2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
36 * We use lowest available bit in exceptional entry for locking, other two
37 * bits to determine entry type. In total 3 special bits.
39 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
40 #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
41 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
42 #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
43 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
44 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
45 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
46 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
47 RADIX_TREE_EXCEPTIONAL_ENTRY))
49 /* We choose 4096 entries - same as per-zone page wait tables */
50 #define DAX_WAIT_TABLE_BITS 12
51 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
53 wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
55 static int __init
init_dax_wait_table(void)
59 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
60 init_waitqueue_head(wait_table
+ i
);
63 fs_initcall(init_dax_wait_table
);
65 static wait_queue_head_t
*dax_entry_waitqueue(struct address_space
*mapping
,
68 unsigned long hash
= hash_long((unsigned long)mapping
^ index
,
70 return wait_table
+ hash
;
73 static long dax_map_atomic(struct block_device
*bdev
, struct blk_dax_ctl
*dax
)
75 struct request_queue
*q
= bdev
->bd_queue
;
78 dax
->addr
= ERR_PTR(-EIO
);
79 if (blk_queue_enter(q
, true) != 0)
82 rc
= bdev_direct_access(bdev
, dax
);
84 dax
->addr
= ERR_PTR(rc
);
91 static void dax_unmap_atomic(struct block_device
*bdev
,
92 const struct blk_dax_ctl
*dax
)
94 if (IS_ERR(dax
->addr
))
96 blk_queue_exit(bdev
->bd_queue
);
99 struct page
*read_dax_sector(struct block_device
*bdev
, sector_t n
)
101 struct page
*page
= alloc_pages(GFP_KERNEL
, 0);
102 struct blk_dax_ctl dax
= {
104 .sector
= n
& ~((((int) PAGE_SIZE
) / 512) - 1),
109 return ERR_PTR(-ENOMEM
);
111 rc
= dax_map_atomic(bdev
, &dax
);
114 memcpy_from_pmem(page_address(page
), dax
.addr
, PAGE_SIZE
);
115 dax_unmap_atomic(bdev
, &dax
);
119 static bool buffer_written(struct buffer_head
*bh
)
121 return buffer_mapped(bh
) && !buffer_unwritten(bh
);
125 * When ext4 encounters a hole, it returns without modifying the buffer_head
126 * which means that we can't trust b_size. To cope with this, we set b_state
127 * to 0 before calling get_block and, if any bit is set, we know we can trust
128 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
129 * and would save us time calling get_block repeatedly.
131 static bool buffer_size_valid(struct buffer_head
*bh
)
133 return bh
->b_state
!= 0;
137 static sector_t
to_sector(const struct buffer_head
*bh
,
138 const struct inode
*inode
)
140 sector_t sector
= bh
->b_blocknr
<< (inode
->i_blkbits
- 9);
145 static ssize_t
dax_io(struct inode
*inode
, struct iov_iter
*iter
,
146 loff_t start
, loff_t end
, get_block_t get_block
,
147 struct buffer_head
*bh
)
149 loff_t pos
= start
, max
= start
, bh_max
= start
;
151 struct block_device
*bdev
= NULL
;
152 int rw
= iov_iter_rw(iter
), rc
;
154 struct blk_dax_ctl dax
= {
155 .addr
= ERR_PTR(-EIO
),
157 unsigned blkbits
= inode
->i_blkbits
;
158 sector_t file_blks
= (i_size_read(inode
) + (1 << blkbits
) - 1)
162 end
= min(end
, i_size_read(inode
));
167 long page
= pos
>> PAGE_SHIFT
;
168 sector_t block
= page
<< (PAGE_SHIFT
- blkbits
);
169 unsigned first
= pos
- (block
<< blkbits
);
173 bh
->b_size
= PAGE_ALIGN(end
- pos
);
175 rc
= get_block(inode
, block
, bh
, rw
== WRITE
);
178 if (!buffer_size_valid(bh
))
179 bh
->b_size
= 1 << blkbits
;
180 bh_max
= pos
- first
+ bh
->b_size
;
183 * We allow uninitialized buffers for writes
184 * beyond EOF as those cannot race with faults
187 (buffer_new(bh
) && block
< file_blks
) ||
188 (rw
== WRITE
&& buffer_unwritten(bh
)));
190 unsigned done
= bh
->b_size
-
191 (bh_max
- (pos
- first
));
192 bh
->b_blocknr
+= done
>> blkbits
;
196 hole
= rw
== READ
&& !buffer_written(bh
);
198 size
= bh
->b_size
- first
;
200 dax_unmap_atomic(bdev
, &dax
);
201 dax
.sector
= to_sector(bh
, inode
);
202 dax
.size
= bh
->b_size
;
203 map_len
= dax_map_atomic(bdev
, &dax
);
209 size
= map_len
- first
;
212 * pos + size is one past the last offset for IO,
213 * so pos + size can overflow loff_t at extreme offsets.
