2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex
);
86 DECLARE_RWSEM(css_set_rwsem
);
87 EXPORT_SYMBOL_GPL(cgroup_mutex
);
88 EXPORT_SYMBOL_GPL(css_set_rwsem
);
90 static DEFINE_MUTEX(cgroup_mutex
);
91 static DECLARE_RWSEM(css_set_rwsem
);
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock
);
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 static DEFINE_SPINLOCK(release_agent_path_lock
);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct
*cgroup_destroy_wq
;
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
123 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys
*cgroup_subsys
[] = {
128 #include <linux/cgroup_subsys.h>
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name
[] = {
135 #include <linux/cgroup_subsys.h>
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
144 struct cgroup_root cgrp_dfl_root
;
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
150 static bool cgrp_dfl_root_visible
;
152 /* some controllers are not supported in the default hierarchy */
153 static const unsigned int cgrp_dfl_root_inhibit_ss_mask
= 0
154 #ifdef CONFIG_CGROUP_DEBUG
155 | (1 << debug_cgrp_id
)
159 /* The list of hierarchy roots */
161 static LIST_HEAD(cgroup_roots
);
162 static int cgroup_root_count
;
164 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
165 static DEFINE_IDR(cgroup_hierarchy_idr
);
168 * Assign a monotonically increasing serial number to csses. It guarantees
169 * cgroups with bigger numbers are newer than those with smaller numbers.
170 * Also, as csses are always appended to the parent's ->children list, it
171 * guarantees that sibling csses are always sorted in the ascending serial
172 * number order on the list. Protected by cgroup_mutex.
174 static u64 css_serial_nr_next
= 1;
176 /* This flag indicates whether tasks in the fork and exit paths should
177 * check for fork/exit handlers to call. This avoids us having to do
178 * extra work in the fork/exit path if none of the subsystems need to
181 static int need_forkexit_callback __read_mostly
;
183 static struct cftype cgroup_base_files
[];
185 static void cgroup_put(struct cgroup
*cgrp
);
186 static int rebind_subsystems(struct cgroup_root
*dst_root
,
187 unsigned int ss_mask
);
188 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
189 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
);
190 static void css_release(struct percpu_ref
*ref
);
191 static void kill_css(struct cgroup_subsys_state
*css
);
192 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
194 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
);
196 /* IDR wrappers which synchronize using cgroup_idr_lock */
197 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
202 idr_preload(gfp_mask
);
203 spin_lock_bh(&cgroup_idr_lock
);
204 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
);
205 spin_unlock_bh(&cgroup_idr_lock
);
210 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
214 spin_lock_bh(&cgroup_idr_lock
);
215 ret
= idr_replace(idr
, ptr
, id
);
216 spin_unlock_bh(&cgroup_idr_lock
);
220 static void cgroup_idr_remove(struct idr
*idr
, int id
)
222 spin_lock_bh(&cgroup_idr_lock
);
224 spin_unlock_bh(&cgroup_idr_lock
);
227 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
229 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
232 return container_of(parent_css
, struct cgroup
, self
);
237 * cgroup_css - obtain a cgroup's css for the specified subsystem
238 * @cgrp: the cgroup of interest
239 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
241 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
242 * function must be called either under cgroup_mutex or rcu_read_lock() and
243 * the caller is responsible for pinning the returned css if it wants to
244 * keep accessing it outside the said locks. This function may return
245 * %NULL if @cgrp doesn't have @subsys_id enabled.
247 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
248 struct cgroup_subsys
*ss
)
251 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
252 lockdep_is_held(&cgroup_mutex
));
258 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
259 * @cgrp: the cgroup of interest
260 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
262 * Similar to cgroup_css() but returns the effctive css, which is defined
263 * as the matching css of the nearest ancestor including self which has @ss
264 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
265 * function is guaranteed to return non-NULL css.
267 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
268 struct cgroup_subsys
*ss
)
270 lockdep_assert_held(&cgroup_mutex
);
275 if (!(cgrp
->root
->subsys_mask
& (1 << ss
->id
)))
278 while (cgroup_parent(cgrp
) &&
279 !(cgroup_parent(cgrp
)->child_subsys_mask
& (1 << ss
->id
)))
280 cgrp
= cgroup_parent(cgrp
);
282 return cgroup_css(cgrp
, ss
);
285 /* convenient tests for these bits */
286 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
288 return !(cgrp
->self
.flags
& CSS_ONLINE
);
291 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
293 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
294 struct cftype
*cft
= of_cft(of
);
297 * This is open and unprotected implementation of cgroup_css().
298 * seq_css() is only called from a kernfs file operation which has
299 * an active reference on the file. Because all the subsystem
300 * files are drained before a css is disassociated with a cgroup,
301 * the matching css from the cgroup's subsys table is guaranteed to
302 * be and stay valid until the enclosing operation is complete.
305 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
309 EXPORT_SYMBOL_GPL(of_css
);
312 * cgroup_is_descendant - test ancestry
313 * @cgrp: the cgroup to be tested
314 * @ancestor: possible ancestor of @cgrp
316 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
317 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
318 * and @ancestor are accessible.
320 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
323 if (cgrp
== ancestor
)
325 cgrp
= cgroup_parent(cgrp
);
330 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
333 (1 << CGRP_RELEASABLE
) |
334 (1 << CGRP_NOTIFY_ON_RELEASE
);
335 return (cgrp
->flags
& bits
) == bits
;
338 static int notify_on_release(const struct cgroup
*cgrp
)
340 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
344 * for_each_css - iterate all css's of a cgroup
345 * @css: the iteration cursor
346 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
347 * @cgrp: the target cgroup to iterate css's of
349 * Should be called under cgroup_[tree_]mutex.
351 #define for_each_css(css, ssid, cgrp) \
352 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
353 if (!((css) = rcu_dereference_check( \
354 (cgrp)->subsys[(ssid)], \
355 lockdep_is_held(&cgroup_mutex)))) { } \
359 * for_each_e_css - iterate all effective css's of a cgroup
360 * @css: the iteration cursor
361 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
362 * @cgrp: the target cgroup to iterate css's of
364 * Should be called under cgroup_[tree_]mutex.
366 #define for_each_e_css(css, ssid, cgrp) \
367 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
368 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
373 * for_each_subsys - iterate all enabled cgroup subsystems
374 * @ss: the iteration cursor
375 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
377 #define for_each_subsys(ss, ssid) \
378 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
379 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
381 /* iterate across the hierarchies */
382 #define for_each_root(root) \
383 list_for_each_entry((root), &cgroup_roots, root_list)
385 /* iterate over child cgrps, lock should be held throughout iteration */
386 #define cgroup_for_each_live_child(child, cgrp) \
387 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
388 if (({ lockdep_assert_held(&cgroup_mutex); \
389 cgroup_is_dead(child); })) \
393 /* the list of cgroups eligible for automatic release. Protected by
394 * release_list_lock */
395 static LIST_HEAD(release_list
);
396 static DEFINE_RAW_SPINLOCK(release_list_lock
);
397 static void cgroup_release_agent(struct work_struct
*work
);
398 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
399 static void check_for_release(struct cgroup
*cgrp
);
402 * A cgroup can be associated with multiple css_sets as different tasks may
403 * belong to different cgroups on different hierarchies. In the other
404 * direction, a css_set is naturally associated with multiple cgroups.
405 * This M:N relationship is represented by the following link structure
406 * which exists for each association and allows traversing the associations
409 struct cgrp_cset_link
{
410 /* the cgroup and css_set this link associates */
412 struct css_set
*cset
;
414 /* list of cgrp_cset_links anchored at cgrp->cset_links */
415 struct list_head cset_link
;
417 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
418 struct list_head cgrp_link
;
422 * The default css_set - used by init and its children prior to any
423 * hierarchies being mounted. It contains a pointer to the root state
424 * for each subsystem. Also used to anchor the list of css_sets. Not
425 * reference-counted, to improve performance when child cgroups
426 * haven't been created.
428 struct css_set init_css_set
= {
429 .refcount
= ATOMIC_INIT(1),
430 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
431 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
432 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
433 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
434 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
437 static int css_set_count
= 1; /* 1 for init_css_set */
440 * cgroup_update_populated - updated populated count of a cgroup
441 * @cgrp: the target cgroup
442 * @populated: inc or dec populated count
444 * @cgrp is either getting the first task (css_set) or losing the last.
445 * Update @cgrp->populated_cnt accordingly. The count is propagated
446 * towards root so that a given cgroup's populated_cnt is zero iff the
447 * cgroup and all its descendants are empty.
449 * @cgrp's interface file "cgroup.populated" is zero if
450 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
451 * changes from or to zero, userland is notified that the content of the
452 * interface file has changed. This can be used to detect when @cgrp and
453 * its descendants become populated or empty.
455 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
457 lockdep_assert_held(&css_set_rwsem
);
463 trigger
= !cgrp
->populated_cnt
++;
465 trigger
= !--cgrp
->populated_cnt
;
470 if (cgrp
->populated_kn
)
471 kernfs_notify(cgrp
->populated_kn
);
472 cgrp
= cgroup_parent(cgrp
);
477 * hash table for cgroup groups. This improves the performance to find
478 * an existing css_set. This hash doesn't (currently) take into
479 * account cgroups in empty hierarchies.
481 #define CSS_SET_HASH_BITS 7
482 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
484 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
486 unsigned long key
= 0UL;
487 struct cgroup_subsys
*ss
;
490 for_each_subsys(ss
, i
)
491 key
+= (unsigned long)css
[i
];
492 key
= (key
>> 16) ^ key
;
497 static void put_css_set_locked(struct css_set
*cset
, bool taskexit
)
499 struct cgrp_cset_link
*link
, *tmp_link
;
500 struct cgroup_subsys
*ss
;
503 lockdep_assert_held(&css_set_rwsem
);
505 if (!atomic_dec_and_test(&cset
->refcount
))
508 /* This css_set is dead. unlink it and release cgroup refcounts */
509 for_each_subsys(ss
, ssid
)
510 list_del(&cset
->e_cset_node
[ssid
]);
511 hash_del(&cset
->hlist
);
514 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
515 struct cgroup
*cgrp
= link
->cgrp
;
517 list_del(&link
->cset_link
);
518 list_del(&link
->cgrp_link
);
520 /* @cgrp can't go away while we're holding css_set_rwsem */
521 if (list_empty(&cgrp
->cset_links
)) {
522 cgroup_update_populated(cgrp
, false);
523 if (notify_on_release(cgrp
)) {
525 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
526 check_for_release(cgrp
);
533 kfree_rcu(cset
, rcu_head
);
536 static void put_css_set(struct css_set
*cset
, bool taskexit
)
539 * Ensure that the refcount doesn't hit zero while any readers
540 * can see it. Similar to atomic_dec_and_lock(), but for an
543 if (atomic_add_unless(&cset
->refcount
, -1, 1))
546 down_write(&css_set_rwsem
);
547 put_css_set_locked(cset
, taskexit
);
548 up_write(&css_set_rwsem
);
552 * refcounted get/put for css_set objects
554 static inline void get_css_set(struct css_set
*cset
)
556 atomic_inc(&cset
->refcount
);
560 * compare_css_sets - helper function for find_existing_css_set().
561 * @cset: candidate css_set being tested
562 * @old_cset: existing css_set for a task
563 * @new_cgrp: cgroup that's being entered by the task
564 * @template: desired set of css pointers in css_set (pre-calculated)
566 * Returns true if "cset" matches "old_cset" except for the hierarchy
567 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
569 static bool compare_css_sets(struct css_set
*cset
,
570 struct css_set
*old_cset
,
571 struct cgroup
*new_cgrp
,
572 struct cgroup_subsys_state
*template[])
574 struct list_head
*l1
, *l2
;
577 * On the default hierarchy, there can be csets which are
578 * associated with the same set of cgroups but different csses.
579 * Let's first ensure that csses match.
581 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
585 * Compare cgroup pointers in order to distinguish between
586 * different cgroups in hierarchies. As different cgroups may
587 * share the same effective css, this comparison is always
590 l1
= &cset
->cgrp_links
;
591 l2
= &old_cset
->cgrp_links
;
593 struct cgrp_cset_link
*link1
, *link2
;
594 struct cgroup
*cgrp1
, *cgrp2
;
598 /* See if we reached the end - both lists are equal length. */
599 if (l1
== &cset
->cgrp_links
) {
600 BUG_ON(l2
!= &old_cset
->cgrp_links
);
603 BUG_ON(l2
== &old_cset
->cgrp_links
);
605 /* Locate the cgroups associated with these links. */
606 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
607 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
610 /* Hierarchies should be linked in the same order. */
611 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
614 * If this hierarchy is the hierarchy of the cgroup
615 * that's changing, then we need to check that this
616 * css_set points to the new cgroup; if it's any other
617 * hierarchy, then this css_set should point to the
618 * same cgroup as the old css_set.
620 if (cgrp1
->root
== new_cgrp
->root
) {
621 if (cgrp1
!= new_cgrp
)
632 * find_existing_css_set - init css array and find the matching css_set
633 * @old_cset: the css_set that we're using before the cgroup transition
634 * @cgrp: the cgroup that we're moving into
635 * @template: out param for the new set of csses, should be clear on entry
637 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
639 struct cgroup_subsys_state
*template[])
641 struct cgroup_root
*root
= cgrp
->root
;
642 struct cgroup_subsys
*ss
;
643 struct css_set
*cset
;
648 * Build the set of subsystem state objects that we want to see in the
649 * new css_set. while subsystems can change globally, the entries here
650 * won't change, so no need for locking.
652 for_each_subsys(ss
, i
) {
653 if (root
->subsys_mask
& (1UL << i
)) {
655 * @ss is in this hierarchy, so we want the
656 * effective css from @cgrp.
