2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
48 #include <net/ndisc.h>
51 #include "flow_netlink.h"
52 #include "vport-vxlan.h"
56 const struct ovs_len_tbl
*next
;
59 #define OVS_ATTR_NESTED -1
61 static void update_range(struct sw_flow_match
*match
,
62 size_t offset
, size_t size
, bool is_mask
)
64 struct sw_flow_key_range
*range
;
65 size_t start
= rounddown(offset
, sizeof(long));
66 size_t end
= roundup(offset
+ size
, sizeof(long));
69 range
= &match
->range
;
71 range
= &match
->mask
->range
;
73 if (range
->start
== range
->end
) {
79 if (range
->start
> start
)
86 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 update_range(match, offsetof(struct sw_flow_key, field), \
89 sizeof((match)->key->field), is_mask); \
91 (match)->mask->key.field = value; \
93 (match)->key->field = value; \
96 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
98 update_range(match, offset, len, is_mask); \
100 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
103 memcpy((u8 *)(match)->key + offset, value_p, len); \
106 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
107 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
108 value_p, len, is_mask)
110 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
112 update_range(match, offsetof(struct sw_flow_key, field), \
113 sizeof((match)->key->field), is_mask); \
115 memset((u8 *)&(match)->mask->key.field, value, \
116 sizeof((match)->mask->key.field)); \
118 memset((u8 *)&(match)->key->field, value, \
119 sizeof((match)->key->field)); \
122 static bool match_validate(const struct sw_flow_match
*match
,
123 u64 key_attrs
, u64 mask_attrs
, bool log
)
125 u64 key_expected
= 1 << OVS_KEY_ATTR_ETHERNET
;
126 u64 mask_allowed
= key_attrs
; /* At most allow all key attributes */
128 /* The following mask attributes allowed only if they
129 * pass the validation tests. */
130 mask_allowed
&= ~((1 << OVS_KEY_ATTR_IPV4
)
131 | (1 << OVS_KEY_ATTR_IPV6
)
132 | (1 << OVS_KEY_ATTR_TCP
)
133 | (1 << OVS_KEY_ATTR_TCP_FLAGS
)
134 | (1 << OVS_KEY_ATTR_UDP
)
135 | (1 << OVS_KEY_ATTR_SCTP
)
136 | (1 << OVS_KEY_ATTR_ICMP
)
137 | (1 << OVS_KEY_ATTR_ICMPV6
)
138 | (1 << OVS_KEY_ATTR_ARP
)
139 | (1 << OVS_KEY_ATTR_ND
)
140 | (1 << OVS_KEY_ATTR_MPLS
));
142 /* Always allowed mask fields. */
143 mask_allowed
|= ((1 << OVS_KEY_ATTR_TUNNEL
)
144 | (1 << OVS_KEY_ATTR_IN_PORT
)
145 | (1 << OVS_KEY_ATTR_ETHERTYPE
));
147 /* Check key attributes. */
148 if (match
->key
->eth
.type
== htons(ETH_P_ARP
)
149 || match
->key
->eth
.type
== htons(ETH_P_RARP
)) {
150 key_expected
|= 1 << OVS_KEY_ATTR_ARP
;
151 if (match
->mask
&& (match
->mask
->key
.eth
.type
== htons(0xffff)))
152 mask_allowed
|= 1 << OVS_KEY_ATTR_ARP
;
155 if (eth_p_mpls(match
->key
->eth
.type
)) {
156 key_expected
|= 1 << OVS_KEY_ATTR_MPLS
;
157 if (match
->mask
&& (match
->mask
->key
.eth
.type
== htons(0xffff)))
158 mask_allowed
|= 1 << OVS_KEY_ATTR_MPLS
;
161 if (match
->key
->eth
.type
== htons(ETH_P_IP
)) {
162 key_expected
|= 1 << OVS_KEY_ATTR_IPV4
;
163 if (match
->mask
&& (match
->mask
->key
.eth
.type
== htons(0xffff)))
164 mask_allowed
|= 1 << OVS_KEY_ATTR_IPV4
;
166 if (match
->key
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
167 if (match
->key
->ip
.proto
== IPPROTO_UDP
) {
168 key_expected
|= 1 << OVS_KEY_ATTR_UDP
;
169 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
170 mask_allowed
|= 1 << OVS_KEY_ATTR_UDP
;
173 if (match
->key
->ip
.proto
== IPPROTO_SCTP
) {
174 key_expected
|= 1 << OVS_KEY_ATTR_SCTP
;
175 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
176 mask_allowed
|= 1 << OVS_KEY_ATTR_SCTP
;
179 if (match
->key
->ip
.proto
== IPPROTO_TCP
) {
180 key_expected
|= 1 << OVS_KEY_ATTR_TCP
;
181 key_expected
|= 1 << OVS_KEY_ATTR_TCP_FLAGS
;
182 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff)) {
183 mask_allowed
|= 1 << OVS_KEY_ATTR_TCP
;
184 mask_allowed
|= 1 << OVS_KEY_ATTR_TCP_FLAGS
;
188 if (match
->key
->ip
.proto
== IPPROTO_ICMP
) {
189 key_expected
|= 1 << OVS_KEY_ATTR_ICMP
;
190 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
191 mask_allowed
|= 1 << OVS_KEY_ATTR_ICMP
;
196 if (match
->key
->eth
.type
== htons(ETH_P_IPV6
)) {
197 key_expected
|= 1 << OVS_KEY_ATTR_IPV6
;
198 if (match
->mask
&& (match
->mask
->key
.eth
.type
== htons(0xffff)))
199 mask_allowed
|= 1 << OVS_KEY_ATTR_IPV6
;
201 if (match
->key
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
202 if (match
->key
->ip
.proto
== IPPROTO_UDP
) {
203 key_expected
|= 1 << OVS_KEY_ATTR_UDP
;
204 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
205 mask_allowed
|= 1 << OVS_KEY_ATTR_UDP
;
208 if (match
->key
->ip
.proto
== IPPROTO_SCTP
) {
209 key_expected
|= 1 << OVS_KEY_ATTR_SCTP
;
210 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
211 mask_allowed
|= 1 << OVS_KEY_ATTR_SCTP
;
214 if (match
->key
->ip
.proto
== IPPROTO_TCP
) {
215 key_expected
|= 1 << OVS_KEY_ATTR_TCP
;
216 key_expected
|= 1 << OVS_KEY_ATTR_TCP_FLAGS
;
217 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff)) {
218 mask_allowed
|= 1 << OVS_KEY_ATTR_TCP
;
219 mask_allowed
|= 1 << OVS_KEY_ATTR_TCP_FLAGS
;
223 if (match
->key
->ip
.proto
== IPPROTO_ICMPV6
) {
224 key_expected
|= 1 << OVS_KEY_ATTR_ICMPV6
;
225 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
226 mask_allowed
|= 1 << OVS_KEY_ATTR_ICMPV6
;
228 if (match
->key
->tp
.src
==
229 htons(NDISC_NEIGHBOUR_SOLICITATION
) ||
230 match
->key
->tp
.src
== htons(NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
231 key_expected
|= 1 << OVS_KEY_ATTR_ND
;
232 if (match
->mask
&& (match
->mask
->key
.tp
.src
== htons(0xff)))
233 mask_allowed
|= 1 << OVS_KEY_ATTR_ND
;
239 if ((key_attrs
& key_expected
) != key_expected
) {
240 /* Key attributes check failed. */
241 OVS_NLERR(log
, "Missing key (keys=%llx, expected=%llx)",
242 (unsigned long long)key_attrs
,
243 (unsigned long long)key_expected
);
247 if ((mask_attrs
& mask_allowed
) != mask_attrs
) {
248 /* Mask attributes check failed. */
249 OVS_NLERR(log
, "Unexpected mask (mask=%llx, allowed=%llx)",
250 (unsigned long long)mask_attrs
,
251 (unsigned long long)mask_allowed
);
258 size_t ovs_tun_key_attr_size(void)
260 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
261 * updating this function.
263 return nla_total_size(8) /* OVS_TUNNEL_KEY_ATTR_ID */
264 + nla_total_size(4) /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
265 + nla_total_size(4) /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
266 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
268 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
271 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
272 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
273 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
276 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
279 size_t ovs_key_attr_size(void)
281 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
282 * updating this function.