214 * Cast to u64 to catch this and get the true minimum.
216 max
= min_t(u64
, pos
+ size
, end
);
219 if (iov_iter_rw(iter
) == WRITE
) {
220 len
= copy_from_iter_pmem(dax
.addr
, max
- pos
, iter
);
222 len
= copy_to_iter((void __force
*) dax
.addr
, max
- pos
,
225 len
= iov_iter_zero(max
- pos
, iter
);
233 if (!IS_ERR(dax
.addr
))
237 dax_unmap_atomic(bdev
, &dax
);
239 return (pos
== start
) ? rc
: pos
- start
;
243 * dax_do_io - Perform I/O to a DAX file
244 * @iocb: The control block for this I/O
245 * @inode: The file which the I/O is directed at
246 * @iter: The addresses to do I/O from or to
247 * @get_block: The filesystem method used to translate file offsets to blocks
248 * @end_io: A filesystem callback for I/O completion
251 * This function uses the same locking scheme as do_blockdev_direct_IO:
252 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
253 * caller for writes. For reads, we take and release the i_mutex ourselves.
254 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
255 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258 ssize_t
dax_do_io(struct kiocb
*iocb
, struct inode
*inode
,
259 struct iov_iter
*iter
, get_block_t get_block
,
260 dio_iodone_t end_io
, int flags
)
262 struct buffer_head bh
;
263 ssize_t retval
= -EINVAL
;
264 loff_t pos
= iocb
->ki_pos
;
265 loff_t end
= pos
+ iov_iter_count(iter
);
267 memset(&bh
, 0, sizeof(bh
));
268 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
270 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
)
273 /* Protects against truncate */
274 if (!(flags
& DIO_SKIP_DIO_COUNT
))
275 inode_dio_begin(inode
);
277 retval
= dax_io(inode
, iter
, pos
, end
, get_block
, &bh
);
279 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
)
285 err
= end_io(iocb
, pos
, retval
, bh
.b_private
);
290 if (!(flags
& DIO_SKIP_DIO_COUNT
))
291 inode_dio_end(inode
);
294 EXPORT_SYMBOL_GPL(dax_do_io
);
297 * DAX radix tree locking
299 struct exceptional_entry_key
{
300 struct address_space
*mapping
;
304 struct wait_exceptional_entry_queue
{
306 struct exceptional_entry_key key
;
309 static int wake_exceptional_entry_func(wait_queue_t
*wait
, unsigned int mode
,
310 int sync
, void *keyp
)
312 struct exceptional_entry_key
*key
= keyp
;
313 struct wait_exceptional_entry_queue
*ewait
=
314 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
316 if (key
->mapping
!= ewait
->key
.mapping
||
317 key
->index
!= ewait
->key
.index
)
319 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
323 * Check whether the given slot is locked. The function must be called with
324 * mapping->tree_lock held
326 static inline int slot_locked(struct address_space
*mapping
, void **slot
)
328 unsigned long entry
= (unsigned long)
329 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
330 return entry
& RADIX_DAX_ENTRY_LOCK
;
334 * Mark the given slot is locked. The function must be called with
335 * mapping->tree_lock held
337 static inline void *lock_slot(struct address_space
*mapping
, void **slot
)
339 unsigned long entry
= (unsigned long)
340 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
342 entry
|= RADIX_DAX_ENTRY_LOCK
;
343 radix_tree_replace_slot(slot
, (void *)entry
);
344 return (void *)entry
;
348 * Mark the given slot is unlocked. The function must be called with
349 * mapping->tree_lock held
351 static inline void *unlock_slot(struct address_space
*mapping
, void **slot
)
353 unsigned long entry
= (unsigned long)
354 radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
356 entry
&= ~(unsigned long)RADIX_DAX_ENTRY_LOCK
;
357 radix_tree_replace_slot(slot
, (void *)entry
);
358 return (void *)entry
;
362 * Lookup entry in radix tree, wait for it to become unlocked if it is
363 * exceptional entry and return it. The caller must call
364 * put_unlocked_mapping_entry() when he decided not to lock the entry or
365 * put_locked_mapping_entry() when he locked the entry and now wants to
368 * The function must be called with mapping->tree_lock held.