658 template[i
] = cgroup_e_css(cgrp
, ss
);
661 * @ss is not in this hierarchy, so we don't want
664 template[i
] = old_cset
->subsys
[i
];
668 key
= css_set_hash(template);
669 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
670 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
673 /* This css_set matches what we need */
677 /* No existing cgroup group matched */
681 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
683 struct cgrp_cset_link
*link
, *tmp_link
;
685 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
686 list_del(&link
->cset_link
);
692 * allocate_cgrp_cset_links - allocate cgrp_cset_links
693 * @count: the number of links to allocate
694 * @tmp_links: list_head the allocated links are put on
696 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
697 * through ->cset_link. Returns 0 on success or -errno.
699 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
701 struct cgrp_cset_link
*link
;
704 INIT_LIST_HEAD(tmp_links
);
706 for (i
= 0; i
< count
; i
++) {
707 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
709 free_cgrp_cset_links(tmp_links
);
712 list_add(&link
->cset_link
, tmp_links
);
718 * link_css_set - a helper function to link a css_set to a cgroup
719 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
720 * @cset: the css_set to be linked
721 * @cgrp: the destination cgroup
723 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
726 struct cgrp_cset_link
*link
;
728 BUG_ON(list_empty(tmp_links
));
730 if (cgroup_on_dfl(cgrp
))
731 cset
->dfl_cgrp
= cgrp
;
733 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
737 if (list_empty(&cgrp
->cset_links
))
738 cgroup_update_populated(cgrp
, true);
739 list_move(&link
->cset_link
, &cgrp
->cset_links
);
742 * Always add links to the tail of the list so that the list
743 * is sorted by order of hierarchy creation
745 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
749 * find_css_set - return a new css_set with one cgroup updated
750 * @old_cset: the baseline css_set
751 * @cgrp: the cgroup to be updated
753 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
754 * substituted into the appropriate hierarchy.
756 static struct css_set
*find_css_set(struct css_set
*old_cset
,
759 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
760 struct css_set
*cset
;
761 struct list_head tmp_links
;
762 struct cgrp_cset_link
*link
;
763 struct cgroup_subsys
*ss
;
767 lockdep_assert_held(&cgroup_mutex
);
769 /* First see if we already have a cgroup group that matches
771 down_read(&css_set_rwsem
);
772 cset
= find_existing_css_set(old_cset
, cgrp
, template);
775 up_read(&css_set_rwsem
);
780 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
784 /* Allocate all the cgrp_cset_link objects that we'll need */
785 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
790 atomic_set(&cset
->refcount
, 1);
791 INIT_LIST_HEAD(&cset
->cgrp_links
);
792 INIT_LIST_HEAD(&cset
->tasks
);
793 INIT_LIST_HEAD(&cset
->mg_tasks
);
794 INIT_LIST_HEAD(&cset
->mg_preload_node
);
795 INIT_LIST_HEAD(&cset
->mg_node
);
796 INIT_HLIST_NODE(&cset
->hlist
);
798 /* Copy the set of subsystem state objects generated in
799 * find_existing_css_set() */
800 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
802 down_write(&css_set_rwsem
);
803 /* Add reference counts and links from the new css_set. */
804 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
805 struct cgroup
*c
= link
->cgrp
;
807 if (c
->root
== cgrp
->root
)
809 link_css_set(&tmp_links
, cset
, c
);
812 BUG_ON(!list_empty(&tmp_links
));
816 /* Add @cset to the hash table */
817 key
= css_set_hash(cset
->subsys
);
818 hash_add(css_set_table
, &cset
->hlist
, key
);
820 for_each_subsys(ss
, ssid
)
821 list_add_tail(&cset
->e_cset_node
[ssid
],
822 &cset
->subsys
[ssid
]->cgroup
->e_csets
[ssid
]);
824 up_write(&css_set_rwsem
);
829 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
831 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
833 return root_cgrp
->root
;
836 static int cgroup_init_root_id(struct cgroup_root
*root
)
840 lockdep_assert_held(&cgroup_mutex
);
842 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
846 root
->hierarchy_id
= id
;
850 static void cgroup_exit_root_id(struct cgroup_root
*root
)
852 lockdep_assert_held(&cgroup_mutex
);
854 if (root
->hierarchy_id
) {
855 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
856 root
->hierarchy_id
= 0;
860 static void cgroup_free_root(struct cgroup_root
*root
)
863 /* hierarhcy ID shoulid already have been released */
864 WARN_ON_ONCE(root
->hierarchy_id
);
866 idr_destroy(&root
->cgroup_idr
);
871 static void cgroup_destroy_root(struct cgroup_root
*root
)
873 struct cgroup
*cgrp
= &root
->cgrp
;
874 struct cgrp_cset_link
*link
, *tmp_link
;
876 mutex_lock(&cgroup_mutex
);
878 BUG_ON(atomic_read(&root
->nr_cgrps
));
879 BUG_ON(!list_empty(&cgrp
->self
.children
));
881 /* Rebind all subsystems back to the default hierarchy */
882 rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
);
885 * Release all the links from cset_links to this hierarchy's
888 down_write(&css_set_rwsem
);
890 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
891 list_del(&link
->cset_link
);
892 list_del(&link
->cgrp_link
);
895 up_write(&css_set_rwsem
);
897 if (!list_empty(&root
->root_list
)) {
898 list_del(&root
->root_list
);
902 cgroup_exit_root_id(root
);
904 mutex_unlock(&cgroup_mutex
);
906 kernfs_destroy_root(root
->kf_root
);
907 cgroup_free_root(root
);
910 /* look up cgroup associated with given css_set on the specified hierarchy */
911 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
912 struct cgroup_root
*root
)
914 struct cgroup
*res
= NULL
;
916 lockdep_assert_held(&cgroup_mutex
);
917 lockdep_assert_held(&css_set_rwsem
);
919 if (cset
== &init_css_set
) {
922 struct cgrp_cset_link
*link
;
924 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
925 struct cgroup
*c
= link
->cgrp
;
927 if (c
->root
== root
) {
939 * Return the cgroup for "task" from the given hierarchy. Must be
940 * called with cgroup_mutex and css_set_rwsem held.
942 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
943 struct cgroup_root
*root
)
946 * No need to lock the task - since we hold cgroup_mutex the
947 * task can't change groups, so the only thing that can happen
948 * is that it exits and its css is set back to init_css_set.
950 return cset_cgroup_from_root(task_css_set(task
), root
);
954 * A task must hold cgroup_mutex to modify cgroups.
956 * Any task can increment and decrement the count field without lock.
957 * So in general, code holding cgroup_mutex can't rely on the count
958 * field not changing. However, if the count goes to zero, then only
959 * cgroup_attach_task() can increment it again. Because a count of zero
960 * means that no tasks are currently attached, therefore there is no
961 * way a task attached to that cgroup can fork (the other way to
962 * increment the count). So code holding cgroup_mutex can safely
963 * assume that if the count is zero, it will stay zero. Similarly, if
964 * a task holds cgroup_mutex on a cgroup with zero count, it
965 * knows that the cgroup won't be removed, as cgroup_rmdir()
968 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
969 * (usually) take cgroup_mutex. These are the two most performance
970 * critical pieces of code here. The exception occurs on cgroup_exit(),
971 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
972 * is taken, and if the cgroup count is zero, a usermode call made
973 * to the release agent with the name of the cgroup (path relative to
974 * the root of cgroup file system) as the argument.
976 * A cgroup can only be deleted if both its 'count' of using tasks
977 * is zero, and its list of 'children' cgroups is empty. Since all
978 * tasks in the system use _some_ cgroup, and since there is always at
979 * least one task in the system (init, pid == 1), therefore, root cgroup
980 * always has either children cgroups and/or using tasks. So we don't
981 * need a special hack to ensure that root cgroup cannot be deleted.
983 * P.S. One more locking exception. RCU is used to guard the
984 * update of a tasks cgroup pointer by cgroup_attach_task()
987 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
);
988 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
989 static const struct file_operations proc_cgroupstats_operations
;
991 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
994 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
995 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
996 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
997 cft
->ss
->name
, cft
->name
);
999 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1004 * cgroup_file_mode - deduce file mode of a control file
1005 * @cft: the control file in question
1007 * returns cft->mode if ->mode is not 0
1008 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1009 * returns S_IRUGO if it has only a read handler
1010 * returns S_IWUSR if it has only a write hander
1012 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1019 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1022 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
)
1028 static void cgroup_get(struct cgroup
*cgrp
)
1030 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
1031 css_get(&cgrp
->self
);
1034 static bool cgroup_tryget(struct cgroup
*cgrp
)
1036 return css_tryget(&cgrp
->self
);
1039 static void cgroup_put(struct cgroup
*cgrp
)
1041 css_put(&cgrp
->self
);
1045 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1046 * @kn: the kernfs_node being serviced
1048 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1049 * the method finishes if locking succeeded. Note that once this function
1050 * returns the cgroup returned by cgroup_kn_lock_live() may become
1051 * inaccessible any time. If the caller intends to continue to access the
1052 * cgroup, it should pin it before invoking this function.
1054 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1056 struct cgroup
*cgrp
;
1058 if (kernfs_type(kn
) == KERNFS_DIR
)
1061 cgrp
= kn
->parent
->priv
;
1063 mutex_unlock(&cgroup_mutex
);
1065 kernfs_unbreak_active_protection(kn
);
1070 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1071 * @kn: the kernfs_node being serviced
1073 * This helper is to be used by a cgroup kernfs method currently servicing
1074 * @kn. It breaks the active protection, performs cgroup locking and
1075 * verifies that the associated cgroup is alive. Returns the cgroup if
1076 * alive; otherwise, %NULL. A successful return should be undone by a
1077 * matching cgroup_kn_unlock() invocation.
1079 * Any cgroup kernfs method implementation which requires locking the
1080 * associated cgroup should use this helper. It avoids nesting cgroup
1081 * locking under kernfs active protection and allows all kernfs operations
1082 * including self-removal.
1084 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
)
1086 struct cgroup
*cgrp
;
1088 if (kernfs_type(kn
) == KERNFS_DIR
)
1091 cgrp
= kn
->parent
->priv
;
1094 * We're gonna grab cgroup_mutex which nests outside kernfs
1095 * active_ref. cgroup liveliness check alone provides enough
1096 * protection against removal. Ensure @cgrp stays accessible and
1097 * break the active_ref protection.
1099 if (!cgroup_tryget(cgrp
))
1101 kernfs_break_active_protection(kn
);
1103 mutex_lock(&cgroup_mutex
);
1105 if (!cgroup_is_dead(cgrp
))
1108 cgroup_kn_unlock(kn
);
1112 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1114 char name
[CGROUP_FILE_NAME_MAX
];
1116 lockdep_assert_held(&cgroup_mutex
);
1117 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1121 * cgroup_clear_dir - remove subsys files in a cgroup directory
1122 * @cgrp: target cgroup
1123 * @subsys_mask: mask of the subsystem ids whose files should be removed
1125 static void cgroup_clear_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
)
1127 struct cgroup_subsys
*ss
;
1130 for_each_subsys(ss
, i
) {
1131 struct cftype
*cfts
;
1133 if (!(subsys_mask
& (1 << i
)))
1135 list_for_each_entry(cfts
, &ss
->cfts
, node
)
1136 cgroup_addrm_files(cgrp
, cfts
, false);
1140 static int rebind_subsystems(struct cgroup_root
*dst_root
, unsigned int ss_mask
)
1142 struct cgroup_subsys
*ss
;
1143 unsigned int tmp_ss_mask
;
1146 lockdep_assert_held(&cgroup_mutex
);
1148 for_each_subsys(ss
, ssid
) {
1149 if (!(ss_mask
& (1 << ssid
)))
1152 /* if @ss has non-root csses attached to it, can't move */
1153 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)))
1156 /* can't move between two non-dummy roots either */
1157 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1161 /* skip creating root files on dfl_root for inhibited subsystems */
1162 tmp_ss_mask
= ss_mask
;
1163 if (dst_root
== &cgrp_dfl_root
)
1164 tmp_ss_mask
&= ~cgrp_dfl_root_inhibit_ss_mask
;
1166 ret
= cgroup_populate_dir(&dst_root
->cgrp
, tmp_ss_mask
);
1168 if (dst_root
!= &cgrp_dfl_root
)
1172 * Rebinding back to the default root is not allowed to
1173 * fail. Using both default and non-default roots should
1174 * be rare. Moving subsystems back and forth even more so.
1175 * Just warn about it and continue.
1177 if (cgrp_dfl_root_visible
) {
1178 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1180 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1185 * Nothing can fail from this point on. Remove files for the
1186 * removed subsystems and rebind each subsystem.
