2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
53 unsigned id
; /* kernel internal index number */
54 unsigned nr
; /* number of io_events */
55 unsigned head
; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
60 unsigned compat_features
;
61 unsigned incompat_features
;
62 unsigned header_length
; /* size of aio_ring */
65 struct io_event io_events
[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
73 struct kioctx
*table
[];
77 unsigned reqs_available
;
81 struct completion comp
;
86 struct percpu_ref users
;
89 struct percpu_ref reqs
;
91 unsigned long user_id
;
93 struct __percpu kioctx_cpu
*cpu
;
96 * For percpu reqs_available, number of slots we move to/from global
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
104 * The real limit is nr_events - 1, which will be larger (see
109 /* Size of ringbuffer, in units of struct io_event */
112 unsigned long mmap_base
;
113 unsigned long mmap_size
;
115 struct page
**ring_pages
;
118 struct work_struct free_work
;
121 * signals when all in-flight requests are done
123 struct ctx_rq_wait
*rq_wait
;
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
132 * We batch accesses to it with a percpu version.
134 atomic_t reqs_available
;
135 } ____cacheline_aligned_in_smp
;
139 struct list_head active_reqs
; /* used for cancellation */
140 } ____cacheline_aligned_in_smp
;
143 struct mutex ring_lock
;
144 wait_queue_head_t wait
;
145 } ____cacheline_aligned_in_smp
;
149 unsigned completed_events
;
150 spinlock_t completion_lock
;
151 } ____cacheline_aligned_in_smp
;
153 struct page
*internal_pages
[AIO_RING_PAGES
];
154 struct file
*aio_ring_file
;
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170 #define KIOCB_CANCELLED ((void *) (~0ULL))
175 struct kioctx
*ki_ctx
;
176 kiocb_cancel_fn
*ki_cancel
;
178 struct iocb __user
*ki_user_iocb
; /* user's aiocb */
179 __u64 ki_user_data
; /* user's data for completion */
181 struct list_head ki_list
; /* the aio core uses this
182 * for cancellation */
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
188 struct eventfd_ctx
*ki_eventfd
;
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock
);
193 unsigned long aio_nr
; /* current system wide number of aio requests */
194 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
197 static struct kmem_cache
*kiocb_cachep
;
198 static struct kmem_cache
*kioctx_cachep
;
200 static struct vfsmount
*aio_mnt
;
202 static const struct file_operations aio_ring_fops
;
203 static const struct address_space_operations aio_ctx_aops
;
205 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
207 struct qstr
this = QSTR_INIT("[aio]", 5);
210 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
212 return ERR_CAST(inode
);
214 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
215 inode
->i_mapping
->private_data
= ctx
;
216 inode
->i_size
= PAGE_SIZE
* nr_pages
;
218 path
.dentry
= d_alloc_pseudo(aio_mnt
->mnt_sb
, &this);
221 return ERR_PTR(-ENOMEM
);
223 path
.mnt
= mntget(aio_mnt
);
225 d_instantiate(path
.dentry
, inode
);
226 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
, &aio_ring_fops
);
232 file
->f_flags
= O_RDWR
;
236 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
237 int flags
, const char *dev_name
, void *data
)
239 static const struct dentry_operations ops
= {
240 .d_dname
= simple_dname
,
242 struct dentry
*root
= mount_pseudo(fs_type
, "aio:", NULL
, &ops
,
246 root
->d_sb
->s_iflags
|= SB_I_NOEXEC
;
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
254 static int __init
aio_setup(void)
256 static struct file_system_type aio_fs
= {
259 .kill_sb
= kill_anon_super
,
261 aio_mnt
= kern_mount(&aio_fs
);
263 panic("Failed to create aio fs mount.");
265 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
266 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page
));
272 __initcall(aio_setup
);
274 static void put_aio_ring_file(struct kioctx
*ctx
)
276 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
278 truncate_setsize(aio_ring_file
->f_inode
, 0);
280 /* Prevent further access to the kioctx from migratepages */
281 spin_lock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
282 aio_ring_file
->f_inode
->i_mapping
->private_data
= NULL
;
283 ctx
->aio_ring_file
= NULL
;
284 spin_unlock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
290 static void aio_free_ring(struct kioctx
*ctx
)
294 /* Disconnect the kiotx from the ring file. This prevents future
295 * accesses to the kioctx from page migration.