370 static void *get_unlocked_mapping_entry(struct address_space
*mapping
,
371 pgoff_t index
, void ***slotp
)
374 struct wait_exceptional_entry_queue ewait
;
375 wait_queue_head_t
*wq
= dax_entry_waitqueue(mapping
, index
);
377 init_wait(&ewait
.wait
);
378 ewait
.wait
.func
= wake_exceptional_entry_func
;
379 ewait
.key
.mapping
= mapping
;
380 ewait
.key
.index
= index
;
383 ret
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
,
385 if (!ret
|| !radix_tree_exceptional_entry(ret
) ||
386 !slot_locked(mapping
, slot
)) {
391 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
392 TASK_UNINTERRUPTIBLE
);
393 spin_unlock_irq(&mapping
->tree_lock
);
395 finish_wait(wq
, &ewait
.wait
);
396 spin_lock_irq(&mapping
->tree_lock
);
401 * Find radix tree entry at given index. If it points to a page, return with
402 * the page locked. If it points to the exceptional entry, return with the
403 * radix tree entry locked. If the radix tree doesn't contain given index,
404 * create empty exceptional entry for the index and return with it locked.
406 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
407 * persistent memory the benefit is doubtful. We can add that later if we can
410 static void *grab_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
415 spin_lock_irq(&mapping
->tree_lock
);
416 ret
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
417 /* No entry for given index? Make sure radix tree is big enough. */
421 spin_unlock_irq(&mapping
->tree_lock
);
422 err
= radix_tree_preload(
423 mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
);
426 ret
= (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY
|
427 RADIX_DAX_ENTRY_LOCK
);
428 spin_lock_irq(&mapping
->tree_lock
);
429 err
= radix_tree_insert(&mapping
->page_tree
, index
, ret
);
430 radix_tree_preload_end();
432 spin_unlock_irq(&mapping
->tree_lock
);
433 /* Someone already created the entry? */
438 /* Good, we have inserted empty locked entry into the tree. */
439 mapping
->nrexceptional
++;
440 spin_unlock_irq(&mapping
->tree_lock
);
443 /* Normal page in radix tree? */
444 if (!radix_tree_exceptional_entry(ret
)) {
445 struct page
*page
= ret
;
448 spin_unlock_irq(&mapping
->tree_lock
);
450 /* Page got truncated? Retry... */
451 if (unlikely(page
->mapping
!= mapping
)) {
458 ret
= lock_slot(mapping
, slot
);
459 spin_unlock_irq(&mapping
->tree_lock
);
463 void dax_wake_mapping_entry_waiter(struct address_space
*mapping
,
464 pgoff_t index
, bool wake_all
)
466 wait_queue_head_t
*wq
= dax_entry_waitqueue(mapping
, index
);
469 * Checking for locked entry and prepare_to_wait_exclusive() happens
470 * under mapping->tree_lock, ditto for entry handling in our callers.
471 * So at this point all tasks that could have seen our entry locked
472 * must be in the waitqueue and the following check will see them.
474 if (waitqueue_active(wq
)) {
475 struct exceptional_entry_key key
;
477 key
.mapping
= mapping
;
479 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
483 void dax_unlock_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
487 spin_lock_irq(&mapping
->tree_lock
);
488 ret
= __radix_tree_lookup(&mapping
->page_tree
, index
, NULL
, &slot
);
489 if (WARN_ON_ONCE(!ret
|| !radix_tree_exceptional_entry(ret
) ||
490 !slot_locked(mapping
, slot
))) {
491 spin_unlock_irq(&mapping
->tree_lock
);
494 unlock_slot(mapping
, slot
);
495 spin_unlock_irq(&mapping
->tree_lock
);
496 dax_wake_mapping_entry_waiter(mapping
, index
, false);
499 static void put_locked_mapping_entry(struct address_space
*mapping
,
500 pgoff_t index
, void *entry
)
502 if (!radix_tree_exceptional_entry(entry
)) {
506 dax_unlock_mapping_entry(mapping
, index
);
511 * Called when we are done with radix tree entry we looked up via
512 * get_unlocked_mapping_entry() and which we didn't lock in the end.
514 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
515 pgoff_t index
, void *entry
)
517 if (!radix_tree_exceptional_entry(entry
))
520 /* We have to wake up next waiter for the radix tree entry lock */
521 dax_wake_mapping_entry_waiter(mapping
, index
, false);
525 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
526 * entry to get unlocked before deleting it.
