ETH_P_802_3_MIN)
334 return proto;
336 if (skb->len < sizeof(struct llc_snap_hdr))
337 return htons(ETH_P_802_2);
339 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
340 return htons(0);
342 llc = (struct llc_snap_hdr *) skb->data;
343 if (llc->dsap != LLC_SAP_SNAP ||
344 llc->ssap != LLC_SAP_SNAP ||
345 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
346 return htons(ETH_P_802_2);
348 __skb_pull(skb, sizeof(struct llc_snap_hdr));
350 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
351 return llc->ethertype;
353 return htons(ETH_P_802_2);
356 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
357 int nh_len)
359 struct icmp6hdr *icmp = icmp6_hdr(skb);
361 /* The ICMPv6 type and code fields use the 16-bit transport port
362 * fields, so we need to store them in 16-bit network byte order.
364 key->tp.src = htons(icmp->icmp6_type);
365 key->tp.dst = htons(icmp->icmp6_code);
366 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
368 if (icmp->icmp6_code == 0 &&
369 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
370 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
371 int icmp_len = skb->len - skb_transport_offset(skb);
372 struct nd_msg *nd;
373 int offset;
375 /* In order to process neighbor discovery options, we need the
376 * entire packet.
378 if (unlikely(icmp_len < sizeof(*nd)))
379 return 0;
381 if (unlikely(skb_linearize(skb)))
382 return -ENOMEM;
384 nd = (struct nd_msg *)skb_transport_header(skb);
385 key->ipv6.nd.target = nd->target;
387 icmp_len -= sizeof(*nd);
388 offset = 0;
389 while (icmp_len >= 8) {
390 struct nd_opt_hdr *nd_opt =
391 (struct nd_opt_hdr *)(nd->opt + offset);
392 int opt_len = nd_opt->nd_opt_len * 8;
394 if (unlikely(!opt_len || opt_len > icmp_len))
395 return 0;
397 /* Store the link layer address if the appropriate
398 * option is provided. It is considered an error if
399 * the same link layer option is specified twice.
401 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
402 && opt_len == 8) {
403 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
404 goto invalid;
405 ether_addr_copy(key->ipv6.nd.sll,
406 &nd->opt[offset+sizeof(*nd_opt)]);
407 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
408 && opt_len == 8) {
409 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
410 goto invalid;
411 ether_addr_copy(key->ipv6.nd.tll,
412 &nd->opt[offset+sizeof(*nd_opt)]);
415 icmp_len -= opt_len;
416 offset += opt_len;
420 return 0;
422 invalid:
423 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
424 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
425 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
427 return 0;
431 * key_extract - extracts a flow key from an Ethernet frame.
432 * @skb: sk_buff that contains the frame, with skb->data pointing to the
433 * Ethernet header
434 * @key: output flow key
436 * The caller must ensure that skb->len >= ETH_HLEN.
438 * Returns 0 if successful, otherwise a negative errno value.
440 * Initializes @skb header pointers as follows:
442 * - skb->mac_header: the Ethernet header.
444 * - skb->network_header: just past the Ethernet header, or just past the
445 * VLAN header, to the first byte of the Ethernet payload.
447 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
448 * on output, then just past the IP header, if one is present and
449 * of a correct length, otherwise the same as skb->network_header.
450 * For other key->eth.type values it is left untouched.
452 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
454 int error;
455 struct ethhdr *eth;
457 /* Flags are always used as part of stats */
458 key->tp.flags = 0;
460 skb_reset_mac_header(skb);
462 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
463 * header in the linear data area.
465 eth = eth_hdr(skb);
466 ether_addr_copy(key->eth.src, eth->h_source);
467 ether_addr_copy(key->eth.dst, eth->h_dest);
469 __skb_pull(skb, 2 * ETH_ALEN);
470 /* We are going to push all headers that we pull, so no need to
471 * update skb->csum here.