1188 for_each_subsys(ss
, ssid
)
1189 if (ss_mask
& (1 << ssid
))
1190 cgroup_clear_dir(&ss
->root
->cgrp
, 1 << ssid
);
1192 for_each_subsys(ss
, ssid
) {
1193 struct cgroup_root
*src_root
;
1194 struct cgroup_subsys_state
*css
;
1195 struct css_set
*cset
;
1197 if (!(ss_mask
& (1 << ssid
)))
1200 src_root
= ss
->root
;
1201 css
= cgroup_css(&src_root
->cgrp
, ss
);
1203 WARN_ON(!css
|| cgroup_css(&dst_root
->cgrp
, ss
));
1205 RCU_INIT_POINTER(src_root
->cgrp
.subsys
[ssid
], NULL
);
1206 rcu_assign_pointer(dst_root
->cgrp
.subsys
[ssid
], css
);
1207 ss
->root
= dst_root
;
1208 css
->cgroup
= &dst_root
->cgrp
;
1210 down_write(&css_set_rwsem
);
1211 hash_for_each(css_set_table
, i
, cset
, hlist
)
1212 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1213 &dst_root
->cgrp
.e_csets
[ss
->id
]);
1214 up_write(&css_set_rwsem
);
1216 src_root
->subsys_mask
&= ~(1 << ssid
);
1217 src_root
->cgrp
.child_subsys_mask
&= ~(1 << ssid
);
1219 /* default hierarchy doesn't enable controllers by default */
1220 dst_root
->subsys_mask
|= 1 << ssid
;
1221 if (dst_root
!= &cgrp_dfl_root
)
1222 dst_root
->cgrp
.child_subsys_mask
|= 1 << ssid
;
1228 kernfs_activate(dst_root
->cgrp
.kn
);
1232 static int cgroup_show_options(struct seq_file
*seq
,
1233 struct kernfs_root
*kf_root
)
1235 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1236 struct cgroup_subsys
*ss
;
1239 for_each_subsys(ss
, ssid
)
1240 if (root
->subsys_mask
& (1 << ssid
))
1241 seq_printf(seq
, ",%s", ss
->name
);
1242 if (root
->flags
& CGRP_ROOT_SANE_BEHAVIOR
)
1243 seq_puts(seq
, ",sane_behavior");
1244 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1245 seq_puts(seq
, ",noprefix");
1246 if (root
->flags
& CGRP_ROOT_XATTR
)
1247 seq_puts(seq
, ",xattr");
1249 spin_lock(&release_agent_path_lock
);
1250 if (strlen(root
->release_agent_path
))
1251 seq_show_option(seq
, "release_agent",
1252 root
->release_agent_path
);
1253 spin_unlock(&release_agent_path_lock
);
1255 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1256 seq_puts(seq
, ",clone_children");
1257 if (strlen(root
->name
))
1258 seq_show_option(seq
, "name", root
->name
);
1262 struct cgroup_sb_opts
{
1263 unsigned int subsys_mask
;
1265 char *release_agent
;
1266 bool cpuset_clone_children
;
1268 /* User explicitly requested empty subsystem */
1272 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1274 char *token
, *o
= data
;
1275 bool all_ss
= false, one_ss
= false;
1276 unsigned int mask
= -1U;
1277 struct cgroup_subsys
*ss
;
1280 #ifdef CONFIG_CPUSETS
1281 mask
= ~(1U << cpuset_cgrp_id
);
1284 memset(opts
, 0, sizeof(*opts
));
1286 while ((token
= strsep(&o
, ",")) != NULL
) {
1289 if (!strcmp(token
, "none")) {
1290 /* Explicitly have no subsystems */
1294 if (!strcmp(token
, "all")) {
1295 /* Mutually exclusive option 'all' + subsystem name */
1301 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1302 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1305 if (!strcmp(token
, "noprefix")) {
1306 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1309 if (!strcmp(token
, "clone_children")) {
1310 opts
->cpuset_clone_children
= true;
1313 if (!strcmp(token
, "xattr")) {
1314 opts
->flags
|= CGRP_ROOT_XATTR
;
1317 if (!strncmp(token
, "release_agent=", 14)) {
1318 /* Specifying two release agents is forbidden */
1319 if (opts
->release_agent
)
1321 opts
->release_agent
=
1322 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1323 if (!opts
->release_agent
)
1327 if (!strncmp(token
, "name=", 5)) {
1328 const char *name
= token
+ 5;
1329 /* Can't specify an empty name */
1332 /* Must match [\w.-]+ */
1333 for (i
= 0; i
< strlen(name
); i
++) {
1337 if ((c
== '.') || (c
== '-') || (c
== '_'))
1341 /* Specifying two names is forbidden */
1344 opts
->name
= kstrndup(name
,
1345 MAX_CGROUP_ROOT_NAMELEN
- 1,
1353 for_each_subsys(ss
, i
) {
1354 if (strcmp(token
, ss
->name
))
1359 /* Mutually exclusive option 'all' + subsystem name */
1362 opts
->subsys_mask
|= (1 << i
);
1367 if (i
== CGROUP_SUBSYS_COUNT
)
1371 /* Consistency checks */
1373 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1374 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1376 if ((opts
->flags
& (CGRP_ROOT_NOPREFIX
| CGRP_ROOT_XATTR
)) ||
1377 opts
->cpuset_clone_children
|| opts
->release_agent
||
1379 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
1384 * If the 'all' option was specified select all the
1385 * subsystems, otherwise if 'none', 'name=' and a subsystem
1386 * name options were not specified, let's default to 'all'
1388 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1389 for_each_subsys(ss
, i
)
1391 opts
->subsys_mask
|= (1 << i
);
1394 * We either have to specify by name or by subsystems. (So
1395 * all empty hierarchies must have a name).
1397 if (!opts
->subsys_mask
&& !opts
->name
)
1402 * Option noprefix was introduced just for backward compatibility
1403 * with the old cpuset, so we allow noprefix only if mounting just
1404 * the cpuset subsystem.
1406 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1410 /* Can't specify "none" and some subsystems */
1411 if (opts
->subsys_mask
&& opts
->none
)
1417 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1420 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1421 struct cgroup_sb_opts opts
;
1422 unsigned int added_mask
, removed_mask
;
1424 if (root
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1425 pr_err("sane_behavior: remount is not allowed\n");
1429 mutex_lock(&cgroup_mutex
);
1431 /* See what subsystems are wanted */
1432 ret
= parse_cgroupfs_options(data
, &opts
);
1436 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1437 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1438 task_tgid_nr(current
), current
->comm
);
1440 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1441 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1443 /* Don't allow flags or name to change at remount */
1444 if (((opts
.flags
^ root
->flags
) & CGRP_ROOT_OPTION_MASK
) ||
1445 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1446 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1447 opts
.flags
& CGRP_ROOT_OPTION_MASK
, opts
.name
?: "",
1448 root
->flags
& CGRP_ROOT_OPTION_MASK
, root
->name
);
1453 /* remounting is not allowed for populated hierarchies */
1454 if (!list_empty(&root
->cgrp
.self
.children
)) {
1459 ret
= rebind_subsystems(root
, added_mask
);
1463 rebind_subsystems(&cgrp_dfl_root
, removed_mask
);
1465 if (opts
.release_agent
) {
1466 spin_lock(&release_agent_path_lock
);
1467 strcpy(root
->release_agent_path
, opts
.release_agent
);
1468 spin_unlock(&release_agent_path_lock
);
1471 kfree(opts
.release_agent
);
1473 mutex_unlock(&cgroup_mutex
);
1478 * To reduce the fork() overhead for systems that are not actually using
1479 * their cgroups capability, we don't maintain the lists running through
1480 * each css_set to its tasks until we see the list actually used - in other
1481 * words after the first mount.
1483 static bool use_task_css_set_links __read_mostly
;
1485 static void cgroup_enable_task_cg_lists(void)
1487 struct task_struct
*p
, *g
;
1489 down_write(&css_set_rwsem
);
1491 if (use_task_css_set_links
)
1494 use_task_css_set_links
= true;
1497 * We need tasklist_lock because RCU is not safe against
1498 * while_each_thread(). Besides, a forking task that has passed
1499 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1500 * is not guaranteed to have its child immediately visible in the
1501 * tasklist if we walk through it with RCU.
1503 read_lock(&tasklist_lock
);
1504 do_each_thread(g
, p
) {
1505 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1506 task_css_set(p
) != &init_css_set
);
1509 * We should check if the process is exiting, otherwise
1510 * it will race with cgroup_exit() in that the list
1511 * entry won't be deleted though the process has exited.
1512 * Do it while holding siglock so that we don't end up
1513 * racing against cgroup_exit().
1515 spin_lock_irq(&p
->sighand
->siglock
);
1516 if (!(p
->flags
& PF_EXITING
)) {
1517 struct css_set
*cset
= task_css_set(p
);
1519 list_add(&p
->cg_list
, &cset
->tasks
);
1522 spin_unlock_irq(&p
->sighand
->siglock
);
1523 } while_each_thread(g
, p
);
1524 read_unlock(&tasklist_lock
);
1526 up_write(&css_set_rwsem
);
1529 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1531 struct cgroup_subsys
*ss
;
1534 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1535 INIT_LIST_HEAD(&cgrp
->self
.children
);
1536 INIT_LIST_HEAD(&cgrp
->cset_links
);
1537 INIT_LIST_HEAD(&cgrp
->release_list
);
1538 INIT_LIST_HEAD(&cgrp
->pidlists
);
1539 mutex_init(&cgrp
->pidlist_mutex
);
1540 cgrp
->self
.cgroup
= cgrp
;
1541 cgrp
->self
.flags
|= CSS_ONLINE
;
1543 for_each_subsys(ss
, ssid
)
1544 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1546 init_waitqueue_head(&cgrp
->offline_waitq
);
1549 static void init_cgroup_root(struct cgroup_root
*root
,
1550 struct cgroup_sb_opts
*opts
)
1552 struct cgroup
*cgrp
= &root
->cgrp
;
1554 INIT_LIST_HEAD(&root
->root_list
);
1555 atomic_set(&root
->nr_cgrps
, 1);
1557 init_cgroup_housekeeping(cgrp
);
1558 idr_init(&root
->cgroup_idr
);
1560 root
->flags
= opts
->flags
;
1561 if (opts
->release_agent
)
1562 strcpy(root
->release_agent_path
, opts
->release_agent
);
1564 strcpy(root
->name
, opts
->name
);
1565 if (opts
->cpuset_clone_children
)
1566 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1569 static int cgroup_setup_root(struct cgroup_root
*root
, unsigned int ss_mask
)
1571 LIST_HEAD(tmp_links
);
1572 struct cgroup
*root_cgrp
= &root
->cgrp
;
1573 struct css_set
*cset
;
1576 lockdep_assert_held(&cgroup_mutex
);
1578 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_NOWAIT
);
1581 root_cgrp
->id
= ret
;
1583 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
);
1588 * We're accessing css_set_count without locking css_set_rwsem here,
1589 * but that's OK - it can only be increased by someone holding
1590 * cgroup_lock, and that's us. The worst that can happen is that we
1591 * have some link structures left over
1593 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1597 ret
= cgroup_init_root_id(root
);
1601 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
1602 KERNFS_ROOT_CREATE_DEACTIVATED
,
1604 if (IS_ERR(root
->kf_root
)) {
1605 ret
= PTR_ERR(root
->kf_root
);
1608 root_cgrp
->kn
= root
->kf_root
->kn
;
1610 ret
= cgroup_addrm_files(root_cgrp
, cgroup_base_files
, true);
1614 ret
= rebind_subsystems(root
, ss_mask
);
1619 * There must be no failure case after here, since rebinding takes
1620 * care of subsystems' refcounts, which are explicitly dropped in
1621 * the failure exit path.
1623 list_add(&root
->root_list
, &cgroup_roots
);
1624 cgroup_root_count
++;
1627 * Link the root cgroup in this hierarchy into all the css_set
1630 down_write(&css_set_rwsem
);
1631 hash_for_each(css_set_table
, i
, cset
, hlist
)
1632 link_css_set(&tmp_links
, cset
, root_cgrp
);
1633 up_write(&css_set_rwsem
);
1635 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1636 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1638 kernfs_activate(root_cgrp
->kn
);
1643 kernfs_destroy_root(root
->kf_root
);
1644 root
->kf_root
= NULL
;
1646 cgroup_exit_root_id(root
);
1648 percpu_ref_cancel_init(&root_cgrp
->self
.refcnt
);
1650 free_cgrp_cset_links(&tmp_links
);
1654 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1655 int flags
, const char *unused_dev_name
,
1658 struct super_block
*pinned_sb
= NULL
;
1659 struct cgroup_subsys
*ss
;
1660 struct cgroup_root
*root
;
1661 struct cgroup_sb_opts opts
;
1662 struct dentry
*dentry
;
1668 * The first time anyone tries to mount a cgroup, enable the list
1669 * linking each css_set to its tasks and fix up all existing tasks.
1671 if (!use_task_css_set_links
)
1672 cgroup_enable_task_cg_lists();
1674 mutex_lock(&cgroup_mutex
);
1676 /* First find the desired set of subsystems */
1677 ret
= parse_cgroupfs_options(data
, &opts
);
1681 /* look for a matching existing root */
1682 if (!opts
.subsys_mask
&& !opts
.none
&& !opts
.name
) {
1683 cgrp_dfl_root_visible
= true;
1684 root
= &cgrp_dfl_root
;
1685 cgroup_get(&root
->cgrp
);
1691 * Destruction of cgroup root is asynchronous, so subsystems may
1692 * still be dying after the previous unmount. Let's drain the
1693 * dying subsystems. We just need to ensure that the ones
1694 * unmounted previously finish dying and don't care about new ones
1695 * starting. Testing ref liveliness is good enough.
1697 for_each_subsys(ss
, i
) {
1698 if (!(opts
.subsys_mask
& (1 << i
)) ||
1699 ss
->root
== &cgrp_dfl_root
)
1702 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
1703 mutex_unlock(&cgroup_mutex
);
1705 ret
= restart_syscall();
1708 cgroup_put(&ss
->root
->cgrp
);
1711 for_each_root(root
) {
1712 bool name_match
= false;
1714 if (root
== &cgrp_dfl_root
)
1718 * If we asked for a name then it must match. Also, if
1719 * name matches but sybsys_mask doesn't, we should fail.
1720 * Remember whether name matched.
1723 if (strcmp(opts
.name
, root
->name
))
1729 * If we asked for subsystems (or explicitly for no
1730 * subsystems) then they must match.