528 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
532 spin_lock_irq(&mapping
->tree_lock
);
533 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
535 * This gets called from truncate / punch_hole path. As such, the caller
536 * must hold locks protecting against concurrent modifications of the
537 * radix tree (usually fs-private i_mmap_sem for writing). Since the
538 * caller has seen exceptional entry for this index, we better find it
539 * at that index as well...
541 if (WARN_ON_ONCE(!entry
|| !radix_tree_exceptional_entry(entry
))) {
542 spin_unlock_irq(&mapping
->tree_lock
);
545 radix_tree_delete(&mapping
->page_tree
, index
);
546 mapping
->nrexceptional
--;
547 spin_unlock_irq(&mapping
->tree_lock
);
548 dax_wake_mapping_entry_waiter(mapping
, index
, true);
554 * The user has performed a load from a hole in the file. Allocating
555 * a new page in the file would cause excessive storage usage for
556 * workloads with sparse files. We allocate a page cache page instead.
557 * We'll kick it out of the page cache if it's ever written to,
558 * otherwise it will simply fall out of the page cache under memory
559 * pressure without ever having been dirtied.
561 static int dax_load_hole(struct address_space
*mapping
, void *entry
,
562 struct vm_fault
*vmf
)
566 /* Hole page already exists? Return it... */
567 if (!radix_tree_exceptional_entry(entry
)) {
569 return VM_FAULT_LOCKED
;
572 /* This will replace locked radix tree entry with a hole page */
573 page
= find_or_create_page(mapping
, vmf
->pgoff
,
574 vmf
->gfp_mask
| __GFP_ZERO
);
576 put_locked_mapping_entry(mapping
, vmf
->pgoff
, entry
);
580 return VM_FAULT_LOCKED
;
583 static int copy_user_bh(struct page
*to
, struct inode
*inode
,
584 struct buffer_head
*bh
, unsigned long vaddr
)
586 struct blk_dax_ctl dax
= {
587 .sector
= to_sector(bh
, inode
),
590 struct block_device
*bdev
= bh
->b_bdev
;
593 if (dax_map_atomic(bdev
, &dax
) < 0)
594 return PTR_ERR(dax
.addr
);
595 vto
= kmap_atomic(to
);
596 copy_user_page(vto
, (void __force
*)dax
.addr
, vaddr
, to
);
598 dax_unmap_atomic(bdev
, &dax
);
602 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
604 static void *dax_insert_mapping_entry(struct address_space
*mapping
,
605 struct vm_fault
*vmf
,
606 void *entry
, sector_t sector
)
608 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
610 bool hole_fill
= false;
612 pgoff_t index
= vmf
->pgoff
;
614 if (vmf
->flags
& FAULT_FLAG_WRITE
)
615 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
617 /* Replacing hole page with block mapping? */
618 if (!radix_tree_exceptional_entry(entry
)) {
621 * Unmap the page now before we remove it from page cache below.
622 * The page is locked so it cannot be faulted in again.
624 unmap_mapping_range(mapping
, vmf
->pgoff
<< PAGE_SHIFT
,
626 error
= radix_tree_preload(vmf
->gfp_mask
& ~__GFP_HIGHMEM
);
628 return ERR_PTR(error
);
631 spin_lock_irq(&mapping
->tree_lock
);
632 new_entry
= (void *)((unsigned long)RADIX_DAX_ENTRY(sector
, false) |
633 RADIX_DAX_ENTRY_LOCK
);
635 __delete_from_page_cache(entry
, NULL
);
636 /* Drop pagecache reference */
638 error
= radix_tree_insert(page_tree
, index
, new_entry
);
640 new_entry
= ERR_PTR(error
);
643 mapping
->nrexceptional
++;
648 ret
= __radix_tree_lookup(page_tree
, index
, NULL
, &slot
);
649 WARN_ON_ONCE(ret
!= entry
);
650 radix_tree_replace_slot(slot
, new_entry
);
652 if (vmf
->flags
& FAULT_FLAG_WRITE
)
653 radix_tree_tag_set(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
655 spin_unlock_irq(&mapping
->tree_lock
);
657 radix_tree_preload_end();
659 * We don't need hole page anymore, it has been replaced with
660 * locked radix tree entry now.