474 key->eth.tci = 0;
475 if (skb_vlan_tag_present(skb))
476 key->eth.tci = htons(skb->vlan_tci);
477 else if (eth->h_proto == htons(ETH_P_8021Q))
478 if (unlikely(parse_vlan(skb, key)))
479 return -ENOMEM;
481 key->eth.type = parse_ethertype(skb);
482 if (unlikely(key->eth.type == htons(0)))
483 return -ENOMEM;
485 skb_reset_network_header(skb);
486 skb_reset_mac_len(skb);
487 __skb_push(skb, skb->data - skb_mac_header(skb));
489 /* Network layer. */
490 if (key->eth.type == htons(ETH_P_IP)) {
491 struct iphdr *nh;
492 __be16 offset;
494 error = check_iphdr(skb);
495 if (unlikely(error)) {
496 memset(&key->ip, 0, sizeof(key->ip));
497 memset(&key->ipv4, 0, sizeof(key->ipv4));
498 if (error == -EINVAL) {
499 skb->transport_header = skb->network_header;
500 error = 0;
502 return error;
505 nh = ip_hdr(skb);
506 key->ipv4.addr.src = nh->saddr;
507 key->ipv4.addr.dst = nh->daddr;
509 key->ip.proto = nh->protocol;
510 key->ip.tos = nh->tos;
511 key->ip.ttl = nh->ttl;
513 offset = nh->frag_off & htons(IP_OFFSET);
514 if (offset) {
515 key->ip.frag = OVS_FRAG_TYPE_LATER;
516 return 0;
518 if (nh->frag_off & htons(IP_MF) ||
519 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
520 key->ip.frag = OVS_FRAG_TYPE_FIRST;
521 else
522 key->ip.frag = OVS_FRAG_TYPE_NONE;
524 /* Transport layer. */
525 if (key->ip.proto == IPPROTO_TCP) {
526 if (tcphdr_ok(skb)) {
527 struct tcphdr *tcp = tcp_hdr(skb);
528 key->tp.src = tcp->source;
529 key->tp.dst = tcp->dest;
530 key->tp.flags = TCP_FLAGS_BE16(tcp);
531 } else {
532 memset(&key->tp, 0, sizeof(key->tp));
535 } else if (key->ip.proto == IPPROTO_UDP) {
536 if (udphdr_ok(skb)) {
537 struct udphdr *udp = udp_hdr(skb);
538 key->tp.src = udp->source;
539 key->tp.dst = udp->dest;
540 } else {
541 memset(&key->tp, 0, sizeof(key->tp));
543 } else if (key->ip.proto == IPPROTO_SCTP) {
544 if (sctphdr_ok(skb)) {
545 struct sctphdr *sctp = sctp_hdr(skb);
546 key->tp.src = sctp->source;
547 key->tp.dst = sctp->dest;
548 } else {
549 memset(&key->tp, 0, sizeof(key->tp));
551 } else if (key->ip.proto == IPPROTO_ICMP) {
552 if (icmphdr_ok(skb)) {
553 struct icmphdr *icmp = icmp_hdr(skb);
554 /* The ICMP type and code fields use the 16-bit
555 * transport port fields, so we need to store
556 * them in 16-bit network byte order. */
557 key->tp.src = htons(icmp->type);
558 key->tp.dst = htons(icmp->code);
559 } else {
560 memset(&key->tp, 0, sizeof(key->tp));
564 } else if (key->eth.type == htons(ETH_P_ARP) ||
565 key->eth.type == htons(ETH_P_RARP)) {
566 struct arp_eth_header *arp;
567 bool arp_available = arphdr_ok(skb);
569 arp = (struct arp_eth_header *)skb_network_header(skb);
571 if (arp_available &&
572 arp->ar_hrd == htons(ARPHRD_ETHER) &&
573 arp->ar_pro == htons(ETH_P_IP) &&
574 arp->ar_hln == ETH_ALEN &&
575 arp->ar_pln == 4) {
577 /* We only match on the lower 8 bits of the opcode. */
578 if (ntohs(arp->ar_op) <= 0xff)
579 key->ip.proto = ntohs(arp->ar_op);
580 else
581 key->ip.proto = 0;
583 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
584 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
585 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
586 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
587 } else {
588 memset(&key->ip, 0, sizeof(key->ip));
589 memset(&key->ipv4, 0, sizeof(key->ipv4));
591 } else if (eth_p_mpls(key->eth.type)) {
592 size_t stack_len = MPLS_HLEN;
594 /* In the presence of an MPLS label stack the end of the L2
595 * header and the beginning of the L3 header differ.