297 put_aio_ring_file(ctx
);
299 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
301 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
302 page_count(ctx
->ring_pages
[i
]));
303 page
= ctx
->ring_pages
[i
];
306 ctx
->ring_pages
[i
] = NULL
;
310 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
311 kfree(ctx
->ring_pages
);
312 ctx
->ring_pages
= NULL
;
316 static int aio_ring_mremap(struct vm_area_struct
*vma
)
318 struct file
*file
= vma
->vm_file
;
319 struct mm_struct
*mm
= vma
->vm_mm
;
320 struct kioctx_table
*table
;
321 int i
, res
= -EINVAL
;
323 spin_lock(&mm
->ioctx_lock
);
325 table
= rcu_dereference(mm
->ioctx_table
);
326 for (i
= 0; i
< table
->nr
; i
++) {
329 ctx
= table
->table
[i
];
330 if (ctx
&& ctx
->aio_ring_file
== file
) {
331 if (!atomic_read(&ctx
->dead
)) {
332 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
340 spin_unlock(&mm
->ioctx_lock
);
344 static const struct vm_operations_struct aio_ring_vm_ops
= {
345 .mremap
= aio_ring_mremap
,
346 #if IS_ENABLED(CONFIG_MMU)
347 .fault
= filemap_fault
,
348 .map_pages
= filemap_map_pages
,
349 .page_mkwrite
= filemap_page_mkwrite
,
353 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
355 vma
->vm_flags
|= VM_DONTEXPAND
;
356 vma
->vm_ops
= &aio_ring_vm_ops
;
360 static const struct file_operations aio_ring_fops
= {
361 .mmap
= aio_ring_mmap
,
364 #if IS_ENABLED(CONFIG_MIGRATION)
365 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
366 struct page
*old
, enum migrate_mode mode
)
375 /* mapping->private_lock here protects against the kioctx teardown. */
376 spin_lock(&mapping
->private_lock
);
377 ctx
= mapping
->private_data
;
383 /* The ring_lock mutex. The prevents aio_read_events() from writing
384 * to the ring's head, and prevents page migration from mucking in
385 * a partially initialized kiotx.
387 if (!mutex_trylock(&ctx
->ring_lock
)) {
393 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
394 /* Make sure the old page hasn't already been changed */
395 if (ctx
->ring_pages
[idx
] != old
)
403 /* Writeback must be complete */
404 BUG_ON(PageWriteback(old
));
407 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
408 if (rc
!= MIGRATEPAGE_SUCCESS
) {
413 /* Take completion_lock to prevent other writes to the ring buffer
414 * while the old page is copied to the new. This prevents new
415 * events from being lost.
417 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
418 migrate_page_copy(new, old
);
419 BUG_ON(ctx
->ring_pages
[idx
] != old
);
420 ctx
->ring_pages
[idx
] = new;
421 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
423 /* The old page is no longer accessible. */
427 mutex_unlock(&ctx
->ring_lock
);
429 spin_unlock(&mapping
->private_lock
);
434 static const struct address_space_operations aio_ctx_aops
= {
435 .set_page_dirty
= __set_page_dirty_no_writeback
,
436 #if IS_ENABLED(CONFIG_MIGRATION)
437 .migratepage
= aio_migratepage
,
441 static int aio_setup_ring(struct kioctx
*ctx
)
443 struct aio_ring
*ring
;
444 unsigned nr_events
= ctx
->max_reqs
;
445 struct mm_struct
*mm
= current
->mm
;
446 unsigned long size
, unused
;
451 /* Compensate for the ring buffer's head/tail overlap entry */
452 nr_events
+= 2; /* 1 is required, 2 for good luck */
454 size
= sizeof(struct aio_ring
);
455 size
+= sizeof(struct io_event
) * nr_events
;
457 nr_pages
= PFN_UP(size
);
461 file
= aio_private_file(ctx
, nr_pages
);
463 ctx
->aio_ring_file
= NULL
;
467 ctx
->aio_ring_file
= file
;
468 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
469 / sizeof(struct io_event
);
471 ctx
->ring_pages
= ctx
->internal_pages
;
472 if (nr_pages
> AIO_RING_PAGES
) {
473 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
475 if (!ctx
->ring_pages
) {
476 put_aio_ring_file(ctx
);
481 for (i
= 0; i
< nr_pages
; i
++) {
483 page
= find_or_create_page(file
->f_inode
->i_mapping
,
484 i
, GFP_HIGHUSER
| __GFP_ZERO
);
487 pr_debug("pid(%d) page[%d]->count=%d\n",
488 current
->pid
, i
, page_count(page
));
489 SetPageUptodate(page
);
492 ctx
->ring_pages
[i
] = page
;
496 if (unlikely(i
!= nr_pages
)) {
501 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
502 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
504 if (down_write_killable(&mm
->mmap_sem
)) {
510 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
511 PROT_READ
| PROT_WRITE
,
512 MAP_SHARED
, 0, &unused
);
513 up_write(&mm