662 if (mapping
->a_ops
->freepage
)
663 mapping
->a_ops
->freepage(entry
);
670 static int dax_writeback_one(struct block_device
*bdev
,
671 struct address_space
*mapping
, pgoff_t index
, void *entry
)
673 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
674 int type
= RADIX_DAX_TYPE(entry
);
675 struct radix_tree_node
*node
;
676 struct blk_dax_ctl dax
;
680 spin_lock_irq(&mapping
->tree_lock
);
682 * Regular page slots are stabilized by the page lock even
683 * without the tree itself locked. These unlocked entries
684 * need verification under the tree lock.
686 if (!__radix_tree_lookup(page_tree
, index
, &node
, &slot
))
691 /* another fsync thread may have already written back this entry */
692 if (!radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
))
695 if (WARN_ON_ONCE(type
!= RADIX_DAX_PTE
&& type
!= RADIX_DAX_PMD
)) {
700 dax
.sector
= RADIX_DAX_SECTOR(entry
);
701 dax
.size
= (type
== RADIX_DAX_PMD
? PMD_SIZE
: PAGE_SIZE
);
702 spin_unlock_irq(&mapping
->tree_lock
);
705 * We cannot hold tree_lock while calling dax_map_atomic() because it
706 * eventually calls cond_resched().
708 ret
= dax_map_atomic(bdev
, &dax
);
712 if (WARN_ON_ONCE(ret
< dax
.size
)) {
717 wb_cache_pmem(dax
.addr
, dax
.size
);
719 spin_lock_irq(&mapping
->tree_lock
);
720 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_TOWRITE
);
721 spin_unlock_irq(&mapping
->tree_lock
);
723 dax_unmap_atomic(bdev
, &dax
);
727 spin_unlock_irq(&mapping
->tree_lock
);
732 * Flush the mapping to the persistent domain within the byte range of [start,
733 * end]. This is required by data integrity operations to ensure file data is
734 * on persistent storage prior to completion of the operation.
736 int dax_writeback_mapping_range(struct address_space
*mapping
,
737 struct block_device
*bdev
, struct writeback_control
*wbc
)
739 struct inode
*inode
= mapping
->host
;
740 pgoff_t start_index
, end_index
, pmd_index
;
741 pgoff_t indices
[PAGEVEC_SIZE
];
747 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
750 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
753 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
754 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
755 pmd_index
= DAX_PMD_INDEX(start_index
);
758 entry
= radix_tree_lookup(&mapping
->page_tree
, pmd_index
);
761 /* see if the start of our range is covered by a PMD entry */
762 if (entry
&& RADIX_DAX_TYPE(entry
) == RADIX_DAX_PMD
)
763 start_index
= pmd_index
;
765 tag_pages_for_writeback(mapping
, start_index
, end_index
);
767 pagevec_init(&pvec
, 0);
769 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
770 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
771 pvec
.pages
, indices
);
776 for (i
= 0; i
< pvec
.nr
; i
++) {
777 if (indices
[i
] > end_index
) {
782 ret
= dax_writeback_one(bdev
, mapping
, indices
[i
],
790 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
792 static int dax_insert_mapping(struct address_space
*mapping
,
793 struct buffer_head
*bh
, void **entryp
,
794 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
796 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
797 struct block_device
*bdev
= bh
->b_bdev
;
798 struct blk_dax_ctl dax
= {
799 .sector
= to_sector(bh
, mapping
->host
),
803 void *entry
= *entryp
;
805 if (dax_map_atomic(bdev
, &dax
) < 0)
806 return PTR_ERR(dax
.addr
);
807 dax_unmap_atomic(bdev
, &dax
);
809 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, dax
.sector
);
814 return vm_insert_mixed(vma
, vaddr
, dax
.pfn
);
818 * dax_fault - handle a page fault on a DAX file
819 * @vma: The virtual memory area where the fault occurred
820 * @vmf: The description of the fault
821 * @get_block: The filesystem method used to translate file offsets to blocks
823 * When a page fault occurs, filesystems may call this helper in their
824 * fault handler for DAX files. dax_fault() assumes the caller has done all
825 * the necessary locking for the page fault to proceed successfully.