1732 if ((opts
.subsys_mask
|| opts
.none
) &&
1733 (opts
.subsys_mask
!= root
->subsys_mask
)) {
1740 if ((root
->flags
^ opts
.flags
) & CGRP_ROOT_OPTION_MASK
) {
1741 if ((root
->flags
| opts
.flags
) & CGRP_ROOT_SANE_BEHAVIOR
) {
1742 pr_err("sane_behavior: new mount options should match the existing superblock\n");
1746 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1751 * We want to reuse @root whose lifetime is governed by its
1752 * ->cgrp. Let's check whether @root is alive and keep it
1753 * that way. As cgroup_kill_sb() can happen anytime, we
1754 * want to block it by pinning the sb so that @root doesn't
1755 * get killed before mount is complete.
1757 * With the sb pinned, tryget_live can reliably indicate
1758 * whether @root can be reused. If it's being killed,
1759 * drain it. We can use wait_queue for the wait but this
1760 * path is super cold. Let's just sleep a bit and retry.
1762 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
1763 if (IS_ERR(pinned_sb
) ||
1764 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
1765 mutex_unlock(&cgroup_mutex
);
1766 if (!IS_ERR_OR_NULL(pinned_sb
))
1767 deactivate_super(pinned_sb
);
1769 ret
= restart_syscall();
1778 * No such thing, create a new one. name= matching without subsys
1779 * specification is allowed for already existing hierarchies but we
1780 * can't create new one without subsys specification.
1782 if (!opts
.subsys_mask
&& !opts
.none
) {
1787 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1793 init_cgroup_root(root
, &opts
);
1795 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
1797 cgroup_free_root(root
);
1800 mutex_unlock(&cgroup_mutex
);
1802 kfree(opts
.release_agent
);
1806 return ERR_PTR(ret
);
1808 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
1809 CGROUP_SUPER_MAGIC
, &new_sb
);
1810 if (IS_ERR(dentry
) || !new_sb
)
1811 cgroup_put(&root
->cgrp
);
1814 * If @pinned_sb, we're reusing an existing root and holding an
1815 * extra ref on its sb. Mount is complete. Put the extra ref.
1819 deactivate_super(pinned_sb
);
1825 static void cgroup_kill_sb(struct super_block
*sb
)
1827 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
1828 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1831 * If @root doesn't have any mounts or children, start killing it.
1832 * This prevents new mounts by disabling percpu_ref_tryget_live().
1833 * cgroup_mount() may wait for @root's release.
1835 * And don't kill the default root.
1837 if (css_has_online_children(&root
->cgrp
.self
) ||
1838 root
== &cgrp_dfl_root
)
1839 cgroup_put(&root
->cgrp
);
1841 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
1846 static struct file_system_type cgroup_fs_type
= {
1848 .mount
= cgroup_mount
,
1849 .kill_sb
= cgroup_kill_sb
,
1853 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1854 * @task: target task
1855 * @buf: the buffer to write the path into
1856 * @buflen: the length of the buffer
1858 * Determine @task's cgroup on the first (the one with the lowest non-zero
1859 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1860 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1861 * cgroup controller callbacks.
1863 * Return value is the same as kernfs_path().
1865 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
1867 struct cgroup_root
*root
;
1868 struct cgroup
*cgrp
;
1869 int hierarchy_id
= 1;
1872 mutex_lock(&cgroup_mutex
);
1873 down_read(&css_set_rwsem
);
1875 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
1878 cgrp
= task_cgroup_from_root(task
, root
);
1879 path
= cgroup_path(cgrp
, buf
, buflen
);
1881 /* if no hierarchy exists, everyone is in "/" */
1882 if (strlcpy(buf
, "/", buflen
) < buflen
)
1886 up_read(&css_set_rwsem
);
1887 mutex_unlock(&cgroup_mutex
);
1890 EXPORT_SYMBOL_GPL(task_cgroup_path
);
1892 /* used to track tasks and other necessary states during migration */
1893 struct cgroup_taskset
{
1894 /* the src and dst cset list running through cset->mg_node */
1895 struct list_head src_csets
;
1896 struct list_head dst_csets
;
1899 * Fields for cgroup_taskset_*() iteration.
1901 * Before migration is committed, the target migration tasks are on
1902 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1903 * the csets on ->dst_csets. ->csets point to either ->src_csets
1904 * or ->dst_csets depending on whether migration is committed.
1906 * ->cur_csets and ->cur_task point to the current task position
1909 struct list_head
*csets
;
1910 struct css_set
*cur_cset
;
1911 struct task_struct
*cur_task
;
1915 * cgroup_taskset_first - reset taskset and return the first task
1916 * @tset: taskset of interest
1918 * @tset iteration is initialized and the first task is returned.
1920 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
1922 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
1923 tset
->cur_task
= NULL
;
1925 return cgroup_taskset_next(tset
);
1929 * cgroup_taskset_next - iterate to the next task in taskset
1930 * @tset: taskset of interest
1932 * Return the next task in @tset. Iteration must have been initialized
1933 * with cgroup_taskset_first().
1935 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
1937 struct css_set
*cset
= tset
->cur_cset
;
1938 struct task_struct
*task
= tset
->cur_task
;
1940 while (&cset
->mg_node
!= tset
->csets
) {
1942 task
= list_first_entry(&cset
->mg_tasks
,
1943 struct task_struct
, cg_list
);
1945 task
= list_next_entry(task
, cg_list
);
1947 if (&task
->cg_list
!= &cset
->mg_tasks
) {
1948 tset
->cur_cset
= cset
;
1949 tset
->cur_task
= task
;
1953 cset
= list_next_entry(cset
, mg_node
);
1961 * cgroup_task_migrate - move a task from one cgroup to another.
1962 * @old_cgrp: the cgroup @tsk is being migrated from
1963 * @tsk: the task being migrated
1964 * @new_cset: the new css_set @tsk is being attached to
1966 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1968 static void cgroup_task_migrate(struct cgroup
*old_cgrp
,
1969 struct task_struct
*tsk
,
1970 struct css_set
*new_cset
)
1972 struct css_set
*old_cset
;
1974 lockdep_assert_held(&cgroup_mutex
);
1975 lockdep_assert_held(&css_set_rwsem
);
1978 * We are synchronized through threadgroup_lock() against PF_EXITING
1979 * setting such that we can't race against cgroup_exit() changing the
1980 * css_set to init_css_set and dropping the old one.
1982 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
1983 old_cset
= task_css_set(tsk
);
1985 get_css_set(new_cset
);
1986 rcu_assign_pointer(tsk
->cgroups
, new_cset
);
1989 * Use move_tail so that cgroup_taskset_first() still returns the
1990 * leader after migration. This works because cgroup_migrate()
1991 * ensures that the dst_cset of the leader is the first on the
1992 * tset's dst_csets list.
1994 list_move_tail(&tsk
->cg_list
, &new_cset
->mg_tasks
);
1997 * We just gained a reference on old_cset by taking it from the
1998 * task. As trading it for new_cset is protected by cgroup_mutex,
1999 * we're safe to drop it here; it will be freed under RCU.
2001 set_bit(CGRP_RELEASABLE
, &old_cgrp
->flags
);
2002 put_css_set_locked(old_cset
, false);
2006 * cgroup_migrate_finish - cleanup after attach
2007 * @preloaded_csets: list of preloaded css_sets
2009 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2010 * those functions for details.
2012 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2014 struct css_set
*cset
, *tmp_cset
;
2016 lockdep_assert_held(&cgroup_mutex
);
2018 down_write(&css_set_rwsem
);
2019 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2020 cset
->mg_src_cgrp
= NULL
;
2021 cset
->mg_dst_cset
= NULL
;
2022 list_del_init(&cset
->mg_preload_node
);
2023 put_css_set_locked(cset
, false);
2025 up_write(&css_set_rwsem
);
2029 * cgroup_migrate_add_src - add a migration source css_set
2030 * @src_cset: the source css_set to add
2031 * @dst_cgrp: the destination cgroup
2032 * @preloaded_csets: list of preloaded css_sets
2034 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2035 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2036 * up by cgroup_migrate_finish().
2038 * This function may be called without holding threadgroup_lock even if the
2039 * target is a process. Threads may be created and destroyed but as long
2040 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2041 * the preloaded css_sets are guaranteed to cover all migrations.
2043 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2044 struct cgroup
*dst_cgrp
,
2045 struct list_head
*preloaded_csets
)
2047 struct cgroup
*src_cgrp
;
2049 lockdep_assert_held(&cgroup_mutex
);
2050 lockdep_assert_held(&css_set_rwsem
);
2052 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2054 if (!list_empty(&src_cset
->mg_preload_node
))
2057 WARN_ON(src_cset
->mg_src_cgrp
);
2058 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2059 WARN_ON(!list_empty(&src_cset
->mg_node
));
2061 src_cset
->mg_src_cgrp
= src_cgrp
;
2062 get_css_set(src_cset
);
2063 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2067 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2068 * @dst_cgrp: the destination cgroup (may be %NULL)
2069 * @preloaded_csets: list of preloaded source css_sets
2071 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2072 * have been preloaded to @preloaded_csets. This function looks up and
2073 * pins all destination css_sets, links each to its source, and append them
2074 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2075 * source css_set is assumed to be its cgroup on the default hierarchy.
2077 * This function must be called after cgroup_migrate_add_src() has been
2078 * called on each migration source css_set. After migration is performed
2079 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2082 static int cgroup_migrate_prepare_dst(struct cgroup
*dst_cgrp
,
2083 struct list_head
*preloaded_csets
)
2086 struct css_set
*src_cset
, *tmp_cset
;
2088 lockdep_assert_held(&cgroup_mutex
);
2091 * Except for the root, child_subsys_mask must be zero for a cgroup
2092 * with tasks so that child cgroups don't compete against tasks.
2094 if (dst_cgrp
&& cgroup_on_dfl(dst_cgrp
) && cgroup_parent(dst_cgrp
) &&
2095 dst_cgrp
->child_subsys_mask
)
2098 /* look up the dst cset for each src cset and link it to src */
2099 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2100 struct css_set
*dst_cset
;
2102 dst_cset
= find_css_set(src_cset
,
2103 dst_cgrp
?: src_cset
->dfl_cgrp
);
2107 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2110 * If src cset equals dst, it's noop. Drop the src.
2111 * cgroup_migrate() will skip the cset too. Note that we
2112 * can't handle src == dst as some nodes are used by both.
2114 if (src_cset
== dst_cset
) {
2115 src_cset
->mg_src_cgrp
= NULL
;
2116 list_del_init(&src_cset
->mg_preload_node
);
2117 put_css_set(src_cset
, false);
2118 put_css_set(dst_cset
, false);
2122 src_cset
->mg_dst_cset
= dst_cset
;
2124 if (list_empty(&dst_cset
->mg_preload_node
))
2125 list_add(&dst_cset
->mg_preload_node
, &csets
);
2127 put_css_set(dst_cset
, false);
2130 list_splice_tail(&csets
, preloaded_csets
);
2133 cgroup_migrate_finish(&csets
);
2138 * cgroup_migrate - migrate a process or task to a cgroup
2139 * @cgrp: the destination cgroup
2140 * @leader: the leader of the process or the task to migrate
2141 * @threadgroup: whether @leader points to the whole process or a single task
2143 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2144 * process, the caller must be holding threadgroup_lock of @leader. The
2145 * caller is also responsible for invoking cgroup_migrate_add_src() and
2146 * cgroup_migrate_prepare_dst() on the targets before invoking this
2147 * function and following up with cgroup_migrate_finish().
2149 * As long as a controller's ->can_attach() doesn't fail, this function is
2150 * guaranteed to succeed. This means that, excluding ->can_attach()
2151 * failure, when migrating multiple targets, the success or failure can be
2152 * decided for all targets by invoking group_migrate_prepare_dst() before
2153 * actually starting migrating.
2155 static int cgroup_migrate(struct cgroup
*cgrp
, struct task_struct
*leader
,
2158 struct cgroup_taskset tset
= {
2159 .src_csets
= LIST_HEAD_INIT(tset
.src_csets
),
2160 .dst_csets
= LIST_HEAD_INIT(tset
.dst_csets
),
2161 .csets
= &tset
.src_csets
,
2163 struct cgroup_subsys_state
*css
, *failed_css
= NULL
;
2164 struct css_set
*cset
, *tmp_cset
;
2165 struct task_struct
*task
, *tmp_task
;
2169 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2170 * already PF_EXITING could be freed from underneath us unless we
2171 * take an rcu_read_lock.
2173 down_write(&css_set_rwsem
);
2177 /* @task either already exited or can't exit until the end */
2178 if (task
->flags
& PF_EXITING
)
2181 /* leave @task alone if post_fork() hasn't linked it yet */
2182 if (list_empty(&task
->cg_list
))
2185 cset
= task_css_set(task
);
2186 if (!cset
->mg_src_cgrp
)
2190 * cgroup_taskset_first() must always return the leader.
2191 * Take care to avoid disturbing the ordering.
2193 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2194 if (list_empty(&cset
->mg_node
))
2195 list_add_tail(&cset
->mg_node
, &tset
.src_csets
);
2196 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2197 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2202 } while_each_thread(leader
, task
);
2204 up_write(&css_set_rwsem
);
2206 /* methods shouldn't be called if no task is actually migrating */
2207 if (list_empty(&tset
.src_csets
))
2210 /* check that we can legitimately attach to the cgroup */
2211 for_each_e_css(css
, i
, cgrp
) {
2212 if (css
->ss
->can_attach
) {
2213 ret
= css
->ss
->can_attach(css
, &tset
);
2216 goto out_cancel_attach
;
2222 * Now that we're guaranteed success, proceed to move all tasks to
2223 * the new cgroup. There are no failure cases after here, so this
2224 * is the commit point.