284 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO
!= 22);
286 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
287 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
288 + ovs_tun_key_attr_size()
289 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
290 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
291 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
292 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
293 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
294 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
295 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
296 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
297 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
298 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
299 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
300 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
303 static const struct ovs_len_tbl ovs_tunnel_key_lens
[OVS_TUNNEL_KEY_ATTR_MAX
+ 1] = {
304 [OVS_TUNNEL_KEY_ATTR_ID
] = { .len
= sizeof(u64
) },
305 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC
] = { .len
= sizeof(u32
) },
306 [OVS_TUNNEL_KEY_ATTR_IPV4_DST
] = { .len
= sizeof(u32
) },
307 [OVS_TUNNEL_KEY_ATTR_TOS
] = { .len
= 1 },
308 [OVS_TUNNEL_KEY_ATTR_TTL
] = { .len
= 1 },
309 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT
] = { .len
= 0 },
310 [OVS_TUNNEL_KEY_ATTR_CSUM
] = { .len
= 0 },
311 [OVS_TUNNEL_KEY_ATTR_TP_SRC
] = { .len
= sizeof(u16
) },
312 [OVS_TUNNEL_KEY_ATTR_TP_DST
] = { .len
= sizeof(u16
) },
313 [OVS_TUNNEL_KEY_ATTR_OAM
] = { .len
= 0 },
314 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS
] = { .len
= OVS_ATTR_NESTED
},
315 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS
] = { .len
= OVS_ATTR_NESTED
},
318 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
319 static const struct ovs_len_tbl ovs_key_lens
[OVS_KEY_ATTR_MAX
+ 1] = {
320 [OVS_KEY_ATTR_ENCAP
] = { .len
= OVS_ATTR_NESTED
},
321 [OVS_KEY_ATTR_PRIORITY
] = { .len
= sizeof(u32
) },
322 [OVS_KEY_ATTR_IN_PORT
] = { .len
= sizeof(u32
) },
323 [OVS_KEY_ATTR_SKB_MARK
] = { .len
= sizeof(u32
) },
324 [OVS_KEY_ATTR_ETHERNET
] = { .len
= sizeof(struct ovs_key_ethernet
) },
325 [OVS_KEY_ATTR_VLAN
] = { .len
= sizeof(__be16
) },
326 [OVS_KEY_ATTR_ETHERTYPE
] = { .len
= sizeof(__be16
) },
327 [OVS_KEY_ATTR_IPV4
] = { .len
= sizeof(struct ovs_key_ipv4
) },
328 [OVS_KEY_ATTR_IPV6
] = { .len
= sizeof(struct ovs_key_ipv6
) },
329 [OVS_KEY_ATTR_TCP
] = { .len
= sizeof(struct ovs_key_tcp
) },
330 [OVS_KEY_ATTR_TCP_FLAGS
] = { .len
= sizeof(__be16
) },
331 [OVS_KEY_ATTR_UDP
] = { .len
= sizeof(struct ovs_key_udp
) },
332 [OVS_KEY_ATTR_SCTP
] = { .len
= sizeof(struct ovs_key_sctp
) },
333 [OVS_KEY_ATTR_ICMP
] = { .len
= sizeof(struct ovs_key_icmp
) },
334 [OVS_KEY_ATTR_ICMPV6
] = { .len
= sizeof(struct ovs_key_icmpv6
) },
335 [OVS_KEY_ATTR_ARP
] = { .len
= sizeof(struct ovs_key_arp
) },
336 [OVS_KEY_ATTR_ND
] = { .len
= sizeof(struct ovs_key_nd
) },
337 [OVS_KEY_ATTR_RECIRC_ID
] = { .len
= sizeof(u32
) },
338 [OVS_KEY_ATTR_DP_HASH
] = { .len
= sizeof(u32
) },
339 [OVS_KEY_ATTR_TUNNEL
] = { .len
= OVS_ATTR_NESTED
,
340 .next
= ovs_tunnel_key_lens
, },
341 [OVS_KEY_ATTR_MPLS
] = { .len
= sizeof(struct ovs_key_mpls
) },
344 static bool is_all_zero(const u8
*fp
, size_t size
)
351 for (i
= 0; i
< size
; i
++)
358 static int __parse_flow_nlattrs(const struct nlattr
*attr
,
359 const struct nlattr
*a
[],
360 u64
*attrsp
, bool log
, bool nz
)
362 const struct nlattr
*nla
;
367 nla_for_each_nested(nla
, attr
, rem
) {
368 u16 type
= nla_type(nla
);
371 if (type
> OVS_KEY_ATTR_MAX
) {
372 OVS_NLERR(log
, "Key type %d is out of range max %d",
373 type
, OVS_KEY_ATTR_MAX
);
377 if (attrs
& (1 << type
)) {
378 OVS_NLERR(log
, "Duplicate key (type %d).", type
);
382 expected_len
= ovs_key_lens
[type
].len
;
383 if (nla_len(nla
) != expected_len
&& expected_len
!= OVS_ATTR_NESTED
) {
384 OVS_NLERR(log
, "Key %d has unexpected len %d expected %d",
385 type
, nla_len(nla
), expected_len
);
389 if (!nz
|| !is_all_zero(nla_data(nla
), expected_len
)) {
395 OVS_NLERR(log
, "Message has %d unknown bytes.", rem
);
403 static int parse_flow_mask_nlattrs(const struct nlattr
*attr
,
404 const struct nlattr
*a
[], u64
*attrsp
,
407 return __parse_flow_nlattrs(attr
, a
, attrsp
, log
, true);
410 static int parse_flow_nlattrs(const struct nlattr
*attr
,
411 const struct nlattr
*a
[], u64
*attrsp
,
414 return __parse_flow_nlattrs(attr
, a
, attrsp
, log
, false);
417 static int genev_tun_opt_from_nlattr(const struct nlattr
*a
,
418 struct sw_flow_match
*match
, bool is_mask
,
421 unsigned long opt_key_offset
;
423 if (nla_len(a
) > sizeof(match
->key
->tun_opts
)) {
424 OVS_NLERR(log
, "Geneve option length err (len %d, max %zu).",
425 nla_len(a
), sizeof(match
->key
->tun_opts
));
429 if (nla_len(a
) % 4 != 0) {
430 OVS_NLERR(log
, "Geneve opt len %d is not a multiple of 4.",
435 /* We need to record the length of the options passed
436 * down, otherwise packets with the same format but
437 * additional options will be silently matched.
440 SW_FLOW_KEY_PUT(match
, tun_opts_len
, nla_len(a
),
443 /* This is somewhat unusual because it looks at
444 * both the key and mask while parsing the
445 * attributes (and by extension assumes the key
446 * is parsed first). Normally, we would verify
447 * that each is the correct length and that the
448 * attributes line up in the validate function.
449 * However, that is difficult because this is
450 * variable length and we won't have the
453 if (match
->key
->tun_opts_len
!= nla_len(a
)) {
454 OVS_NLERR(log
, "Geneve option len %d != mask len %d",
455 match
->key
->tun_opts_len
, nla_len(a
));
459 SW_FLOW_KEY_PUT(match
, tun_opts_len
, 0xff, true);
462 opt_key_offset
= TUN_METADATA_OFFSET(nla_len(a
));
463 SW_FLOW_KEY_MEMCPY_OFFSET(match
, opt_key_offset
, nla_data(a
),
464 nla_len(a
), is_mask
);
468 static const struct nla_policy vxlan_opt_policy
[OVS_VXLAN_EXT_MAX
+ 1] = {
469 [OVS_VXLAN_EXT_GBP
] = { .type
= NLA_U32
},
472 static int vxlan_tun_opt_from_nlattr(const struct nlattr
*a
,
473 struct sw_flow_match
*match
, bool is_mask
,
476 struct nlattr
*tb
[OVS_VXLAN_EXT_MAX
+1];
477 unsigned long opt_key_offset
;
478 struct ovs_vxlan_opts opts
;
481 BUILD_BUG_ON(sizeof(opts
) > sizeof(match
->key
->tun_opts
));
483 err
= nla_parse_nested(tb
, OVS_VXLAN_EXT_MAX
, a
, vxlan_opt_policy
);
487 memset(&opts
, 0, sizeof(opts
));
489 if (tb
[OVS_VXLAN_EXT_GBP
])
490 opts
.gbp
= nla_get_u32(tb
[OVS_VXLAN_EXT_GBP
]);
493 SW_FLOW_KEY_PUT(match
, tun_opts_len
, sizeof(opts
), false);
495 SW_FLOW_KEY_PUT(match
, tun_opts_len
, 0xff, true);
497 opt_key_offset
= TUN_METADATA_OFFSET(sizeof(opts
));
498 SW_FLOW_KEY_MEMCPY_OFFSET(match
, opt_key_offset
, &opts
, sizeof(opts
),
503 static int ipv4_tun_from_nlattr(const struct nlattr
*attr
,
504 struct sw_flow_match
*match
, bool is_mask
,
510 __be16 tun_flags
= 0;
513 nla_for_each_nested(a
, attr
, rem
) {
514 int type
= nla_type(a
);
517 if (type
> OVS_TUNNEL_KEY_ATTR_MAX
) {
518 OVS_NLERR(log
, "Tunnel attr %d out of range max %d",