827 int dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
828 get_block_t get_block
)
830 struct file
*file
= vma
->vm_file
;
831 struct address_space
*mapping
= file
->f_mapping
;
832 struct inode
*inode
= mapping
->host
;
834 struct buffer_head bh
;
835 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
836 unsigned blkbits
= inode
->i_blkbits
;
843 * Check whether offset isn't beyond end of file now. Caller is supposed
844 * to hold locks serializing us with truncate / punch hole so this is
847 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
848 if (vmf
->pgoff
>= size
)
849 return VM_FAULT_SIGBUS
;
851 memset(&bh
, 0, sizeof(bh
));
852 block
= (sector_t
)vmf
->pgoff
<< (PAGE_SHIFT
- blkbits
);
853 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
854 bh
.b_size
= PAGE_SIZE
;
856 entry
= grab_mapping_entry(mapping
, vmf
->pgoff
);
858 error
= PTR_ERR(entry
);
862 error
= get_block(inode
, block
, &bh
, 0);
863 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
864 error
= -EIO
; /* fs corruption? */
869 struct page
*new_page
= vmf
->cow_page
;
870 if (buffer_written(&bh
))
871 error
= copy_user_bh(new_page
, inode
, &bh
, vaddr
);
873 clear_user_highpage(new_page
, vaddr
);
876 if (!radix_tree_exceptional_entry(entry
)) {
878 return VM_FAULT_LOCKED
;
881 return VM_FAULT_DAX_LOCKED
;
884 if (!buffer_mapped(&bh
)) {
885 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
886 error
= get_block(inode
, block
, &bh
, 1);
887 count_vm_event(PGMAJFAULT
);
888 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
889 major
= VM_FAULT_MAJOR
;
890 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
895 return dax_load_hole(mapping
, entry
, vmf
);
899 /* Filesystem should not return unwritten buffers to us! */
900 WARN_ON_ONCE(buffer_unwritten(&bh
) || buffer_new(&bh
));
901 error
= dax_insert_mapping(mapping
, &bh
, &entry
, vma
, vmf
);
903 put_locked_mapping_entry(mapping
, vmf
->pgoff
, entry
);
905 if (error
== -ENOMEM
)
906 return VM_FAULT_OOM
| major
;
907 /* -EBUSY is fine, somebody else faulted on the same PTE */
908 if ((error
< 0) && (error
!= -EBUSY
))
909 return VM_FAULT_SIGBUS
| major
;
910 return VM_FAULT_NOPAGE
| major
;
912 EXPORT_SYMBOL_GPL(dax_fault
);
914 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
916 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
917 * more often than one might expect in the below function.
919 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
921 static void __dax_dbg(struct buffer_head
*bh
, unsigned long address
,
922 const char *reason
, const char *fn
)
925 char bname
[BDEVNAME_SIZE
];
926 bdevname(bh
->b_bdev
, bname
);
927 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
928 "length %zd fallback: %s\n", fn
, current
->comm
,
929 address
, bname
, bh
->b_state
, (u64
)bh
->b_blocknr
,
932 pr_debug("%s: %s addr: %lx fallback: %s\n", fn
,
933 current
->comm
, address
, reason
);
937 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
940 * dax_pmd_fault - handle a PMD fault on a DAX file
941 * @vma: The virtual memory area where the fault occurred
942 * @vmf: The description of the fault
943 * @get_block: The filesystem method used to translate file offsets to blocks
945 * When a page fault occurs, filesystems may call this helper in their
946 * pmd_fault handler for DAX files.
948 int dax_pmd_fault(struct vm_area_struct
*vma
, unsigned long address
,
949 pmd_t
*pmd
, unsigned int flags
, get_block_t get_block
)
951 struct file
*file
= vma
->vm_file
;
952 struct address_space
*mapping
= file
->f_mapping
;
953 struct inode
*inode
= mapping
->host
;
954 struct buffer_head bh
;
955 unsigned blkbits
= inode
->i_blkbits
;
956 unsigned long pmd_addr
= address
& PMD_MASK
;
957 bool write
= flags
& FAULT_FLAG_WRITE
;
958 struct block_device
*bdev
;
964 /* dax pmd mappings require pfn_t_devmap() */
965 if (!IS_ENABLED(CONFIG_FS_DAX_PMD
))
966 return VM_FAULT_FALLBACK
;
968 /* Fall back to PTEs if we're going to COW */