->mmap_sem
);
514 if (IS_ERR((void *)ctx
->mmap_base
)) {
520 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
522 ctx
->user_id
= ctx
->mmap_base
;
523 ctx
->nr_events
= nr_events
; /* trusted copy */
525 ring
= kmap_atomic(ctx
->ring_pages
[0]);
526 ring
->nr
= nr_events
; /* user copy */
528 ring
->head
= ring
->tail
= 0;
529 ring
->magic
= AIO_RING_MAGIC
;
530 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
531 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
532 ring
->header_length
= sizeof(struct aio_ring
);
534 flush_dcache_page(ctx
->ring_pages
[0]);
539 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
540 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
541 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
543 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
545 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, common
);
546 struct kioctx
*ctx
= req
->ki_ctx
;
549 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
551 if (!req
->ki_list
.next
)
552 list_add(&req
->ki_list
, &ctx
->active_reqs
);
554 req
->ki_cancel
= cancel
;
556 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
558 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
560 static int kiocb_cancel(struct aio_kiocb
*kiocb
)
562 kiocb_cancel_fn
*old
, *cancel
;
565 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
566 * actually has a cancel function, hence the cmpxchg()
569 cancel
= ACCESS_ONCE(kiocb
->ki_cancel
);
571 if (!cancel
|| cancel
== KIOCB_CANCELLED
)
575 cancel
= cmpxchg(&kiocb
->ki_cancel
, old
, KIOCB_CANCELLED
);
576 } while (cancel
!= old
);
578 return cancel(&kiocb
->common
);
581 static void free_ioctx(struct work_struct
*work
)
583 struct kioctx
*ctx
= container_of(work
, struct kioctx
, free_work
);
585 pr_debug("freeing %p\n", ctx
);
588 free_percpu(ctx
->cpu
);
589 percpu_ref_exit(&ctx
->reqs
);
590 percpu_ref_exit(&ctx
->users
);
591 kmem_cache_free(kioctx_cachep
, ctx
);
594 static void free_ioctx_reqs(struct percpu_ref
*ref
)
596 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
598 /* At this point we know that there are no any in-flight requests */
599 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
600 complete(&ctx
->rq_wait
->comp
);
602 INIT_WORK(&ctx
->free_work
, free_ioctx
);
603 schedule_work(&ctx
->free_work
);
607 * When this function runs, the kioctx has been removed from the "hash table"
608 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
609 * now it's safe to cancel any that need to be.
611 static void free_ioctx_users(struct percpu_ref
*ref
)
613 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
614 struct aio_kiocb
*req
;
616 spin_lock_irq(&ctx
->ctx_lock
);
618 while (!list_empty(&ctx
->active_reqs
)) {
619 req
= list_first_entry(&ctx
->active_reqs
,
620 struct aio_kiocb
, ki_list
);
622 list_del_init(&req
->ki_list
);
626 spin_unlock_irq(&ctx
->ctx_lock
);
628 percpu_ref_kill(&ctx
->reqs
);
629 percpu_ref_put(&ctx
->reqs
);
632 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
635 struct kioctx_table
*table
, *old
;
636 struct aio_ring
*ring
;
638 spin_lock(&mm
->ioctx_lock
);
639 table
= rcu_dereference_raw(mm
->ioctx_table
);
643 for (i
= 0; i
< table
->nr
; i
++)
644 if (!table
->table
[i
]) {
646 table
->table
[i
] = ctx
;
647 spin_unlock(&mm
->ioctx_lock
);
649 /* While kioctx setup is in progress,
650 * we are protected from page migration
651 * changes ring_pages by ->ring_lock.
653 ring
= kmap_atomic(ctx
->ring_pages
[0]);
659 new_nr
= (table
? table
->nr
: 1) * 4;
660 spin_unlock(&mm
->ioctx_lock
);
662 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
669 spin_lock(&mm
->ioctx_lock
);
670 old
= rcu_dereference_raw(mm
->ioctx_table
);
673 rcu_assign_pointer(mm
->ioctx_table
, table
);
674 } else if (table
->nr
> old
->nr
) {
675 memcpy(table
->table
, old
->table
,
676 old
->nr
* sizeof(struct kioctx
*));
678 rcu_assign_pointer(mm
->ioctx_table
, table
);
687 static void aio_nr_sub(unsigned nr
)
689 spin_lock(&aio_nr_lock
);
690 if (WARN_ON(aio_nr
- nr
> aio_nr
))
694 spin_unlock(&aio_nr_lock
);
698 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
700 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
702 struct mm_struct
*mm
= current
->mm
;
707 * We keep track of the number of available ringbuffer slots, to prevent
708 * overflow (reqs_available), and we also use percpu counters for this.
