KEYS: add missing permission check for request_key() destination
[linux/fpc-iii.git] / kernel / cgroup.c
blob660a218847718aa6bedeb9a81904b0d6a851f9ae
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DECLARE_RWSEM(css_set_rwsem);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_rwsem);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DECLARE_RWSEM(css_set_rwsem);
92 #endif
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 static DEFINE_SPINLOCK(release_agent_path_lock);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct *cgroup_destroy_wq;
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
123 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys *cgroup_subsys[] = {
128 #include <linux/cgroup_subsys.h>
130 #undef SUBSYS
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name[] = {
135 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
144 struct cgroup_root cgrp_dfl_root;
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
150 static bool cgrp_dfl_root_visible;
152 /* some controllers are not supported in the default hierarchy */
153 static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
154 #ifdef CONFIG_CGROUP_DEBUG
155 | (1 << debug_cgrp_id)
156 #endif
159 /* The list of hierarchy roots */
161 static LIST_HEAD(cgroup_roots);
162 static int cgroup_root_count;
164 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
165 static DEFINE_IDR(cgroup_hierarchy_idr);
168 * Assign a monotonically increasing serial number to csses. It guarantees
169 * cgroups with bigger numbers are newer than those with smaller numbers.
170 * Also, as csses are always appended to the parent's ->children list, it
171 * guarantees that sibling csses are always sorted in the ascending serial
172 * number order on the list. Protected by cgroup_mutex.
174 static u64 css_serial_nr_next = 1;
176 /* This flag indicates whether tasks in the fork and exit paths should
177 * check for fork/exit handlers to call. This avoids us having to do
178 * extra work in the fork/exit path if none of the subsystems need to
179 * be called.
181 static int need_forkexit_callback __read_mostly;
183 static struct cftype cgroup_base_files[];
185 static void cgroup_put(struct cgroup *cgrp);
186 static int rebind_subsystems(struct cgroup_root *dst_root,
187 unsigned int ss_mask);
188 static int cgroup_destroy_locked(struct cgroup *cgrp);
189 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss);
190 static void css_release(struct percpu_ref *ref);
191 static void kill_css(struct cgroup_subsys_state *css);
192 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
193 bool is_add);
194 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
196 /* IDR wrappers which synchronize using cgroup_idr_lock */
197 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
198 gfp_t gfp_mask)
200 int ret;
202 idr_preload(gfp_mask);
203 spin_lock_bh(&cgroup_idr_lock);
204 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
205 spin_unlock_bh(&cgroup_idr_lock);
206 idr_preload_end();
207 return ret;
210 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
212 void *ret;
214 spin_lock_bh(&cgroup_idr_lock);
215 ret = idr_replace(idr, ptr, id);
216 spin_unlock_bh(&cgroup_idr_lock);
217 return ret;
220 static void cgroup_idr_remove(struct idr *idr, int id)
222 spin_lock_bh(&cgroup_idr_lock);
223 idr_remove(idr, id);
224 spin_unlock_bh(&cgroup_idr_lock);
227 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
229 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
231 if (parent_css)
232 return container_of(parent_css, struct cgroup, self);
233 return NULL;
237 * cgroup_css - obtain a cgroup's css for the specified subsystem
238 * @cgrp: the cgroup of interest
239 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
241 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
242 * function must be called either under cgroup_mutex or rcu_read_lock() and
243 * the caller is responsible for pinning the returned css if it wants to
244 * keep accessing it outside the said locks. This function may return
245 * %NULL if @cgrp doesn't have @subsys_id enabled.
247 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
248 struct cgroup_subsys *ss)
250 if (ss)
251 return rcu_dereference_check(cgrp->subsys[ss->id],
252 lockdep_is_held(&cgroup_mutex));
253 else
254 return &cgrp->self;
258 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
259 * @cgrp: the cgroup of interest
260 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
262 * Similar to cgroup_css() but returns the effctive css, which is defined
263 * as the matching css of the nearest ancestor including self which has @ss
264 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
265 * function is guaranteed to return non-NULL css.
267 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
268 struct cgroup_subsys *ss)
270 lockdep_assert_held(&cgroup_mutex);
272 if (!ss)
273 return &cgrp->self;
275 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
276 return NULL;
278 while (cgroup_parent(cgrp) &&
279 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
280 cgrp = cgroup_parent(cgrp);
282 return cgroup_css(cgrp, ss);
285 /* convenient tests for these bits */
286 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
288 return !(cgrp->self.flags & CSS_ONLINE);
291 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
293 struct cgroup *cgrp = of->kn->parent->priv;
294 struct cftype *cft = of_cft(of);
297 * This is open and unprotected implementation of cgroup_css().
298 * seq_css() is only called from a kernfs file operation which has
299 * an active reference on the file. Because all the subsystem
300 * files are drained before a css is disassociated with a cgroup,
301 * the matching css from the cgroup's subsys table is guaranteed to
302 * be and stay valid until the enclosing operation is complete.
304 if (cft->ss)
305 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
306 else
307 return &cgrp->self;
309 EXPORT_SYMBOL_GPL(of_css);
312 * cgroup_is_descendant - test ancestry
313 * @cgrp: the cgroup to be tested
314 * @ancestor: possible ancestor of @cgrp
316 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
317 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
318 * and @ancestor are accessible.
320 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
322 while (cgrp) {
323 if (cgrp == ancestor)
324 return true;
325 cgrp = cgroup_parent(cgrp);
327 return false;
330 static int cgroup_is_releasable(const struct cgroup *cgrp)
332 const int bits =
333 (1 << CGRP_RELEASABLE) |
334 (1 << CGRP_NOTIFY_ON_RELEASE);
335 return (cgrp->flags & bits) == bits;
338 static int notify_on_release(const struct cgroup *cgrp)
340 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
344 * for_each_css - iterate all css's of a cgroup
345 * @css: the iteration cursor
346 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
347 * @cgrp: the target cgroup to iterate css's of
349 * Should be called under cgroup_[tree_]mutex.
351 #define for_each_css(css, ssid, cgrp) \
352 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
353 if (!((css) = rcu_dereference_check( \
354 (cgrp)->subsys[(ssid)], \
355 lockdep_is_held(&cgroup_mutex)))) { } \
356 else
359 * for_each_e_css - iterate all effective css's of a cgroup
360 * @css: the iteration cursor
361 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
362 * @cgrp: the target cgroup to iterate css's of
364 * Should be called under cgroup_[tree_]mutex.
366 #define for_each_e_css(css, ssid, cgrp) \
367 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
368 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
370 else
373 * for_each_subsys - iterate all enabled cgroup subsystems
374 * @ss: the iteration cursor
375 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
377 #define for_each_subsys(ss, ssid) \
378 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
379 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
381 /* iterate across the hierarchies */
382 #define for_each_root(root) \
383 list_for_each_entry((root), &cgroup_roots, root_list)
385 /* iterate over child cgrps, lock should be held throughout iteration */
386 #define cgroup_for_each_live_child(child, cgrp) \
387 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
388 if (({ lockdep_assert_held(&cgroup_mutex); \
389 cgroup_is_dead(child); })) \
391 else
393 /* the list of cgroups eligible for automatic release. Protected by
394 * release_list_lock */
395 static LIST_HEAD(release_list);
396 static DEFINE_RAW_SPINLOCK(release_list_lock);
397 static void cgroup_release_agent(struct work_struct *work);
398 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
399 static void check_for_release(struct cgroup *cgrp);
402 * A cgroup can be associated with multiple css_sets as different tasks may
403 * belong to different cgroups on different hierarchies. In the other
404 * direction, a css_set is naturally associated with multiple cgroups.
405 * This M:N relationship is represented by the following link structure
406 * which exists for each association and allows traversing the associations
407 * from both sides.
409 struct cgrp_cset_link {
410 /* the cgroup and css_set this link associates */
411 struct cgroup *cgrp;
412 struct css_set *cset;
414 /* list of cgrp_cset_links anchored at cgrp->cset_links */
415 struct list_head cset_link;
417 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
418 struct list_head cgrp_link;
422 * The default css_set - used by init and its children prior to any
423 * hierarchies being mounted. It contains a pointer to the root state
424 * for each subsystem. Also used to anchor the list of css_sets. Not
425 * reference-counted, to improve performance when child cgroups
426 * haven't been created.
428 struct css_set init_css_set = {
429 .refcount = ATOMIC_INIT(1),
430 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
431 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
432 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
433 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
434 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
437 static int css_set_count = 1; /* 1 for init_css_set */
440 * cgroup_update_populated - updated populated count of a cgroup
441 * @cgrp: the target cgroup
442 * @populated: inc or dec populated count
444 * @cgrp is either getting the first task (css_set) or losing the last.
445 * Update @cgrp->populated_cnt accordingly. The count is propagated
446 * towards root so that a given cgroup's populated_cnt is zero iff the
447 * cgroup and all its descendants are empty.
449 * @cgrp's interface file "cgroup.populated" is zero if
450 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
451 * changes from or to zero, userland is notified that the content of the
452 * interface file has changed. This can be used to detect when @cgrp and
453 * its descendants become populated or empty.
455 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
457 lockdep_assert_held(&css_set_rwsem);
459 do {
460 bool trigger;
462 if (populated)
463 trigger = !cgrp->populated_cnt++;
464 else
465 trigger = !--cgrp->populated_cnt;
467 if (!trigger)
468 break;
470 if (cgrp->populated_kn)
471 kernfs_notify(cgrp->populated_kn);
472 cgrp = cgroup_parent(cgrp);
473 } while (cgrp);
477 * hash table for cgroup groups. This improves the performance to find
478 * an existing css_set. This hash doesn't (currently) take into
479 * account cgroups in empty hierarchies.
481 #define CSS_SET_HASH_BITS 7
482 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
484 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
486 unsigned long key = 0UL;
487 struct cgroup_subsys *ss;
488 int i;
490 for_each_subsys(ss, i)
491 key += (unsigned long)css[i];
492 key = (key >> 16) ^ key;
494 return key;
497 static void put_css_set_locked(struct css_set *cset, bool taskexit)
499 struct cgrp_cset_link *link, *tmp_link;
500 struct cgroup_subsys *ss;
501 int ssid;
503 lockdep_assert_held(&css_set_rwsem);
505 if (!atomic_dec_and_test(&cset->refcount))
506 return;
508 /* This css_set is dead. unlink it and release cgroup refcounts */
509 for_each_subsys(ss, ssid)
510 list_del(&cset->e_cset_node[ssid]);
511 hash_del(&cset->hlist);
512 css_set_count--;
514 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
515 struct cgroup *cgrp = link->cgrp;
517 list_del(&link->cset_link);
518 list_del(&link->cgrp_link);
520 /* @cgrp can't go away while we're holding css_set_rwsem */
521 if (list_empty(&cgrp->cset_links)) {
522 cgroup_update_populated(cgrp, false);
523 if (notify_on_release(cgrp)) {
524 if (taskexit)
525 set_bit(CGRP_RELEASABLE, &cgrp->flags);
526 check_for_release(cgrp);
530 kfree(link);
533 kfree_rcu(cset, rcu_head);
536 static void put_css_set(struct css_set *cset, bool taskexit)
539 * Ensure that the refcount doesn't hit zero while any readers
540 * can see it. Similar to atomic_dec_and_lock(), but for an
541 * rwlock
543 if (atomic_add_unless(&cset->refcount, -1, 1))
544 return;
546 down_write(&css_set_rwsem);
547 put_css_set_locked(cset, taskexit);
548 up_write(&css_set_rwsem);
552 * refcounted get/put for css_set objects
554 static inline void get_css_set(struct css_set *cset)
556 atomic_inc(&cset->refcount);
560 * compare_css_sets - helper function for find_existing_css_set().
561 * @cset: candidate css_set being tested
562 * @old_cset: existing css_set for a task
563 * @new_cgrp: cgroup that's being entered by the task
564 * @template: desired set of css pointers in css_set (pre-calculated)
566 * Returns true if "cset" matches "old_cset" except for the hierarchy
567 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
569 static bool compare_css_sets(struct css_set *cset,
570 struct css_set *old_cset,
571 struct cgroup *new_cgrp,
572 struct cgroup_subsys_state *template[])
574 struct list_head *l1, *l2;
577 * On the default hierarchy, there can be csets which are
578 * associated with the same set of cgroups but different csses.
579 * Let's first ensure that csses match.
581 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
582 return false;
585 * Compare cgroup pointers in order to distinguish between
586 * different cgroups in hierarchies. As different cgroups may
587 * share the same effective css, this comparison is always
588 * necessary.
590 l1 = &cset->cgrp_links;
591 l2 = &old_cset->cgrp_links;
592 while (1) {
593 struct cgrp_cset_link *link1, *link2;
594 struct cgroup *cgrp1, *cgrp2;
596 l1 = l1->next;
597 l2 = l2->next;
598 /* See if we reached the end - both lists are equal length. */
599 if (l1 == &cset->cgrp_links) {
600 BUG_ON(l2 != &old_cset->cgrp_links);
601 break;
602 } else {
603 BUG_ON(l2 == &old_cset->cgrp_links);
605 /* Locate the cgroups associated with these links. */
606 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
607 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
608 cgrp1 = link1->cgrp;
609 cgrp2 = link2->cgrp;
610 /* Hierarchies should be linked in the same order. */
611 BUG_ON(cgrp1->root != cgrp2->root);
614 * If this hierarchy is the hierarchy of the cgroup
615 * that's changing, then we need to check that this
616 * css_set points to the new cgroup; if it's any other
617 * hierarchy, then this css_set should point to the
618 * same cgroup as the old css_set.
620 if (cgrp1->root == new_cgrp->root) {
621 if (cgrp1 != new_cgrp)
622 return false;
623 } else {
624 if (cgrp1 != cgrp2)
625 return false;
628 return true;
632 * find_existing_css_set - init css array and find the matching css_set
633 * @old_cset: the css_set that we're using before the cgroup transition
634 * @cgrp: the cgroup that we're moving into
635 * @template: out param for the new set of csses, should be clear on entry
637 static struct css_set *find_existing_css_set(struct css_set *old_cset,
638 struct cgroup *cgrp,
639 struct cgroup_subsys_state *template[])
641 struct cgroup_root *root = cgrp->root;
642 struct cgroup_subsys *ss;
643 struct css_set *cset;
644 unsigned long key;
645 int i;
648 * Build the set of subsystem state objects that we want to see in the
649 * new css_set. while subsystems can change globally, the entries here
650 * won't change, so no need for locking.
652 for_each_subsys(ss, i) {
653 if (root->subsys_mask & (1UL << i)) {
655 * @ss is in this hierarchy, so we want the
656 * effective css from @cgrp.
658 template[i] = cgroup_e_css(cgrp, ss);
659 } else {
661 * @ss is not in this hierarchy, so we don't want
662 * to change the css.
664 template[i] = old_cset->subsys[i];
668 key = css_set_hash(template);
669 hash_for_each_possible(css_set_table, cset, hlist, key) {
670 if (!compare_css_sets(cset, old_cset, cgrp, template))
671 continue;
673 /* This css_set matches what we need */
674 return cset;
677 /* No existing cgroup group matched */
678 return NULL;
681 static void free_cgrp_cset_links(struct list_head *links_to_free)
683 struct cgrp_cset_link *link, *tmp_link;
685 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
686 list_del(&link->cset_link);
687 kfree(link);
692 * allocate_cgrp_cset_links - allocate cgrp_cset_links
693 * @count: the number of links to allocate
694 * @tmp_links: list_head the allocated links are put on
696 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
697 * through ->cset_link. Returns 0 on success or -errno.
699 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
701 struct cgrp_cset_link *link;
702 int i;
704 INIT_LIST_HEAD(tmp_links);
706 for (i = 0; i < count; i++) {
707 link = kzalloc(sizeof(*link), GFP_KERNEL);
708 if (!link) {
709 free_cgrp_cset_links(tmp_links);
710 return -ENOMEM;
712 list_add(&link->cset_link, tmp_links);
714 return 0;
718 * link_css_set - a helper function to link a css_set to a cgroup
719 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
720 * @cset: the css_set to be linked
721 * @cgrp: the destination cgroup
723 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
724 struct cgroup *cgrp)
726 struct cgrp_cset_link *link;
728 BUG_ON(list_empty(tmp_links));
730 if (cgroup_on_dfl(cgrp))
731 cset->dfl_cgrp = cgrp;
733 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
734 link->cset = cset;
735 link->cgrp = cgrp;
737 if (list_empty(&cgrp->cset_links))
738 cgroup_update_populated(cgrp, true);
739 list_move(&link->cset_link, &cgrp->cset_links);
742 * Always add links to the tail of the list so that the list
743 * is sorted by order of hierarchy creation
745 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
749 * find_css_set - return a new css_set with one cgroup updated
750 * @old_cset: the baseline css_set
751 * @cgrp: the cgroup to be updated
753 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
754 * substituted into the appropriate hierarchy.