969 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
970 split_huge_pmd(vma
, pmd
, address
);
971 dax_pmd_dbg(NULL
, address
, "cow write");
972 return VM_FAULT_FALLBACK
;
974 /* If the PMD would extend outside the VMA */
975 if (pmd_addr
< vma
->vm_start
) {
976 dax_pmd_dbg(NULL
, address
, "vma start unaligned");
977 return VM_FAULT_FALLBACK
;
979 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
) {
980 dax_pmd_dbg(NULL
, address
, "vma end unaligned");
981 return VM_FAULT_FALLBACK
;
984 pgoff
= linear_page_index(vma
, pmd_addr
);
985 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
987 return VM_FAULT_SIGBUS
;
988 /* If the PMD would cover blocks out of the file */
989 if ((pgoff
| PG_PMD_COLOUR
) >= size
) {
990 dax_pmd_dbg(NULL
, address
,
991 "offset + huge page size > file size");
992 return VM_FAULT_FALLBACK
;
995 memset(&bh
, 0, sizeof(bh
));
996 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
997 block
= (sector_t
)pgoff
<< (PAGE_SHIFT
- blkbits
);
999 bh
.b_size
= PMD_SIZE
;
1001 if (get_block(inode
, block
, &bh
, 0) != 0)
1002 return VM_FAULT_SIGBUS
;
1004 if (!buffer_mapped(&bh
) && write
) {
1005 if (get_block(inode
, block
, &bh
, 1) != 0)
1006 return VM_FAULT_SIGBUS
;
1008 WARN_ON_ONCE(buffer_unwritten(&bh
) || buffer_new(&bh
));
1014 * If the filesystem isn't willing to tell us the length of a hole,
1015 * just fall back to PTEs. Calling get_block 512 times in a loop
1018 if (!buffer_size_valid(&bh
) || bh
.b_size
< PMD_SIZE
) {
1019 dax_pmd_dbg(&bh
, address
, "allocated block too small");
1020 return VM_FAULT_FALLBACK
;
1024 * If we allocated new storage, make sure no process has any
1025 * zero pages covering this hole
1028 loff_t lstart
= pgoff
<< PAGE_SHIFT
;
1029 loff_t lend
= lstart
+ PMD_SIZE
- 1; /* inclusive */
1031 truncate_pagecache_range(inode
, lstart
, lend
);
1034 if (!write
&& !buffer_mapped(&bh
)) {
1037 struct page
*zero_page
= get_huge_zero_page();
1039 if (unlikely(!zero_page
)) {
1040 dax_pmd_dbg(&bh
, address
, "no zero page");
1044 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1045 if (!pmd_none(*pmd
)) {
1047 dax_pmd_dbg(&bh
, address
, "pmd already present");
1051 dev_dbg(part_to_dev(bdev
->bd_part
),
1052 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
1053 __func__
, current
->comm
, address
,
1054 (unsigned long long) to_sector(&bh
, inode
));
1056 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
1057 entry
= pmd_mkhuge(entry
);
1058 set_pmd_at(vma
->vm_mm
, pmd_addr
, pmd
, entry
);
1059 result
= VM_FAULT_NOPAGE
;
1062 struct blk_dax_ctl dax
= {
1063 .sector
= to_sector(&bh
, inode
),
1066 long length
= dax_map_atomic(bdev
, &dax
);
1069 dax_pmd_dbg(&bh
, address
, "dax-error fallback");
1072 if (length
< PMD_SIZE
) {
1073 dax_pmd_dbg(&bh
, address
, "dax-length too small");
1074 dax_unmap_atomic(bdev
, &dax
);
1077 if (pfn_t_to_pfn(dax
.pfn
) & PG_PMD_COLOUR
) {
1078 dax_pmd_dbg(&bh
, address
, "pfn unaligned");
1079 dax_unmap_atomic(bdev
, &dax
);
1083 if (!pfn_t_devmap(dax
.pfn
)) {
1084 dax_unmap_atomic(bdev
, &dax
);
1085 dax_pmd_dbg(&bh
, address
, "pfn not in memmap");
1088 dax_unmap_atomic(bdev
, &dax
);
1091 * For PTE faults we insert a radix tree entry for reads, and
1092 * leave it clean. Then on the first write we dirty the radix
1093 * tree entry via the dax_pfn_mkwrite() path. This sequence
1094 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
1095 * call into get_block() to translate the pgoff to a sector in
1096 * order to be able to create a new radix tree entry.
1098 * The PMD path doesn't have an equivalent to
1099 * dax_pfn_mkwrite(), though, so for a read followed by a
1100 * write we traverse all the way through dax_pmd_fault()
1101 * twice. This means we can just skip inserting a radix tree
1102 * entry completely on the initial read and just wait until
1103 * the write to insert a dirty entry.
1107 * We should insert radix-tree entry and dirty it here.
1108 * For now this is broken...