519 type
, OVS_TUNNEL_KEY_ATTR_MAX
);
523 if (ovs_tunnel_key_lens
[type
].len
!= nla_len(a
) &&
524 ovs_tunnel_key_lens
[type
].len
!= OVS_ATTR_NESTED
) {
525 OVS_NLERR(log
, "Tunnel attr %d has unexpected len %d expected %d",
526 type
, nla_len(a
), ovs_tunnel_key_lens
[type
].len
);
531 case OVS_TUNNEL_KEY_ATTR_ID
:
532 SW_FLOW_KEY_PUT(match
, tun_key
.tun_id
,
533 nla_get_be64(a
), is_mask
);
534 tun_flags
|= TUNNEL_KEY
;
536 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC
:
537 SW_FLOW_KEY_PUT(match
, tun_key
.ipv4_src
,
538 nla_get_be32(a
), is_mask
);
540 case OVS_TUNNEL_KEY_ATTR_IPV4_DST
:
541 SW_FLOW_KEY_PUT(match
, tun_key
.ipv4_dst
,
542 nla_get_be32(a
), is_mask
);
544 case OVS_TUNNEL_KEY_ATTR_TOS
:
545 SW_FLOW_KEY_PUT(match
, tun_key
.ipv4_tos
,
546 nla_get_u8(a
), is_mask
);
548 case OVS_TUNNEL_KEY_ATTR_TTL
:
549 SW_FLOW_KEY_PUT(match
, tun_key
.ipv4_ttl
,
550 nla_get_u8(a
), is_mask
);
553 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT
:
554 tun_flags
|= TUNNEL_DONT_FRAGMENT
;
556 case OVS_TUNNEL_KEY_ATTR_CSUM
:
557 tun_flags
|= TUNNEL_CSUM
;
559 case OVS_TUNNEL_KEY_ATTR_TP_SRC
:
560 SW_FLOW_KEY_PUT(match
, tun_key
.tp_src
,
561 nla_get_be16(a
), is_mask
);
563 case OVS_TUNNEL_KEY_ATTR_TP_DST
:
564 SW_FLOW_KEY_PUT(match
, tun_key
.tp_dst
,
565 nla_get_be16(a
), is_mask
);
567 case OVS_TUNNEL_KEY_ATTR_OAM
:
568 tun_flags
|= TUNNEL_OAM
;
570 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS
:
572 OVS_NLERR(log
, "Multiple metadata blocks provided");
576 err
= genev_tun_opt_from_nlattr(a
, match
, is_mask
, log
);
580 tun_flags
|= TUNNEL_GENEVE_OPT
;
583 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS
:
585 OVS_NLERR(log
, "Multiple metadata blocks provided");
589 err
= vxlan_tun_opt_from_nlattr(a
, match
, is_mask
, log
);
593 tun_flags
|= TUNNEL_VXLAN_OPT
;
597 OVS_NLERR(log
, "Unknown IPv4 tunnel attribute %d",
603 SW_FLOW_KEY_PUT(match
, tun_key
.tun_flags
, tun_flags
, is_mask
);
606 OVS_NLERR(log
, "IPv4 tunnel attribute has %d unknown bytes.",
612 if (!match
->key
->tun_key
.ipv4_dst
) {
613 OVS_NLERR(log
, "IPv4 tunnel dst address is zero");
618 OVS_NLERR(log
, "IPv4 tunnel TTL not specified.");
626 static int vxlan_opt_to_nlattr(struct sk_buff
*skb
,
627 const void *tun_opts
, int swkey_tun_opts_len
)
629 const struct ovs_vxlan_opts
*opts
= tun_opts
;
632 nla
= nla_nest_start(skb
, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS
);
636 if (nla_put_u32(skb
, OVS_VXLAN_EXT_GBP
, opts
->gbp
) < 0)
639 nla_nest_end(skb
, nla
);
643 static int __ipv4_tun_to_nlattr(struct sk_buff
*skb
,
644 const struct ovs_key_ipv4_tunnel
*output
,
645 const void *tun_opts
, int swkey_tun_opts_len
)
647 if (output
->tun_flags
& TUNNEL_KEY
&&
648 nla_put_be64(skb
, OVS_TUNNEL_KEY_ATTR_ID
, output
->tun_id
))
650 if (output
->ipv4_src
&&
651 nla_put_be32(skb
, OVS_TUNNEL_KEY_ATTR_IPV4_SRC
, output
->ipv4_src
))
653 if (output
->ipv4_dst
&&
654 nla_put_be32(skb
, OVS_TUNNEL_KEY_ATTR_IPV4_DST
, output
->ipv4_dst
))
656 if (output
->ipv4_tos
&&
657 nla_put_u8(skb
, OVS_TUNNEL_KEY_ATTR_TOS
, output
->ipv4_tos
))
659 if (nla_put_u8(skb
, OVS_TUNNEL_KEY_ATTR_TTL
, output
->ipv4_ttl
))
661 if ((output
->tun_flags
& TUNNEL_DONT_FRAGMENT
) &&
662 nla_put_flag(skb
, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT
))
664 if ((output
->tun_flags
& TUNNEL_CSUM
) &&
665 nla_put_flag(skb
, OVS_TUNNEL_KEY_ATTR_CSUM
))
667 if (output
->tp_src
&&
668 nla_put_be16(skb
, OVS_TUNNEL_KEY_ATTR_TP_SRC
, output
->tp_src
))
670 if (output
->tp_dst
&&
671 nla_put_be16(skb
, OVS_TUNNEL_KEY_ATTR_TP_DST
, output
->tp_dst
))
673 if ((output
->tun_flags
& TUNNEL_OAM
) &&
674 nla_put_flag(skb
, OVS_TUNNEL_KEY_ATTR_OAM
))
677 if (output
->tun_flags
& TUNNEL_GENEVE_OPT
&&
678 nla_put(skb
, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS
,
679 swkey_tun_opts_len
, tun_opts
))
681 else if (output
->tun_flags
& TUNNEL_VXLAN_OPT
&&
682 vxlan_opt_to_nlattr(skb
, tun_opts
, swkey_tun_opts_len
))
689 static int ipv4_tun_to_nlattr(struct sk_buff
*skb
,
690 const struct ovs_key_ipv4_tunnel
*output
,
691 const void *tun_opts
, int swkey_tun_opts_len
)
696 nla
= nla_nest_start(skb
, OVS_KEY_ATTR_TUNNEL
);
700 err
= __ipv4_tun_to_nlattr(skb
, output
, tun_opts
, swkey_tun_opts_len
);
704 nla_nest_end(skb
, nla
);
708 int ovs_nla_put_egress_tunnel_key(struct sk_buff
*skb
,
709 const struct ovs_tunnel_info
*egress_tun_info
)
711 return __ipv4_tun_to_nlattr(skb
, &egress_tun_info
->tunnel
,
712 egress_tun_info
->options
,
713 egress_tun_info
->options_len
);
716 static int metadata_from_nlattrs(struct sw_flow_match
*match
, u64
*attrs
,
717 const struct nlattr
**a
, bool is_mask
,
720 if (*attrs
& (1 << OVS_KEY_ATTR_DP_HASH
)) {
721 u32 hash_val
= nla_get_u32(a
[OVS_KEY_ATTR_DP_HASH
]);
723 SW_FLOW_KEY_PUT(match
, ovs_flow_hash
, hash_val
, is_mask
);
724 *attrs
&= ~(1 << OVS_KEY_ATTR_DP_HASH
);
727 if (*attrs
& (1 << OVS_KEY_ATTR_RECIRC_ID
)) {
728 u32 recirc_id
= nla_get_u32(a
[OVS_KEY_ATTR_RECIRC_ID
]);
730 SW_FLOW_KEY_PUT(match
, recirc_id
, recirc_id
, is_mask
);
731 *attrs
&= ~(1 << OVS_KEY_ATTR_RECIRC_ID
);
734 if (*attrs
& (1 << OVS_KEY_ATTR_PRIORITY
)) {
735 SW_FLOW_KEY_PUT(match
, phy
.priority
,
736 nla_get_u32(a
[OVS_KEY_ATTR_PRIORITY
]), is_mask
);
737 *attrs
&= ~(1 << OVS_KEY_ATTR_PRIORITY
);
740 if (*attrs
& (1 << OVS_KEY_ATTR_IN_PORT
)) {
741 u32 in_port
= nla_get_u32(a
[OVS_KEY_ATTR_IN_PORT
]);
744 in_port
= 0xffffffff; /* Always exact match in_port. */
745 } else if (in_port
>= DP_MAX_PORTS
) {
746 OVS_NLERR(log
, "Port %d exceeds max allowable %d",
747 in_port
, DP_MAX_PORTS
);
751 SW_FLOW_KEY_PUT(match
, phy
.in_port
, in_port
, is_mask
);
752 *attrs
&= ~(1 << OVS_KEY_ATTR_IN_PORT
);
753 } else if (!is_mask
) {
754 SW_FLOW_KEY_PUT(match
, phy
.in_port
, DP_MAX_PORTS
, is_mask
);
757 if (*attrs
& (1 << OVS_KEY_ATTR_SKB_MARK
)) {
758 uint32_t mark
= nla_get_u32(a
[OVS_KEY_ATTR_SKB_MARK
]);
760 SW_FLOW_KEY_PUT(match
, phy
.skb_mark
, mark
, is_mask
);
761 *attrs
&= ~(1 << OVS_KEY_ATTR_SKB_MARK
);
763 if (*attrs
& (1 << OVS_KEY_ATTR_TUNNEL
)) {
764 if (ipv4_tun_from_nlattr(a
[OVS_KEY_ATTR_TUNNEL
], match
,
767 *attrs
&= ~(1 << OVS_KEY_ATTR_TUNNEL
);
772 static int ovs_key_from_nlattrs(struct sw_flow_match
*match
, u64 attrs
,
773 const struct nlattr
**a
, bool is_mask
,
778 err
= metadata_from_nlattrs(match
, &attrs
, a
, is_mask
, log
);
782 if (attrs
& (1 << OVS_KEY_ATTR_ETHERNET
)) {
783 const struct ovs_key_ethernet
*eth_key
;
785 eth_key
= nla_data(a
[OVS_KEY_ATTR_ETHERNET
]);
786 SW_FLOW_KEY_MEMCPY(match
, eth
.src
,
787 eth_key
->eth_src
, ETH_ALEN
, is_mask
);
788 SW_FLOW_KEY_MEMCPY(match
, eth
.dst
,
789 eth_key
->eth_dst
, ETH_ALEN
, is_mask
);
790 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERNET
);
793 if (attrs
& (1 << OVS_KEY_ATTR_VLAN
)) {
796 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
797 if (!(tci
& htons(VLAN_TAG_PRESENT
))) {
799 OVS_NLERR(log
, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
801 OVS_NLERR(log
, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
806 SW_FLOW_KEY_PUT(match
, eth
.tci
, tci
, is_mask