756 static struct css_set *find_css_set(struct css_set *old_cset,
757 struct cgroup *cgrp)
759 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
760 struct css_set *cset;
761 struct list_head tmp_links;
762 struct cgrp_cset_link *link;
763 struct cgroup_subsys *ss;
764 unsigned long key;
765 int ssid;
767 lockdep_assert_held(&cgroup_mutex);
769 /* First see if we already have a cgroup group that matches
770 * the desired set */
771 down_read(&css_set_rwsem);
772 cset = find_existing_css_set(old_cset, cgrp, template);
773 if (cset)
774 get_css_set(cset);
775 up_read(&css_set_rwsem);
777 if (cset)
778 return cset;
780 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
781 if (!cset)
782 return NULL;
784 /* Allocate all the cgrp_cset_link objects that we'll need */
785 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
786 kfree(cset);
787 return NULL;
790 atomic_set(&cset->refcount, 1);
791 INIT_LIST_HEAD(&cset->cgrp_links);
792 INIT_LIST_HEAD(&cset->tasks);
793 INIT_LIST_HEAD(&cset->mg_tasks);
794 INIT_LIST_HEAD(&cset->mg_preload_node);
795 INIT_LIST_HEAD(&cset->mg_node);
796 INIT_HLIST_NODE(&cset->hlist);
798 /* Copy the set of subsystem state objects generated in
799 * find_existing_css_set() */
800 memcpy(cset->subsys, template, sizeof(cset->subsys));
802 down_write(&css_set_rwsem);
803 /* Add reference counts and links from the new css_set. */
804 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
805 struct cgroup *c = link->cgrp;
807 if (c->root == cgrp->root)
808 c = cgrp;
809 link_css_set(&tmp_links, cset, c);
812 BUG_ON(!list_empty(&tmp_links));
814 css_set_count++;
816 /* Add @cset to the hash table */
817 key = css_set_hash(cset->subsys);
818 hash_add(css_set_table, &cset->hlist, key);
820 for_each_subsys(ss, ssid)
821 list_add_tail(&cset->e_cset_node[ssid],
822 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
824 up_write(&css_set_rwsem);
826 return cset;
829 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
831 struct cgroup *root_cgrp = kf_root->kn->priv;
833 return root_cgrp->root;
836 static int cgroup_init_root_id(struct cgroup_root *root)
838 int id;
840 lockdep_assert_held(&cgroup_mutex);
842 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
843 if (id < 0)
844 return id;
846 root->hierarchy_id = id;
847 return 0;
850 static void cgroup_exit_root_id(struct cgroup_root *root)
852 lockdep_assert_held(&cgroup_mutex);
854 if (root->hierarchy_id) {
855 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
856 root->hierarchy_id = 0;
860 static void cgroup_free_root(struct cgroup_root *root)
862 if (root) {
863 /* hierarhcy ID shoulid already have been released */
864 WARN_ON_ONCE(root->hierarchy_id);
866 idr_destroy(&root->cgroup_idr);
867 kfree(root);
871 static void cgroup_destroy_root(struct cgroup_root *root)
873 struct cgroup *cgrp = &root->cgrp;
874 struct cgrp_cset_link *link, *tmp_link;
876 mutex_lock(&cgroup_mutex);
878 BUG_ON(atomic_read(&root->nr_cgrps));
879 BUG_ON(!list_empty(&cgrp->self.children));
881 /* Rebind all subsystems back to the default hierarchy */
882 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
885 * Release all the links from cset_links to this hierarchy's
886 * root cgroup
888 down_write(&css_set_rwsem);
890 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
891 list_del(&link->cset_link);
892 list_del(&link->cgrp_link);
893 kfree(link);
895 up_write(&css_set_rwsem);
897 if (!list_empty(&root->root_list)) {
898 list_del(&root->root_list);
899 cgroup_root_count--;
902 cgroup_exit_root_id(root);
904 mutex_unlock(&cgroup_mutex);
906 kernfs_destroy_root(root->kf_root);
907 cgroup_free_root(root);
910 /* look up cgroup associated with given css_set on the specified hierarchy */
911 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
912 struct cgroup_root *root)
914 struct cgroup *res = NULL;
916 lockdep_assert_held(&cgroup_mutex);
917 lockdep_assert_held(&css_set_rwsem);
919 if (cset == &init_css_set) {
920 res = &root->cgrp;
921 } else {
922 struct cgrp_cset_link *link;
924 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
925 struct cgroup *c = link->cgrp;
927 if (c->root == root) {
928 res = c;
929 break;
934 BUG_ON(!res);
935 return res;
939 * Return the cgroup for "task" from the given hierarchy. Must be
940 * called with cgroup_mutex and css_set_rwsem held.
942 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
943 struct cgroup_root *root)
946 * No need to lock the task - since we hold cgroup_mutex the
947 * task can't change groups, so the only thing that can happen
948 * is that it exits and its css is set back to init_css_set.
950 return cset_cgroup_from_root(task_css_set(task), root);
954 * A task must hold cgroup_mutex to modify cgroups.
956 * Any task can increment and decrement the count field without lock.
957 * So in general, code holding cgroup_mutex can't rely on the count
958 * field not changing. However, if the count goes to zero, then only
959 * cgroup_attach_task() can increment it again. Because a count of zero
960 * means that no tasks are currently attached, therefore there is no
961 * way a task attached to that cgroup can fork (the other way to
962 * increment the count). So code holding cgroup_mutex can safely
963 * assume that if the count is zero, it will stay zero. Similarly, if
964 * a task holds cgroup_mutex on a cgroup with zero count, it
965 * knows that the cgroup won't be removed, as cgroup_rmdir()
966 * needs that mutex.
968 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
969 * (usually) take cgroup_mutex. These are the two most performance
970 * critical pieces of code here. The exception occurs on cgroup_exit(),
971 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
972 * is taken, and if the cgroup count is zero, a usermode call made
973 * to the release agent with the name of the cgroup (path relative to
974 * the root of cgroup file system) as the argument.
976 * A cgroup can only be deleted if both its 'count' of using tasks
977 * is zero, and its list of 'children' cgroups is empty. Since all
978 * tasks in the system use _some_ cgroup, and since there is always at
979 * least one task in the system (init, pid == 1), therefore, root cgroup
980 * always has either children cgroups and/or using tasks. So we don't
981 * need a special hack to ensure that root cgroup cannot be deleted.
983 * P.S. One more locking exception. RCU is used to guard the
984 * update of a tasks cgroup pointer by cgroup_attach_task()
987 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
988 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
989 static const struct file_operations proc_cgroupstats_operations;
991 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
992 char *buf)
994 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
995 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
996 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
997 cft->ss->name, cft->name);
998 else
999 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1000 return buf;
1004 * cgroup_file_mode - deduce file mode of a control file
1005 * @cft: the control file in question
1007 * returns cft->mode if ->mode is not 0
1008 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1009 * returns S_IRUGO if it has only a read handler
1010 * returns S_IWUSR if it has only a write hander
1012 static umode_t cgroup_file_mode(const struct cftype *cft)
1014 umode_t mode = 0;
1016 if (cft->mode)
1017 return cft->mode;
1019 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1020 mode |= S_IRUGO;
1022 if (cft->write_u64 || cft->write_s64 || cft->write)
1023 mode |= S_IWUSR;
1025 return mode;
1028 static void cgroup_get(struct cgroup *cgrp)
1030 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1031 css_get(&cgrp->self);
1034 static bool cgroup_tryget(struct cgroup *cgrp)
1036 return css_tryget(&cgrp->self);
1039 static void cgroup_put(struct cgroup *cgrp)
1041 css_put(&cgrp->self);
1045 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1046 * @kn: the kernfs_node being serviced
1048 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1049 * the method finishes if locking succeeded. Note that once this function
1050 * returns the cgroup returned by cgroup_kn_lock_live() may become
1051 * inaccessible any time. If the caller intends to continue to access the
1052 * cgroup, it should pin it before invoking this function.
1054 static void cgroup_kn_unlock(struct kernfs_node *kn)
1056 struct cgroup *cgrp;
1058 if (kernfs_type(kn) == KERNFS_DIR)
1059 cgrp = kn->priv;
1060 else
1061 cgrp = kn->parent->priv;
1063 mutex_unlock(&cgroup_mutex);
1065 kernfs_unbreak_active_protection(kn);
1066 cgroup_put(cgrp);
1070 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1071 * @kn: the kernfs_node being serviced
1073 * This helper is to be used by a cgroup kernfs method currently servicing
1074 * @kn. It breaks the active protection, performs cgroup locking and
1075 * verifies that the associated cgroup is alive. Returns the cgroup if
1076 * alive; otherwise, %NULL. A successful return should be undone by a
1077 * matching cgroup_kn_unlock() invocation.
1079 * Any cgroup kernfs method implementation which requires locking the
1080 * associated cgroup should use this helper. It avoids nesting cgroup
1081 * locking under kernfs active protection and allows all kernfs operations
1082 * including self-removal.
1084 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1086 struct cgroup *cgrp;
1088 if (kernfs_type(kn) == KERNFS_DIR)
1089 cgrp = kn->priv;
1090 else
1091 cgrp = kn->parent->priv;
1094 * We're gonna grab cgroup_mutex which nests outside kernfs
1095 * active_ref. cgroup liveliness check alone provides enough
1096 * protection against removal. Ensure @cgrp stays accessible and
1097 * break the active_ref protection.
1099 if (!cgroup_tryget(cgrp))
1100 return NULL;
1101 kernfs_break_active_protection(kn);
1103 mutex_lock(&cgroup_mutex);
1105 if (!cgroup_is_dead(cgrp))
1106 return cgrp;
1108 cgroup_kn_unlock(kn);
1109 return NULL;
1112 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1114 char name[CGROUP_FILE_NAME_MAX];
1116 lockdep_assert_held(&cgroup_mutex);
1117 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1121 * cgroup_clear_dir - remove subsys files in a cgroup directory
1122 * @cgrp: target cgroup
1123 * @subsys_mask: mask of the subsystem ids whose files should be removed
1125 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1127 struct cgroup_subsys *ss;
1128 int i;
1130 for_each_subsys(ss, i) {
1131 struct cftype *cfts;
1133 if (!(subsys_mask & (1 << i)))
1134 continue;
1135 list_for_each_entry(cfts, &ss->cfts, node)
1136 cgroup_addrm_files(cgrp, cfts, false);
1140 static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1142 struct cgroup_subsys *ss;
1143 unsigned int tmp_ss_mask;
1144 int ssid, i, ret;
1146 lockdep_assert_held(&cgroup_mutex);
1148 for_each_subsys(ss, ssid) {
1149 if (!(ss_mask & (1 << ssid)))
1150 continue;
1152 /* if @ss has non-root csses attached to it, can't move */
1153 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1154 return -EBUSY;
1156 /* can't move between two non-dummy roots either */
1157 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1158 return -EBUSY;
1161 /* skip creating root files on dfl_root for inhibited subsystems */
1162 tmp_ss_mask = ss_mask;
1163 if (dst_root == &cgrp_dfl_root)
1164 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1166 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1167 if (ret) {
1168 if (dst_root != &cgrp_dfl_root)
1169 return ret;
1172 * Rebinding back to the default root is not allowed to
1173 * fail. Using both default and non-default roots should
1174 * be rare. Moving subsystems back and forth even more so.
1175 * Just warn about it and continue.
1177 if (cgrp_dfl_root_visible) {
1178 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1179 ret, ss_mask);
1180 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1185 * Nothing can fail from this point on. Remove files for the
1186 * removed subsystems and rebind each subsystem.
1188 for_each_subsys(ss, ssid)
1189 if (ss_mask & (1 << ssid))
1190 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1192 for_each_subsys(ss, ssid) {
1193 struct cgroup_root *src_root;
1194 struct cgroup_subsys_state *css;
1195 struct css_set *cset;
1197 if (!(ss_mask & (1 << ssid)))
1198 continue;
1200 src_root = ss->root;
1201 css = cgroup_css(&src_root->cgrp, ss);
1203 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1205 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1206 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1207 ss->root = dst_root;
1208 css->cgroup = &dst_root->cgrp;
1210 down_write(&css_set_rwsem);
1211 hash_for_each(css_set_table, i, cset, hlist)
1212 list_move_tail(&cset->e_cset_node[ss->id],
1213 &dst_root->cgrp.e_csets[ss->id]);
1214 up_write(&css_set_rwsem);
1216 src_root->subsys_mask &= ~(1 << ssid);
1217 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1219 /* default hierarchy doesn't enable controllers by default */
1220 dst_root->subsys_mask |= 1 << ssid;
1221 if (dst_root != &cgrp_dfl_root)
1222 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
1224 if (ss->bind)
1225 ss->bind(css);
1228 kernfs_activate(dst_root->cgrp.kn);
1229 return 0;
1232 static int cgroup_show_options(struct seq_file *seq,
1233 struct kernfs_root *kf_root)
1235 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1236 struct cgroup_subsys *ss;
1237 int ssid;
1239 for_each_subsys(ss, ssid)
1240 if (root->subsys_mask & (1 << ssid))
1241 seq_printf(seq, ",%s", ss->name);
1242 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1243 seq_puts(seq, ",sane_behavior");
1244 if (root->flags & CGRP_ROOT_NOPREFIX)
1245 seq_puts(seq, ",noprefix");
1246 if (root->flags & CGRP_ROOT_XATTR)
1247 seq_puts(seq, ",xattr");
1249 spin_lock(&release_agent_path_lock);
1250 if (strlen(root->release_agent_path))
1251 seq_show_option(seq, "release_agent",
1252 root->release_agent_path);
1253 spin_unlock(&release_agent_path_lock);
1255 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1256 seq_puts(seq, ",clone_children");
1257 if (strlen(root->name))
1258 seq_show_option(seq, "name", root->name);
1259 return 0;
1262 struct cgroup_sb_opts {
1263 unsigned int subsys_mask;
1264 unsigned int flags;
1265 char *release_agent;
1266 bool cpuset_clone_children;
1267 char *name;
1268 /* User explicitly requested empty subsystem */
1269 bool none;
1272 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1274 char *token, *o = data;
1275 bool all_ss = false, one_ss = false;
1276 unsigned int mask = -1U;
1277 struct cgroup_subsys *ss;
1278 int i;
1280 #ifdef CONFIG_CPUSETS
1281 mask = ~(1U << cpuset_cgrp_id);
1282 #endif
1284 memset(opts, 0, sizeof(*opts));
1286 while ((token = strsep(&o, ",")) != NULL) {
1287 if (!*token)
1288 return -EINVAL;
1289 if (!strcmp(token, "none")) {
1290 /* Explicitly have no subsystems */
1291 opts->none = true;
1292 continue;
1294 if (!strcmp(token, "all")) {
1295 /* Mutually exclusive option 'all' + subsystem name */
1296 if (one_ss)
1297 return -EINVAL;
1298 all_ss = true;
1299 continue;
1301 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1302 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1303 continue;
1305 if (!strcmp(token, "noprefix")) {
1306 opts->flags |= CGRP_ROOT_NOPREFIX;
1307 continue;
1309 if (!strcmp(token, "clone_children")) {
1310 opts->cpuset_clone_children = true;
1311 continue;
1313 if (!strcmp(token, "xattr")) {
1314 opts->flags |= CGRP_ROOT_XATTR;
1315 continue;
1317 if (!strncmp(token, "release_agent=", 14)) {
1318 /* Specifying two release agents is forbidden */
1319 if (opts->release_agent)
1320 return -EINVAL;
1321 opts->release_agent =
1322 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1323 if (!opts->release_agent)
1324 return -ENOMEM;
1325 continue;
1327 if (!strncmp(token, "name=", 5)) {
1328 const char *name = token + 5;
1329 /* Can't specify an empty name */
1330 if (!strlen(name))
1331 return -EINVAL;
1332 /* Must match [\w.-]+ */
1333 for (i = 0; i < strlen(name); i++) {
1334 char c = name[i];
1335 if (isalnum(c))
1336 continue;
1337 if ((c == '.') || (c == '-') || (c == '_'))
1338 continue;
1339 return -EINVAL;
1341 /* Specifying two names is forbidden */
1342 if (opts->name)
1343 return -EINVAL;
1344 opts->name = kstrndup(name,
1345 MAX_CGROUP_ROOT_NAMELEN - 1,
1346 GFP_KERNEL);
1347 if (!opts->name)
1348 return -ENOMEM;
1350 continue;
1353 for_each_subsys(ss, i) {
1354 if (strcmp(token, ss->name))
1355 continue;
1356 if (ss->disabled)
1357 continue;
1359 /* Mutually exclusive option 'all' + subsystem name */
1360 if (all_ss)
1361 return -EINVAL;
1362 opts->subsys_mask |= (1 << i);
1363 one_ss = true;
1365 break;
1367 if (i == CGROUP_SUBSYS_COUNT)
1368 return -ENOENT;
1371 /* Consistency checks */
1373 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1374 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1376 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1377 opts->cpuset_clone_children || opts->release_agent ||
1378 opts->name) {
1379 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
1380 return -EINVAL;
1382 } else {
1384 * If the 'all' option was specified select all the
1385 * subsystems, otherwise if 'none', 'name=' and a subsystem
1386 * name options were not specified, let's default to 'all'
1388 if (all_ss || (!one_ss && !opts->none && !opts->name))
1389 for_each_subsys(ss, i)
1390 if (!ss->disabled)
1391 opts->subsys_mask |= (1 << i);
1394 * We either have to specify by name or by subsystems. (So
1395 * all empty hierarchies must have a name).
1397 if (!opts->subsys_mask && !opts->name)
1398 return -EINVAL;
1402 * Option noprefix was introduced just for backward compatibility
1403 * with the old cpuset, so we allow noprefix only if mounting just
1404 * the cpuset subsystem.
1406 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1407 return -EINVAL;
1410 /* Can't specify "none" and some subsystems */
1411 if (opts->subsys_mask && opts->none)
1412 return -EINVAL;
1414 return 0;
1417 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1419 int ret = 0;
1420 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1421 struct cgroup_sb_opts opts;
1422 unsigned int added_mask, removed_mask;
1424 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1425 pr_err("sane_behavior: remount is not allowed\n");
1426 return -EINVAL;
1429 mutex_lock(&cgroup_mutex);
1431 /* See what subsystems are wanted */
1432 ret = parse_cgroupfs_options(data, &opts);
1433 if (ret)
1434 goto out_unlock;
1436 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1437 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1438 task_tgid_nr(current), current->comm);
1440 added_mask = opts.subsys_mask & ~root->subsys_mask;
1441 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1443 /* Don't allow flags or name to change at remount */
1444 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1445 (opts.name && strcmp(opts.name, root->name))) {
1446 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1447 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1448 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1449 ret = -EINVAL;
1450 goto out_unlock;
1453 /* remounting is not allowed for populated hierarchies */
1454 if (!list_empty(&root->cgrp.self.children)) {
1455 ret = -EBUSY;
1456 goto out_unlock;
1459 ret = rebind_subsystems(root, added_mask);
1460 if (ret)
1461 goto out_unlock;
1463 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1465 if (opts.release_agent) {
1466 spin_lock(&release_agent_path_lock);
1467 strcpy(root->release_agent_path, opts.release_agent);
1468 spin_unlock(&release_agent_path_lock);
1470 out_unlock:
1471 kfree(opts.release_agent);
1472 kfree(opts.name);
1473 mutex_unlock(&cgroup_mutex);
1474 return ret;
1478 * To reduce the fork() overhead for systems that are not actually using
1479 * their cgroups capability, we don't maintain the lists running through
1480 * each css_set to its tasks until we see the list actually used - in other
1481 * words after the first mount.