2226 down_write(&css_set_rwsem
);
2227 list_for_each_entry(cset
, &tset
.src_csets
, mg_node
) {
2228 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
)
2229 cgroup_task_migrate(cset
->mg_src_cgrp
, task
,
2232 up_write(&css_set_rwsem
);
2235 * Migration is committed, all target tasks are now on dst_csets.
2236 * Nothing is sensitive to fork() after this point. Notify
2237 * controllers that migration is complete.
2239 tset
.csets
= &tset
.dst_csets
;
2241 for_each_e_css(css
, i
, cgrp
)
2242 if (css
->ss
->attach
)
2243 css
->ss
->attach(css
, &tset
);
2246 goto out_release_tset
;
2249 for_each_e_css(css
, i
, cgrp
) {
2250 if (css
== failed_css
)
2252 if (css
->ss
->cancel_attach
)
2253 css
->ss
->cancel_attach(css
, &tset
);
2256 down_write(&css_set_rwsem
);
2257 list_splice_init(&tset
.dst_csets
, &tset
.src_csets
);
2258 list_for_each_entry_safe(cset
, tmp_cset
, &tset
.src_csets
, mg_node
) {
2259 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2260 list_del_init(&cset
->mg_node
);
2262 up_write(&css_set_rwsem
);
2267 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2268 * @dst_cgrp: the cgroup to attach to
2269 * @leader: the task or the leader of the threadgroup to be attached
2270 * @threadgroup: attach the whole threadgroup?
2272 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2274 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2275 struct task_struct
*leader
, bool threadgroup
)
2277 LIST_HEAD(preloaded_csets
);
2278 struct task_struct
*task
;
2281 /* look up all src csets */
2282 down_read(&css_set_rwsem
);
2286 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2290 } while_each_thread(leader
, task
);
2292 up_read(&css_set_rwsem
);
2294 /* prepare dst csets and commit */
2295 ret
= cgroup_migrate_prepare_dst(dst_cgrp
, &preloaded_csets
);
2297 ret
= cgroup_migrate(dst_cgrp
, leader
, threadgroup
);
2299 cgroup_migrate_finish(&preloaded_csets
);
2304 * Find the task_struct of the task to attach by vpid and pass it along to the
2305 * function to attach either it or all tasks in its threadgroup. Will lock
2306 * cgroup_mutex and threadgroup.
2308 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2309 size_t nbytes
, loff_t off
, bool threadgroup
)
2311 struct task_struct
*tsk
;
2312 const struct cred
*cred
= current_cred(), *tcred
;
2313 struct cgroup
*cgrp
;
2317 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2320 cgrp
= cgroup_kn_lock_live(of
->kn
);
2327 tsk
= find_task_by_vpid(pid
);
2331 goto out_unlock_cgroup
;
2334 * even if we're attaching all tasks in the thread group, we
2335 * only need to check permissions on one of them.
2337 tcred
= __task_cred(tsk
);
2338 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2339 !uid_eq(cred
->euid
, tcred
->uid
) &&
2340 !uid_eq(cred
->euid
, tcred
->suid
)) {
2343 goto out_unlock_cgroup
;
2349 tsk
= tsk
->group_leader
;
2352 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2353 * trapped in a cpuset, or RT worker may be born in a cgroup
2354 * with no rt_runtime allocated. Just say no.
2356 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2359 goto out_unlock_cgroup
;
2362 get_task_struct(tsk
);
2365 threadgroup_lock(tsk
);
2367 if (!thread_group_leader(tsk
)) {
2369 * a race with de_thread from another thread's exec()
2370 * may strip us of our leadership, if this happens,
2371 * there is no choice but to throw this task away and
2372 * try again; this is
2373 * "double-double-toil-and-trouble-check locking".
2375 threadgroup_unlock(tsk
);
2376 put_task_struct(tsk
);
2377 goto retry_find_task
;
2381 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2383 threadgroup_unlock(tsk
);
2385 put_task_struct(tsk
);
2387 cgroup_kn_unlock(of
->kn
);
2388 return ret
?: nbytes
;
2392 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2393 * @from: attach to all cgroups of a given task
2394 * @tsk: the task to be attached
2396 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2398 struct cgroup_root
*root
;
2401 mutex_lock(&cgroup_mutex
);
2402 for_each_root(root
) {
2403 struct cgroup
*from_cgrp
;
2405 if (root
== &cgrp_dfl_root
)
2408 down_read(&css_set_rwsem
);
2409 from_cgrp
= task_cgroup_from_root(from
, root
);
2410 up_read(&css_set_rwsem
);
2412 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2416 mutex_unlock(&cgroup_mutex
);
2420 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2422 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2423 char *buf
, size_t nbytes
, loff_t off
)
2425 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2428 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2429 char *buf
, size_t nbytes
, loff_t off
)
2431 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2434 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2435 char *buf
, size_t nbytes
, loff_t off
)
2437 struct cgroup
*cgrp
;
2439 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2441 cgrp
= cgroup_kn_lock_live(of
->kn
);
2444 spin_lock(&release_agent_path_lock
);
2445 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
2446 sizeof(cgrp
->root
->release_agent_path
));
2447 spin_unlock(&release_agent_path_lock
);
2448 cgroup_kn_unlock(of
->kn
);
2452 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
2454 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2456 spin_lock(&release_agent_path_lock
);
2457 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2458 spin_unlock(&release_agent_path_lock
);
2459 seq_putc(seq
, '\n');
2463 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
2465 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2467 seq_printf(seq
, "%d\n", cgroup_sane_behavior(cgrp
));
2471 static void cgroup_print_ss_mask(struct seq_file
*seq
, unsigned int ss_mask
)
2473 struct cgroup_subsys
*ss
;
2474 bool printed
= false;
2477 for_each_subsys(ss
, ssid
) {
2478 if (ss_mask
& (1 << ssid
)) {
2481 seq_printf(seq
, "%s", ss
->name
);
2486 seq_putc(seq
, '\n');
2489 /* show controllers which are currently attached to the default hierarchy */
2490 static int cgroup_root_controllers_show(struct seq_file
*seq
, void *v
)
2492 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2494 cgroup_print_ss_mask(seq
, cgrp
->root
->subsys_mask
&
2495 ~cgrp_dfl_root_inhibit_ss_mask
);
2499 /* show controllers which are enabled from the parent */
2500 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2502 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2504 cgroup_print_ss_mask(seq
, cgroup_parent(cgrp
)->child_subsys_mask
);
2508 /* show controllers which are enabled for a given cgroup's children */
2509 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2511 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2513 cgroup_print_ss_mask(seq
, cgrp
->child_subsys_mask
);
2518 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2519 * @cgrp: root of the subtree to update csses for
2521 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2522 * css associations need to be updated accordingly. This function looks up
2523 * all css_sets which are attached to the subtree, creates the matching
2524 * updated css_sets and migrates the tasks to the new ones.
2526 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2528 LIST_HEAD(preloaded_csets
);
2529 struct cgroup_subsys_state
*css
;
2530 struct css_set
*src_cset
;
2533 lockdep_assert_held(&cgroup_mutex
);
2535 /* look up all csses currently attached to @cgrp's subtree */
2536 down_read(&css_set_rwsem
);
2537 css_for_each_descendant_pre(css
, cgroup_css(cgrp
, NULL
)) {
2538 struct cgrp_cset_link
*link
;
2540 /* self is not affected by child_subsys_mask change */
2541 if (css
->cgroup
== cgrp
)
2544 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
)
2545 cgroup_migrate_add_src(link
->cset
, cgrp
,
2548 up_read(&css_set_rwsem
);
2550 /* NULL dst indicates self on default hierarchy */
2551 ret
= cgroup_migrate_prepare_dst(NULL
, &preloaded_csets
);
2555 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
2556 struct task_struct
*last_task
= NULL
, *task
;
2558 /* src_csets precede dst_csets, break on the first dst_cset */
2559 if (!src_cset
->mg_src_cgrp
)
2563 * All tasks in src_cset need to be migrated to the
2564 * matching dst_cset. Empty it process by process. We
2565 * walk tasks but migrate processes. The leader might even
2566 * belong to a different cset but such src_cset would also
2567 * be among the target src_csets because the default
2568 * hierarchy enforces per-process membership.
2571 down_read(&css_set_rwsem
);
2572 task
= list_first_entry_or_null(&src_cset
->tasks
,
2573 struct task_struct
, cg_list
);
2575 task
= task
->group_leader
;
2576 WARN_ON_ONCE(!task_css_set(task
)->mg_src_cgrp
);
2577 get_task_struct(task
);
2579 up_read(&css_set_rwsem
);
2584 /* guard against possible infinite loop */
2585 if (WARN(last_task
== task
,
2586 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2590 threadgroup_lock(task
);
2591 /* raced against de_thread() from another thread? */
2592 if (!thread_group_leader(task
)) {
2593 threadgroup_unlock(task
);
2594 put_task_struct(task
);
2598 ret
= cgroup_migrate(src_cset
->dfl_cgrp
, task
, true);
2600 threadgroup_unlock(task
);
2601 put_task_struct(task
);
2603 if (WARN(ret
, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret
))
2609 cgroup_migrate_finish(&preloaded_csets
);
2613 /* change the enabled child controllers for a cgroup in the default hierarchy */
2614 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
2615 char *buf
, size_t nbytes
,
2618 unsigned int enable
= 0, disable
= 0;
2619 struct cgroup
*cgrp
, *child
;
2620 struct cgroup_subsys
*ss
;
2625 * Parse input - space separated list of subsystem names prefixed
2626 * with either + or -.
2628 buf
= strstrip(buf
);
2629 while ((tok
= strsep(&buf
, " "))) {
2632 for_each_subsys(ss
, ssid
) {
2633 if (ss
->disabled
|| strcmp(tok
+ 1, ss
->name
) ||
2634 ((1 << ss
->id
) & cgrp_dfl_root_inhibit_ss_mask
))
2638 enable
|= 1 << ssid
;
2639 disable
&= ~(1 << ssid
);
2640 } else if (*tok
== '-') {
2641 disable
|= 1 << ssid
;
2642 enable
&= ~(1 << ssid
);
2648 if (ssid
== CGROUP_SUBSYS_COUNT
)
2652 cgrp
= cgroup_kn_lock_live(of
->kn
);
2656 for_each_subsys(ss
, ssid
) {
2657 if (enable
& (1 << ssid
)) {
2658 if (cgrp
->child_subsys_mask
& (1 << ssid
)) {
2659 enable
&= ~(1 << ssid
);
2664 * Because css offlining is asynchronous, userland
2665 * might try to re-enable the same controller while
2666 * the previous instance is still around. In such
2667 * cases, wait till it's gone using offline_waitq.
2669 cgroup_for_each_live_child(child
, cgrp
) {
2672 if (!cgroup_css(child
, ss
))
2676 prepare_to_wait(&child
->offline_waitq
, &wait
,
2677 TASK_UNINTERRUPTIBLE
);
2678 cgroup_kn_unlock(of
->kn
);
2680 finish_wait(&child
->offline_waitq
, &wait
);
2683 return restart_syscall();
2686 /* unavailable or not enabled on the parent? */
2687 if (!(cgrp_dfl_root
.subsys_mask
& (1 << ssid
)) ||
2688 (cgroup_parent(cgrp
) &&
2689 !(cgroup_parent(cgrp
)->child_subsys_mask
& (1 << ssid
)))) {
2693 } else if (disable
& (1 << ssid
)) {
2694 if (!(cgrp
->child_subsys_mask
& (1 << ssid
))) {
2695 disable
&= ~(1 << ssid
);
2699 /* a child has it enabled? */
2700 cgroup_for_each_live_child(child
, cgrp
) {
2701 if (child
->child_subsys_mask
& (1 << ssid
)) {
2709 if (!enable
&& !disable
) {
2715 * Except for the root, child_subsys_mask must be zero for a cgroup
2716 * with tasks so that child cgroups don't compete against tasks.
2718 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
2724 * Create csses for enables and update child_subsys_mask. This
2725 * changes cgroup_e_css() results which in turn makes the
2726 * subsequent cgroup_update_dfl_csses() associate all tasks in the
2727 * subtree to the updated csses.
2729 for_each_subsys(ss
, ssid
) {
2730 if (!(enable
& (1 << ssid
)))
2733 cgroup_for_each_live_child(child
, cgrp
) {
2734 ret
= create_css(child
, ss
);
2740 cgrp
->child_subsys_mask
|= enable
;
2741 cgrp
->child_subsys_mask
&= ~disable
;
2743 ret
= cgroup_update_dfl_csses(cgrp
);
2747 /* all tasks are now migrated away from the old csses, kill them */
2748 for_each_subsys(ss
, ssid
) {
2749 if (!(disable
& (1 << ssid
)))
2752 cgroup_for_each_live_child(child
, cgrp
)
2753 kill_css(cgroup_css(child
, ss
));
2756 kernfs_activate(cgrp
->kn
);
2759 cgroup_kn_unlock(of
->kn
);
2760 return ret
?: nbytes
;
2763 cgrp
->child_subsys_mask
&= ~enable
;
2764 cgrp
->child_subsys_mask
|= disable
;
2766 for_each_subsys(ss
, ssid
) {
2767 if (!(enable
& (1 << ssid
)))
2770 cgroup_for_each_live_child(child
, cgrp
) {
2771 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
2779 static int cgroup_populated_show(struct seq_file
*seq
, void *v
)
2781 seq_printf(seq
, "%d\n", (bool)seq_css(seq
)->cgroup
->populated_cnt
);
2785 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
2786 size_t nbytes
, loff_t off
)
2788 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
2789 struct cftype
*cft
= of
->kn
->priv
;
2790 struct cgroup_subsys_state
*css
;
2794 return cft
->write(of
, buf
, nbytes
, off
);
2797 * kernfs guarantees that a file isn't deleted with operations in
2798 * flight, which means that the matching css is and stays alive and
2799 * doesn't need to be pinned. The RCU locking is not necessary
2800 * either. It's just for the convenience of using cgroup_css().