);
807 attrs
&= ~(1 << OVS_KEY_ATTR_VLAN
);
810 if (attrs
& (1 << OVS_KEY_ATTR_ETHERTYPE
)) {
813 eth_type
= nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]);
815 /* Always exact match EtherType. */
816 eth_type
= htons(0xffff);
817 } else if (ntohs(eth_type
) < ETH_P_802_3_MIN
) {
818 OVS_NLERR(log
, "EtherType %x is less than min %x",
819 ntohs(eth_type
), ETH_P_802_3_MIN
);
823 SW_FLOW_KEY_PUT(match
, eth
.type
, eth_type
, is_mask
);
824 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
825 } else if (!is_mask
) {
826 SW_FLOW_KEY_PUT(match
, eth
.type
, htons(ETH_P_802_2
), is_mask
);
829 if (attrs
& (1 << OVS_KEY_ATTR_IPV4
)) {
830 const struct ovs_key_ipv4
*ipv4_key
;
832 ipv4_key
= nla_data(a
[OVS_KEY_ATTR_IPV4
]);
833 if (!is_mask
&& ipv4_key
->ipv4_frag
> OVS_FRAG_TYPE_MAX
) {
834 OVS_NLERR(log
, "IPv4 frag type %d is out of range max %d",
835 ipv4_key
->ipv4_frag
, OVS_FRAG_TYPE_MAX
);
838 SW_FLOW_KEY_PUT(match
, ip
.proto
,
839 ipv4_key
->ipv4_proto
, is_mask
);
840 SW_FLOW_KEY_PUT(match
, ip
.tos
,
841 ipv4_key
->ipv4_tos
, is_mask
);
842 SW_FLOW_KEY_PUT(match
, ip
.ttl
,
843 ipv4_key
->ipv4_ttl
, is_mask
);
844 SW_FLOW_KEY_PUT(match
, ip
.frag
,
845 ipv4_key
->ipv4_frag
, is_mask
);
846 SW_FLOW_KEY_PUT(match
, ipv4
.addr
.src
,
847 ipv4_key
->ipv4_src
, is_mask
);
848 SW_FLOW_KEY_PUT(match
, ipv4
.addr
.dst
,
849 ipv4_key
->ipv4_dst
, is_mask
);
850 attrs
&= ~(1 << OVS_KEY_ATTR_IPV4
);
853 if (attrs
& (1 << OVS_KEY_ATTR_IPV6
)) {
854 const struct ovs_key_ipv6
*ipv6_key
;
856 ipv6_key
= nla_data(a
[OVS_KEY_ATTR_IPV6
]);
857 if (!is_mask
&& ipv6_key
->ipv6_frag
> OVS_FRAG_TYPE_MAX
) {
858 OVS_NLERR(log
, "IPv6 frag type %d is out of range max %d",
859 ipv6_key
->ipv6_frag
, OVS_FRAG_TYPE_MAX
);
863 if (!is_mask
&& ipv6_key
->ipv6_label
& htonl(0xFFF00000)) {
864 OVS_NLERR(log
, "IPv6 flow label %x is out of range (max=%x).\n",
865 ntohl(ipv6_key
->ipv6_label
), (1 << 20) - 1);
869 SW_FLOW_KEY_PUT(match
, ipv6
.label
,
870 ipv6_key
->ipv6_label
, is_mask
);
871 SW_FLOW_KEY_PUT(match
, ip
.proto
,
872 ipv6_key
->ipv6_proto
, is_mask
);
873 SW_FLOW_KEY_PUT(match
, ip
.tos
,
874 ipv6_key
->ipv6_tclass
, is_mask
);
875 SW_FLOW_KEY_PUT(match
, ip
.ttl
,
876 ipv6_key
->ipv6_hlimit
, is_mask
);
877 SW_FLOW_KEY_PUT(match
, ip
.frag
,
878 ipv6_key
->ipv6_frag
, is_mask
);
879 SW_FLOW_KEY_MEMCPY(match
, ipv6
.addr
.src
,
881 sizeof(match
->key
->ipv6
.addr
.src
),
883 SW_FLOW_KEY_MEMCPY(match
, ipv6
.addr
.dst
,
885 sizeof(match
->key
->ipv6
.addr
.dst
),
888 attrs
&= ~(1 << OVS_KEY_ATTR_IPV6
);
891 if (attrs
& (1 << OVS_KEY_ATTR_ARP
)) {
892 const struct ovs_key_arp
*arp_key
;
894 arp_key
= nla_data(a
[OVS_KEY_ATTR_ARP
]);
895 if (!is_mask
&& (arp_key
->arp_op
& htons(0xff00))) {
896 OVS_NLERR(log
, "Unknown ARP opcode (opcode=%d).",
901 SW_FLOW_KEY_PUT(match
, ipv4
.addr
.src
,
902 arp_key
->arp_sip
, is_mask
);
903 SW_FLOW_KEY_PUT(match
, ipv4
.addr
.dst
,
904 arp_key
->arp_tip
, is_mask
);
905 SW_FLOW_KEY_PUT(match
, ip
.proto
,
906 ntohs(arp_key
->arp_op
), is_mask
);
907 SW_FLOW_KEY_MEMCPY(match
, ipv4
.arp
.sha
,
908 arp_key
->arp_sha
, ETH_ALEN
, is_mask
);
909 SW_FLOW_KEY_MEMCPY(match
, ipv4
.arp
.tha
,
910 arp_key
->arp_tha
, ETH_ALEN
, is_mask
);
912 attrs
&= ~(1 << OVS_KEY_ATTR_ARP
);
915 if (attrs
& (1 << OVS_KEY_ATTR_MPLS
)) {
916 const struct ovs_key_mpls
*mpls_key
;
918 mpls_key
= nla_data(a
[OVS_KEY_ATTR_MPLS
]);
919 SW_FLOW_KEY_PUT(match
, mpls
.top_lse
,
920 mpls_key
->mpls_lse
, is_mask
);
922 attrs
&= ~(1 << OVS_KEY_ATTR_MPLS
);
925 if (attrs
& (1 << OVS_KEY_ATTR_TCP
)) {
926 const struct ovs_key_tcp
*tcp_key
;
928 tcp_key
= nla_data(a
[OVS_KEY_ATTR_TCP
]);
929 SW_FLOW_KEY_PUT(match
, tp
.src
, tcp_key
->tcp_src
, is_mask
);
930 SW_FLOW_KEY_PUT(match
, tp
.dst
, tcp_key
->tcp_dst
, is_mask
);
931 attrs
&= ~(1 << OVS_KEY_ATTR_TCP
);
934 if (attrs
& (1 << OVS_KEY_ATTR_TCP_FLAGS
)) {
935 SW_FLOW_KEY_PUT(match
, tp
.flags
,
936 nla_get_be16(a
[OVS_KEY_ATTR_TCP_FLAGS
]),
938 attrs
&= ~(1 << OVS_KEY_ATTR_TCP_FLAGS
);
941 if (attrs
& (1 << OVS_KEY_ATTR_UDP
)) {
942 const struct ovs_key_udp
*udp_key
;
944 udp_key
= nla_data(a
[OVS_KEY_ATTR_UDP
]);
945 SW_FLOW_KEY_PUT(match
, tp
.src
, udp_key
->udp_src
, is_mask
);
946 SW_FLOW_KEY_PUT(match
, tp
.dst
, udp_key
->udp_dst
, is_mask
);
947 attrs
&= ~(1 << OVS_KEY_ATTR_UDP
);
950 if (attrs
& (1 << OVS_KEY_ATTR_SCTP
)) {
951 const struct ovs_key_sctp
*sctp_key
;
953 sctp_key
= nla_data(a
[OVS_KEY_ATTR_SCTP
]);
954 SW_FLOW_KEY_PUT(match
, tp
.src
, sctp_key
->sctp_src
, is_mask
);
955 SW_FLOW_KEY_PUT(match
, tp
.dst
, sctp_key
->sctp_dst
, is_mask
);
956 attrs
&= ~(1 << OVS_KEY_ATTR_SCTP
);
959 if (attrs
& (1 << OVS_KEY_ATTR_ICMP
)) {
960 const struct ovs_key_icmp
*icmp_key
;
962 icmp_key
= nla_data(a
[OVS_KEY_ATTR_ICMP
]);
963 SW_FLOW_KEY_PUT(match
, tp
.src
,
964 htons(icmp_key
->icmp_type
), is_mask
);
965 SW_FLOW_KEY_PUT(match
, tp
.dst
,
966 htons(icmp_key
->icmp_code
), is_mask
);
967 attrs
&= ~(1 << OVS_KEY_ATTR_ICMP
);
970 if (attrs
& (1 << OVS_KEY_ATTR_ICMPV6
)) {
971 const struct ovs_key_icmpv6
*icmpv6_key
;
973 icmpv6_key
= nla_data(a
[OVS_KEY_ATTR_ICMPV6
]);
974 SW_FLOW_KEY_PUT(match
, tp
.src
,
975 htons(icmpv6_key
->icmpv6_type
), is_mask
);
976 SW_FLOW_KEY_PUT(match
, tp
.dst
,
977 htons(icmpv6_key
->icmpv6_code
), is_mask
);
978 attrs
&= ~(1 << OVS_KEY_ATTR_ICMPV6
);
981 if (attrs
& (1 << OVS_KEY_ATTR_ND
)) {
982 const struct ovs_key_nd
*nd_key
;
984 nd_key
= nla_data(a
[OVS_KEY_ATTR_ND
]);
985 SW_FLOW_KEY_MEMCPY(match
, ipv6
.nd
.target
,
987 sizeof(match
->key
->ipv6
.nd
.target
),
989 SW_FLOW_KEY_MEMCPY(match
, ipv6
.nd
.sll
,
990 nd_key
->nd_sll
, ETH_ALEN
, is_mask
);
991 SW_FLOW_KEY_MEMCPY(match
, ipv6
.nd
.tll
,
992 nd_key
->nd_tll
, ETH_ALEN
, is_mask
);
993 attrs
&= ~(1 << OVS_KEY_ATTR_ND
);
997 OVS_NLERR(log
, "Unknown key attributes %llx",
998 (unsigned long long)attrs
);
1005 static void nlattr_set(struct nlattr
*attr
, u8 val
,
1006 const struct ovs_len_tbl
*tbl
)
1011 /* The nlattr stream should already have been validated */
1012 nla_for_each_nested(nla
, attr
, rem
) {
1013 if (tbl
&& tbl
[nla_type(nla
)].len
== OVS_ATTR_NESTED
)
1014 nlattr_set(nla
, val
, tbl
[nla_type(nla
)].next
);
1016 memset(nla_data(nla
), val
, nla_len(nla
));
1020 static void mask_set_nlattr(struct nlattr
*attr
, u8 val
)
1022 nlattr_set(attr
, val
, ovs_key_lens
);
1026 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1027 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1028 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1029 * does not include any don't care bit.
1030 * @match: receives the extracted flow match information.
1031 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1032 * sequence. The fields should of the packet that triggered the creation
1034 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1035 * attribute specifies the mask field of the wildcarded flow.
1036 * @log: Boolean to allow kernel error logging. Normally true, but when
1037 * probing for feature compatibility this should be passed in as false to
1038 * suppress unnecessary error logging.