710 * So since up to half the slots might be on other cpu's percpu counters
711 * and unavailable, double nr_events so userspace sees what they
712 * expected: additionally, we move req_batch slots to/from percpu
713 * counters at a time, so make sure that isn't 0:
715 nr_events
= max(nr_events
, num_possible_cpus() * 4);
718 /* Prevent overflows */
719 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
720 pr_debug("ENOMEM: nr_events too high\n");
721 return ERR_PTR(-EINVAL
);
724 if (!nr_events
|| (unsigned long)nr_events
> (aio_max_nr
* 2UL))
725 return ERR_PTR(-EAGAIN
);
727 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
729 return ERR_PTR(-ENOMEM
);
731 ctx
->max_reqs
= nr_events
;
733 spin_lock_init(&ctx
->ctx_lock
);
734 spin_lock_init(&ctx
->completion_lock
);
735 mutex_init(&ctx
->ring_lock
);
736 /* Protect against page migration throughout kiotx setup by keeping
737 * the ring_lock mutex held until setup is complete. */
738 mutex_lock(&ctx
->ring_lock
);
739 init_waitqueue_head(&ctx
->wait
);
741 INIT_LIST_HEAD(&ctx
->active_reqs
);
743 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
746 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
749 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
753 err
= aio_setup_ring(ctx
);
757 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
758 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
759 if (ctx
->req_batch
< 1)
762 /* limit the number of system wide aios */
763 spin_lock(&aio_nr_lock
);
764 if (aio_nr
+ nr_events
> (aio_max_nr
* 2UL) ||
765 aio_nr
+ nr_events
< aio_nr
) {
766 spin_unlock(&aio_nr_lock
);
770 aio_nr
+= ctx
->max_reqs
;
771 spin_unlock(&aio_nr_lock
);
773 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
774 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
776 err
= ioctx_add_table(ctx
, mm
);
780 /* Release the ring_lock mutex now that all setup is complete. */
781 mutex_unlock(&ctx
->ring_lock
);
783 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
784 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
788 aio_nr_sub(ctx
->max_reqs
);
790 atomic_set(&ctx
->dead
, 1);
792 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
795 mutex_unlock(&ctx
->ring_lock
);
796 free_percpu(ctx
->cpu
);
797 percpu_ref_exit(&ctx
->reqs
);
798 percpu_ref_exit(&ctx
->users
);
799 kmem_cache_free(kioctx_cachep
, ctx
);
800 pr_debug("error allocating ioctx %d\n", err
);
805 * Cancels all outstanding aio requests on an aio context. Used
806 * when the processes owning a context have all exited to encourage
807 * the rapid destruction of the kioctx.
809 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
810 struct ctx_rq_wait
*wait
)
812 struct kioctx_table
*table
;
814 spin_lock(&mm
->ioctx_lock
);
815 if (atomic_xchg(&ctx
->dead
, 1)) {
816 spin_unlock(&mm
->ioctx_lock
);
820 table
= rcu_dereference_raw(mm
->ioctx_table
);
821 WARN_ON(ctx
!= table
->table
[ctx
->id
]);
822 table
->table
[ctx
->id
] = NULL
;
823 spin_unlock(&mm
->ioctx_lock
);
825 /* percpu_ref_kill() will do the necessary call_rcu() */
826 wake_up_all(&ctx
->wait
);
829 * It'd be more correct to do this in free_ioctx(), after all
830 * the outstanding kiocbs have finished - but by then io_destroy
831 * has already returned, so io_setup() could potentially return
832 * -EAGAIN with no ioctxs actually in use (as far as userspace
835 aio_nr_sub(ctx
->max_reqs
);
838 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
841 percpu_ref_kill(&ctx
->users
);
846 * exit_aio: called when the last user of mm goes away. At this point, there is
847 * no way for any new requests to be submited or any of the io_* syscalls to be
848 * called on the context.
850 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
853 void exit_aio(struct mm_struct
*mm
)
855 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
856 struct ctx_rq_wait wait
;
862 atomic_set(&wait
.count
, table
->nr
);
863 init_completion(&wait
.comp
);
866 for (i
= 0; i
< table
->nr
; ++i
) {
867 struct kioctx
*ctx
= table
->table
[i
];
875 * We don't need to bother with munmap() here - exit_mmap(mm)
876 * is coming and it'll unmap everything. And we simply can't,
877 * this is not necessarily our ->mm.
878 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
879 * that it needs to unmap the area, just set it to 0.
882 kill_ioctx(mm
, ctx
, &wait
);
885 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
886 /* Wait until all IO for the context are done. */
887 wait_for_completion(&wait
.comp
);
890 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
894 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
896 struct kioctx_cpu
*kcpu
;
899 local_irq_save(flags
);
900 kcpu
= this_cpu_ptr(ctx
->cpu
);
901 kcpu
->reqs_available
+= nr
;
903 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
904 kcpu
->reqs_available
-= ctx
->req_batch
;
905 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
908 local_irq_restore(flags
);
911 static bool get_reqs_available(struct kioctx
*ctx
)
913 struct kioctx_cpu
*kcpu
;
917 local_irq_save(flags
);
918 kcpu
= this_cpu_ptr(ctx
->cpu
);
919 if (!kcpu
->reqs_available
) {
920 int old
, avail
= atomic_read(&ctx
->reqs_available
);
923 if (avail
< ctx
->req_batch
)
927 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
928 avail
, avail
- ctx
->req_batch
);
929 } while (avail
!= old
);
931 kcpu
->reqs_available
+= ctx
->req_batch
;
935 kcpu
->reqs_available
--;
937 local_irq_restore(flags
);
941 /* refill_reqs_available
942 * Updates the reqs_available reference counts used for tracking the
943 * number of free slots in the completion ring. This can be called
944 * from aio_complete() (to optimistically update reqs_available) or
945 * from aio_get_req() (the we're out of events case). It must be
946 * called holding ctx->completion_lock.