1483 static bool use_task_css_set_links __read_mostly;
1485 static void cgroup_enable_task_cg_lists(void)
1487 struct task_struct *p, *g;
1489 down_write(&css_set_rwsem);
1491 if (use_task_css_set_links)
1492 goto out_unlock;
1494 use_task_css_set_links = true;
1497 * We need tasklist_lock because RCU is not safe against
1498 * while_each_thread(). Besides, a forking task that has passed
1499 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1500 * is not guaranteed to have its child immediately visible in the
1501 * tasklist if we walk through it with RCU.
1503 read_lock(&tasklist_lock);
1504 do_each_thread(g, p) {
1505 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1506 task_css_set(p) != &init_css_set);
1509 * We should check if the process is exiting, otherwise
1510 * it will race with cgroup_exit() in that the list
1511 * entry won't be deleted though the process has exited.
1512 * Do it while holding siglock so that we don't end up
1513 * racing against cgroup_exit().
1515 spin_lock_irq(&p->sighand->siglock);
1516 if (!(p->flags & PF_EXITING)) {
1517 struct css_set *cset = task_css_set(p);
1519 list_add(&p->cg_list, &cset->tasks);
1520 get_css_set(cset);
1522 spin_unlock_irq(&p->sighand->siglock);
1523 } while_each_thread(g, p);
1524 read_unlock(&tasklist_lock);
1525 out_unlock:
1526 up_write(&css_set_rwsem);
1529 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1531 struct cgroup_subsys *ss;
1532 int ssid;
1534 INIT_LIST_HEAD(&cgrp->self.sibling);
1535 INIT_LIST_HEAD(&cgrp->self.children);
1536 INIT_LIST_HEAD(&cgrp->cset_links);
1537 INIT_LIST_HEAD(&cgrp->release_list);
1538 INIT_LIST_HEAD(&cgrp->pidlists);
1539 mutex_init(&cgrp->pidlist_mutex);
1540 cgrp->self.cgroup = cgrp;
1541 cgrp->self.flags |= CSS_ONLINE;
1543 for_each_subsys(ss, ssid)
1544 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1546 init_waitqueue_head(&cgrp->offline_waitq);
1549 static void init_cgroup_root(struct cgroup_root *root,
1550 struct cgroup_sb_opts *opts)
1552 struct cgroup *cgrp = &root->cgrp;
1554 INIT_LIST_HEAD(&root->root_list);
1555 atomic_set(&root->nr_cgrps, 1);
1556 cgrp->root = root;
1557 init_cgroup_housekeeping(cgrp);
1558 idr_init(&root->cgroup_idr);
1560 root->flags = opts->flags;
1561 if (opts->release_agent)
1562 strcpy(root->release_agent_path, opts->release_agent);
1563 if (opts->name)
1564 strcpy(root->name, opts->name);
1565 if (opts->cpuset_clone_children)
1566 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1569 static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1571 LIST_HEAD(tmp_links);
1572 struct cgroup *root_cgrp = &root->cgrp;
1573 struct css_set *cset;
1574 int i, ret;
1576 lockdep_assert_held(&cgroup_mutex);
1578 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1579 if (ret < 0)
1580 goto out;
1581 root_cgrp->id = ret;
1583 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1584 if (ret)
1585 goto out;
1588 * We're accessing css_set_count without locking css_set_rwsem here,
1589 * but that's OK - it can only be increased by someone holding
1590 * cgroup_lock, and that's us. The worst that can happen is that we
1591 * have some link structures left over
1593 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1594 if (ret)
1595 goto cancel_ref;
1597 ret = cgroup_init_root_id(root);
1598 if (ret)
1599 goto cancel_ref;
1601 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1602 KERNFS_ROOT_CREATE_DEACTIVATED,
1603 root_cgrp);
1604 if (IS_ERR(root->kf_root)) {
1605 ret = PTR_ERR(root->kf_root);
1606 goto exit_root_id;
1608 root_cgrp->kn = root->kf_root->kn;
1610 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1611 if (ret)
1612 goto destroy_root;
1614 ret = rebind_subsystems(root, ss_mask);
1615 if (ret)
1616 goto destroy_root;
1619 * There must be no failure case after here, since rebinding takes
1620 * care of subsystems' refcounts, which are explicitly dropped in
1621 * the failure exit path.
1623 list_add(&root->root_list, &cgroup_roots);
1624 cgroup_root_count++;
1627 * Link the root cgroup in this hierarchy into all the css_set
1628 * objects.
1630 down_write(&css_set_rwsem);
1631 hash_for_each(css_set_table, i, cset, hlist)
1632 link_css_set(&tmp_links, cset, root_cgrp);
1633 up_write(&css_set_rwsem);
1635 BUG_ON(!list_empty(&root_cgrp->self.children));
1636 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1638 kernfs_activate(root_cgrp->kn);
1639 ret = 0;
1640 goto out;
1642 destroy_root:
1643 kernfs_destroy_root(root->kf_root);
1644 root->kf_root = NULL;
1645 exit_root_id:
1646 cgroup_exit_root_id(root);
1647 cancel_ref:
1648 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
1649 out:
1650 free_cgrp_cset_links(&tmp_links);
1651 return ret;
1654 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1655 int flags, const char *unused_dev_name,
1656 void *data)
1658 struct super_block *pinned_sb = NULL;
1659 struct cgroup_subsys *ss;
1660 struct cgroup_root *root;
1661 struct cgroup_sb_opts opts;
1662 struct dentry *dentry;
1663 int ret;
1664 int i;
1665 bool new_sb;
1668 * The first time anyone tries to mount a cgroup, enable the list
1669 * linking each css_set to its tasks and fix up all existing tasks.
1671 if (!use_task_css_set_links)
1672 cgroup_enable_task_cg_lists();
1674 mutex_lock(&cgroup_mutex);
1676 /* First find the desired set of subsystems */
1677 ret = parse_cgroupfs_options(data, &opts);
1678 if (ret)
1679 goto out_unlock;
1681 /* look for a matching existing root */
1682 if (!opts.subsys_mask && !opts.none && !opts.name) {
1683 cgrp_dfl_root_visible = true;
1684 root = &cgrp_dfl_root;
1685 cgroup_get(&root->cgrp);
1686 ret = 0;
1687 goto out_unlock;
1691 * Destruction of cgroup root is asynchronous, so subsystems may
1692 * still be dying after the previous unmount. Let's drain the
1693 * dying subsystems. We just need to ensure that the ones
1694 * unmounted previously finish dying and don't care about new ones
1695 * starting. Testing ref liveliness is good enough.
1697 for_each_subsys(ss, i) {
1698 if (!(opts.subsys_mask & (1 << i)) ||
1699 ss->root == &cgrp_dfl_root)
1700 continue;
1702 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1703 mutex_unlock(&cgroup_mutex);
1704 msleep(10);
1705 ret = restart_syscall();
1706 goto out_free;
1708 cgroup_put(&ss->root->cgrp);
1711 for_each_root(root) {
1712 bool name_match = false;
1714 if (root == &cgrp_dfl_root)
1715 continue;
1718 * If we asked for a name then it must match. Also, if
1719 * name matches but sybsys_mask doesn't, we should fail.
1720 * Remember whether name matched.
1722 if (opts.name) {
1723 if (strcmp(opts.name, root->name))
1724 continue;
1725 name_match = true;
1729 * If we asked for subsystems (or explicitly for no
1730 * subsystems) then they must match.
1732 if ((opts.subsys_mask || opts.none) &&
1733 (opts.subsys_mask != root->subsys_mask)) {
1734 if (!name_match)
1735 continue;
1736 ret = -EBUSY;
1737 goto out_unlock;
1740 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1741 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1742 pr_err("sane_behavior: new mount options should match the existing superblock\n");
1743 ret = -EINVAL;
1744 goto out_unlock;
1745 } else {
1746 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1751 * We want to reuse @root whose lifetime is governed by its
1752 * ->cgrp. Let's check whether @root is alive and keep it
1753 * that way. As cgroup_kill_sb() can happen anytime, we
1754 * want to block it by pinning the sb so that @root doesn't
1755 * get killed before mount is complete.
1757 * With the sb pinned, tryget_live can reliably indicate
1758 * whether @root can be reused. If it's being killed,
1759 * drain it. We can use wait_queue for the wait but this
1760 * path is super cold. Let's just sleep a bit and retry.
1762 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1763 if (IS_ERR(pinned_sb) ||
1764 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1765 mutex_unlock(&cgroup_mutex);
1766 if (!IS_ERR_OR_NULL(pinned_sb))
1767 deactivate_super(pinned_sb);
1768 msleep(10);
1769 ret = restart_syscall();
1770 goto out_free;
1773 ret = 0;
1774 goto out_unlock;
1778 * No such thing, create a new one. name= matching without subsys
1779 * specification is allowed for already existing hierarchies but we
1780 * can't create new one without subsys specification.
1782 if (!opts.subsys_mask && !opts.none) {
1783 ret = -EINVAL;
1784 goto out_unlock;
1787 root = kzalloc(sizeof(*root), GFP_KERNEL);
1788 if (!root) {
1789 ret = -ENOMEM;
1790 goto out_unlock;
1793 init_cgroup_root(root, &opts);
1795 ret = cgroup_setup_root(root, opts.subsys_mask);
1796 if (ret)
1797 cgroup_free_root(root);
1799 out_unlock:
1800 mutex_unlock(&cgroup_mutex);
1801 out_free:
1802 kfree(opts.release_agent);
1803 kfree(opts.name);
1805 if (ret)
1806 return ERR_PTR(ret);
1808 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1809 CGROUP_SUPER_MAGIC, &new_sb);
1810 if (IS_ERR(dentry) || !new_sb)
1811 cgroup_put(&root->cgrp);
1814 * If @pinned_sb, we're reusing an existing root and holding an
1815 * extra ref on its sb. Mount is complete. Put the extra ref.
1817 if (pinned_sb) {
1818 WARN_ON(new_sb);
1819 deactivate_super(pinned_sb);
1822 return dentry;
1825 static void cgroup_kill_sb(struct super_block *sb)
1827 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1828 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1831 * If @root doesn't have any mounts or children, start killing it.
1832 * This prevents new mounts by disabling percpu_ref_tryget_live().
1833 * cgroup_mount() may wait for @root's release.
1835 * And don't kill the default root.
1837 if (css_has_online_children(&root->cgrp.self) ||
1838 root == &cgrp_dfl_root)
1839 cgroup_put(&root->cgrp);
1840 else
1841 percpu_ref_kill(&root->cgrp.self.refcnt);
1843 kernfs_kill_sb(sb);
1846 static struct file_system_type cgroup_fs_type = {
1847 .name = "cgroup",
1848 .mount = cgroup_mount,
1849 .kill_sb = cgroup_kill_sb,
1853 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1854 * @task: target task
1855 * @buf: the buffer to write the path into
1856 * @buflen: the length of the buffer
1858 * Determine @task's cgroup on the first (the one with the lowest non-zero
1859 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1860 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1861 * cgroup controller callbacks.
1863 * Return value is the same as kernfs_path().
1865 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1867 struct cgroup_root *root;
1868 struct cgroup *cgrp;
1869 int hierarchy_id = 1;
1870 char *path = NULL;
1872 mutex_lock(&cgroup_mutex);
1873 down_read(&css_set_rwsem);
1875 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1877 if (root) {
1878 cgrp = task_cgroup_from_root(task, root);
1879 path = cgroup_path(cgrp, buf, buflen);
1880 } else {
1881 /* if no hierarchy exists, everyone is in "/" */
1882 if (strlcpy(buf, "/", buflen) < buflen)
1883 path = buf;
1886 up_read(&css_set_rwsem);
1887 mutex_unlock(&cgroup_mutex);
1888 return path;
1890 EXPORT_SYMBOL_GPL(task_cgroup_path);
1892 /* used to track tasks and other necessary states during migration */
1893 struct cgroup_taskset {
1894 /* the src and dst cset list running through cset->mg_node */
1895 struct list_head src_csets;
1896 struct list_head dst_csets;
1899 * Fields for cgroup_taskset_*() iteration.
1901 * Before migration is committed, the target migration tasks are on
1902 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1903 * the csets on ->dst_csets. ->csets point to either ->src_csets
1904 * or ->dst_csets depending on whether migration is committed.
1906 * ->cur_csets and ->cur_task point to the current task position
1907 * during iteration.
1909 struct list_head *csets;
1910 struct css_set *cur_cset;
1911 struct task_struct *cur_task;
1915 * cgroup_taskset_first - reset taskset and return the first task
1916 * @tset: taskset of interest
1918 * @tset iteration is initialized and the first task is returned.
1920 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1922 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1923 tset->cur_task = NULL;
1925 return cgroup_taskset_next(tset);
1929 * cgroup_taskset_next - iterate to the next task in taskset
1930 * @tset: taskset of interest
1932 * Return the next task in @tset. Iteration must have been initialized
1933 * with cgroup_taskset_first().
1935 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1937 struct css_set *cset = tset->cur_cset;
1938 struct task_struct *task = tset->cur_task;
1940 while (&cset->mg_node != tset->csets) {
1941 if (!task)
1942 task = list_first_entry(&cset->mg_tasks,
1943 struct task_struct, cg_list);
1944 else
1945 task = list_next_entry(task, cg_list);
1947 if (&task->cg_list != &cset->mg_tasks) {
1948 tset->cur_cset = cset;
1949 tset->cur_task = task;
1950 return task;
1953 cset = list_next_entry(cset, mg_node);
1954 task = NULL;
1957 return NULL;
1961 * cgroup_task_migrate - move a task from one cgroup to another.
1962 * @old_cgrp: the cgroup @tsk is being migrated from
1963 * @tsk: the task being migrated
1964 * @new_cset: the new css_set @tsk is being attached to
1966 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1968 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1969 struct task_struct *tsk,
1970 struct css_set *new_cset)
1972 struct css_set *old_cset;
1974 lockdep_assert_held(&cgroup_mutex);
1975 lockdep_assert_held(&css_set_rwsem);
1978 * We are synchronized through threadgroup_lock() against PF_EXITING
1979 * setting such that we can't race against cgroup_exit() changing the
1980 * css_set to init_css_set and dropping the old one.
1982 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1983 old_cset = task_css_set(tsk);
1985 get_css_set(new_cset);
1986 rcu_assign_pointer(tsk->cgroups, new_cset);
1989 * Use move_tail so that cgroup_taskset_first() still returns the
1990 * leader after migration. This works because cgroup_migrate()
1991 * ensures that the dst_cset of the leader is the first on the
1992 * tset's dst_csets list.
1994 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
1997 * We just gained a reference on old_cset by taking it from the
1998 * task. As trading it for new_cset is protected by cgroup_mutex,
1999 * we're safe to drop it here; it will be freed under RCU.
2001 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
2002 put_css_set_locked(old_cset, false);
2006 * cgroup_migrate_finish - cleanup after attach
2007 * @preloaded_csets: list of preloaded css_sets
2009 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2010 * those functions for details.
2012 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2014 struct css_set *cset, *tmp_cset;
2016 lockdep_assert_held(&cgroup_mutex);
2018 down_write(&css_set_rwsem);
2019 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2020 cset->mg_src_cgrp = NULL;
2021 cset->mg_dst_cset = NULL;
2022 list_del_init(&cset->mg_preload_node);
2023 put_css_set_locked(cset, false);
2025 up_write(&css_set_rwsem);
2029 * cgroup_migrate_add_src - add a migration source css_set
2030 * @src_cset: the source css_set to add
2031 * @dst_cgrp: the destination cgroup
2032 * @preloaded_csets: list of preloaded css_sets
2034 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2035 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2036 * up by cgroup_migrate_finish().
2038 * This function may be called without holding threadgroup_lock even if the
2039 * target is a process. Threads may be created and destroyed but as long
2040 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2041 * the preloaded css_sets are guaranteed to cover all migrations.
2043 static void cgroup_migrate_add_src(struct css_set *src_cset,
2044 struct cgroup *dst_cgrp,
2045 struct list_head *preloaded_csets)
2047 struct cgroup *src_cgrp;
2049 lockdep_assert_held(&cgroup_mutex);
2050 lockdep_assert_held(&css_set_rwsem);
2052 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2054 if (!list_empty(&src_cset->mg_preload_node))
2055 return;
2057 WARN_ON(src_cset->mg_src_cgrp);
2058 WARN_ON(!list_empty(&src_cset->mg_tasks));
2059 WARN_ON(!list_empty(&src_cset->mg_node));
2061 src_cset->mg_src_cgrp = src_cgrp;
2062 get_css_set(src_cset);
2063 list_add(&src_cset->mg_preload_node, preloaded_csets);
2067 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2068 * @dst_cgrp: the destination cgroup (may be %NULL)
2069 * @preloaded_csets: list of preloaded source css_sets
2071 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2072 * have been preloaded to @preloaded_csets. This function looks up and
2073 * pins all destination css_sets, links each to its source, and append them
2074 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2075 * source css_set is assumed to be its cgroup on the default hierarchy.
2077 * This function must be called after cgroup_migrate_add_src() has been
2078 * called on each migration source css_set. After migration is performed
2079 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2080 * @preloaded_csets.
2082 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2083 struct list_head *preloaded_csets)
2085 LIST_HEAD(csets);
2086 struct css_set *src_cset, *tmp_cset;
2088 lockdep_assert_held(&cgroup_mutex);
2091 * Except for the root, child_subsys_mask must be zero for a cgroup
2092 * with tasks so that child cgroups don't compete against tasks.
2094 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2095 dst_cgrp->child_subsys_mask)
2096 return -EBUSY;
2098 /* look up the dst cset for each src cset and link it to src */
2099 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2100 struct css_set *dst_cset;
2102 dst_cset = find_css_set(src_cset,
2103 dst_cgrp ?: src_cset->dfl_cgrp);
2104 if (!dst_cset)
2105 goto err;
2107 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2110 * If src cset equals dst, it's noop. Drop the src.