1040 int ovs_nla_get_match(struct sw_flow_match
*match
,
1041 const struct nlattr
*nla_key
,
1042 const struct nlattr
*nla_mask
,
1045 const struct nlattr
*a
[OVS_KEY_ATTR_MAX
+ 1];
1046 const struct nlattr
*encap
;
1047 struct nlattr
*newmask
= NULL
;
1050 bool encap_valid
= false;
1053 err
= parse_flow_nlattrs(nla_key
, a
, &key_attrs
, log
);
1057 if ((key_attrs
& (1 << OVS_KEY_ATTR_ETHERNET
)) &&
1058 (key_attrs
& (1 << OVS_KEY_ATTR_ETHERTYPE
)) &&
1059 (nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]) == htons(ETH_P_8021Q
))) {
1062 if (!((key_attrs
& (1 << OVS_KEY_ATTR_VLAN
)) &&
1063 (key_attrs
& (1 << OVS_KEY_ATTR_ENCAP
)))) {
1064 OVS_NLERR(log
, "Invalid Vlan frame.");
1068 key_attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
1069 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
1070 encap
= a
[OVS_KEY_ATTR_ENCAP
];
1071 key_attrs
&= ~(1 << OVS_KEY_ATTR_ENCAP
);
1074 if (tci
& htons(VLAN_TAG_PRESENT
)) {
1075 err
= parse_flow_nlattrs(encap
, a
, &key_attrs
, log
);
1079 /* Corner case for truncated 802.1Q header. */
1080 if (nla_len(encap
)) {
1081 OVS_NLERR(log
, "Truncated 802.1Q header has non-zero encap attribute.");
1085 OVS_NLERR(log
, "Encap attr is set for non-VLAN frame");
1090 err
= ovs_key_from_nlattrs(match
, key_attrs
, a
, false, log
);
1096 /* Create an exact match mask. We need to set to 0xff
1097 * all the 'match->mask' fields that have been touched
1098 * in 'match->key'. We cannot simply memset
1099 * 'match->mask', because padding bytes and fields not
1100 * specified in 'match->key' should be left to 0.
1101 * Instead, we use a stream of netlink attributes,
1102 * copied from 'key' and set to 0xff.
1103 * ovs_key_from_nlattrs() will take care of filling
1104 * 'match->mask' appropriately.
1106 newmask
= kmemdup(nla_key
,
1107 nla_total_size(nla_len(nla_key
)),
1112 mask_set_nlattr(newmask
, 0xff);
1114 /* The userspace does not send tunnel attributes that
1115 * are 0, but we should not wildcard them nonetheless.
1117 if (match
->key
->tun_key
.ipv4_dst
)
1118 SW_FLOW_KEY_MEMSET_FIELD(match
, tun_key
,
1124 err
= parse_flow_mask_nlattrs(nla_mask
, a
, &mask_attrs
, log
);
1128 /* Always match on tci. */
1129 SW_FLOW_KEY_PUT(match
, eth
.tci
, htons(0xffff), true);
1131 if (mask_attrs
& 1 << OVS_KEY_ATTR_ENCAP
) {
1132 __be16 eth_type
= 0;
1136 OVS_NLERR(log
, "Encap mask attribute is set for non-VLAN frame.");
1141 mask_attrs
&= ~(1 << OVS_KEY_ATTR_ENCAP
);
1142 if (a
[OVS_KEY_ATTR_ETHERTYPE
])
1143 eth_type
= nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]);
1145 if (eth_type
== htons(0xffff)) {
1146 mask_attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
1147 encap
= a
[OVS_KEY_ATTR_ENCAP
];
1148 err
= parse_flow_mask_nlattrs(encap
, a
,
1153 OVS_NLERR(log
, "VLAN frames must have an exact match on the TPID (mask=%x).",
1159 if (a
[OVS_KEY_ATTR_VLAN
])
1160 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
1162 if (!(tci
& htons(VLAN_TAG_PRESENT
))) {
1163 OVS_NLERR(log
, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1170 err
= ovs_key_from_nlattrs(match
, mask_attrs
, a
, true, log
);
1175 if (!match_validate(match
, key_attrs
, mask_attrs
, log
))
1183 static size_t get_ufid_len(const struct nlattr
*attr
, bool log
)
1190 len
= nla_len(attr
);
1191 if (len
< 1 || len
> MAX_UFID_LENGTH
) {
1192 OVS_NLERR(log
, "ufid size %u bytes exceeds the range (1, %d)",
1193 nla_len(attr
), MAX_UFID_LENGTH
);
1200 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1201 * or false otherwise.
1203 bool ovs_nla_get_ufid(struct sw_flow_id
*sfid
, const struct nlattr
*attr
,
1206 sfid
->ufid_len
= get_ufid_len(attr
, log
);
1208 memcpy(sfid
->ufid
, nla_data(attr
), sfid
->ufid_len
);
1210 return sfid
->ufid_len
;
1213 int ovs_nla_get_identifier(struct sw_flow_id
*sfid
, const struct nlattr
*ufid
,
1214 const struct sw_flow_key
*key
, bool log
)
1216 struct sw_flow_key
*new_key
;
1218 if (ovs_nla_get_ufid(sfid
, ufid
, log
))
1221 /* If UFID was not provided, use unmasked key. */
1222 new_key
= kmalloc(sizeof(*new_key
), GFP_KERNEL
);
1225 memcpy(new_key
, key
, sizeof(*key
));
1226 sfid
->unmasked_key
= new_key
;
1231 u32
ovs_nla_get_ufid_flags(const struct nlattr
*attr
)
1233 return attr
? nla_get_u32(attr
) : 0;
1237 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1238 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1239 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1241 * @log: Boolean to allow kernel error logging. Normally true, but when
1242 * probing for feature compatibility this should be passed in as false to
1243 * suppress unnecessary error logging.
1245 * This parses a series of Netlink attributes that form a flow key, which must
1246 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1247 * get the metadata, that is, the parts of the flow key that cannot be
1248 * extracted from the packet itself.
1251 int ovs_nla_get_flow_metadata(const struct nlattr
*attr
,
1252 struct sw_flow_key
*key
,
1255 const struct nlattr
*a
[OVS_KEY_ATTR_MAX
+ 1];
1256 struct sw_flow_match match
;
1260 err
= parse_flow_nlattrs(attr
, a
, &attrs
, log
);
1264 memset(&match
, 0, sizeof(match
));
1267 key
->phy
.in_port
= DP_MAX_PORTS
;
1269 return metadata_from_nlattrs(&match
, &attrs
, a
, false, log
);
1272 static int __ovs_nla_put_key(const struct sw_flow_key
*swkey
,
1273 const struct sw_flow_key
*output
, bool is_mask
,
1274 struct sk_buff
*skb
)
1276 struct ovs_key_ethernet
*eth_key
;
1277 struct nlattr
*nla
, *encap
;
1279 if (nla_put_u32(skb
, OVS_KEY_ATTR_RECIRC_ID
, output
->recirc_id
))
1280 goto nla_put_failure
;
1282 if (nla_put_u32(skb
, OVS_KEY_ATTR_DP_HASH
, output
->ovs_flow_hash
))
1283 goto nla_put_failure
;
1285 if (nla_put_u32(skb
, OVS_KEY_ATTR_PRIORITY
, output
->phy
.priority
))
1286 goto nla_put_failure
;
1288 if ((swkey
->tun_key
.ipv4_dst
|| is_mask
)) {
1289 const void *opts
= NULL
;
1291 if (output
->tun_key
.tun_flags
& TUNNEL_OPTIONS_PRESENT
)
1292 opts
= TUN_METADATA_OPTS(output
, swkey
->tun_opts_len
);
1294 if (ipv4_tun_to_nlattr(skb
, &output
->tun_key
, opts
,
1295 swkey
->tun_opts_len
))
1296 goto nla_put_failure
;
1299 if (swkey
->phy
.in_port
== DP_MAX_PORTS
) {
1300 if (is_mask
&& (output
->phy
.in_port
== 0xffff))
1301 if (nla_put_u32(skb
, OVS_KEY_ATTR_IN_PORT
, 0xffffffff))
1302 goto nla_put_failure
;
1305 upper_u16
= !is_mask
? 0 : 0xffff;
1307 if (nla_put_u32(skb
, OVS_KEY_ATTR_IN_PORT
,
1308 (upper_u16
<< 16) | output
->phy
.in_port
))
1309 goto nla_put_failure
;
1312 if (nla_put_u32(skb
, OVS_KEY_ATTR_SKB_MARK
, output
->phy
.skb_mark
))
1313 goto nla_put_failure
;
1315 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ETHERNET
, sizeof(*eth_key
));
1317 goto nla_put_failure
;
1319 eth_key
= nla_data(nla
);
1320 ether_addr_copy(eth_key
->eth_src
, output
->eth
.src
);
1321 ether_addr_copy(eth_key
->eth_dst
, output
->eth
.dst
);
1323 if (swkey
->eth
.tci
|| swkey
->eth
.type
== htons(ETH_P_8021Q
)) {
1325 eth_type
= !is_mask
? htons(ETH_P_8021Q
) : htons(0xffff);
1326 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
, eth_type
) ||
1327 nla_put_be16(skb
, OVS_KEY_ATTR_VLAN
, output
->eth
.tci
))
1328 goto nla_put_failure
;
1329 encap
= nla_nest_start(skb
, OVS_KEY_ATTR_ENCAP
);
1330 if (!swkey
->eth
.tci
)
1335 if (swkey
->eth
.type
== htons(ETH_P_802_2
)) {
1337 * Ethertype 802.2 is represented in the netlink with omitted