948 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
951 unsigned events_in_ring
, completed
;
953 /* Clamp head since userland can write to it. */
954 head
%= ctx
->nr_events
;
956 events_in_ring
= tail
- head
;
958 events_in_ring
= ctx
->nr_events
- (head
- tail
);
960 completed
= ctx
->completed_events
;
961 if (events_in_ring
< completed
)
962 completed
-= events_in_ring
;
969 ctx
->completed_events
-= completed
;
970 put_reqs_available(ctx
, completed
);
973 /* user_refill_reqs_available
974 * Called to refill reqs_available when aio_get_req() encounters an
975 * out of space in the completion ring.
977 static void user_refill_reqs_available(struct kioctx
*ctx
)
979 spin_lock_irq(&ctx
->completion_lock
);
980 if (ctx
->completed_events
) {
981 struct aio_ring
*ring
;
984 /* Access of ring->head may race with aio_read_events_ring()
985 * here, but that's okay since whether we read the old version
986 * or the new version, and either will be valid. The important
987 * part is that head cannot pass tail since we prevent
988 * aio_complete() from updating tail by holding
989 * ctx->completion_lock. Even if head is invalid, the check
990 * against ctx->completed_events below will make sure we do the
993 ring
= kmap_atomic(ctx
->ring_pages
[0]);
997 refill_reqs_available(ctx
, head
, ctx
->tail
);
1000 spin_unlock_irq(&ctx
->completion_lock
);
1004 * Allocate a slot for an aio request.
1005 * Returns NULL if no requests are free.
1007 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1009 struct aio_kiocb
*req
;
1011 if (!get_reqs_available(ctx
)) {
1012 user_refill_reqs_available(ctx
);
1013 if (!get_reqs_available(ctx
))
1017 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
|__GFP_ZERO
);
1021 percpu_ref_get(&ctx
->reqs
);
1026 put_reqs_available(ctx
, 1);
1030 static void kiocb_free(struct aio_kiocb
*req
)
1032 if (req
->common
.ki_filp
)
1033 fput(req
->common
.ki_filp
);
1034 if (req
->ki_eventfd
!= NULL
)
1035 eventfd_ctx_put(req
->ki_eventfd
);
1036 kmem_cache_free(kiocb_cachep
, req
);
1039 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1041 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1042 struct mm_struct
*mm
= current
->mm
;
1043 struct kioctx
*ctx
, *ret
= NULL
;
1044 struct kioctx_table
*table
;
1047 if (get_user(id
, &ring
->id
))
1051 table
= rcu_dereference(mm
->ioctx_table
);
1053 if (!table
|| id
>= table
->nr
)
1056 ctx
= table
->table
[id
];
1057 if (ctx
&& ctx
->user_id
== ctx_id
) {
1058 percpu_ref_get(&ctx
->users
);
1067 * Called when the io request on the given iocb is complete.
1069 static void aio_complete(struct kiocb
*kiocb
, long res
, long res2
)
1071 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, common
);
1072 struct kioctx
*ctx
= iocb
->ki_ctx
;
1073 struct aio_ring
*ring
;
1074 struct io_event
*ev_page
, *event
;
1075 unsigned tail
, pos
, head
;
1076 unsigned long flags
;
1079 * Special case handling for sync iocbs:
1080 * - events go directly into the iocb for fast handling
1081 * - the sync task with the iocb in its stack holds the single iocb
1082 * ref, no other paths have a way to get another ref
1083 * - the sync task helpfully left a reference to itself in the iocb
1085 BUG_ON(is_sync_kiocb(kiocb
));
1087 if (iocb
->ki_list
.next
) {
1088 unsigned long flags
;
1090 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1091 list_del(&iocb
->ki_list
);
1092 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1096 * Add a completion event to the ring buffer. Must be done holding
1097 * ctx->completion_lock to prevent other code from messing with the tail
1098 * pointer since we might be called from irq context.