2111 * cgroup_migrate() will skip the cset too. Note that we
2112 * can't handle src == dst as some nodes are used by both.
2114 if (src_cset == dst_cset) {
2115 src_cset->mg_src_cgrp = NULL;
2116 list_del_init(&src_cset->mg_preload_node);
2117 put_css_set(src_cset, false);
2118 put_css_set(dst_cset, false);
2119 continue;
2122 src_cset->mg_dst_cset = dst_cset;
2124 if (list_empty(&dst_cset->mg_preload_node))
2125 list_add(&dst_cset->mg_preload_node, &csets);
2126 else
2127 put_css_set(dst_cset, false);
2130 list_splice_tail(&csets, preloaded_csets);
2131 return 0;
2132 err:
2133 cgroup_migrate_finish(&csets);
2134 return -ENOMEM;
2138 * cgroup_migrate - migrate a process or task to a cgroup
2139 * @cgrp: the destination cgroup
2140 * @leader: the leader of the process or the task to migrate
2141 * @threadgroup: whether @leader points to the whole process or a single task
2143 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2144 * process, the caller must be holding threadgroup_lock of @leader. The
2145 * caller is also responsible for invoking cgroup_migrate_add_src() and
2146 * cgroup_migrate_prepare_dst() on the targets before invoking this
2147 * function and following up with cgroup_migrate_finish().
2149 * As long as a controller's ->can_attach() doesn't fail, this function is
2150 * guaranteed to succeed. This means that, excluding ->can_attach()
2151 * failure, when migrating multiple targets, the success or failure can be
2152 * decided for all targets by invoking group_migrate_prepare_dst() before
2153 * actually starting migrating.
2155 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2156 bool threadgroup)
2158 struct cgroup_taskset tset = {
2159 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2160 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2161 .csets = &tset.src_csets,
2163 struct cgroup_subsys_state *css, *failed_css = NULL;
2164 struct css_set *cset, *tmp_cset;
2165 struct task_struct *task, *tmp_task;
2166 int i, ret;
2169 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2170 * already PF_EXITING could be freed from underneath us unless we
2171 * take an rcu_read_lock.
2173 down_write(&css_set_rwsem);
2174 rcu_read_lock();
2175 task = leader;
2176 do {
2177 /* @task either already exited or can't exit until the end */
2178 if (task->flags & PF_EXITING)
2179 goto next;
2181 /* leave @task alone if post_fork() hasn't linked it yet */
2182 if (list_empty(&task->cg_list))
2183 goto next;
2185 cset = task_css_set(task);
2186 if (!cset->mg_src_cgrp)
2187 goto next;
2190 * cgroup_taskset_first() must always return the leader.
2191 * Take care to avoid disturbing the ordering.
2193 list_move_tail(&task->cg_list, &cset->mg_tasks);
2194 if (list_empty(&cset->mg_node))
2195 list_add_tail(&cset->mg_node, &tset.src_csets);
2196 if (list_empty(&cset->mg_dst_cset->mg_node))
2197 list_move_tail(&cset->mg_dst_cset->mg_node,
2198 &tset.dst_csets);
2199 next:
2200 if (!threadgroup)
2201 break;
2202 } while_each_thread(leader, task);
2203 rcu_read_unlock();
2204 up_write(&css_set_rwsem);
2206 /* methods shouldn't be called if no task is actually migrating */
2207 if (list_empty(&tset.src_csets))
2208 return 0;
2210 /* check that we can legitimately attach to the cgroup */
2211 for_each_e_css(css, i, cgrp) {
2212 if (css->ss->can_attach) {
2213 ret = css->ss->can_attach(css, &tset);
2214 if (ret) {
2215 failed_css = css;
2216 goto out_cancel_attach;
2222 * Now that we're guaranteed success, proceed to move all tasks to
2223 * the new cgroup. There are no failure cases after here, so this
2224 * is the commit point.
2226 down_write(&css_set_rwsem);
2227 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2228 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2229 cgroup_task_migrate(cset->mg_src_cgrp, task,
2230 cset->mg_dst_cset);
2232 up_write(&css_set_rwsem);
2235 * Migration is committed, all target tasks are now on dst_csets.
2236 * Nothing is sensitive to fork() after this point. Notify
2237 * controllers that migration is complete.
2239 tset.csets = &tset.dst_csets;
2241 for_each_e_css(css, i, cgrp)
2242 if (css->ss->attach)
2243 css->ss->attach(css, &tset);
2245 ret = 0;
2246 goto out_release_tset;
2248 out_cancel_attach:
2249 for_each_e_css(css, i, cgrp) {
2250 if (css == failed_css)
2251 break;
2252 if (css->ss->cancel_attach)
2253 css->ss->cancel_attach(css, &tset);
2255 out_release_tset:
2256 down_write(&css_set_rwsem);
2257 list_splice_init(&tset.dst_csets, &tset.src_csets);
2258 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2259 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2260 list_del_init(&cset->mg_node);
2262 up_write(&css_set_rwsem);
2263 return ret;
2267 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2268 * @dst_cgrp: the cgroup to attach to
2269 * @leader: the task or the leader of the threadgroup to be attached
2270 * @threadgroup: attach the whole threadgroup?
2272 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2274 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2275 struct task_struct *leader, bool threadgroup)
2277 LIST_HEAD(preloaded_csets);
2278 struct task_struct *task;
2279 int ret;
2281 /* look up all src csets */
2282 down_read(&css_set_rwsem);
2283 rcu_read_lock();
2284 task = leader;
2285 do {
2286 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2287 &preloaded_csets);
2288 if (!threadgroup)
2289 break;
2290 } while_each_thread(leader, task);
2291 rcu_read_unlock();
2292 up_read(&css_set_rwsem);
2294 /* prepare dst csets and commit */
2295 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2296 if (!ret)
2297 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2299 cgroup_migrate_finish(&preloaded_csets);
2300 return ret;
2304 * Find the task_struct of the task to attach by vpid and pass it along to the
2305 * function to attach either it or all tasks in its threadgroup. Will lock
2306 * cgroup_mutex and threadgroup.
2308 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2309 size_t nbytes, loff_t off, bool threadgroup)
2311 struct task_struct *tsk;
2312 const struct cred *cred = current_cred(), *tcred;
2313 struct cgroup *cgrp;
2314 pid_t pid;
2315 int ret;
2317 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2318 return -EINVAL;
2320 cgrp = cgroup_kn_lock_live(of->kn);
2321 if (!cgrp)
2322 return -ENODEV;
2324 retry_find_task:
2325 rcu_read_lock();
2326 if (pid) {
2327 tsk = find_task_by_vpid(pid);
2328 if (!tsk) {
2329 rcu_read_unlock();
2330 ret = -ESRCH;
2331 goto out_unlock_cgroup;
2334 * even if we're attaching all tasks in the thread group, we
2335 * only need to check permissions on one of them.
2337 tcred = __task_cred(tsk);
2338 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2339 !uid_eq(cred->euid, tcred->uid) &&
2340 !uid_eq(cred->euid, tcred->suid)) {
2341 rcu_read_unlock();
2342 ret = -EACCES;
2343 goto out_unlock_cgroup;
2345 } else
2346 tsk = current;
2348 if (threadgroup)
2349 tsk = tsk->group_leader;
2352 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2353 * trapped in a cpuset, or RT worker may be born in a cgroup
2354 * with no rt_runtime allocated. Just say no.
2356 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2357 ret = -EINVAL;
2358 rcu_read_unlock();
2359 goto out_unlock_cgroup;
2362 get_task_struct(tsk);
2363 rcu_read_unlock();
2365 threadgroup_lock(tsk);
2366 if (threadgroup) {
2367 if (!thread_group_leader(tsk)) {
2369 * a race with de_thread from another thread's exec()
2370 * may strip us of our leadership, if this happens,
2371 * there is no choice but to throw this task away and
2372 * try again; this is
2373 * "double-double-toil-and-trouble-check locking".
2375 threadgroup_unlock(tsk);
2376 put_task_struct(tsk);
2377 goto retry_find_task;
2381 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2383 threadgroup_unlock(tsk);
2385 put_task_struct(tsk);
2386 out_unlock_cgroup:
2387 cgroup_kn_unlock(of->kn);
2388 return ret ?: nbytes;
2392 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2393 * @from: attach to all cgroups of a given task
2394 * @tsk: the task to be attached
2396 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2398 struct cgroup_root *root;
2399 int retval = 0;
2401 mutex_lock(&cgroup_mutex);
2402 for_each_root(root) {
2403 struct cgroup *from_cgrp;
2405 if (root == &cgrp_dfl_root)
2406 continue;
2408 down_read(&css_set_rwsem);
2409 from_cgrp = task_cgroup_from_root(from, root);
2410 up_read(&css_set_rwsem);
2412 retval = cgroup_attach_task(from_cgrp, tsk, false);
2413 if (retval)
2414 break;
2416 mutex_unlock(&cgroup_mutex);
2418 return retval;
2420 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2422 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2423 char *buf, size_t nbytes, loff_t off)
2425 return __cgroup_procs_write(of, buf, nbytes, off, false);
2428 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2429 char *buf, size_t nbytes, loff_t off)
2431 return __cgroup_procs_write(of, buf, nbytes, off, true);
2434 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2435 char *buf, size_t nbytes, loff_t off)
2437 struct cgroup *cgrp;
2439 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2441 cgrp = cgroup_kn_lock_live(of->kn);
2442 if (!cgrp)
2443 return -ENODEV;
2444 spin_lock(&release_agent_path_lock);
2445 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2446 sizeof(cgrp->root->release_agent_path));
2447 spin_unlock(&release_agent_path_lock);
2448 cgroup_kn_unlock(of->kn);
2449 return nbytes;
2452 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2454 struct cgroup *cgrp = seq_css(seq)->cgroup;
2456 spin_lock(&release_agent_path_lock);
2457 seq_puts(seq, cgrp->root->release_agent_path);
2458 spin_unlock(&release_agent_path_lock);
2459 seq_putc(seq, '\n');
2460 return 0;
2463 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2465 struct cgroup *cgrp = seq_css(seq)->cgroup;
2467 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2468 return 0;
2471 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2473 struct cgroup_subsys *ss;
2474 bool printed = false;
2475 int ssid;
2477 for_each_subsys(ss, ssid) {
2478 if (ss_mask & (1 << ssid)) {
2479 if (printed)
2480 seq_putc(seq, ' ');
2481 seq_printf(seq, "%s", ss->name);
2482 printed = true;
2485 if (printed)
2486 seq_putc(seq, '\n');
2489 /* show controllers which are currently attached to the default hierarchy */
2490 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2492 struct cgroup *cgrp = seq_css(seq)->cgroup;
2494 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2495 ~cgrp_dfl_root_inhibit_ss_mask);
2496 return 0;
2499 /* show controllers which are enabled from the parent */
2500 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2502 struct cgroup *cgrp = seq_css(seq)->cgroup;
2504 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->child_subsys_mask);
2505 return 0;
2508 /* show controllers which are enabled for a given cgroup's children */
2509 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2511 struct cgroup *cgrp = seq_css(seq)->cgroup;
2513 cgroup_print_ss_mask(seq, cgrp->child_subsys_mask);
2514 return 0;
2518 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2519 * @cgrp: root of the subtree to update csses for
2521 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2522 * css associations need to be updated accordingly. This function looks up
2523 * all css_sets which are attached to the subtree, creates the matching
2524 * updated css_sets and migrates the tasks to the new ones.
2526 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2528 LIST_HEAD(preloaded_csets);
2529 struct cgroup_subsys_state *css;
2530 struct css_set *src_cset;
2531 int ret;
2533 lockdep_assert_held(&cgroup_mutex);
2535 /* look up all csses currently attached to @cgrp's subtree */
2536 down_read(&css_set_rwsem);
2537 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2538 struct cgrp_cset_link *link;
2540 /* self is not affected by child_subsys_mask change */
2541 if (css->cgroup == cgrp)
2542 continue;
2544 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2545 cgroup_migrate_add_src(link->cset, cgrp,
2546 &preloaded_csets);
2548 up_read(&css_set_rwsem);
2550 /* NULL dst indicates self on default hierarchy */
2551 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2552 if (ret)
2553 goto out_finish;
2555 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2556 struct task_struct *last_task = NULL, *task;
2558 /* src_csets precede dst_csets, break on the first dst_cset */
2559 if (!src_cset->mg_src_cgrp)
2560 break;
2563 * All tasks in src_cset need to be migrated to the
2564 * matching dst_cset. Empty it process by process. We
2565 * walk tasks but migrate processes. The leader might even
2566 * belong to a different cset but such src_cset would also
2567 * be among the target src_csets because the default
2568 * hierarchy enforces per-process membership.
2570 while (true) {
2571 down_read(&css_set_rwsem);
2572 task = list_first_entry_or_null(&src_cset->tasks,
2573 struct task_struct, cg_list);
2574 if (task) {
2575 task = task->group_leader;
2576 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2577 get_task_struct(task);
2579 up_read(&css_set_rwsem);
2581 if (!task)
2582 break;
2584 /* guard against possible infinite loop */
2585 if (WARN(last_task == task,
2586 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2587 goto out_finish;
2588 last_task = task;
2590 threadgroup_lock(task);
2591 /* raced against de_thread() from another thread? */
2592 if (!thread_group_leader(task)) {
2593 threadgroup_unlock(task);
2594 put_task_struct(task);
2595 continue;
2598 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2600 threadgroup_unlock(task);
2601 put_task_struct(task);
2603 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2604 goto out_finish;
2608 out_finish:
2609 cgroup_migrate_finish(&preloaded_csets);
2610 return ret;
2613 /* change the enabled child controllers for a cgroup in the default hierarchy */
2614 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2615 char *buf, size_t nbytes,
2616 loff_t off)
2618 unsigned int enable = 0, disable = 0;
2619 struct cgroup *cgrp, *child;
2620 struct cgroup_subsys *ss;
2621 char *tok;
2622 int ssid, ret;
2625 * Parse input - space separated list of subsystem names prefixed
2626 * with either + or -.
2628 buf = strstrip(buf);
2629 while ((tok = strsep(&buf, " "))) {
2630 if (tok[0] == '\0')
2631 continue;
2632 for_each_subsys(ss, ssid) {
2633 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2634 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2635 continue;
2637 if (*tok == '+') {
2638 enable |= 1 << ssid;
2639 disable &= ~(1 << ssid);
2640 } else if (*tok == '-') {
2641 disable |= 1 << ssid;
2642 enable &= ~(1 << ssid);
2643 } else {
2644 return -EINVAL;
2646 break;
2648 if (ssid == CGROUP_SUBSYS_COUNT)
2649 return -EINVAL;
2652 cgrp = cgroup_kn_lock_live(of->kn);
2653 if (!cgrp)
2654 return -ENODEV;
2656 for_each_subsys(ss, ssid) {
2657 if (enable & (1 << ssid)) {
2658 if (cgrp->child_subsys_mask & (1 << ssid)) {
2659 enable &= ~(1 << ssid);
2660 continue;
2664 * Because css offlining is asynchronous, userland
2665 * might try to re-enable the same controller while
2666 * the previous instance is still around. In such
2667 * cases, wait till it's gone using offline_waitq.
2669 cgroup_for_each_live_child(child, cgrp) {
2670 DEFINE_WAIT(wait);
2672 if (!cgroup_css(child, ss))
2673 continue;
2675 cgroup_get(child);
2676 prepare_to_wait(&child->offline_waitq, &wait,
2677 TASK_UNINTERRUPTIBLE);
2678 cgroup_kn_unlock(of->kn);
2679 schedule();
2680 finish_wait(&child->offline_waitq, &wait);
2681 cgroup_put(child);
2683 return restart_syscall();
2686 /* unavailable or not enabled on the parent? */
2687 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2688 (cgroup_parent(cgrp) &&
2689 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ssid)))) {
2690 ret = -ENOENT;
2691 goto out_unlock;
2693 } else if (disable & (1 << ssid)) {
2694 if (!(cgrp->child_subsys_mask & (1 << ssid))) {
2695 disable &= ~(1 << ssid);
2696 continue;
2699 /* a child has it enabled? */
2700 cgroup_for_each_live_child(child, cgrp) {
2701 if (child->child_subsys_mask & (1 << ssid)) {
2702 ret = -EBUSY;
2703 goto out_unlock;
2709 if (!enable && !disable) {
2710 ret = 0;
2711 goto out_unlock;
2715 * Except for the root, child_subsys_mask must be zero for a cgroup
2716 * with tasks so that child cgroups don't compete against tasks.
2718 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2719 ret = -EBUSY;
2720 goto out_unlock;
2724 * Create csses for enables and update child_subsys_mask. This
2725 * changes cgroup_e_css() results which in turn makes the
2726 * subsequent cgroup_update_dfl_csses() associate all tasks in the
2727 * subtree to the updated csses.
2729 for_each_subsys(ss, ssid) {
2730 if (!(enable & (1 << ssid)))
2731 continue;
2733 cgroup_for_each_live_child(child, cgrp) {
2734 ret = create_css(child, ss);
2735 if (ret)
2736 goto err_undo_css;
2740 cgrp->child_subsys_mask |= enable;
2741 cgrp->child_subsys_mask &= ~disable;
2743 ret = cgroup_update_dfl_csses(cgrp);
2744 if (ret)
2745 goto err_undo_css;
2747 /* all tasks are now migrated away from the old csses, kill them */
2748 for_each_subsys(ss, ssid) {
2749 if (!(disable & (1 << ssid)))
2750 continue;
2752 cgroup_for_each_live_child(child, cgrp)
2753 kill_css(cgroup_css(child, ss));
2756 kernfs_activate(cgrp->kn);
2757 ret = 0;
2758 out_unlock:
2759 cgroup_kn_unlock(of->kn);
2760 return ret ?: nbytes;
2762 err_undo_css:
2763 cgrp->child_subsys_mask &= ~enable;
2764 cgrp->child_subsys_mask |= disable;
2766 for_each_subsys(ss, ssid) {
2767 if (!(enable & (1 << ssid)))
2768 continue;
2770 cgroup_for_each_live_child(child, cgrp) {
2771 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2772 if (css)
2773 kill_css(css);
2776 goto out_unlock;
2779 static int cgroup_populated_show(struct seq_file *seq, void *v)
2781 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2782 return 0;
2785 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2786 size_t nbytes, loff_t off)
2788 struct cgroup *cgrp = of->kn->parent->priv;
2789 struct cftype *cft = of->kn->priv;
2790 struct cgroup_subsys_state *css;
2791 int ret;
2793 if (cft->write)
2794 return cft->write(of, buf, nbytes, off);
2797 * kernfs guarantees that a file isn't deleted with operations in
2798 * flight, which means that the matching css is and stays alive and
2799 * doesn't need to be pinned. The RCU locking is not necessary
2800 * either. It's just for the convenience of using cgroup_css().