2803 css
= cgroup_css(cgrp
, cft
->ss
);
2806 if (cft
->write_u64
) {
2807 unsigned long long v
;
2808 ret
= kstrtoull(buf
, 0, &v
);
2810 ret
= cft
->write_u64(css
, cft
, v
);
2811 } else if (cft
->write_s64
) {
2813 ret
= kstrtoll(buf
, 0, &v
);
2815 ret
= cft
->write_s64(css
, cft
, v
);
2820 return ret
?: nbytes
;
2823 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
2825 return seq_cft(seq
)->seq_start(seq
, ppos
);
2828 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
2830 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
2833 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
2835 seq_cft(seq
)->seq_stop(seq
, v
);
2838 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2840 struct cftype
*cft
= seq_cft(m
);
2841 struct cgroup_subsys_state
*css
= seq_css(m
);
2844 return cft
->seq_show(m
, arg
);
2847 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
2848 else if (cft
->read_s64
)
2849 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
2855 static struct kernfs_ops cgroup_kf_single_ops
= {
2856 .atomic_write_len
= PAGE_SIZE
,
2857 .write
= cgroup_file_write
,
2858 .seq_show
= cgroup_seqfile_show
,
2861 static struct kernfs_ops cgroup_kf_ops
= {
2862 .atomic_write_len
= PAGE_SIZE
,
2863 .write
= cgroup_file_write
,
2864 .seq_start
= cgroup_seqfile_start
,
2865 .seq_next
= cgroup_seqfile_next
,
2866 .seq_stop
= cgroup_seqfile_stop
,
2867 .seq_show
= cgroup_seqfile_show
,
2871 * cgroup_rename - Only allow simple rename of directories in place.
2873 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
2874 const char *new_name_str
)
2876 struct cgroup
*cgrp
= kn
->priv
;
2879 if (kernfs_type(kn
) != KERNFS_DIR
)
2881 if (kn
->parent
!= new_parent
)
2885 * This isn't a proper migration and its usefulness is very
2886 * limited. Disallow if sane_behavior.
2888 if (cgroup_sane_behavior(cgrp
))
2892 * We're gonna grab cgroup_mutex which nests outside kernfs
2893 * active_ref. kernfs_rename() doesn't require active_ref
2894 * protection. Break them before grabbing cgroup_mutex.
2896 kernfs_break_active_protection(new_parent
);
2897 kernfs_break_active_protection(kn
);
2899 mutex_lock(&cgroup_mutex
);
2901 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
2903 mutex_unlock(&cgroup_mutex
);
2905 kernfs_unbreak_active_protection(kn
);
2906 kernfs_unbreak_active_protection(new_parent
);
2910 /* set uid and gid of cgroup dirs and files to that of the creator */
2911 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
2913 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
2914 .ia_uid
= current_fsuid(),
2915 .ia_gid
= current_fsgid(), };
2917 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
2918 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
2921 return kernfs_setattr(kn
, &iattr
);
2924 static int cgroup_add_file(struct cgroup
*cgrp
, struct cftype
*cft
)
2926 char name
[CGROUP_FILE_NAME_MAX
];
2927 struct kernfs_node
*kn
;
2928 struct lock_class_key
*key
= NULL
;
2931 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2932 key
= &cft
->lockdep_key
;
2934 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
2935 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
2940 ret
= cgroup_kn_set_ugid(kn
);
2946 if (cft
->seq_show
== cgroup_populated_show
)
2947 cgrp
->populated_kn
= kn
;
2952 * cgroup_addrm_files - add or remove files to a cgroup directory
2953 * @cgrp: the target cgroup
2954 * @cfts: array of cftypes to be added
2955 * @is_add: whether to add or remove
2957 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2958 * For removals, this function never fails. If addition fails, this
2959 * function doesn't remove files already added. The caller is responsible
2962 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
2968 lockdep_assert_held(&cgroup_mutex
);
2970 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
2971 /* does cft->flags tell us to skip this file on @cgrp? */
2972 if ((cft
->flags
& CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
2974 if ((cft
->flags
& CFTYPE_INSANE
) && cgroup_sane_behavior(cgrp
))
2976 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
2978 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
2982 ret
= cgroup_add_file(cgrp
, cft
);
2984 pr_warn("%s: failed to add %s, err=%d\n",
2985 __func__
, cft
->name
, ret
);
2989 cgroup_rm_file(cgrp
, cft
);
2995 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
2998 struct cgroup_subsys
*ss
= cfts
[0].ss
;
2999 struct cgroup
*root
= &ss
->root
->cgrp
;
3000 struct cgroup_subsys_state
*css
;
3003 lockdep_assert_held(&cgroup_mutex
);
3005 /* add/rm files for all cgroups created before */
3006 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3007 struct cgroup
*cgrp
= css
->cgroup
;
3009 if (cgroup_is_dead(cgrp
))
3012 ret
= cgroup_addrm_files(cgrp
, cfts
, is_add
);
3018 kernfs_activate(root
->kn
);
3022 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3026 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3027 /* free copy for custom atomic_write_len, see init_cftypes() */
3028 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3035 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3039 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3040 struct kernfs_ops
*kf_ops
;
3042 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3045 kf_ops
= &cgroup_kf_ops
;
3047 kf_ops
= &cgroup_kf_single_ops
;
3050 * Ugh... if @cft wants a custom max_write_len, we need to
3051 * make a copy of kf_ops to set its atomic_write_len.
3053 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3054 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3056 cgroup_exit_cftypes(cfts
);
3059 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3062 cft
->kf_ops
= kf_ops
;
3069 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3071 lockdep_assert_held(&cgroup_mutex
);
3073 if (!cfts
|| !cfts
[0].ss
)
3076 list_del(&cfts
->node
);
3077 cgroup_apply_cftypes(cfts
, false);
3078 cgroup_exit_cftypes(cfts
);
3083 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3084 * @cfts: zero-length name terminated array of cftypes
3086 * Unregister @cfts. Files described by @cfts are removed from all
3087 * existing cgroups and all future cgroups won't have them either. This
3088 * function can be called anytime whether @cfts' subsys is attached or not.
3090 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3093 int cgroup_rm_cftypes(struct cftype
*cfts
)
3097 mutex_lock(&cgroup_mutex
);
3098 ret
= cgroup_rm_cftypes_locked(cfts
);
3099 mutex_unlock(&cgroup_mutex
);
3104 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3105 * @ss: target cgroup subsystem
3106 * @cfts: zero-length name terminated array of cftypes
3108 * Register @cfts to @ss. Files described by @cfts are created for all
3109 * existing cgroups to which @ss is attached and all future cgroups will
3110 * have them too. This function can be called anytime whether @ss is
3113 * Returns 0 on successful registration, -errno on failure. Note that this
3114 * function currently returns 0 as long as @cfts registration is successful
3115 * even if some file creation attempts on existing cgroups fail.
3117 int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3124 if (!cfts
|| cfts
[0].name
[0] == '\0')
3127 ret
= cgroup_init_cftypes(ss
, cfts
);
3131 mutex_lock(&cgroup_mutex
);
3133 list_add_tail(&cfts
->node
, &ss
->cfts
);
3134 ret
= cgroup_apply_cftypes(cfts
, true);
3136 cgroup_rm_cftypes_locked(cfts
);
3138 mutex_unlock(&cgroup_mutex
);
3143 * cgroup_task_count - count the number of tasks in a cgroup.
3144 * @cgrp: the cgroup in question
3146 * Return the number of tasks in the cgroup.
3148 static int cgroup_task_count(const struct cgroup
*cgrp
)
3151 struct cgrp_cset_link
*link
;
3153 down_read(&css_set_rwsem
);
3154 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3155 count
+= atomic_read(&link
->cset
->refcount
);
3156 up_read(&css_set_rwsem
);
3161 * css_next_child - find the next child of a given css
3162 * @pos: the current position (%NULL to initiate traversal)
3163 * @parent: css whose children to walk
3165 * This function returns the next child of @parent and should be called
3166 * under either cgroup_mutex or RCU read lock. The only requirement is
3167 * that @parent and @pos are accessible. The next sibling is guaranteed to
3168 * be returned regardless of their states.
3170 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3171 * css which finished ->css_online() is guaranteed to be visible in the
3172 * future iterations and will stay visible until the last reference is put.
3173 * A css which hasn't finished ->css_online() or already finished
3174 * ->css_offline() may show up during traversal. It's each subsystem's
3175 * responsibility to synchronize against on/offlining.
3177 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3178 struct cgroup_subsys_state
*parent
)
3180 struct cgroup_subsys_state
*next
;
3182 cgroup_assert_mutex_or_rcu_locked();
3185 * @pos could already have been unlinked from the sibling list.
3186 * Once a cgroup is removed, its ->sibling.next is no longer
3187 * updated when its next sibling changes. CSS_RELEASED is set when
3188 * @pos is taken off list, at which time its next pointer is valid,
3189 * and, as releases are serialized, the one pointed to by the next
3190 * pointer is guaranteed to not have started release yet. This
3191 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3192 * critical section, the one pointed to by its next pointer is
3193 * guaranteed to not have finished its RCU grace period even if we
3194 * have dropped rcu_read_lock() inbetween iterations.
3196 * If @pos has CSS_RELEASED set, its next pointer can't be
3197 * dereferenced; however, as each css is given a monotonically
3198 * increasing unique serial number and always appended to the
3199 * sibling list, the next one can be found by walking the parent's
3200 * children until the first css with higher serial number than
3201 * @pos's. While this path can be slower, it happens iff iteration
3202 * races against release and the race window is very small.
3205 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3206 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3207 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3209 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3210 if (next
->serial_nr
> pos
->serial_nr
)
3215 * @next, if not pointing to the head, can be dereferenced and is
3218 if (&next
->sibling
!= &parent
->children
)
3224 * css_next_descendant_pre - find the next descendant for pre-order walk
3225 * @pos: the current position (%NULL to initiate traversal)
3226 * @root: css whose descendants to walk
3228 * To be used by css_for_each_descendant_pre(). Find the next descendant
3229 * to visit for pre-order traversal of @root's descendants. @root is
3230 * included in the iteration and the first node to be visited.
3232 * While this function requires cgroup_mutex or RCU read locking, it
3233 * doesn't require the whole traversal to be contained in a single critical
3234 * section. This function will return the correct next descendant as long
3235 * as both @pos and @root are accessible and @pos is a descendant of @root.
3237 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3238 * css which finished ->css_online() is guaranteed to be visible in the
3239 * future iterations and will stay visible until the last reference is put.
3240 * A css which hasn't finished ->css_online() or already finished
3241 * ->css_offline() may show up during traversal. It's each subsystem's
3242 * responsibility to synchronize against on/offlining.
3244 struct cgroup_subsys_state
*
3245 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3246 struct cgroup_subsys_state
*root
)
3248 struct cgroup_subsys_state
*next
;
3250 cgroup_assert_mutex_or_rcu_locked();
3252 /* if first iteration, visit @root */
3256 /* visit the first child if exists */
3257 next
= css_next_child(NULL
, pos
);
3261 /* no child, visit my or the closest ancestor's next sibling */
3262 while (pos
!= root
) {
3263 next
= css_next_child(pos
, pos
->parent
);
3273 * css_rightmost_descendant - return the rightmost descendant of a css
3274 * @pos: css of interest
3276 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3277 * is returned. This can be used during pre-order traversal to skip
3280 * While this function requires cgroup_mutex or RCU read locking, it
3281 * doesn't require the whole traversal to be contained in a single critical
3282 * section. This function will return the correct rightmost descendant as
3283 * long as @pos is accessible.
3285 struct cgroup_subsys_state
*
3286 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3288 struct cgroup_subsys_state
*last
, *tmp
;
3290 cgroup_assert_mutex_or_rcu_locked();
3294 /* ->prev isn't RCU safe, walk ->next till the end */
3296 css_for_each_child(tmp
, last
)
3303 static struct cgroup_subsys_state
*
3304 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3306 struct cgroup_subsys_state
*last
;
3310 pos
= css_next_child(NULL
, pos
);
3317 * css_next_descendant_post - find the next descendant for post-order walk
3318 * @pos: the current position (%NULL to initiate traversal)
3319 * @root: css whose descendants to walk
3321 * To be used by css_for_each_descendant_post(). Find the next descendant
3322 * to visit for post-order traversal of @root's descendants. @root is
3323 * included in the iteration and the last node to be visited.
3325 * While this function requires cgroup_mutex or RCU read locking, it
3326 * doesn't require the whole traversal to be contained in a single critical
3327 * section. This function will return the correct next descendant as long
3328 * as both @pos and @cgroup are accessible and @pos is a descendant of
3331 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3332 * css which finished ->css_online() is guaranteed to be visible in the
3333 * future iterations and will stay visible until the last reference is put.
3334 * A css which hasn't finished ->css_online() or already finished
3335 * ->css_offline() may show up during traversal. It's each subsystem's
3336 * responsibility to synchronize against on/offlining.