1112 dev_dbg(part_to_dev(bdev
->bd_part
),
1113 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
1114 __func__
, current
->comm
, address
,
1115 pfn_t_to_pfn(dax
.pfn
),
1116 (unsigned long long) dax
.sector
);
1117 result
|= vmf_insert_pfn_pmd(vma
, address
, pmd
,
1125 count_vm_event(THP_FAULT_FALLBACK
);
1126 result
= VM_FAULT_FALLBACK
;
1129 EXPORT_SYMBOL_GPL(dax_pmd_fault
);
1130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1133 * dax_pfn_mkwrite - handle first write to DAX page
1134 * @vma: The virtual memory area where the fault occurred
1135 * @vmf: The description of the fault
1137 int dax_pfn_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1139 struct file
*file
= vma
->vm_file
;
1140 struct address_space
*mapping
= file
->f_mapping
;
1142 pgoff_t index
= vmf
->pgoff
;
1144 spin_lock_irq(&mapping
->tree_lock
);
1145 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
1146 if (!entry
|| !radix_tree_exceptional_entry(entry
))
1148 radix_tree_tag_set(&mapping
->page_tree
, index
, PAGECACHE_TAG_DIRTY
);
1149 put_unlocked_mapping_entry(mapping
, index
, entry
);
1151 spin_unlock_irq(&mapping
->tree_lock
);
1152 return VM_FAULT_NOPAGE
;
1154 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite
);
1156 static bool dax_range_is_aligned(struct block_device
*bdev
,
1157 unsigned int offset
, unsigned int length
)
1159 unsigned short sector_size
= bdev_logical_block_size(bdev
);
1161 if (!IS_ALIGNED(offset
, sector_size
))
1163 if (!IS_ALIGNED(length
, sector_size
))
1169 int __dax_zero_page_range(struct block_device
*bdev
, sector_t sector
,
1170 unsigned int offset
, unsigned int length
)
1172 struct blk_dax_ctl dax
= {
1177 if (dax_range_is_aligned(bdev
, offset
, length
)) {
1178 sector_t start_sector
= dax
.sector
+ (offset
>> 9);
1180 return blkdev_issue_zeroout(bdev
, start_sector
,
1181 length
>> 9, GFP_NOFS
, true);
1183 if (dax_map_atomic(bdev
, &dax
) < 0)
1184 return PTR_ERR(dax
.addr
);
1185 clear_pmem(dax
.addr
+ offset
, length
);
1186 dax_unmap_atomic(bdev
, &dax
);
1190 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
1193 * dax_zero_page_range - zero a range within a page of a DAX file
1194 * @inode: The file being truncated
1195 * @from: The file offset that is being truncated to
1196 * @length: The number of bytes to zero
1197 * @get_block: The filesystem method used to translate file offsets to blocks
1199 * This function can be called by a filesystem when it is zeroing part of a
1200 * page in a DAX file. This is intended for hole-punch operations. If
1201 * you are truncating a file, the helper function dax_truncate_page() may be
1204 int dax_zero_page_range(struct inode
*inode
, loff_t from
, unsigned length
,
1205 get_block_t get_block
)
1207 struct buffer_head bh
;
1208 pgoff_t index
= from
>> PAGE_SHIFT
;
1209 unsigned offset
= from
& (PAGE_SIZE
-1);
1212 /* Block boundary? Nothing to do */
1215 BUG_ON((offset
+ length
) > PAGE_SIZE
);
1217 memset(&bh
, 0, sizeof(bh
));
1218 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
1219 bh
.b_size
= PAGE_SIZE
;
1220 err
= get_block(inode
, index
, &bh
, 0);
1221 if (err
< 0 || !buffer_written(&bh
))
1224 return __dax_zero_page_range(bh
.b_bdev
, to_sector(&bh
, inode
),
1227 EXPORT_SYMBOL_GPL(dax_zero_page_range
);
1230 * dax_truncate_page - handle a partial page being truncated in a DAX file
1231 * @inode: The file being truncated
1232 * @from: The file offset that is being truncated to
1233 * @get_block: The filesystem method used to translate file offsets to blocks
1235 * Similar to block_truncate_page(), this function can be called by a
1236 * filesystem when it is truncating a DAX file to handle the partial page.
1238 int dax_truncate_page(struct inode
*inode
, loff_t from
, get_block_t get_block
)
1240 unsigned length
= PAGE_ALIGN(from
) - from
;
1241 return dax_zero_page_range(inode
, from
, length
, get_block
);
1243 EXPORT_SYMBOL_GPL(dax_truncate_page
);