1100 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1103 pos
= tail
+ AIO_EVENTS_OFFSET
;
1105 if (++tail
>= ctx
->nr_events
)
1108 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1109 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1111 event
->obj
= (u64
)(unsigned long)iocb
->ki_user_iocb
;
1112 event
->data
= iocb
->ki_user_data
;
1116 kunmap_atomic(ev_page
);
1117 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1119 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1120 ctx
, tail
, iocb
, iocb
->ki_user_iocb
, iocb
->ki_user_data
,
1123 /* after flagging the request as done, we
1124 * must never even look at it again
1126 smp_wmb(); /* make event visible before updating tail */
1130 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1133 kunmap_atomic(ring
);
1134 flush_dcache_page(ctx
->ring_pages
[0]);
1136 ctx
->completed_events
++;
1137 if (ctx
->completed_events
> 1)
1138 refill_reqs_available(ctx
, head
, tail
);
1139 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1141 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1144 * Check if the user asked us to deliver the result through an
1145 * eventfd. The eventfd_signal() function is safe to be called
1148 if (iocb
->ki_eventfd
!= NULL
)
1149 eventfd_signal(iocb
->ki_eventfd
, 1);
1151 /* everything turned out well, dispose of the aiocb. */
1155 * We have to order our ring_info tail store above and test
1156 * of the wait list below outside the wait lock. This is
1157 * like in wake_up_bit() where clearing a bit has to be
1158 * ordered with the unlocked test.
1162 if (waitqueue_active(&ctx
->wait
))
1163 wake_up(&ctx
->wait
);
1165 percpu_ref_put(&ctx
->reqs
);
1168 /* aio_read_events_ring
1169 * Pull an event off of the ioctx's event ring. Returns the number of
1172 static long aio_read_events_ring(struct kioctx
*ctx
,
1173 struct io_event __user
*event
, long nr
)
1175 struct aio_ring
*ring
;
1176 unsigned head
, tail
, pos
;
1181 * The mutex can block and wake us up and that will cause
1182 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183 * and repeat. This should be rare enough that it doesn't cause
1184 * peformance issues. See the comment in read_events() for more detail.
1186 sched_annotate_sleep();
1187 mutex_lock(&ctx
->ring_lock
);
1189 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1190 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1193 kunmap_atomic(ring
);
1196 * Ensure that once we've read the current tail pointer, that
1197 * we also see the events that were stored up to the tail.
1201 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1206 head
%= ctx
->nr_events
;
1207 tail
%= ctx
->nr_events
;
1211 struct io_event
*ev
;
1214 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1218 avail
= min(avail
, nr
- ret
);
1219 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
-
1220 ((head
+ AIO_EVENTS_OFFSET
) % AIO_EVENTS_PER_PAGE
));
1222 pos
= head
+ AIO_EVENTS_OFFSET
;
1223 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1224 pos
%= AIO_EVENTS_PER_PAGE
;
1227 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1228 sizeof(*ev
) * avail
);
1231 if (unlikely(copy_ret
)) {
1238 head
%= ctx
->nr_events
;
1241 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1243 kunmap_atomic(ring
);
1244 flush_dcache_page(ctx
->ring_pages
[0]);
1246 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1248 mutex_unlock(&ctx
->ring_lock
);
1253 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1254 struct io_event __user
*event
, long *i
)
1256 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1261 if (unlikely(atomic_read(&ctx
->dead
)))
1267 return ret
< 0 || *i
>= min_nr
;
1270 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1271 struct io_event __user
*event
,
1272 struct timespec __user
*timeout
)
1274 ktime_t until
= { .tv64
= KTIME_MAX
};
1280 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1283 until
= timespec_to_ktime(ts
);
1287 * Note that aio_read_events() is being called as the conditional - i.e.
1288 * we're calling it after prepare_to_wait() has set task state to
1289 * TASK_INTERRUPTIBLE.
1291 * But aio_read_events() can block, and if it blocks it's going to flip
1292 * the task state back to TASK_RUNNING.
1294 * This should be ok, provided it doesn't flip the state back to
1295 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1296 * will only happen if the mutex_lock() call blocks, and we then find
1297 * the ringbuffer empty. So in practice we should be ok, but it's
1298 * something to be aware of when touching this code.
1300 if (until
.tv64
== 0)
1301 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1303 wait_event_interruptible_hrtimeout(ctx
->wait
,
1304 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1307 if (!ret
&& signal_pending(current
))
1314 * Create an aio_context capable of receiving at least nr_events.