1338 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1339 * 0xffff in the mask attribute. Ethertype can also
1342 if (is_mask
&& output
->eth
.type
)
1343 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
,
1345 goto nla_put_failure
;
1349 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
, output
->eth
.type
))
1350 goto nla_put_failure
;
1352 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1353 struct ovs_key_ipv4
*ipv4_key
;
1355 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV4
, sizeof(*ipv4_key
));
1357 goto nla_put_failure
;
1358 ipv4_key
= nla_data(nla
);
1359 ipv4_key
->ipv4_src
= output
->ipv4
.addr
.src
;
1360 ipv4_key
->ipv4_dst
= output
->ipv4
.addr
.dst
;
1361 ipv4_key
->ipv4_proto
= output
->ip
.proto
;
1362 ipv4_key
->ipv4_tos
= output
->ip
.tos
;
1363 ipv4_key
->ipv4_ttl
= output
->ip
.ttl
;
1364 ipv4_key
->ipv4_frag
= output
->ip
.frag
;
1365 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1366 struct ovs_key_ipv6
*ipv6_key
;
1368 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV6
, sizeof(*ipv6_key
));
1370 goto nla_put_failure
;
1371 ipv6_key
= nla_data(nla
);
1372 memcpy(ipv6_key
->ipv6_src
, &output
->ipv6
.addr
.src
,
1373 sizeof(ipv6_key
->ipv6_src
));
1374 memcpy(ipv6_key
->ipv6_dst
, &output
->ipv6
.addr
.dst
,
1375 sizeof(ipv6_key
->ipv6_dst
));
1376 ipv6_key
->ipv6_label
= output
->ipv6
.label
;
1377 ipv6_key
->ipv6_proto
= output
->ip
.proto
;
1378 ipv6_key
->ipv6_tclass
= output
->ip
.tos
;
1379 ipv6_key
->ipv6_hlimit
= output
->ip
.ttl
;
1380 ipv6_key
->ipv6_frag
= output
->ip
.frag
;
1381 } else if (swkey
->eth
.type
== htons(ETH_P_ARP
) ||
1382 swkey
->eth
.type
== htons(ETH_P_RARP
)) {
1383 struct ovs_key_arp
*arp_key
;
1385 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ARP
, sizeof(*arp_key
));
1387 goto nla_put_failure
;
1388 arp_key
= nla_data(nla
);
1389 memset(arp_key
, 0, sizeof(struct ovs_key_arp
));
1390 arp_key
->arp_sip
= output
->ipv4
.addr
.src
;
1391 arp_key
->arp_tip
= output
->ipv4
.addr
.dst
;
1392 arp_key
->arp_op
= htons(output
->ip
.proto
);
1393 ether_addr_copy(arp_key
->arp_sha
, output
->ipv4
.arp
.sha
);
1394 ether_addr_copy(arp_key
->arp_tha
, output
->ipv4
.arp
.tha
);
1395 } else if (eth_p_mpls(swkey
->eth
.type
)) {
1396 struct ovs_key_mpls
*mpls_key
;
1398 nla
= nla_reserve(skb
, OVS_KEY_ATTR_MPLS
, sizeof(*mpls_key
));
1400 goto nla_put_failure
;
1401 mpls_key
= nla_data(nla
);
1402 mpls_key
->mpls_lse
= output
->mpls
.top_lse
;
1405 if ((swkey
->eth
.type
== htons(ETH_P_IP
) ||
1406 swkey
->eth
.type
== htons(ETH_P_IPV6
)) &&
1407 swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1409 if (swkey
->ip
.proto
== IPPROTO_TCP
) {
1410 struct ovs_key_tcp
*tcp_key
;
1412 nla
= nla_reserve(skb
, OVS_KEY_ATTR_TCP
, sizeof(*tcp_key
));
1414 goto nla_put_failure
;
1415 tcp_key
= nla_data(nla
);
1416 tcp_key
->tcp_src
= output
->tp
.src
;
1417 tcp_key
->tcp_dst
= output
->tp
.dst
;
1418 if (nla_put_be16(skb
, OVS_KEY_ATTR_TCP_FLAGS
,
1420 goto nla_put_failure
;
1421 } else if (swkey
->ip
.proto
== IPPROTO_UDP
) {
1422 struct ovs_key_udp
*udp_key
;
1424 nla
= nla_reserve(skb
, OVS_KEY_ATTR_UDP
, sizeof(*udp_key
));
1426 goto nla_put_failure
;
1427 udp_key
= nla_data(nla
);
1428 udp_key
->udp_src
= output
->tp
.src
;
1429 udp_key
->udp_dst
= output
->tp
.dst
;
1430 } else if (swkey
->ip
.proto
== IPPROTO_SCTP
) {
1431 struct ovs_key_sctp
*sctp_key
;
1433 nla
= nla_reserve(skb
, OVS_KEY_ATTR_SCTP
, sizeof(*sctp_key
));
1435 goto nla_put_failure
;
1436 sctp_key
= nla_data(nla
);
1437 sctp_key
->sctp_src
= output
->tp
.src
;
1438 sctp_key
->sctp_dst
= output
->tp
.dst
;
1439 } else if (swkey
->eth
.type
== htons(ETH_P_IP
) &&
1440 swkey
->ip
.proto
== IPPROTO_ICMP
) {
1441 struct ovs_key_icmp
*icmp_key
;
1443 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMP
, sizeof(*icmp_key
));
1445 goto nla_put_failure
;
1446 icmp_key
= nla_data(nla
);
1447 icmp_key
->icmp_type
= ntohs(output
->tp
.src
);
1448 icmp_key
->icmp_code
= ntohs(output
->tp
.dst
);
1449 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
) &&
1450 swkey
->ip
.proto
== IPPROTO_ICMPV6
) {
1451 struct ovs_key_icmpv6
*icmpv6_key
;
1453 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMPV6
,
1454 sizeof(*icmpv6_key
));
1456 goto nla_put_failure
;
1457 icmpv6_key
= nla_data(nla
);
1458 icmpv6_key
->icmpv6_type
= ntohs(output
->tp
.src
);
1459 icmpv6_key
->icmpv6_code
= ntohs(output
->tp
.dst
);
1461 if (icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
1462 icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
) {
1463 struct ovs_key_nd
*nd_key
;
1465 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ND
, sizeof(*nd_key
));
1467 goto nla_put_failure
;
1468 nd_key
= nla_data(nla
);
1469 memcpy(nd_key
->nd_target
, &output
->ipv6
.nd
.target
,
1470 sizeof(nd_key
->nd_target
));
1471 ether_addr_copy(nd_key
->nd_sll
, output
->ipv6
.nd
.sll
);
1472 ether_addr_copy(nd_key
->nd_tll
, output
->ipv6
.nd
.tll
);
1479 nla_nest_end(skb
, encap
);
1487 int ovs_nla_put_key(const struct sw_flow_key
*swkey
,
1488 const struct sw_flow_key
*output
, int attr
, bool is_mask
,
1489 struct sk_buff
*skb
)
1494 nla
= nla_nest_start(skb
, attr
);
1497 err
= __ovs_nla_put_key(swkey
, output
, is_mask
, skb
);
1500 nla_nest_end(skb
, nla
);
1505 /* Called with ovs_mutex or RCU read lock. */
1506 int ovs_nla_put_identifier(const struct sw_flow
*flow
, struct sk_buff
*skb
)
1508 if (ovs_identifier_is_ufid(&flow
->id
))
1509 return nla_put(skb
, OVS_FLOW_ATTR_UFID
, flow
->id
.ufid_len
,
1512 return ovs_nla_put_key(flow
->id
.unmasked_key
, flow
->id
.unmasked_key
,
1513 OVS_FLOW_ATTR_KEY
, false, skb
);
1516 /* Called with ovs_mutex or RCU read lock. */
1517 int ovs_nla_put_masked_key(const struct sw_flow
*flow
, struct sk_buff
*skb
)
1519 return ovs_nla_put_key(&flow
->key
, &flow
->key
,
1520 OVS_FLOW_ATTR_KEY
, false, skb
);
1523 /* Called with ovs_mutex or RCU read lock. */
1524 int ovs_nla_put_mask(const struct sw_flow
*flow
, struct sk_buff
*skb
)
1526 return ovs_nla_put_key(&flow
->key
, &flow
->mask
->key
,
1527 OVS_FLOW_ATTR_MASK
, true, skb
);
1530 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
1532 static struct sw_flow_actions
*nla_alloc_flow_actions(int size
, bool log
)
1534 struct sw_flow_actions
*sfa
;
1536 if (size
> MAX_ACTIONS_BUFSIZE
) {
1537 OVS_NLERR(log
, "Flow action size %u bytes exceeds max", size
);
1538 return ERR_PTR(-EINVAL
);
1541 sfa
= kmalloc(sizeof(*sfa
) + size
, GFP_KERNEL
);
1543 return ERR_PTR(-ENOMEM
);
1545 sfa
->actions_len
= 0;
1549 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1550 * The caller must hold rcu_read_lock for this to be sensible. */
1551 void ovs_nla_free_flow_actions(struct sw_flow_actions
*sf_acts
)
1553 kfree_rcu(sf_acts
, rcu
);
1556 static struct nlattr
*reserve_sfa_size(struct sw_flow_actions
**sfa
,
1557 int attr_len
, bool log
)
1560 struct sw_flow_actions
*acts
;
1562 int req_size
= NLA_ALIGN(attr_len
);
1563 int next_offset
= offsetof(struct sw_flow_actions
, actions
) +
1564 (*sfa
)->actions_len
;
1566 if (req_size
<= (ksize(*sfa
) - next_offset
))
1569 new_acts_size
= ksize(*sfa
) * 2;
1571 if (new_acts_size
> MAX_ACTIONS_BUFSIZE
) {
1572 if ((MAX_ACTIONS_BUFSIZE
- next_offset
) < req_size
)
1573 return ERR_PTR(-EMSGSIZE
);
1574 new_acts_size
= MAX_ACTIONS_BUFSIZE
;
1577 acts
= nla_alloc_flow_actions(new_acts_size
, log
);
1579 return (void *)acts
;