3338 struct cgroup_subsys_state
*
3339 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3340 struct cgroup_subsys_state
*root
)
3342 struct cgroup_subsys_state
*next
;
3344 cgroup_assert_mutex_or_rcu_locked();
3346 /* if first iteration, visit leftmost descendant which may be @root */
3348 return css_leftmost_descendant(root
);
3350 /* if we visited @root, we're done */
3354 /* if there's an unvisited sibling, visit its leftmost descendant */
3355 next
= css_next_child(pos
, pos
->parent
);
3357 return css_leftmost_descendant(next
);
3359 /* no sibling left, visit parent */
3364 * css_has_online_children - does a css have online children
3365 * @css: the target css
3367 * Returns %true if @css has any online children; otherwise, %false. This
3368 * function can be called from any context but the caller is responsible
3369 * for synchronizing against on/offlining as necessary.
3371 bool css_has_online_children(struct cgroup_subsys_state
*css
)
3373 struct cgroup_subsys_state
*child
;
3377 css_for_each_child(child
, css
) {
3378 if (child
->flags
& CSS_ONLINE
) {
3388 * css_advance_task_iter - advance a task itererator to the next css_set
3389 * @it: the iterator to advance
3391 * Advance @it to the next css_set to walk.
3393 static void css_advance_task_iter(struct css_task_iter
*it
)
3395 struct list_head
*l
= it
->cset_pos
;
3396 struct cgrp_cset_link
*link
;
3397 struct css_set
*cset
;
3399 /* Advance to the next non-empty css_set */
3402 if (l
== it
->cset_head
) {
3403 it
->cset_pos
= NULL
;
3408 cset
= container_of(l
, struct css_set
,
3409 e_cset_node
[it
->ss
->id
]);
3411 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3414 } while (list_empty(&cset
->tasks
) && list_empty(&cset
->mg_tasks
));
3418 if (!list_empty(&cset
->tasks
))
3419 it
->task_pos
= cset
->tasks
.next
;
3421 it
->task_pos
= cset
->mg_tasks
.next
;
3423 it
->tasks_head
= &cset
->tasks
;
3424 it
->mg_tasks_head
= &cset
->mg_tasks
;
3428 * css_task_iter_start - initiate task iteration
3429 * @css: the css to walk tasks of
3430 * @it: the task iterator to use
3432 * Initiate iteration through the tasks of @css. The caller can call
3433 * css_task_iter_next() to walk through the tasks until the function
3434 * returns NULL. On completion of iteration, css_task_iter_end() must be
3437 * Note that this function acquires a lock which is released when the
3438 * iteration finishes. The caller can't sleep while iteration is in
3441 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3442 struct css_task_iter
*it
)
3443 __acquires(css_set_rwsem
)
3445 /* no one should try to iterate before mounting cgroups */
3446 WARN_ON_ONCE(!use_task_css_set_links
);
3448 down_read(&css_set_rwsem
);
3453 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
3455 it
->cset_pos
= &css
->cgroup
->cset_links
;
3457 it
->cset_head
= it
->cset_pos
;
3459 css_advance_task_iter(it
);
3463 * css_task_iter_next - return the next task for the iterator
3464 * @it: the task iterator being iterated
3466 * The "next" function for task iteration. @it should have been
3467 * initialized via css_task_iter_start(). Returns NULL when the iteration
3470 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
3472 struct task_struct
*res
;
3473 struct list_head
*l
= it
->task_pos
;
3475 /* If the iterator cg is NULL, we have no tasks */
3478 res
= list_entry(l
, struct task_struct
, cg_list
);
3481 * Advance iterator to find next entry. cset->tasks is consumed
3482 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3487 if (l
== it
->tasks_head
)
3488 l
= it
->mg_tasks_head
->next
;
3490 if (l
== it
->mg_tasks_head
)
3491 css_advance_task_iter(it
);
3499 * css_task_iter_end - finish task iteration
3500 * @it: the task iterator to finish
3502 * Finish task iteration started by css_task_iter_start().
3504 void css_task_iter_end(struct css_task_iter
*it
)
3505 __releases(css_set_rwsem
)
3507 up_read(&css_set_rwsem
);
3511 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3512 * @to: cgroup to which the tasks will be moved
3513 * @from: cgroup in which the tasks currently reside
3515 * Locking rules between cgroup_post_fork() and the migration path
3516 * guarantee that, if a task is forking while being migrated, the new child
3517 * is guaranteed to be either visible in the source cgroup after the
3518 * parent's migration is complete or put into the target cgroup. No task
3519 * can slip out of migration through forking.
3521 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
3523 LIST_HEAD(preloaded_csets
);
3524 struct cgrp_cset_link
*link
;
3525 struct css_task_iter it
;
3526 struct task_struct
*task
;
3529 mutex_lock(&cgroup_mutex
);
3531 /* all tasks in @from are being moved, all csets are source */
3532 down_read(&css_set_rwsem
);
3533 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
3534 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
3535 up_read(&css_set_rwsem
);
3537 ret
= cgroup_migrate_prepare_dst(to
, &preloaded_csets
);
3542 * Migrate tasks one-by-one until @form is empty. This fails iff
3543 * ->can_attach() fails.
3546 css_task_iter_start(&from
->self
, &it
);
3547 task
= css_task_iter_next(&it
);
3549 get_task_struct(task
);
3550 css_task_iter_end(&it
);
3553 ret
= cgroup_migrate(to
, task
, false);
3554 put_task_struct(task
);
3556 } while (task
&& !ret
);
3558 cgroup_migrate_finish(&preloaded_csets
);
3559 mutex_unlock(&cgroup_mutex
);
3564 * Stuff for reading the 'tasks'/'procs' files.
3566 * Reading this file can return large amounts of data if a cgroup has
3567 * *lots* of attached tasks. So it may need several calls to read(),
3568 * but we cannot guarantee that the information we produce is correct
3569 * unless we produce it entirely atomically.
3573 /* which pidlist file are we talking about? */
3574 enum cgroup_filetype
{
3580 * A pidlist is a list of pids that virtually represents the contents of one
3581 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3582 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3585 struct cgroup_pidlist
{
3587 * used to find which pidlist is wanted. doesn't change as long as
3588 * this particular list stays in the list.
3590 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3593 /* how many elements the above list has */
3595 /* each of these stored in a list by its cgroup */
3596 struct list_head links
;
3597 /* pointer to the cgroup we belong to, for list removal purposes */
3598 struct cgroup
*owner
;
3599 /* for delayed destruction */
3600 struct delayed_work destroy_dwork
;
3604 * The following two functions "fix" the issue where there are more pids
3605 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3606 * TODO: replace with a kernel-wide solution to this problem
3608 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3609 static void *pidlist_allocate(int count
)
3611 if (PIDLIST_TOO_LARGE(count
))
3612 return vmalloc(count
* sizeof(pid_t
));
3614 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3617 static void pidlist_free(void *p
)
3619 if (is_vmalloc_addr(p
))
3626 * Used to destroy all pidlists lingering waiting for destroy timer. None
3627 * should be left afterwards.
3629 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
3631 struct cgroup_pidlist
*l
, *tmp_l
;
3633 mutex_lock(&cgrp
->pidlist_mutex
);
3634 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
3635 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
3636 mutex_unlock(&cgrp
->pidlist_mutex
);
3638 flush_workqueue(cgroup_pidlist_destroy_wq
);
3639 BUG_ON(!list_empty(&cgrp
->pidlists
));
3642 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
3644 struct delayed_work
*dwork
= to_delayed_work(work
);
3645 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
3647 struct cgroup_pidlist
*tofree
= NULL
;
3649 mutex_lock(&l
->owner
->pidlist_mutex
);
3652 * Destroy iff we didn't get queued again. The state won't change
3653 * as destroy_dwork can only be queued while locked.
3655 if (!delayed_work_pending(dwork
)) {
3656 list_del(&l
->links
);
3657 pidlist_free(l
->list
);
3658 put_pid_ns(l
->key
.ns
);
3662 mutex_unlock(&l
->owner
->pidlist_mutex
);
3667 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3668 * Returns the number of unique elements.
3670 static int pidlist_uniq(pid_t
*list
, int length
)
3675 * we presume the 0th element is unique, so i starts at 1. trivial
3676 * edge cases first; no work needs to be done for either
3678 if (length
== 0 || length
== 1)
3680 /* src and dest walk down the list; dest counts unique elements */
3681 for (src
= 1; src
< length
; src
++) {
3682 /* find next unique element */
3683 while (list
[src
] == list
[src
-1]) {
3688 /* dest always points to where the next unique element goes */
3689 list
[dest
] = list
[src
];
3697 * The two pid files - task and cgroup.procs - guaranteed that the result
3698 * is sorted, which forced this whole pidlist fiasco. As pid order is
3699 * different per namespace, each namespace needs differently sorted list,
3700 * making it impossible to use, for example, single rbtree of member tasks
3701 * sorted by task pointer. As pidlists can be fairly large, allocating one
3702 * per open file is dangerous, so cgroup had to implement shared pool of
3703 * pidlists keyed by cgroup and namespace.
3705 * All this extra complexity was caused by the original implementation
3706 * committing to an entirely unnecessary property. In the long term, we
3707 * want to do away with it. Explicitly scramble sort order if
3708 * sane_behavior so that no such expectation exists in the new interface.
3710 * Scrambling is done by swapping every two consecutive bits, which is
3711 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3713 static pid_t
pid_fry(pid_t pid
)
3715 unsigned a
= pid
& 0x55555555;
3716 unsigned b
= pid
& 0xAAAAAAAA;
3718 return (a
<< 1) | (b
>> 1);
3721 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
3723 if (cgroup_sane_behavior(cgrp
))
3724 return pid_fry(pid
);
3729 static int cmppid(const void *a
, const void *b
)
3731 return *(pid_t
*)a
- *(pid_t
*)b
;
3734 static int fried_cmppid(const void *a
, const void *b
)
3736 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
3739 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3740 enum cgroup_filetype type
)
3742 struct cgroup_pidlist
*l
;
3743 /* don't need task_nsproxy() if we're looking at ourself */
3744 struct pid_namespace
*ns
= task_active_pid_ns(current
);
3746 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3748 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
3749 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
3755 * find the appropriate pidlist for our purpose (given procs vs tasks)
3756 * returns with the lock on that pidlist already held, and takes care
3757 * of the use count, or returns NULL with no locks held if we're out of
3760 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
3761 enum cgroup_filetype type
)
3763 struct cgroup_pidlist
*l
;
3765 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3767 l
= cgroup_pidlist_find(cgrp
, type
);
3771 /* entry not found; create a new one */
3772 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3776 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
3778 /* don't need task_nsproxy() if we're looking at ourself */
3779 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
3781 list_add(&l
->links
, &cgrp
->pidlists
);
3786 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3788 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3789 struct cgroup_pidlist
**lp
)
3793 int pid
, n
= 0; /* used for populating the array */
3794 struct css_task_iter it
;
3795 struct task_struct
*tsk
;
3796 struct cgroup_pidlist
*l
;
3798 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3801 * If cgroup gets more users after we read count, we won't have
3802 * enough space - tough. This race is indistinguishable to the
3803 * caller from the case that the additional cgroup users didn't
3804 * show up until sometime later on.
3806 length
= cgroup_task_count(cgrp
);
3807 array
= pidlist_allocate(length
);
3810 /* now, populate the array */
3811 css_task_iter_start(&cgrp
->self
, &it
);
3812 while ((tsk
= css_task_iter_next(&it
))) {
3813 if (unlikely(n
== length
))
3815 /* get tgid or pid for procs or tasks file respectively */
3816 if (type
== CGROUP_FILE_PROCS
)
3817 pid
= task_tgid_vnr(tsk
);
3819 pid
= task_pid_vnr(tsk
);
3820 if (pid
> 0) /* make sure to only use valid results */
3823 css_task_iter_end(&it
);
3825 /* now sort & (if procs) strip out duplicates */
3826 if (cgroup_sane_behavior(cgrp
))
3827 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
3829 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
3830 if (type
== CGROUP_FILE_PROCS
)
3831 length
= pidlist_uniq(array
, length
);
3833 l
= cgroup_pidlist_find_create(cgrp
, type
);
3835 pidlist_free(array
);
3839 /* store array, freeing old if necessary */
3840 pidlist_free(l
->list
);
3848 * cgroupstats_build - build and fill cgroupstats
3849 * @stats: cgroupstats to fill information into
3850 * @dentry: A dentry entry belonging to the cgroup for which stats have
3853 * Build and fill cgroupstats so that taskstats can export it to user
3856 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
3858 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
3859 struct cgroup
*cgrp
;
3860 struct css_task_iter it
;
3861 struct task_struct
*tsk
;
3863 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3864 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
3865 kernfs_type(kn
) != KERNFS_DIR
)
3868 mutex_lock(&cgroup_mutex
);
3871 * We aren't being called from kernfs and there's no guarantee on
3872 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
3873 * @kn->priv is RCU safe. Let's do the RCU dancing.
3876 cgrp
= rcu_dereference(kn
->priv
);
3877 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
3879 mutex_unlock(&cgroup_mutex
);
3884 css_task_iter_start(&cgrp
->self
, &it
);
3885 while ((tsk
= css_task_iter_next(&it
))) {
3886 switch (tsk
->state
) {
3888 stats
->nr_running
++;
3890 case TASK_INTERRUPTIBLE
:
3891 stats
->nr_sleeping
++;
3893 case TASK_UNINTERRUPTIBLE
:
3894 stats
->nr_uninterruptible
++;
3897 stats
->nr_stopped
++;
3900 if (delayacct_is_task_waiting_on_io(tsk
))
3901 stats
->nr_io_wait
++;
3905 css_task_iter_end(&it
);
3907 mutex_unlock(&cgroup_mutex
);
3913 * seq_file methods for the tasks/procs files. The seq_file position is the
3914 * next pid to display; the seq_file iterator is a pointer to the pid
3915 * in the cgroup->l->list array.