1315 * ctxp must not point to an aio_context that already exists, and
1316 * must be initialized to 0 prior to the call. On successful
1317 * creation of the aio_context, *ctxp is filled in with the resulting
1318 * handle. May fail with -EINVAL if *ctxp is not initialized,
1319 * if the specified nr_events exceeds internal limits. May fail
1320 * with -EAGAIN if the specified nr_events exceeds the user's limit
1321 * of available events. May fail with -ENOMEM if insufficient kernel
1322 * resources are available. May fail with -EFAULT if an invalid
1323 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1326 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1328 struct kioctx
*ioctx
= NULL
;
1332 ret
= get_user(ctx
, ctxp
);
1337 if (unlikely(ctx
|| nr_events
== 0)) {
1338 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1343 ioctx
= ioctx_alloc(nr_events
);
1344 ret
= PTR_ERR(ioctx
);
1345 if (!IS_ERR(ioctx
)) {
1346 ret
= put_user(ioctx
->user_id
, ctxp
);
1348 kill_ioctx(current
->mm
, ioctx
, NULL
);
1349 percpu_ref_put(&ioctx
->users
);
1357 * Destroy the aio_context specified. May cancel any outstanding
1358 * AIOs and block on completion. Will fail with -ENOSYS if not
1359 * implemented. May fail with -EINVAL if the context pointed to
1362 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1364 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1365 if (likely(NULL
!= ioctx
)) {
1366 struct ctx_rq_wait wait
;
1369 init_completion(&wait
.comp
);
1370 atomic_set(&wait
.count
, 1);
1372 /* Pass requests_done to kill_ioctx() where it can be set
1373 * in a thread-safe way. If we try to set it here then we have
1374 * a race condition if two io_destroy() called simultaneously.
1376 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1377 percpu_ref_put(&ioctx
->users
);
1379 /* Wait until all IO for the context are done. Otherwise kernel
1380 * keep using user-space buffers even if user thinks the context
1384 wait_for_completion(&wait
.comp
);
1388 pr_debug("EINVAL: invalid context id\n");
1392 typedef ssize_t (rw_iter_op
)(struct kiocb
*, struct iov_iter
*);
1394 static int aio_setup_vectored_rw(int rw
, char __user
*buf
, size_t len
,
1395 struct iovec
**iovec
,
1397 struct iov_iter
*iter
)
1399 #ifdef CONFIG_COMPAT
1401 return compat_import_iovec(rw
,
1402 (struct compat_iovec __user
*)buf
,
1403 len
, UIO_FASTIOV
, iovec
, iter
);
1405 return import_iovec(rw
, (struct iovec __user
*)buf
,
1406 len
, UIO_FASTIOV
, iovec
, iter
);
1411 * Performs the initial checks and io submission.
1413 static ssize_t
aio_run_iocb(struct kiocb
*req
, unsigned opcode
,
1414 char __user
*buf
, size_t len
, bool compat
)
1416 struct file
*file
= req
->ki_filp
;
1420 rw_iter_op
*iter_op
;
1421 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1422 struct iov_iter iter
;
1425 case IOCB_CMD_PREAD
:
1426 case IOCB_CMD_PREADV
:
1429 iter_op
= file
->f_op
->read_iter
;
1432 case IOCB_CMD_PWRITE
:
1433 case IOCB_CMD_PWRITEV
:
1436 iter_op
= file
->f_op
->write_iter
;
1439 if (unlikely(!(file
->f_mode
& mode
)))
1445 if (opcode
== IOCB_CMD_PREADV
|| opcode
== IOCB_CMD_PWRITEV
)
1446 ret
= aio_setup_vectored_rw(rw
, buf
, len
,
1447 &iovec
, compat
, &iter
);
1449 ret
= import_single_range(rw
, buf
, len
, iovec
, &iter
);
1453 ret
= rw_verify_area(rw
, file
, &req
->ki_pos
,
1454 iov_iter_count(&iter
));
1461 file_start_write(file
);
1463 ret
= iter_op(req
, &iter
);
1466 file_end_write(file
);
1470 case IOCB_CMD_FDSYNC
:
1471 if (!file
->f_op
->aio_fsync
)
1474 ret
= file
->f_op
->aio_fsync(req
, 1);
1477 case IOCB_CMD_FSYNC
:
1478 if (!file
->f_op
->aio_fsync
)
1481 ret
= file
->f_op
->aio_fsync(req
, 0);
1485 pr_debug("EINVAL: no operation provided\n");
1489 if (ret
!= -EIOCBQUEUED
) {
1491 * There's no easy way to restart the syscall since other AIO's
1492 * may be already running. Just fail this IO with EINTR.
1494 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
1495 ret
== -ERESTARTNOHAND
||
1496 ret
== -ERESTART_RESTARTBLOCK
))
1498 aio_complete(req
, ret
, 0);
1504 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1505 struct iocb
*iocb
, bool compat
)
1507 struct aio_kiocb
*req
;
1510 /* enforce forwards compatibility on users */
1511 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1512 pr_debug("EINVAL: reserve field set\n");
1516 /* prevent overflows */
1518 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1519 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1520 ((ssize_t
)iocb
->aio_nbytes
< 0)
1522 pr_debug("EINVAL: overflow check\n");
1526 req
= aio_get_req(ctx
);
1530 req
->common
.ki_filp
= fget(iocb
->aio_fildes
);
1531 if (unlikely(!req
->common
.ki_filp
)) {
1535 req
->common
.ki_pos
= iocb
->aio_offset
;
1536 req
->common
.ki_complete
= aio_complete
;
1537 req
->common
.ki_flags
= iocb_flags(req
->common
.ki_filp
);
1539 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1541 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1542 * instance of the file* now. The file descriptor must be
1543 * an eventfd() fd, and will be signaled for each completed
1544 * event using the eventfd_signal() function.