1581 memcpy(acts
->actions
, (*sfa
)->actions
, (*sfa
)->actions_len
);
1582 acts
->actions_len
= (*sfa
)->actions_len
;
1587 (*sfa
)->actions_len
+= req_size
;
1588 return (struct nlattr
*) ((unsigned char *)(*sfa
) + next_offset
);
1591 static struct nlattr
*__add_action(struct sw_flow_actions
**sfa
,
1592 int attrtype
, void *data
, int len
, bool log
)
1596 a
= reserve_sfa_size(sfa
, nla_attr_size(len
), log
);
1600 a
->nla_type
= attrtype
;
1601 a
->nla_len
= nla_attr_size(len
);
1604 memcpy(nla_data(a
), data
, len
);
1605 memset((unsigned char *) a
+ a
->nla_len
, 0, nla_padlen(len
));
1610 static int add_action(struct sw_flow_actions
**sfa
, int attrtype
,
1611 void *data
, int len
, bool log
)
1615 a
= __add_action(sfa
, attrtype
, data
, len
, log
);
1617 return PTR_ERR_OR_ZERO(a
);
1620 static inline int add_nested_action_start(struct sw_flow_actions
**sfa
,
1621 int attrtype
, bool log
)
1623 int used
= (*sfa
)->actions_len
;
1626 err
= add_action(sfa
, attrtype
, NULL
, 0, log
);
1633 static inline void add_nested_action_end(struct sw_flow_actions
*sfa
,
1636 struct nlattr
*a
= (struct nlattr
*) ((unsigned char *)sfa
->actions
+
1639 a
->nla_len
= sfa
->actions_len
- st_offset
;
1642 static int __ovs_nla_copy_actions(const struct nlattr
*attr
,
1643 const struct sw_flow_key
*key
,
1644 int depth
, struct sw_flow_actions
**sfa
,
1645 __be16 eth_type
, __be16 vlan_tci
, bool log
);
1647 static int validate_and_copy_sample(const struct nlattr
*attr
,
1648 const struct sw_flow_key
*key
, int depth
,
1649 struct sw_flow_actions
**sfa
,
1650 __be16 eth_type
, __be16 vlan_tci
, bool log
)
1652 const struct nlattr
*attrs
[OVS_SAMPLE_ATTR_MAX
+ 1];
1653 const struct nlattr
*probability
, *actions
;
1654 const struct nlattr
*a
;
1655 int rem
, start
, err
, st_acts
;
1657 memset(attrs
, 0, sizeof(attrs
));
1658 nla_for_each_nested(a
, attr
, rem
) {
1659 int type
= nla_type(a
);
1660 if (!type
|| type
> OVS_SAMPLE_ATTR_MAX
|| attrs
[type
])
1667 probability
= attrs
[OVS_SAMPLE_ATTR_PROBABILITY
];
1668 if (!probability
|| nla_len(probability
) != sizeof(u32
))
1671 actions
= attrs
[OVS_SAMPLE_ATTR_ACTIONS
];
1672 if (!actions
|| (nla_len(actions
) && nla_len(actions
) < NLA_HDRLEN
))
1675 /* validation done, copy sample action. */
1676 start
= add_nested_action_start(sfa
, OVS_ACTION_ATTR_SAMPLE
, log
);
1679 err
= add_action(sfa
, OVS_SAMPLE_ATTR_PROBABILITY
,
1680 nla_data(probability
), sizeof(u32
), log
);
1683 st_acts
= add_nested_action_start(sfa
, OVS_SAMPLE_ATTR_ACTIONS
, log
);
1687 err
= __ovs_nla_copy_actions(actions
, key
, depth
+ 1, sfa
,
1688 eth_type
, vlan_tci
, log
);
1692 add_nested_action_end(*sfa
, st_acts
);
1693 add_nested_action_end(*sfa
, start
);
1698 void ovs_match_init(struct sw_flow_match
*match
,
1699 struct sw_flow_key
*key
,
1700 struct sw_flow_mask
*mask
)
1702 memset(match
, 0, sizeof(*match
));
1706 memset(key
, 0, sizeof(*key
));
1709 memset(&mask
->key
, 0, sizeof(mask
->key
));
1710 mask
->range
.start
= mask
->range
.end
= 0;
1714 static int validate_geneve_opts(struct sw_flow_key
*key
)
1716 struct geneve_opt
*option
;
1717 int opts_len
= key
->tun_opts_len
;
1718 bool crit_opt
= false;
1720 option
= (struct geneve_opt
*)TUN_METADATA_OPTS(key
, key
->tun_opts_len
);
1721 while (opts_len
> 0) {
1724 if (opts_len
< sizeof(*option
))
1727 len
= sizeof(*option
) + option
->length
* 4;
1731 crit_opt
|= !!(option
->type
& GENEVE_CRIT_OPT_TYPE
);
1733 option
= (struct geneve_opt
*)((u8
*)option
+ len
);
1737 key
->tun_key
.tun_flags
|= crit_opt
? TUNNEL_CRIT_OPT
: 0;
1742 static int validate_and_copy_set_tun(const struct nlattr
*attr
,
1743 struct sw_flow_actions
**sfa
, bool log
)
1745 struct sw_flow_match match
;
1746 struct sw_flow_key key
;
1747 struct ovs_tunnel_info
*tun_info
;
1749 int err
= 0, start
, opts_type
;
1751 ovs_match_init(&match
, &key
, NULL
);
1752 opts_type
= ipv4_tun_from_nlattr(nla_data(attr
), &match
, false, log
);
1756 if (key
.tun_opts_len
) {
1757 switch (opts_type
) {
1758 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS
:
1759 err
= validate_geneve_opts(&key
);
1763 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS
:
1768 start
= add_nested_action_start(sfa
, OVS_ACTION_ATTR_SET
, log
);
1772 a
= __add_action(sfa
, OVS_KEY_ATTR_TUNNEL_INFO
, NULL
,
1773 sizeof(*tun_info
) + key
.tun_opts_len
, log
);
1777 tun_info
= nla_data(a
);
1778 tun_info
->tunnel
= key
.tun_key
;
1779 tun_info
->options_len
= key
.tun_opts_len
;
1781 if (tun_info
->options_len
) {
1782 /* We need to store the options in the action itself since
1783 * everything else will go away after flow setup. We can append
1784 * it to tun_info and then point there.
1786 memcpy((tun_info
+ 1),
1787 TUN_METADATA_OPTS(&key
, key
.tun_opts_len
), key
.tun_opts_len
);
1788 tun_info
->options
= (tun_info
+ 1);
1790 tun_info
->options
= NULL
;
1793 add_nested_action_end(*sfa
, start
);
1798 /* Return false if there are any non-masked bits set.
1799 * Mask follows data immediately, before any netlink padding.
1801 static bool validate_masked(u8
*data
, int len
)
1803 u8
*mask
= data
+ len
;
1806 if (*data
++ & ~*mask
++)
1812 static int validate_set(const struct nlattr
*a
,
1813 const struct sw_flow_key
*flow_key
,
1814 struct sw_flow_actions
**sfa
,
1815 bool *skip_copy
, __be16 eth_type
, bool masked
, bool log
)
1817 const struct nlattr
*ovs_key
= nla_data(a
);
1818 int key_type
= nla_type(ovs_key
);
1821 /* There can be only one key in a action */
1822 if (nla_total_size(nla_len(ovs_key
)) != nla_len(a
))
1825 key_len
= nla_len(ovs_key
);
1829 if (key_type
> OVS_KEY_ATTR_MAX
||
1830 (ovs_key_lens
[key_type
].len
!= key_len
&&
1831 ovs_key_lens
[key_type
].len
!= OVS_ATTR_NESTED
))
1834 if (masked
&& !validate_masked(nla_data(ovs_key
), key_len
))
1838 const struct ovs_key_ipv4
*ipv4_key
;
1839 const struct ovs_key_ipv6
*ipv6_key
;
1842 case OVS_KEY_ATTR_PRIORITY
:
1843 case OVS_KEY_ATTR_SKB_MARK
:
1844 case OVS_KEY_ATTR_ETHERNET
:
1847 case OVS_KEY_ATTR_TUNNEL
:
1848 if (eth_p_mpls(eth_type
))
1852 return -EINVAL
; /* Masked tunnel set not supported. */
1855 err
= validate_and_copy_set_tun(a
, sfa
, log
);
1860 case OVS_KEY_ATTR_IPV4
:
1861 if (eth_type
!= htons(ETH_P_IP
))
1864 ipv4_key
= nla_data(ovs_key
);
1867 const struct ovs_key_ipv4
*mask
= ipv4_key
+ 1;
1869 /* Non-writeable fields. */
1870 if (mask
->ipv4_proto
|| mask
->ipv4_frag
)
1873 if (ipv4_key
->ipv4_proto
!= flow_key
->ip
.proto
)
1876 if (ipv4_key
->ipv4_frag
!= flow_key
->ip
.frag
)
1881 case OVS_KEY_ATTR_IPV6
:
1882 if (eth_type
!= htons(ETH_P_IPV6
))
1885 ipv6_key
= nla_data(ovs_key
);
1888 const struct ovs_key_ipv6
*mask
= ipv6_key
+ 1;
1890 /* Non-writeable fields. */
1891 if (mask
->ipv6_proto
|| mask
->ipv6_frag
)
1894 /* Invalid bits in the flow label mask? */
1895 if (ntohl(mask
->ipv6_label
) & 0xFFF00000)
1898 if (ipv6_key
->ipv6_proto
!= flow_key
->ip
.proto
)
1901 if (ipv6_key
->ipv6_frag
!= flow_key
->ip
.frag
)
1904 if (ntohl(ipv6_key
->ipv6_label
) & 0xFFF00000)
1909 case OVS_KEY_ATTR_TCP
:
1910 if ((eth_type
!= htons(ETH_P_IP
) &&
1911 eth_type
!= htons(ETH_P_IPV6
)) ||
1912 flow_key
->ip
.proto
!= IPPROTO_TCP
)
1917 case OVS_KEY_ATTR_UDP
:
1918 if ((eth_type
!= htons(ETH_P_IP
) &&
1919 eth_type
!= htons(ETH_P_IPV6
)) ||
1920 flow_key
->ip
.proto
!= IPPROTO_UDP
)
1925 case OVS_KEY_ATTR_MPLS
:
1926 if (!eth_p_mpls(eth_type
))
1930 case OVS_KEY_ATTR_SCTP