2802 rcu_read_lock();
2803 css = cgroup_css(cgrp, cft->ss);
2804 rcu_read_unlock();
2806 if (cft->write_u64) {
2807 unsigned long long v;
2808 ret = kstrtoull(buf, 0, &v);
2809 if (!ret)
2810 ret = cft->write_u64(css, cft, v);
2811 } else if (cft->write_s64) {
2812 long long v;
2813 ret = kstrtoll(buf, 0, &v);
2814 if (!ret)
2815 ret = cft->write_s64(css, cft, v);
2816 } else {
2817 ret = -EINVAL;
2820 return ret ?: nbytes;
2823 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2825 return seq_cft(seq)->seq_start(seq, ppos);
2828 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2830 return seq_cft(seq)->seq_next(seq, v, ppos);
2833 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2835 seq_cft(seq)->seq_stop(seq, v);
2838 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2840 struct cftype *cft = seq_cft(m);
2841 struct cgroup_subsys_state *css = seq_css(m);
2843 if (cft->seq_show)
2844 return cft->seq_show(m, arg);
2846 if (cft->read_u64)
2847 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2848 else if (cft->read_s64)
2849 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2850 else
2851 return -EINVAL;
2852 return 0;
2855 static struct kernfs_ops cgroup_kf_single_ops = {
2856 .atomic_write_len = PAGE_SIZE,
2857 .write = cgroup_file_write,
2858 .seq_show = cgroup_seqfile_show,
2861 static struct kernfs_ops cgroup_kf_ops = {
2862 .atomic_write_len = PAGE_SIZE,
2863 .write = cgroup_file_write,
2864 .seq_start = cgroup_seqfile_start,
2865 .seq_next = cgroup_seqfile_next,
2866 .seq_stop = cgroup_seqfile_stop,
2867 .seq_show = cgroup_seqfile_show,
2871 * cgroup_rename - Only allow simple rename of directories in place.
2873 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2874 const char *new_name_str)
2876 struct cgroup *cgrp = kn->priv;
2877 int ret;
2879 if (kernfs_type(kn) != KERNFS_DIR)
2880 return -ENOTDIR;
2881 if (kn->parent != new_parent)
2882 return -EIO;
2885 * This isn't a proper migration and its usefulness is very
2886 * limited. Disallow if sane_behavior.
2888 if (cgroup_sane_behavior(cgrp))
2889 return -EPERM;
2892 * We're gonna grab cgroup_mutex which nests outside kernfs
2893 * active_ref. kernfs_rename() doesn't require active_ref
2894 * protection. Break them before grabbing cgroup_mutex.
2896 kernfs_break_active_protection(new_parent);
2897 kernfs_break_active_protection(kn);
2899 mutex_lock(&cgroup_mutex);
2901 ret = kernfs_rename(kn, new_parent, new_name_str);
2903 mutex_unlock(&cgroup_mutex);
2905 kernfs_unbreak_active_protection(kn);
2906 kernfs_unbreak_active_protection(new_parent);
2907 return ret;
2910 /* set uid and gid of cgroup dirs and files to that of the creator */
2911 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2913 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2914 .ia_uid = current_fsuid(),
2915 .ia_gid = current_fsgid(), };
2917 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2918 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2919 return 0;
2921 return kernfs_setattr(kn, &iattr);
2924 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2926 char name[CGROUP_FILE_NAME_MAX];
2927 struct kernfs_node *kn;
2928 struct lock_class_key *key = NULL;
2929 int ret;
2931 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2932 key = &cft->lockdep_key;
2933 #endif
2934 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2935 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2936 NULL, false, key);
2937 if (IS_ERR(kn))
2938 return PTR_ERR(kn);
2940 ret = cgroup_kn_set_ugid(kn);
2941 if (ret) {
2942 kernfs_remove(kn);
2943 return ret;
2946 if (cft->seq_show == cgroup_populated_show)
2947 cgrp->populated_kn = kn;
2948 return 0;
2952 * cgroup_addrm_files - add or remove files to a cgroup directory
2953 * @cgrp: the target cgroup
2954 * @cfts: array of cftypes to be added
2955 * @is_add: whether to add or remove
2957 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2958 * For removals, this function never fails. If addition fails, this
2959 * function doesn't remove files already added. The caller is responsible
2960 * for cleaning up.
2962 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2963 bool is_add)
2965 struct cftype *cft;
2966 int ret;
2968 lockdep_assert_held(&cgroup_mutex);
2970 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2971 /* does cft->flags tell us to skip this file on @cgrp? */
2972 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2973 continue;
2974 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2975 continue;
2976 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
2977 continue;
2978 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
2979 continue;
2981 if (is_add) {
2982 ret = cgroup_add_file(cgrp, cft);
2983 if (ret) {
2984 pr_warn("%s: failed to add %s, err=%d\n",
2985 __func__, cft->name, ret);
2986 return ret;
2988 } else {
2989 cgroup_rm_file(cgrp, cft);
2992 return 0;
2995 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
2997 LIST_HEAD(pending);
2998 struct cgroup_subsys *ss = cfts[0].ss;
2999 struct cgroup *root = &ss->root->cgrp;
3000 struct cgroup_subsys_state *css;
3001 int ret = 0;
3003 lockdep_assert_held(&cgroup_mutex);
3005 /* add/rm files for all cgroups created before */
3006 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3007 struct cgroup *cgrp = css->cgroup;
3009 if (cgroup_is_dead(cgrp))
3010 continue;
3012 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3013 if (ret)
3014 break;
3017 if (is_add && !ret)
3018 kernfs_activate(root->kn);
3019 return ret;
3022 static void cgroup_exit_cftypes(struct cftype *cfts)
3024 struct cftype *cft;
3026 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3027 /* free copy for custom atomic_write_len, see init_cftypes() */
3028 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3029 kfree(cft->kf_ops);
3030 cft->kf_ops = NULL;
3031 cft->ss = NULL;
3035 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3037 struct cftype *cft;
3039 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3040 struct kernfs_ops *kf_ops;
3042 WARN_ON(cft->ss || cft->kf_ops);
3044 if (cft->seq_start)
3045 kf_ops = &cgroup_kf_ops;
3046 else
3047 kf_ops = &cgroup_kf_single_ops;
3050 * Ugh... if @cft wants a custom max_write_len, we need to
3051 * make a copy of kf_ops to set its atomic_write_len.
3053 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3054 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3055 if (!kf_ops) {
3056 cgroup_exit_cftypes(cfts);
3057 return -ENOMEM;
3059 kf_ops->atomic_write_len = cft->max_write_len;
3062 cft->kf_ops = kf_ops;
3063 cft->ss = ss;
3066 return 0;
3069 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3071 lockdep_assert_held(&cgroup_mutex);
3073 if (!cfts || !cfts[0].ss)
3074 return -ENOENT;
3076 list_del(&cfts->node);
3077 cgroup_apply_cftypes(cfts, false);
3078 cgroup_exit_cftypes(cfts);
3079 return 0;
3083 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3084 * @cfts: zero-length name terminated array of cftypes
3086 * Unregister @cfts. Files described by @cfts are removed from all
3087 * existing cgroups and all future cgroups won't have them either. This
3088 * function can be called anytime whether @cfts' subsys is attached or not.
3090 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3091 * registered.
3093 int cgroup_rm_cftypes(struct cftype *cfts)
3095 int ret;
3097 mutex_lock(&cgroup_mutex);
3098 ret = cgroup_rm_cftypes_locked(cfts);
3099 mutex_unlock(&cgroup_mutex);
3100 return ret;
3104 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3105 * @ss: target cgroup subsystem
3106 * @cfts: zero-length name terminated array of cftypes
3108 * Register @cfts to @ss. Files described by @cfts are created for all
3109 * existing cgroups to which @ss is attached and all future cgroups will
3110 * have them too. This function can be called anytime whether @ss is
3111 * attached or not.
3113 * Returns 0 on successful registration, -errno on failure. Note that this
3114 * function currently returns 0 as long as @cfts registration is successful
3115 * even if some file creation attempts on existing cgroups fail.
3117 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3119 int ret;
3121 if (ss->disabled)
3122 return 0;
3124 if (!cfts || cfts[0].name[0] == '\0')
3125 return 0;
3127 ret = cgroup_init_cftypes(ss, cfts);
3128 if (ret)
3129 return ret;
3131 mutex_lock(&cgroup_mutex);
3133 list_add_tail(&cfts->node, &ss->cfts);
3134 ret = cgroup_apply_cftypes(cfts, true);
3135 if (ret)
3136 cgroup_rm_cftypes_locked(cfts);
3138 mutex_unlock(&cgroup_mutex);
3139 return ret;
3143 * cgroup_task_count - count the number of tasks in a cgroup.
3144 * @cgrp: the cgroup in question
3146 * Return the number of tasks in the cgroup.
3148 static int cgroup_task_count(const struct cgroup *cgrp)
3150 int count = 0;
3151 struct cgrp_cset_link *link;
3153 down_read(&css_set_rwsem);
3154 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3155 count += atomic_read(&link->cset->refcount);
3156 up_read(&css_set_rwsem);
3157 return count;
3161 * css_next_child - find the next child of a given css
3162 * @pos: the current position (%NULL to initiate traversal)
3163 * @parent: css whose children to walk
3165 * This function returns the next child of @parent and should be called
3166 * under either cgroup_mutex or RCU read lock. The only requirement is
3167 * that @parent and @pos are accessible. The next sibling is guaranteed to
3168 * be returned regardless of their states.
3170 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3171 * css which finished ->css_online() is guaranteed to be visible in the
3172 * future iterations and will stay visible until the last reference is put.
3173 * A css which hasn't finished ->css_online() or already finished
3174 * ->css_offline() may show up during traversal. It's each subsystem's
3175 * responsibility to synchronize against on/offlining.
3177 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3178 struct cgroup_subsys_state *parent)
3180 struct cgroup_subsys_state *next;
3182 cgroup_assert_mutex_or_rcu_locked();
3185 * @pos could already have been unlinked from the sibling list.
3186 * Once a cgroup is removed, its ->sibling.next is no longer
3187 * updated when its next sibling changes. CSS_RELEASED is set when
3188 * @pos is taken off list, at which time its next pointer is valid,
3189 * and, as releases are serialized, the one pointed to by the next
3190 * pointer is guaranteed to not have started release yet. This
3191 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3192 * critical section, the one pointed to by its next pointer is
3193 * guaranteed to not have finished its RCU grace period even if we
3194 * have dropped rcu_read_lock() inbetween iterations.
3196 * If @pos has CSS_RELEASED set, its next pointer can't be
3197 * dereferenced; however, as each css is given a monotonically
3198 * increasing unique serial number and always appended to the
3199 * sibling list, the next one can be found by walking the parent's
3200 * children until the first css with higher serial number than
3201 * @pos's. While this path can be slower, it happens iff iteration
3202 * races against release and the race window is very small.
3204 if (!pos) {
3205 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3206 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3207 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3208 } else {
3209 list_for_each_entry_rcu(next, &parent->children, sibling)
3210 if (next->serial_nr > pos->serial_nr)
3211 break;
3215 * @next, if not pointing to the head, can be dereferenced and is
3216 * the next sibling.
3218 if (&next->sibling != &parent->children)
3219 return next;
3220 return NULL;
3224 * css_next_descendant_pre - find the next descendant for pre-order walk
3225 * @pos: the current position (%NULL to initiate traversal)
3226 * @root: css whose descendants to walk
3228 * To be used by css_for_each_descendant_pre(). Find the next descendant
3229 * to visit for pre-order traversal of @root's descendants. @root is
3230 * included in the iteration and the first node to be visited.
3232 * While this function requires cgroup_mutex or RCU read locking, it
3233 * doesn't require the whole traversal to be contained in a single critical
3234 * section. This function will return the correct next descendant as long
3235 * as both @pos and @root are accessible and @pos is a descendant of @root.
3237 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3238 * css which finished ->css_online() is guaranteed to be visible in the
3239 * future iterations and will stay visible until the last reference is put.
3240 * A css which hasn't finished ->css_online() or already finished
3241 * ->css_offline() may show up during traversal. It's each subsystem's
3242 * responsibility to synchronize against on/offlining.
3244 struct cgroup_subsys_state *
3245 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3246 struct cgroup_subsys_state *root)
3248 struct cgroup_subsys_state *next;
3250 cgroup_assert_mutex_or_rcu_locked();
3252 /* if first iteration, visit @root */
3253 if (!pos)
3254 return root;
3256 /* visit the first child if exists */
3257 next = css_next_child(NULL, pos);
3258 if (next)
3259 return next;
3261 /* no child, visit my or the closest ancestor's next sibling */
3262 while (pos != root) {
3263 next = css_next_child(pos, pos->parent);
3264 if (next)
3265 return next;
3266 pos = pos->parent;
3269 return NULL;
3273 * css_rightmost_descendant - return the rightmost descendant of a css
3274 * @pos: css of interest
3276 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3277 * is returned. This can be used during pre-order traversal to skip
3278 * subtree of @pos.
3280 * While this function requires cgroup_mutex or RCU read locking, it
3281 * doesn't require the whole traversal to be contained in a single critical
3282 * section. This function will return the correct rightmost descendant as
3283 * long as @pos is accessible.
3285 struct cgroup_subsys_state *
3286 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3288 struct cgroup_subsys_state *last, *tmp;
3290 cgroup_assert_mutex_or_rcu_locked();
3292 do {
3293 last = pos;
3294 /* ->prev isn't RCU safe, walk ->next till the end */
3295 pos = NULL;
3296 css_for_each_child(tmp, last)
3297 pos = tmp;
3298 } while (pos);
3300 return last;
3303 static struct cgroup_subsys_state *
3304 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3306 struct cgroup_subsys_state *last;
3308 do {
3309 last = pos;
3310 pos = css_next_child(NULL, pos);
3311 } while (pos);
3313 return last;
3317 * css_next_descendant_post - find the next descendant for post-order walk
3318 * @pos: the current position (%NULL to initiate traversal)
3319 * @root: css whose descendants to walk
3321 * To be used by css_for_each_descendant_post(). Find the next descendant
3322 * to visit for post-order traversal of @root's descendants. @root is
3323 * included in the iteration and the last node to be visited.
3325 * While this function requires cgroup_mutex or RCU read locking, it
3326 * doesn't require the whole traversal to be contained in a single critical
3327 * section. This function will return the correct next descendant as long
3328 * as both @pos and @cgroup are accessible and @pos is a descendant of
3329 * @cgroup.
3331 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3332 * css which finished ->css_online() is guaranteed to be visible in the
3333 * future iterations and will stay visible until the last reference is put.
3334 * A css which hasn't finished ->css_online() or already finished
3335 * ->css_offline() may show up during traversal. It's each subsystem's
3336 * responsibility to synchronize against on/offlining.
3338 struct cgroup_subsys_state *
3339 css_next_descendant_post(struct cgroup_subsys_state *pos,
3340 struct cgroup_subsys_state *root)
3342 struct cgroup_subsys_state *next;
3344 cgroup_assert_mutex_or_rcu_locked();
3346 /* if first iteration, visit leftmost descendant which may be @root */
3347 if (!pos)
3348 return css_leftmost_descendant(root);
3350 /* if we visited @root, we're done */
3351 if (pos == root)
3352 return NULL;
3354 /* if there's an unvisited sibling, visit its leftmost descendant */
3355 next = css_next_child(pos, pos->parent);
3356 if (next)
3357 return css_leftmost_descendant(next);
3359 /* no sibling left, visit parent */
3360 return pos->parent;
3364 * css_has_online_children - does a css have online children
3365 * @css: the target css
3367 * Returns %true if @css has any online children; otherwise, %false. This
3368 * function can be called from any context but the caller is responsible
3369 * for synchronizing against on/offlining as necessary.
3371 bool css_has_online_children(struct cgroup_subsys_state *css)
3373 struct cgroup_subsys_state *child;
3374 bool ret = false;
3376 rcu_read_lock();
3377 css_for_each_child(child, css) {
3378 if (child->flags & CSS_ONLINE) {
3379 ret = true;
3380 break;
3383 rcu_read_unlock();
3384 return ret;
3388 * css_advance_task_iter - advance a task itererator to the next css_set
3389 * @it: the iterator to advance
3391 * Advance @it to the next css_set to walk.
3393 static void css_advance_task_iter(struct css_task_iter *it)
3395 struct list_head *l = it->cset_pos;
3396 struct cgrp_cset_link *link;
3397 struct css_set *cset;
3399 /* Advance to the next non-empty css_set */
3400 do {
3401 l = l->next;
3402 if (l == it->cset_head) {
3403 it->cset_pos = NULL;
3404 return;
3407 if (it->ss) {
3408 cset = container_of(l, struct css_set,
3409 e_cset_node[it->ss->id]);
3410 } else {
3411 link = list_entry(l, struct cgrp_cset_link, cset_link);
3412 cset = link->cset;
3414 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3416 it->cset_pos = l;
3418 if (!list_empty(&cset->tasks))
3419 it->task_pos = cset->tasks.next;
3420 else
3421 it->task_pos = cset->mg_tasks.next;
3423 it->tasks_head = &cset->tasks;
3424 it->mg_tasks_head = &cset->mg_tasks;
3428 * css_task_iter_start - initiate task iteration
3429 * @css: the css to walk tasks of
3430 * @it: the task iterator to use
3432 * Initiate iteration through the tasks of @css. The caller can call
3433 * css_task_iter_next() to walk through the tasks until the function
3434 * returns NULL. On completion of iteration, css_task_iter_end() must be
3435 * called.