597 * Advance network_header to the beginning of the L3
598 * header. mac_len corresponds to the end of the L2 header.
600 while (1) {
601 __be32 lse;
603 error = check_header(skb, skb->mac_len + stack_len);
604 if (unlikely(error))
605 return 0;
607 memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
609 if (stack_len == MPLS_HLEN)
610 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
612 skb_set_network_header(skb, skb->mac_len + stack_len);
613 if (lse & htonl(MPLS_LS_S_MASK))
614 break;
616 stack_len += MPLS_HLEN;
618 } else if (key->eth.type == htons(ETH_P_IPV6)) {
619 int nh_len; /* IPv6 Header + Extensions */
621 nh_len = parse_ipv6hdr(skb, key);
622 if (unlikely(nh_len < 0)) {
623 memset(&key->ip, 0, sizeof(key->ip));
624 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
625 if (nh_len == -EINVAL) {
626 skb->transport_header = skb->network_header;
627 error = 0;
628 } else {
629 error = nh_len;
631 return error;
634 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
635 return 0;
636 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
637 key->ip.frag = OVS_FRAG_TYPE_FIRST;
639 /* Transport layer. */
640 if (key->ip.proto == NEXTHDR_TCP) {
641 if (tcphdr_ok(skb)) {
642 struct tcphdr *tcp = tcp_hdr(skb);
643 key->tp.src = tcp->source;
644 key->tp.dst = tcp->dest;
645 key->tp.flags = TCP_FLAGS_BE16(tcp);
646 } else {
647 memset(&key->tp, 0, sizeof(key->tp));
649 } else if (key->ip.proto == NEXTHDR_UDP) {
650 if (udphdr_ok(skb)) {
651 struct udphdr *udp = udp_hdr(skb);
652 key->tp.src = udp->source;
653 key->tp.dst = udp->dest;
654 } else {
655 memset(&key->tp, 0, sizeof(key->tp));
657 } else if (key->ip.proto == NEXTHDR_SCTP) {
658 if (sctphdr_ok(skb)) {
659 struct sctphdr *sctp = sctp_hdr(skb);
660 key->tp.src = sctp->source;
661 key->tp.dst = sctp->dest;
662 } else {
663 memset(&key->tp, 0, sizeof(key->tp));
665 } else if (key->ip.proto == NEXTHDR_ICMP) {
666 if (icmp6hdr_ok(skb)) {
667 error = parse_icmpv6(skb, key, nh_len);
668 if (error)
669 return error;
670 } else {
671 memset(&key->tp, 0, sizeof(key->tp));
675 return 0;
678 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
680 return key_extract(skb, key);
683 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info,
684 struct sk_buff *skb, struct sw_flow_key *key)
686 /* Extract metadata from packet. */
687 if (tun_info) {
688 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key));
690 if (tun_info->options) {
691 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
692 8)) - 1
693 > sizeof(key->tun_opts));
694 memcpy(TUN_METADATA_OPTS(key, tun_info->options_len),
695 tun_info->options, tun_info->options_len);
696 key->tun_opts_len = tun_info->options_len;
697 } else {
698 key->tun_opts_len = 0;
700 } else {
701 key->tun_opts_len = 0;
702 memset(&key->tun_key, 0, sizeof(key->tun_key));
705 key->phy.priority = skb->priority;
706 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
707 key->phy.skb_mark = skb->mark;
708 key->ovs_flow_hash = 0;
709 key->recirc_id = 0;
711 return key_extract(skb, key);
714 int ovs_flow_key_extract_userspace(const struct nlattr *attr,
715 struct sk_buff *skb,
716 struct sw_flow_key *key, bool log)
718 int err;
720 memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
722 /* Extract metadata from netlink attributes. */
723 err = ovs_nla_get_flow_metadata(attr, key, log);
724 if (err)
725 return err;
727 return key_extract(skb, key);