1546 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1547 if (IS_ERR(req
->ki_eventfd
)) {
1548 ret
= PTR_ERR(req
->ki_eventfd
);
1549 req
->ki_eventfd
= NULL
;
1553 req
->common
.ki_flags
|= IOCB_EVENTFD
;
1556 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1557 if (unlikely(ret
)) {
1558 pr_debug("EFAULT: aio_key\n");
1562 req
->ki_user_iocb
= user_iocb
;
1563 req
->ki_user_data
= iocb
->aio_data
;
1565 ret
= aio_run_iocb(&req
->common
, iocb
->aio_lio_opcode
,
1566 (char __user
*)(unsigned long)iocb
->aio_buf
,
1574 put_reqs_available(ctx
, 1);
1575 percpu_ref_put(&ctx
->reqs
);
1580 long do_io_submit(aio_context_t ctx_id
, long nr
,
1581 struct iocb __user
*__user
*iocbpp
, bool compat
)
1586 struct blk_plug plug
;
1588 if (unlikely(nr
< 0))
1591 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1592 nr
= LONG_MAX
/sizeof(*iocbpp
);
1594 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1597 ctx
= lookup_ioctx(ctx_id
);
1598 if (unlikely(!ctx
)) {
1599 pr_debug("EINVAL: invalid context id\n");
1603 blk_start_plug(&plug
);
1606 * AKPM: should this return a partial result if some of the IOs were
1607 * successfully submitted?
1609 for (i
=0; i
<nr
; i
++) {
1610 struct iocb __user
*user_iocb
;
1613 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1618 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1623 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, compat
);
1627 blk_finish_plug(&plug
);
1629 percpu_ref_put(&ctx
->users
);
1634 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1635 * the number of iocbs queued. May return -EINVAL if the aio_context
1636 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1637 * *iocbpp[0] is not properly initialized, if the operation specified
1638 * is invalid for the file descriptor in the iocb. May fail with
1639 * -EFAULT if any of the data structures point to invalid data. May
1640 * fail with -EBADF if the file descriptor specified in the first
1641 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1642 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1643 * fail with -ENOSYS if not implemented.
1645 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1646 struct iocb __user
* __user
*, iocbpp
)
1648 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1652 * Finds a given iocb for cancellation.
1654 static struct aio_kiocb
*
1655 lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
, u32 key
)
1657 struct aio_kiocb
*kiocb
;
1659 assert_spin_locked(&ctx
->ctx_lock
);
1661 if (key
!= KIOCB_KEY
)
1664 /* TODO: use a hash or array, this sucks. */
1665 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
1666 if (kiocb
->ki_user_iocb
== iocb
)
1673 * Attempts to cancel an iocb previously passed to io_submit. If
1674 * the operation is successfully cancelled, the resulting event is
1675 * copied into the memory pointed to by result without being placed
1676 * into the completion queue and 0 is returned. May fail with
1677 * -EFAULT if any of the data structures pointed to are invalid.
1678 * May fail with -EINVAL if aio_context specified by ctx_id is
1679 * invalid. May fail with -EAGAIN if the iocb specified was not
1680 * cancelled. Will fail with -ENOSYS if not implemented.
1682 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1683 struct io_event __user
*, result
)
1686 struct aio_kiocb
*kiocb
;
1690 ret
= get_user(key
, &iocb
->aio_key
);
1694 ctx
= lookup_ioctx(ctx_id
);
1698 spin_lock_irq(&ctx
->ctx_lock
);
1700 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1702 ret
= kiocb_cancel(kiocb
);
1706 spin_unlock_irq(&ctx
->ctx_lock
);
1710 * The result argument is no longer used - the io_event is
1711 * always delivered via the ring buffer. -EINPROGRESS indicates
1712 * cancellation is progress:
1717 percpu_ref_put(&ctx
->users
);
1723 * Attempts to read at least min_nr events and up to nr events from
1724 * the completion queue for the aio_context specified by ctx_id. If
1725 * it succeeds, the number of read events is returned. May fail with
1726 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1727 * out of range, if timeout is out of range. May fail with -EFAULT
1728 * if any of the memory specified is invalid. May return 0 or
1729 * < min_nr if the timeout specified by timeout has elapsed
1730 * before sufficient events are available, where timeout == NULL
1731 * specifies an infinite timeout. Note that the timeout pointed to by
1732 * timeout is relative. Will fail with -ENOSYS if not implemented.
1734 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1737 struct io_event __user
*, events
,
1738 struct timespec __user
*, timeout
)
1740 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1743 if (likely(ioctx
)) {
1744 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1745 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1746 percpu_ref_put(&ioctx
->users
);