3437 * Note that this function acquires a lock which is released when the
3438 * iteration finishes. The caller can't sleep while iteration is in
3439 * progress.
3441 void css_task_iter_start(struct cgroup_subsys_state *css,
3442 struct css_task_iter *it)
3443 __acquires(css_set_rwsem)
3445 /* no one should try to iterate before mounting cgroups */
3446 WARN_ON_ONCE(!use_task_css_set_links);
3448 down_read(&css_set_rwsem);
3450 it->ss = css->ss;
3452 if (it->ss)
3453 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3454 else
3455 it->cset_pos = &css->cgroup->cset_links;
3457 it->cset_head = it->cset_pos;
3459 css_advance_task_iter(it);
3463 * css_task_iter_next - return the next task for the iterator
3464 * @it: the task iterator being iterated
3466 * The "next" function for task iteration. @it should have been
3467 * initialized via css_task_iter_start(). Returns NULL when the iteration
3468 * reaches the end.
3470 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3472 struct task_struct *res;
3473 struct list_head *l = it->task_pos;
3475 /* If the iterator cg is NULL, we have no tasks */
3476 if (!it->cset_pos)
3477 return NULL;
3478 res = list_entry(l, struct task_struct, cg_list);
3481 * Advance iterator to find next entry. cset->tasks is consumed
3482 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3483 * next cset.
3485 l = l->next;
3487 if (l == it->tasks_head)
3488 l = it->mg_tasks_head->next;
3490 if (l == it->mg_tasks_head)
3491 css_advance_task_iter(it);
3492 else
3493 it->task_pos = l;
3495 return res;
3499 * css_task_iter_end - finish task iteration
3500 * @it: the task iterator to finish
3502 * Finish task iteration started by css_task_iter_start().
3504 void css_task_iter_end(struct css_task_iter *it)
3505 __releases(css_set_rwsem)
3507 up_read(&css_set_rwsem);
3511 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3512 * @to: cgroup to which the tasks will be moved
3513 * @from: cgroup in which the tasks currently reside
3515 * Locking rules between cgroup_post_fork() and the migration path
3516 * guarantee that, if a task is forking while being migrated, the new child
3517 * is guaranteed to be either visible in the source cgroup after the
3518 * parent's migration is complete or put into the target cgroup. No task
3519 * can slip out of migration through forking.
3521 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3523 LIST_HEAD(preloaded_csets);
3524 struct cgrp_cset_link *link;
3525 struct css_task_iter it;
3526 struct task_struct *task;
3527 int ret;
3529 mutex_lock(&cgroup_mutex);
3531 /* all tasks in @from are being moved, all csets are source */
3532 down_read(&css_set_rwsem);
3533 list_for_each_entry(link, &from->cset_links, cset_link)
3534 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3535 up_read(&css_set_rwsem);
3537 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3538 if (ret)
3539 goto out_err;
3542 * Migrate tasks one-by-one until @form is empty. This fails iff
3543 * ->can_attach() fails.
3545 do {
3546 css_task_iter_start(&from->self, &it);
3547 task = css_task_iter_next(&it);
3548 if (task)
3549 get_task_struct(task);
3550 css_task_iter_end(&it);
3552 if (task) {
3553 ret = cgroup_migrate(to, task, false);
3554 put_task_struct(task);
3556 } while (task && !ret);
3557 out_err:
3558 cgroup_migrate_finish(&preloaded_csets);
3559 mutex_unlock(&cgroup_mutex);
3560 return ret;
3564 * Stuff for reading the 'tasks'/'procs' files.
3566 * Reading this file can return large amounts of data if a cgroup has
3567 * *lots* of attached tasks. So it may need several calls to read(),
3568 * but we cannot guarantee that the information we produce is correct
3569 * unless we produce it entirely atomically.
3573 /* which pidlist file are we talking about? */
3574 enum cgroup_filetype {
3575 CGROUP_FILE_PROCS,
3576 CGROUP_FILE_TASKS,
3580 * A pidlist is a list of pids that virtually represents the contents of one
3581 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3582 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3583 * to the cgroup.
3585 struct cgroup_pidlist {
3587 * used to find which pidlist is wanted. doesn't change as long as
3588 * this particular list stays in the list.
3590 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3591 /* array of xids */
3592 pid_t *list;
3593 /* how many elements the above list has */
3594 int length;
3595 /* each of these stored in a list by its cgroup */
3596 struct list_head links;
3597 /* pointer to the cgroup we belong to, for list removal purposes */
3598 struct cgroup *owner;
3599 /* for delayed destruction */
3600 struct delayed_work destroy_dwork;
3604 * The following two functions "fix" the issue where there are more pids
3605 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3606 * TODO: replace with a kernel-wide solution to this problem
3608 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3609 static void *pidlist_allocate(int count)
3611 if (PIDLIST_TOO_LARGE(count))
3612 return vmalloc(count * sizeof(pid_t));
3613 else
3614 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3617 static void pidlist_free(void *p)
3619 if (is_vmalloc_addr(p))
3620 vfree(p);
3621 else
3622 kfree(p);
3626 * Used to destroy all pidlists lingering waiting for destroy timer. None
3627 * should be left afterwards.
3629 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3631 struct cgroup_pidlist *l, *tmp_l;
3633 mutex_lock(&cgrp->pidlist_mutex);
3634 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3635 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3636 mutex_unlock(&cgrp->pidlist_mutex);
3638 flush_workqueue(cgroup_pidlist_destroy_wq);
3639 BUG_ON(!list_empty(&cgrp->pidlists));
3642 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3644 struct delayed_work *dwork = to_delayed_work(work);
3645 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3646 destroy_dwork);
3647 struct cgroup_pidlist *tofree = NULL;
3649 mutex_lock(&l->owner->pidlist_mutex);
3652 * Destroy iff we didn't get queued again. The state won't change
3653 * as destroy_dwork can only be queued while locked.
3655 if (!delayed_work_pending(dwork)) {
3656 list_del(&l->links);
3657 pidlist_free(l->list);
3658 put_pid_ns(l->key.ns);
3659 tofree = l;
3662 mutex_unlock(&l->owner->pidlist_mutex);
3663 kfree(tofree);
3667 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3668 * Returns the number of unique elements.
3670 static int pidlist_uniq(pid_t *list, int length)
3672 int src, dest = 1;
3675 * we presume the 0th element is unique, so i starts at 1. trivial
3676 * edge cases first; no work needs to be done for either
3678 if (length == 0 || length == 1)
3679 return length;
3680 /* src and dest walk down the list; dest counts unique elements */
3681 for (src = 1; src < length; src++) {
3682 /* find next unique element */
3683 while (list[src] == list[src-1]) {
3684 src++;
3685 if (src == length)
3686 goto after;
3688 /* dest always points to where the next unique element goes */
3689 list[dest] = list[src];
3690 dest++;
3692 after:
3693 return dest;
3697 * The two pid files - task and cgroup.procs - guaranteed that the result
3698 * is sorted, which forced this whole pidlist fiasco. As pid order is
3699 * different per namespace, each namespace needs differently sorted list,
3700 * making it impossible to use, for example, single rbtree of member tasks
3701 * sorted by task pointer. As pidlists can be fairly large, allocating one
3702 * per open file is dangerous, so cgroup had to implement shared pool of
3703 * pidlists keyed by cgroup and namespace.
3705 * All this extra complexity was caused by the original implementation
3706 * committing to an entirely unnecessary property. In the long term, we
3707 * want to do away with it. Explicitly scramble sort order if
3708 * sane_behavior so that no such expectation exists in the new interface.
3710 * Scrambling is done by swapping every two consecutive bits, which is
3711 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3713 static pid_t pid_fry(pid_t pid)
3715 unsigned a = pid & 0x55555555;
3716 unsigned b = pid & 0xAAAAAAAA;
3718 return (a << 1) | (b >> 1);
3721 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3723 if (cgroup_sane_behavior(cgrp))
3724 return pid_fry(pid);
3725 else
3726 return pid;
3729 static int cmppid(const void *a, const void *b)
3731 return *(pid_t *)a - *(pid_t *)b;
3734 static int fried_cmppid(const void *a, const void *b)
3736 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3739 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3740 enum cgroup_filetype type)
3742 struct cgroup_pidlist *l;
3743 /* don't need task_nsproxy() if we're looking at ourself */
3744 struct pid_namespace *ns = task_active_pid_ns(current);
3746 lockdep_assert_held(&cgrp->pidlist_mutex);
3748 list_for_each_entry(l, &cgrp->pidlists, links)
3749 if (l->key.type == type && l->key.ns == ns)
3750 return l;
3751 return NULL;
3755 * find the appropriate pidlist for our purpose (given procs vs tasks)
3756 * returns with the lock on that pidlist already held, and takes care
3757 * of the use count, or returns NULL with no locks held if we're out of
3758 * memory.
3760 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3761 enum cgroup_filetype type)
3763 struct cgroup_pidlist *l;
3765 lockdep_assert_held(&cgrp->pidlist_mutex);
3767 l = cgroup_pidlist_find(cgrp, type);
3768 if (l)
3769 return l;
3771 /* entry not found; create a new one */
3772 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3773 if (!l)
3774 return l;
3776 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3777 l->key.type = type;
3778 /* don't need task_nsproxy() if we're looking at ourself */
3779 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3780 l->owner = cgrp;
3781 list_add(&l->links, &cgrp->pidlists);
3782 return l;
3786 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3788 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3789 struct cgroup_pidlist **lp)
3791 pid_t *array;
3792 int length;
3793 int pid, n = 0; /* used for populating the array */
3794 struct css_task_iter it;
3795 struct task_struct *tsk;
3796 struct cgroup_pidlist *l;
3798 lockdep_assert_held(&cgrp->pidlist_mutex);
3801 * If cgroup gets more users after we read count, we won't have
3802 * enough space - tough. This race is indistinguishable to the
3803 * caller from the case that the additional cgroup users didn't
3804 * show up until sometime later on.
3806 length = cgroup_task_count(cgrp);
3807 array = pidlist_allocate(length);
3808 if (!array)
3809 return -ENOMEM;
3810 /* now, populate the array */
3811 css_task_iter_start(&cgrp->self, &it);
3812 while ((tsk = css_task_iter_next(&it))) {
3813 if (unlikely(n == length))
3814 break;
3815 /* get tgid or pid for procs or tasks file respectively */
3816 if (type == CGROUP_FILE_PROCS)
3817 pid = task_tgid_vnr(tsk);
3818 else
3819 pid = task_pid_vnr(tsk);
3820 if (pid > 0) /* make sure to only use valid results */
3821 array[n++] = pid;
3823 css_task_iter_end(&it);
3824 length = n;
3825 /* now sort & (if procs) strip out duplicates */
3826 if (cgroup_sane_behavior(cgrp))
3827 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3828 else
3829 sort(array, length, sizeof(pid_t), cmppid, NULL);
3830 if (type == CGROUP_FILE_PROCS)
3831 length = pidlist_uniq(array, length);
3833 l = cgroup_pidlist_find_create(cgrp, type);
3834 if (!l) {
3835 pidlist_free(array);
3836 return -ENOMEM;
3839 /* store array, freeing old if necessary */
3840 pidlist_free(l->list);
3841 l->list = array;
3842 l->length = length;
3843 *lp = l;
3844 return 0;
3848 * cgroupstats_build - build and fill cgroupstats
3849 * @stats: cgroupstats to fill information into
3850 * @dentry: A dentry entry belonging to the cgroup for which stats have
3851 * been requested.
3853 * Build and fill cgroupstats so that taskstats can export it to user
3854 * space.
3856 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3858 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
3859 struct cgroup *cgrp;
3860 struct css_task_iter it;
3861 struct task_struct *tsk;
3863 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3864 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3865 kernfs_type(kn) != KERNFS_DIR)
3866 return -EINVAL;
3868 mutex_lock(&cgroup_mutex);
3871 * We aren't being called from kernfs and there's no guarantee on
3872 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
3873 * @kn->priv is RCU safe. Let's do the RCU dancing.
3875 rcu_read_lock();
3876 cgrp = rcu_dereference(kn->priv);
3877 if (!cgrp || cgroup_is_dead(cgrp)) {
3878 rcu_read_unlock();
3879 mutex_unlock(&cgroup_mutex);
3880 return -ENOENT;
3882 rcu_read_unlock();
3884 css_task_iter_start(&cgrp->self, &it);
3885 while ((tsk = css_task_iter_next(&it))) {
3886 switch (tsk->state) {
3887 case TASK_RUNNING:
3888 stats->nr_running++;
3889 break;
3890 case TASK_INTERRUPTIBLE:
3891 stats->nr_sleeping++;
3892 break;
3893 case TASK_UNINTERRUPTIBLE:
3894 stats->nr_uninterruptible++;
3895 break;
3896 case TASK_STOPPED:
3897 stats->nr_stopped++;
3898 break;
3899 default:
3900 if (delayacct_is_task_waiting_on_io(tsk))
3901 stats->nr_io_wait++;
3902 break;
3905 css_task_iter_end(&it);
3907 mutex_unlock(&cgroup_mutex);
3908 return 0;
3913 * seq_file methods for the tasks/procs files. The seq_file position is the
3914 * next pid to display; the seq_file iterator is a pointer to the pid
3915 * in the cgroup->l->list array.
3918 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3921 * Initially we receive a position value that corresponds to
3922 * one more than the last pid shown (or 0 on the first call or
3923 * after a seek to the start). Use a binary-search to find the
3924 * next pid to display, if any
3926 struct kernfs_open_file *of = s->private;
3927 struct cgroup *cgrp = seq_css(s)->cgroup;
3928 struct cgroup_pidlist *l;
3929 enum cgroup_filetype type = seq_cft(s)->private;
3930 int index = 0, pid = *pos;
3931 int *iter, ret;
3933 mutex_lock(&cgrp->pidlist_mutex);
3936 * !NULL @of->priv indicates that this isn't the first start()
3937 * after open. If the matching pidlist is around, we can use that.
3938 * Look for it. Note that @of->priv can't be used directly. It
3939 * could already have been destroyed.
3941 if (of->priv)
3942 of->priv = cgroup_pidlist_find(cgrp, type);
3945 * Either this is the first start() after open or the matching
3946 * pidlist has been destroyed inbetween. Create a new one.
3948 if (!of->priv) {
3949 ret = pidlist_array_load(cgrp, type,
3950 (struct cgroup_pidlist **)&of->priv);
3951 if (ret)
3952 return ERR_PTR(ret);
3954 l = of->priv;
3956 if (pid) {
3957 int end = l->length;
3959 while (index < end) {
3960 int mid = (index + end) / 2;
3961 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
3962 index = mid;
3963 break;
3964 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
3965 index = mid + 1;
3966 else
3967 end = mid;
3970 /* If we're off the end of the array, we're done */
3971 if (index >= l->length)
3972 return NULL;
3973 /* Update the abstract position to be the actual pid that we found */
3974 iter = l->list + index;
3975 *pos = cgroup_pid_fry(cgrp, *iter);
3976 return iter;
3979 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3981 struct kernfs_open_file *of = s->private;
3982 struct cgroup_pidlist *l = of->priv;
3984 if (l)
3985 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
3986 CGROUP_PIDLIST_DESTROY_DELAY);
3987 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
3990 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3992 struct kernfs_open_file *of = s->private;
3993 struct cgroup_pidlist *l = of->priv;
3994 pid_t *p = v;
3995 pid_t *end = l->list + l->length;
3997 * Advance to the next pid in the array. If this goes off the
3998 * end, we're done
4000 p++;
4001 if (p >= end) {
4002 return NULL;
4003 } else {
4004 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4005 return p;
4009 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4011 return seq_printf(s, "%d\n", *(int *)v);
4014 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4015 struct cftype *cft)
4017 return notify_on_release(css->cgroup);
4020 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4021 struct cftype *cft, u64 val)
4023 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
4024 if (val)
4025 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4026 else
4027 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4028 return 0;
4031 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4032 struct cftype *cft)
4034 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4037 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4038 struct cftype *cft, u64 val)
4040 if (val)
4041 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4042 else
4043 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4044 return 0;
4047 static struct cftype cgroup_base_files[] = {
4049 .name = "cgroup.procs",
4050 .seq_start = cgroup_pidlist_start,
4051 .seq_next = cgroup_pidlist_next,
4052 .seq_stop = cgroup_pidlist_stop,
4053 .seq_show = cgroup_pidlist_show,
4054 .private = CGROUP_FILE_PROCS,
4055 .write = cgroup_procs_write,
4056 .mode = S_IRUGO | S_IWUSR,
4059 .name = "cgroup.clone_children",
4060 .flags = CFTYPE_INSANE,
4061 .read_u64 = cgroup_clone_children_read,
4062 .write_u64 = cgroup_clone_children_write,
4065 .name = "cgroup.sane_behavior",
4066 .flags = CFTYPE_ONLY_ON_ROOT,
4067 .seq_show = cgroup_sane_behavior_show,
4070 .name = "cgroup.controllers",
4071 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
4072 .seq_show = cgroup_root_controllers_show,
4075 .name = "cgroup.controllers",
4076 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4077 .seq_show = cgroup_controllers_show,
4080 .name = "cgroup.subtree_control",
4081 .flags = CFTYPE_ONLY_ON_DFL,
4082 .seq_show = cgroup_subtree_control_show,
4083 .write = cgroup_subtree_control_write,
4086 .name = "cgroup.populated",
4087 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4088 .seq_show = cgroup_populated_show,
4092 * Historical crazy stuff. These don't have "cgroup." prefix and
4093 * don't exist if sane_behavior. If you're depending on these, be
4094 * prepared to be burned.