:
1931 if ((eth_type
!= htons(ETH_P_IP
) &&
1932 eth_type
!= htons(ETH_P_IPV6
)) ||
1933 flow_key
->ip
.proto
!= IPPROTO_SCTP
)
1942 /* Convert non-masked non-tunnel set actions to masked set actions. */
1943 if (!masked
&& key_type
!= OVS_KEY_ATTR_TUNNEL
) {
1944 int start
, len
= key_len
* 2;
1949 start
= add_nested_action_start(sfa
,
1950 OVS_ACTION_ATTR_SET_TO_MASKED
,
1955 at
= __add_action(sfa
, key_type
, NULL
, len
, log
);
1959 memcpy(nla_data(at
), nla_data(ovs_key
), key_len
); /* Key. */
1960 memset(nla_data(at
) + key_len
, 0xff, key_len
); /* Mask. */
1961 /* Clear non-writeable bits from otherwise writeable fields. */
1962 if (key_type
== OVS_KEY_ATTR_IPV6
) {
1963 struct ovs_key_ipv6
*mask
= nla_data(at
) + key_len
;
1965 mask
->ipv6_label
&= htonl(0x000FFFFF);
1967 add_nested_action_end(*sfa
, start
);
1973 static int validate_userspace(const struct nlattr
*attr
)
1975 static const struct nla_policy userspace_policy
[OVS_USERSPACE_ATTR_MAX
+ 1] = {
1976 [OVS_USERSPACE_ATTR_PID
] = {.type
= NLA_U32
},
1977 [OVS_USERSPACE_ATTR_USERDATA
] = {.type
= NLA_UNSPEC
},
1978 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT
] = {.type
= NLA_U32
},
1980 struct nlattr
*a
[OVS_USERSPACE_ATTR_MAX
+ 1];
1983 error
= nla_parse_nested(a
, OVS_USERSPACE_ATTR_MAX
,
1984 attr
, userspace_policy
);
1988 if (!a
[OVS_USERSPACE_ATTR_PID
] ||
1989 !nla_get_u32(a
[OVS_USERSPACE_ATTR_PID
]))
1995 static int copy_action(const struct nlattr
*from
,
1996 struct sw_flow_actions
**sfa
, bool log
)
1998 int totlen
= NLA_ALIGN(from
->nla_len
);
2001 to
= reserve_sfa_size(sfa
, from
->nla_len
, log
);
2005 memcpy(to
, from
, totlen
);
2009 static int __ovs_nla_copy_actions(const struct nlattr
*attr
,
2010 const struct sw_flow_key
*key
,
2011 int depth
, struct sw_flow_actions
**sfa
,
2012 __be16 eth_type
, __be16 vlan_tci
, bool log
)
2014 const struct nlattr
*a
;
2017 if (depth
>= SAMPLE_ACTION_DEPTH
)
2020 nla_for_each_nested(a
, attr
, rem
) {
2021 /* Expected argument lengths, (u32)-1 for variable length. */
2022 static const u32 action_lens
[OVS_ACTION_ATTR_MAX
+ 1] = {
2023 [OVS_ACTION_ATTR_OUTPUT
] = sizeof(u32
),
2024 [OVS_ACTION_ATTR_RECIRC
] = sizeof(u32
),
2025 [OVS_ACTION_ATTR_USERSPACE
] = (u32
)-1,
2026 [OVS_ACTION_ATTR_PUSH_MPLS
] = sizeof(struct ovs_action_push_mpls
),
2027 [OVS_ACTION_ATTR_POP_MPLS
] = sizeof(__be16
),
2028 [OVS_ACTION_ATTR_PUSH_VLAN
] = sizeof(struct ovs_action_push_vlan
),
2029 [OVS_ACTION_ATTR_POP_VLAN
] = 0,
2030 [OVS_ACTION_ATTR_SET
] = (u32
)-1,
2031 [OVS_ACTION_ATTR_SET_MASKED
] = (u32
)-1,
2032 [OVS_ACTION_ATTR_SAMPLE
] = (u32
)-1,
2033 [OVS_ACTION_ATTR_HASH
] = sizeof(struct ovs_action_hash
)
2035 const struct ovs_action_push_vlan
*vlan
;
2036 int type
= nla_type(a
);
2039 if (type
> OVS_ACTION_ATTR_MAX
||
2040 (action_lens
[type
] != nla_len(a
) &&
2041 action_lens
[type
] != (u32
)-1))
2046 case OVS_ACTION_ATTR_UNSPEC
:
2049 case OVS_ACTION_ATTR_USERSPACE
:
2050 err
= validate_userspace(a
);
2055 case OVS_ACTION_ATTR_OUTPUT
:
2056 if (nla_get_u32(a
) >= DP_MAX_PORTS
)
2060 case OVS_ACTION_ATTR_HASH
: {
2061 const struct ovs_action_hash
*act_hash
= nla_data(a
);
2063 switch (act_hash
->hash_alg
) {
2064 case OVS_HASH_ALG_L4
:
2073 case OVS_ACTION_ATTR_POP_VLAN
:
2074 vlan_tci
= htons(0);
2077 case OVS_ACTION_ATTR_PUSH_VLAN
:
2079 if (vlan
->vlan_tpid
!= htons(ETH_P_8021Q
))
2081 if (!(vlan
->vlan_tci
& htons(VLAN_TAG_PRESENT
)))
2083 vlan_tci
= vlan
->vlan_tci
;
2086 case OVS_ACTION_ATTR_RECIRC
:
2089 case OVS_ACTION_ATTR_PUSH_MPLS
: {
2090 const struct ovs_action_push_mpls
*mpls
= nla_data(a
);
2092 if (!eth_p_mpls(mpls
->mpls_ethertype
))
2094 /* Prohibit push MPLS other than to a white list
2095 * for packets that have a known tag order.
2097 if (vlan_tci
& htons(VLAN_TAG_PRESENT
) ||
2098 (eth_type
!= htons(ETH_P_IP
) &&
2099 eth_type
!= htons(ETH_P_IPV6
) &&
2100 eth_type
!= htons(ETH_P_ARP
) &&
2101 eth_type
!= htons(ETH_P_RARP
) &&
2102 !eth_p_mpls(eth_type
)))
2104 eth_type
= mpls
->mpls_ethertype
;
2108 case OVS_ACTION_ATTR_POP_MPLS
:
2109 if (vlan_tci
& htons(VLAN_TAG_PRESENT
) ||
2110 !eth_p_mpls(eth_type
))
2113 /* Disallow subsequent L2.5+ set and mpls_pop actions
2114 * as there is no check here to ensure that the new
2115 * eth_type is valid and thus set actions could
2116 * write off the end of the packet or otherwise
2119 * Support for these actions is planned using packet
2122 eth_type
= htons(0);
2125 case OVS_ACTION_ATTR_SET
:
2126 err
= validate_set(a
, key
, sfa
,
2127 &skip_copy
, eth_type
, false, log
);
2132 case OVS_ACTION_ATTR_SET_MASKED
:
2133 err
= validate_set(a
, key
, sfa
,
2134 &skip_copy
, eth_type
, true, log
);
2139 case OVS_ACTION_ATTR_SAMPLE
:
2140 err
= validate_and_copy_sample(a
, key
, depth
, sfa
,
2141 eth_type
, vlan_tci
, log
);
2148 OVS_NLERR(log
, "Unknown Action type %d", type
);
2152 err
= copy_action(a
, sfa
, log
);
2164 /* 'key' must be the masked key. */
2165 int ovs_nla_copy_actions(const struct nlattr
*attr
,
2166 const struct sw_flow_key
*key
,
2167 struct sw_flow_actions
**sfa
, bool log
)
2171 *sfa
= nla_alloc_flow_actions(nla_len(attr
), log
);
2173 return PTR_ERR(*sfa
);
2175 err
= __ovs_nla_copy_actions(attr
, key
, 0, sfa
, key
->eth
.type
,
2183 static int sample_action_to_attr(const struct nlattr
*attr
, struct sk_buff
*skb
)
2185 const struct nlattr
*a
;
2186 struct nlattr
*start
;
2189 start
= nla_nest_start(skb
, OVS_ACTION_ATTR_SAMPLE
);
2193 nla_for_each_nested(a
, attr
, rem
) {
2194 int type
= nla_type(a
);
2195 struct nlattr
*st_sample
;
2198 case OVS_SAMPLE_ATTR_PROBABILITY
:
2199 if (nla_put(skb
, OVS_SAMPLE_ATTR_PROBABILITY
,
2200 sizeof(u32
), nla_data(a
)))
2203 case OVS_SAMPLE_ATTR_ACTIONS
:
2204 st_sample
= nla_nest_start(skb
, OVS_SAMPLE_ATTR_ACTIONS
);
2207 err
= ovs_nla_put_actions(nla_data(a
), nla_len(a
), skb
);
2210 nla_nest_end(skb
, st_sample
);
2215 nla_nest_end(skb
, start
);
2219 static int set_action_to_attr(const struct nlattr
*a
, struct sk_buff
*skb
)
2221 const struct nlattr
*ovs_key
= nla_data(a
);
2222 int key_type
= nla_type(ovs_key
);
2223 struct nlattr
*start
;
2227 case OVS_KEY_ATTR_TUNNEL_INFO
: {
2228 struct ovs_tunnel_info
*tun_info
= nla_data(ovs_key
);
2230 start
= nla_nest_start(skb
, OVS_ACTION_ATTR_SET
);
2234 err
= ipv4_tun_to_nlattr(skb
, &tun_info
->tunnel
,
2235 tun_info
->options_len
?
2236 tun_info
->options
: NULL
,
2237 tun_info
->options_len
);
2240 nla_nest_end(skb
, start
);
2244 if (nla_put(skb
, OVS_ACTION_ATTR_SET
, nla_len(a
), ovs_key
))
2252 static int masked_set_action_to_set_action_attr(const struct nlattr
*a
,
2253 struct sk_buff
*skb
)
2255 const struct nlattr
*ovs_key
= nla_data(a
);
2256 size_t key_len
= nla_len(ovs_key
) / 2;
2258 /* Revert the conversion we did from a non-masked set action to
2259 * masked set action.
2261 if (nla_put(skb
, OVS_ACTION_ATTR_SET
, nla_len(a
) - key_len
, ovs_key
))
2267 int ovs_nla_put_actions(const struct nlattr
*attr
, int len
, struct sk_buff
*skb
)
2269 const struct nlattr
*a
;
2272 nla_for_each_attr(a
, attr
, len
, rem
) {
2273 int type
= nla_type(a
);
2276 case OVS_ACTION_ATTR_SET
:
2277 err
= set_action_to_attr(a
, skb
);
2282 case OVS_ACTION_ATTR_SET_TO_MASKED
:
2283 err
= masked_set_action_to_set_action_attr(a
, skb
);
2288 case OVS_ACTION_ATTR_SAMPLE
:
2289 err
= sample_action_to_attr(a
, skb
);
2294 if (nla_put(skb
, type
, nla_len(a
), nla_data(a
)))