4097 .name = "tasks",
4098 .flags = CFTYPE_INSANE, /* use "procs" instead */
4099 .seq_start = cgroup_pidlist_start,
4100 .seq_next = cgroup_pidlist_next,
4101 .seq_stop = cgroup_pidlist_stop,
4102 .seq_show = cgroup_pidlist_show,
4103 .private = CGROUP_FILE_TASKS,
4104 .write = cgroup_tasks_write,
4105 .mode = S_IRUGO | S_IWUSR,
4108 .name = "notify_on_release",
4109 .flags = CFTYPE_INSANE,
4110 .read_u64 = cgroup_read_notify_on_release,
4111 .write_u64 = cgroup_write_notify_on_release,
4114 .name = "release_agent",
4115 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4116 .seq_show = cgroup_release_agent_show,
4117 .write = cgroup_release_agent_write,
4118 .max_write_len = PATH_MAX - 1,
4120 { } /* terminate */
4124 * cgroup_populate_dir - create subsys files in a cgroup directory
4125 * @cgrp: target cgroup
4126 * @subsys_mask: mask of the subsystem ids whose files should be added
4128 * On failure, no file is added.
4130 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4132 struct cgroup_subsys *ss;
4133 int i, ret = 0;
4135 /* process cftsets of each subsystem */
4136 for_each_subsys(ss, i) {
4137 struct cftype *cfts;
4139 if (!(subsys_mask & (1 << i)))
4140 continue;
4142 list_for_each_entry(cfts, &ss->cfts, node) {
4143 ret = cgroup_addrm_files(cgrp, cfts, true);
4144 if (ret < 0)
4145 goto err;
4148 return 0;
4149 err:
4150 cgroup_clear_dir(cgrp, subsys_mask);
4151 return ret;
4155 * css destruction is four-stage process.
4157 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4158 * Implemented in kill_css().
4160 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4161 * and thus css_tryget_online() is guaranteed to fail, the css can be
4162 * offlined by invoking offline_css(). After offlining, the base ref is
4163 * put. Implemented in css_killed_work_fn().
4165 * 3. When the percpu_ref reaches zero, the only possible remaining
4166 * accessors are inside RCU read sections. css_release() schedules the
4167 * RCU callback.
4169 * 4. After the grace period, the css can be freed. Implemented in
4170 * css_free_work_fn().
4172 * It is actually hairier because both step 2 and 4 require process context
4173 * and thus involve punting to css->destroy_work adding two additional
4174 * steps to the already complex sequence.
4176 static void css_free_work_fn(struct work_struct *work)
4178 struct cgroup_subsys_state *css =
4179 container_of(work, struct cgroup_subsys_state, destroy_work);
4180 struct cgroup *cgrp = css->cgroup;
4182 if (css->ss) {
4183 /* css free path */
4184 if (css->parent)
4185 css_put(css->parent);
4187 css->ss->css_free(css);
4188 cgroup_put(cgrp);
4189 } else {
4190 /* cgroup free path */
4191 atomic_dec(&cgrp->root->nr_cgrps);
4192 cgroup_pidlist_destroy_all(cgrp);
4194 if (cgroup_parent(cgrp)) {
4196 * We get a ref to the parent, and put the ref when
4197 * this cgroup is being freed, so it's guaranteed
4198 * that the parent won't be destroyed before its
4199 * children.
4201 cgroup_put(cgroup_parent(cgrp));
4202 kernfs_put(cgrp->kn);
4203 kfree(cgrp);
4204 } else {
4206 * This is root cgroup's refcnt reaching zero,
4207 * which indicates that the root should be
4208 * released.
4210 cgroup_destroy_root(cgrp->root);
4215 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4217 struct cgroup_subsys_state *css =
4218 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4220 INIT_WORK(&css->destroy_work, css_free_work_fn);
4221 queue_work(cgroup_destroy_wq, &css->destroy_work);
4224 static void css_release_work_fn(struct work_struct *work)
4226 struct cgroup_subsys_state *css =
4227 container_of(work, struct cgroup_subsys_state, destroy_work);
4228 struct cgroup_subsys *ss = css->ss;
4229 struct cgroup *cgrp = css->cgroup;
4231 mutex_lock(&cgroup_mutex);
4233 css->flags |= CSS_RELEASED;
4234 list_del_rcu(&css->sibling);
4236 if (ss) {
4237 /* css release path */
4238 cgroup_idr_remove(&ss->css_idr, css->id);
4239 } else {
4240 /* cgroup release path */
4241 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4242 cgrp->id = -1;
4245 * There are two control paths which try to determine
4246 * cgroup from dentry without going through kernfs -
4247 * cgroupstats_build() and css_tryget_online_from_dir().
4248 * Those are supported by RCU protecting clearing of
4249 * cgrp->kn->priv backpointer.
4251 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4254 mutex_unlock(&cgroup_mutex);
4256 call_rcu(&css->rcu_head, css_free_rcu_fn);
4259 static void css_release(struct percpu_ref *ref)
4261 struct cgroup_subsys_state *css =
4262 container_of(ref, struct cgroup_subsys_state, refcnt);
4264 INIT_WORK(&css->destroy_work, css_release_work_fn);
4265 queue_work(cgroup_destroy_wq, &css->destroy_work);
4268 static void init_and_link_css(struct cgroup_subsys_state *css,
4269 struct cgroup_subsys *ss, struct cgroup *cgrp)
4271 lockdep_assert_held(&cgroup_mutex);
4273 cgroup_get(cgrp);
4275 memset(css, 0, sizeof(*css));
4276 css->cgroup = cgrp;
4277 css->ss = ss;
4278 INIT_LIST_HEAD(&css->sibling);
4279 INIT_LIST_HEAD(&css->children);
4280 css->serial_nr = css_serial_nr_next++;
4281 atomic_set(&css->online_cnt, 0);
4283 if (cgroup_parent(cgrp)) {
4284 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4285 css_get(css->parent);
4288 BUG_ON(cgroup_css(cgrp, ss));
4291 /* invoke ->css_online() on a new CSS and mark it online if successful */
4292 static int online_css(struct cgroup_subsys_state *css)
4294 struct cgroup_subsys *ss = css->ss;
4295 int ret = 0;
4297 lockdep_assert_held(&cgroup_mutex);
4299 if (ss->css_online)
4300 ret = ss->css_online(css);
4301 if (!ret) {
4302 css->flags |= CSS_ONLINE;
4303 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4305 atomic_inc(&css->online_cnt);
4306 if (css->parent)
4307 atomic_inc(&css->parent->online_cnt);
4309 return ret;
4312 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4313 static void offline_css(struct cgroup_subsys_state *css)
4315 struct cgroup_subsys *ss = css->ss;
4317 lockdep_assert_held(&cgroup_mutex);
4319 if (!(css->flags & CSS_ONLINE))
4320 return;
4322 if (ss->css_offline)
4323 ss->css_offline(css);
4325 css->flags &= ~CSS_ONLINE;
4326 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4328 wake_up_all(&css->cgroup->offline_waitq);
4332 * create_css - create a cgroup_subsys_state
4333 * @cgrp: the cgroup new css will be associated with
4334 * @ss: the subsys of new css
4336 * Create a new css associated with @cgrp - @ss pair. On success, the new
4337 * css is online and installed in @cgrp with all interface files created.
4338 * Returns 0 on success, -errno on failure.
4340 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4342 struct cgroup *parent = cgroup_parent(cgrp);
4343 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4344 struct cgroup_subsys_state *css;
4345 int err;
4347 lockdep_assert_held(&cgroup_mutex);
4349 css = ss->css_alloc(parent_css);
4350 if (IS_ERR(css))
4351 return PTR_ERR(css);
4353 init_and_link_css(css, ss, cgrp);
4355 err = percpu_ref_init(&css->refcnt, css_release);
4356 if (err)
4357 goto err_free_css;
4359 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4360 if (err < 0)
4361 goto err_free_percpu_ref;
4362 css->id = err;
4364 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4365 if (err)
4366 goto err_free_id;
4368 /* @css is ready to be brought online now, make it visible */
4369 list_add_tail_rcu(&css->sibling, &parent_css->children);
4370 cgroup_idr_replace(&ss->css_idr, css, css->id);
4372 err = online_css(css);
4373 if (err)
4374 goto err_list_del;
4376 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4377 cgroup_parent(parent)) {
4378 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4379 current->comm, current->pid, ss->name);
4380 if (!strcmp(ss->name, "memory"))
4381 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4382 ss->warned_broken_hierarchy = true;
4385 return 0;
4387 err_list_del:
4388 list_del_rcu(&css->sibling);
4389 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4390 err_free_id:
4391 cgroup_idr_remove(&ss->css_idr, css->id);
4392 err_free_percpu_ref:
4393 percpu_ref_cancel_init(&css->refcnt);
4394 err_free_css:
4395 call_rcu(&css->rcu_head, css_free_rcu_fn);
4396 return err;
4399 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4400 umode_t mode)
4402 struct cgroup *parent, *cgrp;
4403 struct cgroup_root *root;
4404 struct cgroup_subsys *ss;
4405 struct kernfs_node *kn;
4406 int ssid, ret;
4408 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4410 if (strchr(name, '\n'))
4411 return -EINVAL;
4413 parent = cgroup_kn_lock_live(parent_kn);
4414 if (!parent)
4415 return -ENODEV;
4416 root = parent->root;
4418 /* allocate the cgroup and its ID, 0 is reserved for the root */
4419 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4420 if (!cgrp) {
4421 ret = -ENOMEM;
4422 goto out_unlock;
4425 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4426 if (ret)
4427 goto out_free_cgrp;
4430 * Temporarily set the pointer to NULL, so idr_find() won't return
4431 * a half-baked cgroup.
4433 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4434 if (cgrp->id < 0) {
4435 ret = -ENOMEM;
4436 goto out_cancel_ref;
4439 init_cgroup_housekeeping(cgrp);
4441 cgrp->self.parent = &parent->self;
4442 cgrp->root = root;
4444 if (notify_on_release(parent))
4445 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4447 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4448 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4450 /* create the directory */
4451 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4452 if (IS_ERR(kn)) {
4453 ret = PTR_ERR(kn);
4454 goto out_free_id;
4456 cgrp->kn = kn;
4459 * This extra ref will be put in cgroup_free_fn() and guarantees
4460 * that @cgrp->kn is always accessible.
4462 kernfs_get(kn);
4464 cgrp->self.serial_nr = css_serial_nr_next++;
4466 /* allocation complete, commit to creation */
4467 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4468 atomic_inc(&root->nr_cgrps);
4469 cgroup_get(parent);
4472 * @cgrp is now fully operational. If something fails after this
4473 * point, it'll be released via the normal destruction path.
4475 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4477 ret = cgroup_kn_set_ugid(kn);
4478 if (ret)
4479 goto out_destroy;
4481 ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4482 if (ret)
4483 goto out_destroy;
4485 /* let's create and online css's */
4486 for_each_subsys(ss, ssid) {
4487 if (parent->child_subsys_mask & (1 << ssid)) {
4488 ret = create_css(cgrp, ss);
4489 if (ret)
4490 goto out_destroy;
4495 * On the default hierarchy, a child doesn't automatically inherit
4496 * child_subsys_mask from the parent. Each is configured manually.
4498 if (!cgroup_on_dfl(cgrp))
4499 cgrp->child_subsys_mask = parent->child_subsys_mask;
4501 kernfs_activate(kn);
4503 ret = 0;
4504 goto out_unlock;
4506 out_free_id:
4507 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4508 out_cancel_ref:
4509 percpu_ref_cancel_init(&cgrp->self.refcnt);
4510 out_free_cgrp:
4511 kfree(cgrp);
4512 out_unlock:
4513 cgroup_kn_unlock(parent_kn);
4514 return ret;
4516 out_destroy:
4517 cgroup_destroy_locked(cgrp);
4518 goto out_unlock;
4522 * This is called when the refcnt of a css is confirmed to be killed.
4523 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4524 * initate destruction and put the css ref from kill_css().
4526 static void css_killed_work_fn(struct work_struct *work)
4528 struct cgroup_subsys_state *css =
4529 container_of(work, struct cgroup_subsys_state, destroy_work);
4531 mutex_lock(&cgroup_mutex);
4533 do {
4534 offline_css(css);
4535 css_put(css);
4536 /* @css can't go away while we're holding cgroup_mutex */
4537 css = css->parent;
4538 } while (css && atomic_dec_and_test(&css->online_cnt));
4540 mutex_unlock(&cgroup_mutex);
4543 /* css kill confirmation processing requires process context, bounce */
4544 static void css_killed_ref_fn(struct percpu_ref *ref)
4546 struct cgroup_subsys_state *css =
4547 container_of(ref, struct cgroup_subsys_state, refcnt);
4549 if (atomic_dec_and_test(&css->online_cnt)) {
4550 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4551 queue_work(cgroup_destroy_wq, &css->destroy_work);
4556 * kill_css - destroy a css
4557 * @css: css to destroy
4559 * This function initiates destruction of @css by removing cgroup interface
4560 * files and putting its base reference. ->css_offline() will be invoked
4561 * asynchronously once css_tryget_online() is guaranteed to fail and when
4562 * the reference count reaches zero, @css will be released.
4564 static void kill_css(struct cgroup_subsys_state *css)
4566 lockdep_assert_held(&cgroup_mutex);
4569 * This must happen before css is disassociated with its cgroup.
4570 * See seq_css() for details.
4572 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4575 * Killing would put the base ref, but we need to keep it alive
4576 * until after ->css_offline().
4578 css_get(css);
4581 * cgroup core guarantees that, by the time ->css_offline() is
4582 * invoked, no new css reference will be given out via
4583 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4584 * proceed to offlining css's because percpu_ref_kill() doesn't
4585 * guarantee that the ref is seen as killed on all CPUs on return.
4587 * Use percpu_ref_kill_and_confirm() to get notifications as each
4588 * css is confirmed to be seen as killed on all CPUs.
4590 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4594 * cgroup_destroy_locked - the first stage of cgroup destruction
4595 * @cgrp: cgroup to be destroyed
4597 * css's make use of percpu refcnts whose killing latency shouldn't be
4598 * exposed to userland and are RCU protected. Also, cgroup core needs to
4599 * guarantee that css_tryget_online() won't succeed by the time
4600 * ->css_offline() is invoked. To satisfy all the requirements,
4601 * destruction is implemented in the following two steps.
4603 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4604 * userland visible parts and start killing the percpu refcnts of
4605 * css's. Set up so that the next stage will be kicked off once all
4606 * the percpu refcnts are confirmed to be killed.
4608 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4609 * rest of destruction. Once all cgroup references are gone, the
4610 * cgroup is RCU-freed.
4612 * This function implements s1. After this step, @cgrp is gone as far as
4613 * the userland is concerned and a new cgroup with the same name may be
4614 * created. As cgroup doesn't care about the names internally, this
4615 * doesn't cause any problem.
4617 static int cgroup_destroy_locked(struct cgroup *cgrp)
4618 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4620 struct cgroup_subsys_state *css;
4621 bool empty;
4622 int ssid;
4624 lockdep_assert_held(&cgroup_mutex);
4627 * css_set_rwsem synchronizes access to ->cset_links and prevents
4628 * @cgrp from being removed while put_css_set() is in progress.
4630 down_read(&css_set_rwsem);
4631 empty = list_empty(&cgrp->cset_links);
4632 up_read(&css_set_rwsem);
4633 if (!empty)
4634 return -EBUSY;
4637 * Make sure there's no live children. We can't test emptiness of
4638 * ->self.children as dead children linger on it while being
4639 * drained; otherwise, "rmdir parent/child parent" may fail.
4641 if (css_has_online_children(&cgrp->self))
4642 return -EBUSY;
4645 * Mark @cgrp dead. This prevents further task migration and child
4646 * creation by disabling cgroup_lock_live_group().
4648 cgrp->self.flags &= ~CSS_ONLINE;
4650 /* initiate massacre of all css's */
4651 for_each_css(css, ssid, cgrp)
4652 kill_css(css);
4654 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
4655 raw_spin_lock(&release_list_lock);
4656 if (!list_empty(&cgrp->release_list))
4657 list_del_init(&cgrp->release_list);
4658 raw_spin_unlock(&release_list_lock);
4661 * Remove @cgrp directory along with the base files. @cgrp has an
4662 * extra ref on its kn.
4664 kernfs_remove(cgrp->kn);
4666 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4667 check_for_release(cgroup_parent(cgrp));
4669 /* put the base reference */
4670 percpu_ref_kill(&cgrp->self.refcnt);
4672 return 0;
4675 static int cgroup_rmdir(struct kernfs_node *kn)
4677 struct cgroup *cgrp;
4678 int ret = 0;
4680 cgrp = cgroup_kn_lock_live(kn);
4681 if (!cgrp)
4682 return 0;
4683 cgroup_get(cgrp); /* for @kn->priv clearing */
4685 ret = cgroup_destroy_locked(cgrp);
4687 cgroup_kn_unlock(kn);
4689 cgroup_put(cgrp);
4690 return ret;
4693 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4694 .remount_fs = cgroup_remount,
4695 .show_options = cgroup_show_options,
4696 .mkdir = cgroup_mkdir,
4697 .rmdir = cgroup_rmdir,
4698 .rename = cgroup_rename,
4701 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4703 struct cgroup_subsys_state *css;
4705 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4707 mutex_lock(&cgroup_mutex);
4709 idr_init(&ss->css_idr);
4710 INIT_LIST_HEAD(&ss->cfts);
4712 /* Create the root cgroup state for this subsystem */
4713 ss->root = &cgrp_dfl_root;
4714 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4715 /* We don't handle early failures gracefully */
4716 BUG_ON(IS_ERR(css));
4717 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4720 * Root csses are never destroyed and we can't initialize
4721 * percpu_ref during early init. Disable refcnting.
4723 css->flags |= CSS_NO_REF;
4725 if (early) {
4726 /* allocation can't be done safely during early init */
4727 css->id = 1;
4728 } else {
4729 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4730 BUG_ON(css->id < 0);
4733 /* Update the init_css_set to contain a subsys
4734 * pointer to this state - since the subsystem is
4735 * newly registered, all tasks and hence the
4736 * init_css_set is in the subsystem's root cgroup. */
4737 init_css_set.subsys[ss->id] = css;
4739 need_forkexit_callback |= ss->fork || ss->exit;
4741 /* At system boot, before all subsystems have been
4742 * registered, no tasks have been forked, so we don't
4743 * need to invoke fork callbacks here. */
4744 BUG_ON(!list_empty(&init_task.tasks));
4746 BUG_ON(online_css(css));
4748 mutex_unlock(&cgroup_mutex);
4752 * cgroup_init_early - cgroup initialization at system boot
4754 * Initialize cgroups at system boot, and initialize any
4755 * subsystems that request early init.
4757 int __init cgroup_init_early(void)
4759 static struct cgroup_sb_opts __initdata opts =
4760 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
4761 struct cgroup_subsys *ss;
4762 int i;
4764 init_cgroup_root(&cgrp_dfl_root, &opts);
4765 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4767 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4769 for_each_subsys(ss, i) {
4770 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4771 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4772 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4773 ss->id, ss->name);
4774 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4775 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4777 ss->id = i;
4778 ss->name = cgroup_subsys_name[i];
4780 if (ss->early_init)
4781 cgroup_init_subsys(ss, true);
4783 return 0;
4787 * cgroup_init - cgroup initialization
4789 * Register cgroup filesystem and /proc file, and initialize
4790 * any subsystems that didn't request early init.
4792 int __init cgroup_init(void)
4794 struct cgroup_subsys *ss;
4795 unsigned long key;
4796 int ssid, err;
4798 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
4800 mutex_lock(&cgroup_mutex);
4802 /* Add init_css_set to the hash table */
4803 key = css_set_hash(init_css_set.subsys);
4804 hash_add(css_set_table, &init_css_set.hlist, key);
4806 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4808 mutex_unlock(&cgroup_mutex);
4810 for_each_subsys(ss, ssid) {
4811 if (ss->early_init) {
4812 struct cgroup_subsys_state *css =
4813 init_css_set.subsys[ss->id];
4815 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4816 GFP_KERNEL);
4817 BUG_ON(css->id < 0);
4818 } else {
4819 cgroup_init_subsys(ss, false);
4822 list_add_tail(&init_css_set.e_cset_node[ssid],
4823 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4826 * Setting dfl_root subsys_mask needs to consider the
4827 * disabled flag and cftype registration needs kmalloc,
4828 * both of which aren't available during early_init.
4830 if (!ss->disabled) {
4831 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4832 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4836 err = sysfs_create_mount_point(fs_kobj, "cgroup");
4837 if (err)
4838 return err;
4840 err = register_filesystem(&cgroup_fs_type);
4841 if (err < 0) {
4842 sysfs_remove_mount_point(fs_kobj, "cgroup");
4843 return err;
4846 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4847 return 0;
4850 static int __init cgroup_wq_init(void)
4853 * There isn't much point in executing destruction path in
4854 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4855 * Use 1 for @max_active.
4857 * We would prefer to do this in cgroup_init() above, but that
4858 * is called before init_workqueues(): so leave this until after.
4860 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4861 BUG_ON(!cgroup_destroy_wq);
4864 * Used to destroy pidlists and separate to serve as flush domain.
4865 * Cap @max_active to 1 too.
4867 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4868 0, 1);
4869 BUG_ON(!cgroup_pidlist_destroy_wq);
4871 return 0;
4873 core_initcall(cgroup_wq_init);
4876 * proc_cgroup_show()
4877 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4878 * - Used for /proc/<pid>/cgroup.
4881 /* TODO: Use a proper seq_file iterator */
4882 int proc_cgroup_show(struct seq_file *m, void *v)
4884 struct pid *pid;
4885 struct task_struct *tsk;
4886 char *buf, *path;
4887 int retval;
4888 struct cgroup_root *root;
4890 retval = -ENOMEM;
4891 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4892 if (!buf)
4893 goto out;
4895 retval = -ESRCH;
4896 pid = m->private;
4897 tsk = get_pid_task(pid, PIDTYPE_PID);
4898 if (!tsk)
4899 goto out_free;
4901 retval = 0;
4903 mutex_lock(&cgroup_mutex);
4904 down_read(&css_set_rwsem);
4906 for_each_root(root) {
4907 struct cgroup_subsys *ss;
4908 struct cgroup *cgrp;
4909 int ssid, count = 0;
4911 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
4912 continue;
4914 seq_printf(m, "%d:", root->hierarchy_id);
4915 for_each_subsys(ss, ssid)
4916 if (root->subsys_mask & (1 << ssid))
4917 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4918 if (strlen(root->name))
4919 seq_printf(m, "%sname=%s", count ? "," : "",
4920 root->name);
4921 seq_putc(m, ':');
4922 cgrp = task_cgroup_from_root(tsk, root);
4923 path = cgroup_path(cgrp, buf, PATH_MAX);
4924 if (!path) {
4925 retval = -ENAMETOOLONG;
4926 goto out_unlock;
4928 seq_puts(m, path);
4929 seq_putc(m, '\n');
4932 out_unlock:
4933 up_read(&css_set_rwsem);
4934 mutex_unlock(&cgroup_mutex);
4935 put_task_struct(tsk);
4936 out_free:
4937 kfree(buf);
4938 out:
4939 return retval;
4942 /* Display information about each subsystem and each hierarchy */
4943 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4945 struct cgroup_subsys *ss;
4946 int i;
4948 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4950 * ideally we don't want subsystems moving around while we do this.
4951 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4952 * subsys/hierarchy state.
4954 mutex_lock(&cgroup_mutex);
4956 for_each_subsys(ss, i)
4957 seq_printf(m, "%s\t%d\t%d\t%d\n",
4958 ss->name, ss->root->hierarchy_id,
4959 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
4961 mutex_unlock(&cgroup_mutex);
4962 return 0;
4965 static int cgroupstats_open(struct inode *inode, struct file *file)
4967 return single_open(file, proc_cgroupstats_show, NULL);
4970 static const struct file_operations proc_cgroupstats_operations = {
4971 .open = cgroupstats_open,
4972 .read = seq_read,
4973 .llseek = seq_lseek,
4974 .release = single_release,
4978 * cgroup_fork - initialize cgroup related fields during copy_process()
4979 * @child: pointer to task_struct of forking parent process.
4981 * A task is associated with the init_css_set until cgroup_post_fork()
4982 * attaches it to the parent's css_set. Empty cg_list indicates that
4983 * @child isn't holding reference to its css_set.
4985 void cgroup_fork(struct task_struct *child)
4987 RCU_INIT_POINTER(child->cgroups, &init_css_set);
4988 INIT_LIST_HEAD(&child->cg_list);
4992 * cgroup_post_fork - called on a new task after adding it to the task list
4993 * @child: the task in question
4995 * Adds the task to the list running through its css_set if necessary and
4996 * call the subsystem fork() callbacks. Has to be after the task is
4997 * visible on the task list in case we race with the first call to
4998 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4999 * list.
5001 void cgroup_post_fork(struct task_struct *child)
5003 struct cgroup_subsys *ss;
5004 int i;
5007 * This may race against cgroup_enable_task_cg_links(). As that
5008 * function sets use_task_css_set_links before grabbing
5009 * tasklist_lock and we just went through tasklist_lock to add
5010 * @child, it's guaranteed that either we see the set
5011 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5012 * @child during its iteration.
5014 * If we won the race, @child is associated with %current's
5015 * css_set. Grabbing css_set_rwsem guarantees both that the
5016 * association is stable, and, on completion of the parent's
5017 * migration, @child is visible in the source of migration or
5018 * already in the destination cgroup. This guarantee is necessary
5019 * when implementing operations which need to migrate all tasks of
5020 * a cgroup to another.
5022 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5023 * will remain in init_css_set. This is safe because all tasks are
5024 * in the init_css_set before cg_links is enabled and there's no
5025 * operation which transfers all tasks out of init_css_set.
5027 if (use_task_css_set_links) {
5028 struct css_set *cset;
5030 down_write(&css_set_rwsem);
5031 cset = task_css_set(current);
5032 if (list_empty(&child->cg_list)) {
5033 rcu_assign_pointer(child->cgroups, cset);
5034 list_add(&child->cg_list, &cset->tasks);
5035 get_css_set(cset);
5037 up_write(&css_set_rwsem);
5041 * Call ss->fork(). This must happen after @child is linked on
5042 * css_set; otherwise, @child might change state between ->fork()
5043 * and addition to css_set.
5045 if (need_forkexit_callback) {
5046 for_each_subsys(ss, i)
5047 if (ss->fork)
5048 ss->fork(child);
5053 * cgroup_exit - detach cgroup from exiting task
5054 * @tsk: pointer to task_struct of exiting process
5056 * Description: Detach cgroup from @tsk and release it.
5058 * Note that cgroups marked notify_on_release force every task in
5059 * them to take the global cgroup_mutex mutex when exiting.
5060 * This could impact scaling on very large systems. Be reluctant to
5061 * use notify_on_release cgroups where very high task exit scaling
5062 * is required on large systems.
5064 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5065 * call cgroup_exit() while the task is still competent to handle
5066 * notify_on_release(), then leave the task attached to the root cgroup in
5067 * each hierarchy for the remainder of its exit. No need to bother with
5068 * init_css_set refcnting. init_css_set never goes away and we can't race
5069 * with migration path - PF_EXITING is visible to migration path.
5071 void cgroup_exit(struct task_struct *tsk)
5073 struct cgroup_subsys *ss;
5074 struct css_set *cset;
5075 bool put_cset = false;
5076 int i;
5079 * Unlink from @tsk from its css_set. As migration path can't race
5080 * with us, we can check cg_list without grabbing css_set_rwsem.
5082 if (!list_empty(&tsk->cg_list)) {
5083 down_write(&css_set_rwsem);
5084 list_del_init(&tsk->cg_list);
5085 up_write(&css_set_rwsem);
5086 put_cset = true;
5089 /* Reassign the task to the init_css_set. */
5090 cset = task_css_set(tsk);
5091 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5093 if (need_forkexit_callback) {
5094 /* see cgroup_post_fork() for details */
5095 for_each_subsys(ss, i) {
5096 if (ss->exit) {
5097 struct cgroup_subsys_state *old_css = cset->subsys[i];
5098 struct cgroup_subsys_state *css = task_css(tsk, i);
5100 ss->exit(css, old_css, tsk);
5105 if (put_cset)
5106 put_css_set(cset, true);
5109 static void check_for_release(struct cgroup *cgrp)
5111 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5112 !css_has_online_children(&cgrp->self)) {
5114 * Control Group is currently removeable. If it's not
5115 * already queued for a userspace notification, queue
5116 * it now
5118 int need_schedule_work = 0;
5120 raw_spin_lock(&release_list_lock);
5121 if (!cgroup_is_dead(cgrp) &&
5122 list_empty(&cgrp->release_list)) {
5123 list_add(&cgrp->release_list, &release_list);
5124 need_schedule_work = 1;
5126 raw_spin_unlock(&release_list_lock);
5127 if (need_schedule_work)
5128 schedule_work(&release_agent_work);
5133 * Notify userspace when a cgroup is released, by running the
5134 * configured release agent with the name of the cgroup (path
5135 * relative to the root of cgroup file system) as the argument.
5137 * Most likely, this user command will try to rmdir this cgroup.
5139 * This races with the possibility that some other task will be
5140 * attached to this cgroup before it is removed, or that some other
5141 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5142 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5143 * unused, and this cgroup will be reprieved from its death sentence,
5144 * to continue to serve a useful existence. Next time it's released,
5145 * we will get notified again, if it still has 'notify_on_release' set.
5147 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5148 * means only wait until the task is successfully execve()'d. The
5149 * separate release agent task is forked by call_usermodehelper(),
5150 * then control in this thread returns here, without waiting for the
5151 * release agent task. We don't bother to wait because the caller of
5152 * this routine has no use for the exit status of the release agent
5153 * task, so no sense holding our caller up for that.
5155 static void cgroup_release_agent(struct work_struct *work)
5157 BUG_ON(work != &release_agent_work);
5158 mutex_lock(&cgroup_mutex);
5159 raw_spin_lock(&release_list_lock);
5160 while (!list_empty(&release_list)) {
5161 char *argv[3], *envp[3];
5162 int i;
5163 char *pathbuf = NULL, *agentbuf = NULL, *path;
5164 struct cgroup *cgrp = list_entry(release_list.next,
5165 struct cgroup,
5166 release_list);
5167 list_del_init(&cgrp->release_list);
5168 raw_spin_unlock(&release_list_lock);
5169 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5170 if (!pathbuf)
5171 goto continue_free;
5172 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5173 if (!path)
5174 goto continue_free;
5175 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5176 if (!agentbuf)
5177 goto continue_free;
5179 i = 0;
5180 argv[i++] = agentbuf;
5181 argv[i++] = path;
5182 argv[i] = NULL;
5184 i = 0;
5185 /* minimal command environment */
5186 envp[i++] = "HOME=/";
5187 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5188 envp[i] = NULL;
5190 /* Drop the lock while we invoke the usermode helper,
5191 * since the exec could involve hitting disk and hence
5192 * be a slow process */
5193 mutex_unlock(&cgroup_mutex);
5194 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5195 mutex_lock(&cgroup_mutex);
5196 continue_free:
5197 kfree(pathbuf);
5198 kfree(agentbuf);
5199 raw_spin_lock(&release_list_lock);
5201 raw_spin_unlock(&release_list_lock);
5202 mutex_unlock(&cgroup_mutex);
5205 static int __init cgroup_disable(char *str)
5207 struct cgroup_subsys *ss;
5208 char *token;
5209 int i;
5211 while ((token = strsep(&str, ",")) != NULL) {
5212 if (!*token)
5213 continue;
5215 for_each_subsys(ss, i) {
5216 if (!strcmp(token, ss->name)) {
5217 ss->disabled = 1;
5218 printk(KERN_INFO "Disabling %s control group"
5219 " subsystem\n", ss->name);
5220 break;
5224 return 1;
5226 __setup("cgroup_disable=", cgroup_disable);
5229 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5230 * @dentry: directory dentry of interest
5231 * @ss: subsystem of interest
5233 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5234 * to get the corresponding css and return it. If such css doesn't exist
5235 * or can't be pinned, an ERR_PTR value is returned.
5237 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5238 struct cgroup_subsys *ss)
5240 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5241 struct cgroup_subsys_state *css = NULL;
5242 struct cgroup *cgrp;
5244 /* is @dentry a cgroup dir? */
5245 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5246 kernfs_type(kn) != KERNFS_DIR)
5247 return ERR_PTR(-EBADF);
5249 rcu_read_lock();
5252 * This path doesn't originate from kernfs and @kn could already
5253 * have been or be removed at any point. @kn->priv is RCU
5254 * protected for this access. See css_release_work_fn() for details.
5256 cgrp = rcu_dereference(kn->priv);
5257 if (cgrp)
5258 css = cgroup_css(cgrp, ss);
5260 if (!css || !css_tryget_online(css))
5261 css = ERR_PTR(-ENOENT);
5263 rcu_read_unlock();
5264 return css;
5268 * css_from_id - lookup css by id
5269 * @id: the cgroup id
5270 * @ss: cgroup subsys to be looked into
5272 * Returns the css if there's valid one with @id, otherwise returns NULL.
5273 * Should be called under rcu_read_lock().
5275 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5277 WARN_ON_ONCE(!rcu_read_lock_held());
5278 return idr_find(&ss->css_idr, id);
5281 #ifdef CONFIG_CGROUP_DEBUG
5282 static struct cgroup_subsys_state *
5283 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5285 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5287 if (!css)
5288 return ERR_PTR(-ENOMEM);
5290 return css;
5293 static void debug_css_free(struct cgroup_subsys_state *css)
5295 kfree(css);
5298 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5299 struct cftype *cft)
5301 return cgroup_task_count(css->cgroup);
5304 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5305 struct cftype *cft)
5307 return (u64)(unsigned long)current->cgroups;
5310 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5311 struct cftype *cft)
5313 u64 count;
5315 rcu_read_lock();
5316 count = atomic_read(&task_css_set(current)->refcount);
5317 rcu_read_unlock();
5318 return count;
5321 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5323 struct cgrp_cset_link *link;
5324 struct css_set *cset;
5325 char *name_buf;
5327 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5328 if (!name_buf)
5329 return -ENOMEM;
5331 down_read(&css_set_rwsem);
5332 rcu_read_lock();
5333 cset = rcu_dereference(current->cgroups);
5334 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5335 struct cgroup *c = link->cgrp;
5337 cgroup_name(c, name_buf, NAME_MAX + 1);
5338 seq_printf(seq, "Root %d group %s\n",
5339 c->root->hierarchy_id, name_buf);
5341 rcu_read_unlock();
5342 up_read(&css_set_rwsem);
5343 kfree(name_buf);
5344 return 0;
5347 #define MAX_TASKS_SHOWN_PER_CSS 25
5348 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5350 struct cgroup_subsys_state *css = seq_css(seq);
5351 struct cgrp_cset_link *link;
5353 down_read(&css_set_rwsem);
5354 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5355 struct css_set *cset = link->cset;
5356 struct task_struct *task;
5357 int count = 0;
5359 seq_printf(seq, "css_set %p\n", cset);
5361 list_for_each_entry(task, &cset->tasks, cg_list) {
5362 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5363 goto overflow;
5364 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5367 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5368 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5369 goto overflow;
5370 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5372 continue;
5373 overflow:
5374 seq_puts(seq, " ...\n");
5376 up_read(&css_set_rwsem);
5377 return 0;
5380 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5382 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5385 static struct cftype debug_files[] = {
5387 .name = "taskcount",
5388 .read_u64 = debug_taskcount_read,
5392 .name = "current_css_set",
5393 .read_u64 = current_css_set_read,
5397 .name = "current_css_set_refcount",
5398 .read_u64 = current_css_set_refcount_read,
5402 .name = "current_css_set_cg_links",
5403 .seq_show = current_css_set_cg_links_read,
5407 .name = "cgroup_css_links",
5408 .seq_show = cgroup_css_links_read,
5412 .name = "releasable",
5413 .read_u64 = releasable_read,
5416 { } /* terminate */
5419 struct cgroup_subsys debug_cgrp_subsys = {
5420 .css_alloc = debug_css_alloc,
5421 .css_free = debug_css_free,
5422 .base_cftypes = debug_files,
5424 #endif /* CONFIG_CGROUP_DEBUG */