3918 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
3921 * Initially we receive a position value that corresponds to
3922 * one more than the last pid shown (or 0 on the first call or
3923 * after a seek to the start). Use a binary-search to find the
3924 * next pid to display, if any
3926 struct kernfs_open_file
*of
= s
->private;
3927 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
3928 struct cgroup_pidlist
*l
;
3929 enum cgroup_filetype type
= seq_cft(s
)->private;
3930 int index
= 0, pid
= *pos
;
3933 mutex_lock(&cgrp
->pidlist_mutex
);
3936 * !NULL @of->priv indicates that this isn't the first start()
3937 * after open. If the matching pidlist is around, we can use that.
3938 * Look for it. Note that @of->priv can't be used directly. It
3939 * could already have been destroyed.
3942 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
3945 * Either this is the first start() after open or the matching
3946 * pidlist has been destroyed inbetween. Create a new one.
3949 ret
= pidlist_array_load(cgrp
, type
,
3950 (struct cgroup_pidlist
**)&of
->priv
);
3952 return ERR_PTR(ret
);
3957 int end
= l
->length
;
3959 while (index
< end
) {
3960 int mid
= (index
+ end
) / 2;
3961 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
3964 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
3970 /* If we're off the end of the array, we're done */
3971 if (index
>= l
->length
)
3973 /* Update the abstract position to be the actual pid that we found */
3974 iter
= l
->list
+ index
;
3975 *pos
= cgroup_pid_fry(cgrp
, *iter
);
3979 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
3981 struct kernfs_open_file
*of
= s
->private;
3982 struct cgroup_pidlist
*l
= of
->priv
;
3985 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
3986 CGROUP_PIDLIST_DESTROY_DELAY
);
3987 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
3990 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
3992 struct kernfs_open_file
*of
= s
->private;
3993 struct cgroup_pidlist
*l
= of
->priv
;
3995 pid_t
*end
= l
->list
+ l
->length
;
3997 * Advance to the next pid in the array. If this goes off the
4004 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4009 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4011 return seq_printf(s
, "%d\n", *(int *)v
);
4014 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4017 return notify_on_release(css
->cgroup
);
4020 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4021 struct cftype
*cft
, u64 val
)
4023 clear_bit(CGRP_RELEASABLE
, &css
->cgroup
->flags
);
4025 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4027 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4031 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4034 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4037 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4038 struct cftype
*cft
, u64 val
)
4041 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4043 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4047 static struct cftype cgroup_base_files
[] = {
4049 .name
= "cgroup.procs",
4050 .seq_start
= cgroup_pidlist_start
,
4051 .seq_next
= cgroup_pidlist_next
,
4052 .seq_stop
= cgroup_pidlist_stop
,
4053 .seq_show
= cgroup_pidlist_show
,
4054 .private = CGROUP_FILE_PROCS
,
4055 .write
= cgroup_procs_write
,
4056 .mode
= S_IRUGO
| S_IWUSR
,
4059 .name
= "cgroup.clone_children",
4060 .flags
= CFTYPE_INSANE
,
4061 .read_u64
= cgroup_clone_children_read
,
4062 .write_u64
= cgroup_clone_children_write
,
4065 .name
= "cgroup.sane_behavior",
4066 .flags
= CFTYPE_ONLY_ON_ROOT
,
4067 .seq_show
= cgroup_sane_behavior_show
,
4070 .name
= "cgroup.controllers",
4071 .flags
= CFTYPE_ONLY_ON_DFL
| CFTYPE_ONLY_ON_ROOT
,
4072 .seq_show
= cgroup_root_controllers_show
,
4075 .name
= "cgroup.controllers",
4076 .flags
= CFTYPE_ONLY_ON_DFL
| CFTYPE_NOT_ON_ROOT
,
4077 .seq_show
= cgroup_controllers_show
,
4080 .name
= "cgroup.subtree_control",
4081 .flags
= CFTYPE_ONLY_ON_DFL
,
4082 .seq_show
= cgroup_subtree_control_show
,
4083 .write
= cgroup_subtree_control_write
,
4086 .name
= "cgroup.populated",
4087 .flags
= CFTYPE_ONLY_ON_DFL
| CFTYPE_NOT_ON_ROOT
,
4088 .seq_show
= cgroup_populated_show
,
4092 * Historical crazy stuff. These don't have "cgroup." prefix and
4093 * don't exist if sane_behavior. If you're depending on these, be
4094 * prepared to be burned.
4098 .flags
= CFTYPE_INSANE
, /* use "procs" instead */
4099 .seq_start
= cgroup_pidlist_start
,
4100 .seq_next
= cgroup_pidlist_next
,
4101 .seq_stop
= cgroup_pidlist_stop
,
4102 .seq_show
= cgroup_pidlist_show
,
4103 .private = CGROUP_FILE_TASKS
,
4104 .write
= cgroup_tasks_write
,
4105 .mode
= S_IRUGO
| S_IWUSR
,
4108 .name
= "notify_on_release",
4109 .flags
= CFTYPE_INSANE
,
4110 .read_u64
= cgroup_read_notify_on_release
,
4111 .write_u64
= cgroup_write_notify_on_release
,
4114 .name
= "release_agent",
4115 .flags
= CFTYPE_INSANE
| CFTYPE_ONLY_ON_ROOT
,
4116 .seq_show
= cgroup_release_agent_show
,
4117 .write
= cgroup_release_agent_write
,
4118 .max_write_len
= PATH_MAX
- 1,
4124 * cgroup_populate_dir - create subsys files in a cgroup directory
4125 * @cgrp: target cgroup
4126 * @subsys_mask: mask of the subsystem ids whose files should be added
4128 * On failure, no file is added.
4130 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
)
4132 struct cgroup_subsys
*ss
;
4135 /* process cftsets of each subsystem */
4136 for_each_subsys(ss
, i
) {
4137 struct cftype
*cfts
;
4139 if (!(subsys_mask
& (1 << i
)))
4142 list_for_each_entry(cfts
, &ss
->cfts
, node
) {
4143 ret
= cgroup_addrm_files(cgrp
, cfts
, true);
4150 cgroup_clear_dir(cgrp
, subsys_mask
);
4155 * css destruction is four-stage process.
4157 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4158 * Implemented in kill_css().
4160 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4161 * and thus css_tryget_online() is guaranteed to fail, the css can be
4162 * offlined by invoking offline_css(). After offlining, the base ref is
4163 * put. Implemented in css_killed_work_fn().
4165 * 3. When the percpu_ref reaches zero, the only possible remaining
4166 * accessors are inside RCU read sections. css_release() schedules the
4169 * 4. After the grace period, the css can be freed. Implemented in
4170 * css_free_work_fn().
4172 * It is actually hairier because both step 2 and 4 require process context
4173 * and thus involve punting to css->destroy_work adding two additional
4174 * steps to the already complex sequence.
4176 static void css_free_work_fn(struct work_struct
*work
)
4178 struct cgroup_subsys_state
*css
=
4179 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4180 struct cgroup
*cgrp
= css
->cgroup
;
4185 css_put(css
->parent
);
4187 css
->ss
->css_free(css
);
4190 /* cgroup free path */
4191 atomic_dec(&cgrp
->root
->nr_cgrps
);
4192 cgroup_pidlist_destroy_all(cgrp
);
4194 if (cgroup_parent(cgrp
)) {
4196 * We get a ref to the parent, and put the ref when
4197 * this cgroup is being freed, so it's guaranteed
4198 * that the parent won't be destroyed before its
4201 cgroup_put(cgroup_parent(cgrp
));
4202 kernfs_put(cgrp
->kn
);
4206 * This is root cgroup's refcnt reaching zero,
4207 * which indicates that the root should be
4210 cgroup_destroy_root(cgrp
->root
);
4215 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4217 struct cgroup_subsys_state
*css
=
4218 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4220 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4221 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4224 static void css_release_work_fn(struct work_struct
*work
)
4226 struct cgroup_subsys_state
*css
=
4227 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4228 struct cgroup_subsys
*ss
= css
->ss
;
4229 struct cgroup
*cgrp
= css
->cgroup
;
4231 mutex_lock(&cgroup_mutex
);
4233 css
->flags
|= CSS_RELEASED
;
4234 list_del_rcu(&css
->sibling
);
4237 /* css release path */
4238 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4240 /* cgroup release path */
4241 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4245 * There are two control paths which try to determine
4246 * cgroup from dentry without going through kernfs -
4247 * cgroupstats_build() and css_tryget_online_from_dir().
4248 * Those are supported by RCU protecting clearing of
4249 * cgrp->kn->priv backpointer.
4251 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
, NULL
);
4254 mutex_unlock(&cgroup_mutex
);
4256 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4259 static void css_release(struct percpu_ref
*ref
)
4261 struct cgroup_subsys_state
*css
=
4262 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4264 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4265 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4268 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4269 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4271 lockdep_assert_held(&cgroup_mutex
);
4275 memset(css
, 0, sizeof(*css
));
4278 INIT_LIST_HEAD(&css
->sibling
);
4279 INIT_LIST_HEAD(&css
->children
);
4280 css
->serial_nr
= css_serial_nr_next
++;
4281 atomic_set(&css
->online_cnt
, 0);
4283 if (cgroup_parent(cgrp
)) {
4284 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4285 css_get(css
->parent
);
4288 BUG_ON(cgroup_css(cgrp
, ss
));
4291 /* invoke ->css_online() on a new CSS and mark it online if successful */
4292 static int online_css(struct cgroup_subsys_state
*css
)
4294 struct cgroup_subsys
*ss
= css
->ss
;
4297 lockdep_assert_held(&cgroup_mutex
);
4300 ret
= ss
->css_online(css
);
4302 css
->flags
|= CSS_ONLINE
;
4303 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4305 atomic_inc(&css
->online_cnt
);
4307 atomic_inc(&css
->parent
->online_cnt
);
4312 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4313 static void offline_css(struct cgroup_subsys_state
*css
)
4315 struct cgroup_subsys
*ss
= css
->ss
;
4317 lockdep_assert_held(&cgroup_mutex
);
4319 if (!(css
->flags
& CSS_ONLINE
))
4322 if (ss
->css_offline
)
4323 ss
->css_offline(css
);
4325 css
->flags
&= ~CSS_ONLINE
;
4326 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4328 wake_up_all(&css
->cgroup
->offline_waitq
);
4332 * create_css - create a cgroup_subsys_state
4333 * @cgrp: the cgroup new css will be associated with
4334 * @ss: the subsys of new css
4336 * Create a new css associated with @cgrp - @ss pair. On success, the new
4337 * css is online and installed in @cgrp with all interface files created.
4338 * Returns 0 on success, -errno on failure.
4340 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
)
4342 struct cgroup
*parent
= cgroup_parent(cgrp
);
4343 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4344 struct cgroup_subsys_state
*css
;
4347 lockdep_assert_held(&cgroup_mutex
);
4349 css
= ss
->css_alloc(parent_css
);
4351 return PTR_ERR(css
);
4353 init_and_link_css(css
, ss
, cgrp
);
4355 err
= percpu_ref_init(&css
->refcnt
, css_release
);
4359 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_NOWAIT
);
4361 goto err_free_percpu_ref
;
4364 err
= cgroup_populate_dir(cgrp
, 1 << ss
->id
);
4368 /* @css is ready to be brought online now, make it visible */
4369 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4370 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4372 err
= online_css(css
);
4376 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4377 cgroup_parent(parent
)) {
4378 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4379 current
->comm
, current
->pid
, ss
->name
);
4380 if (!strcmp(ss
->name
, "memory"))
4381 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4382 ss
->warned_broken_hierarchy
= true;
4388 list_del_rcu(&css
->sibling
);
4389 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->id
);
4391 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4392 err_free_percpu_ref
:
4393 percpu_ref_cancel_init(&css
->refcnt
);
4395 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4399 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
4402 struct cgroup
*parent
, *cgrp
;
4403 struct cgroup_root
*root
;
4404 struct cgroup_subsys
*ss
;
4405 struct kernfs_node
*kn
;
4408 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4410 if (strchr(name
, '\n'))
4413 parent
= cgroup_kn_lock_live(parent_kn
);
4416 root
= parent
->root
;
4418 /* allocate the cgroup and its ID, 0 is reserved for the root */
4419 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4425 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
);
4430 * Temporarily set the pointer to NULL, so idr_find() won't return
4431 * a half-baked cgroup.
4433 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_NOWAIT
);
4436 goto out_cancel_ref
;
4439 init_cgroup_housekeeping(cgrp
);
4441 cgrp
->self
.parent
= &parent
->self
;
4444 if (notify_on_release(parent
))
4445 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4447 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4448 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4450 /* create the directory */
4451 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4459 * This extra ref will be put in cgroup_free_fn() and guarantees
4460 * that @cgrp->kn is always accessible.
4464 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4466 /* allocation complete, commit to creation */
4467 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4468 atomic_inc(&root
->nr_cgrps
);
4472 * @cgrp is now fully operational. If something fails after this
4473 * point, it'll be released via the normal destruction path.
4475 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4477 ret
= cgroup_kn_set_ugid(kn
);
4481 ret
= cgroup_addrm_files(cgrp
, cgroup_base_files
, true);
4485 /* let's create and online css's */
4486 for_each_subsys(ss
, ssid
) {
4487 if (parent
->child_subsys_mask
& (1 << ssid
)) {
4488 ret
= create_css(cgrp
, ss
);
4495 * On the default hierarchy, a child doesn't automatically inherit
4496 * child_subsys_mask from the parent. Each is configured manually.
4498 if (!cgroup_on_dfl(cgrp
))
4499 cgrp
->child_subsys_mask
= parent
->child_subsys_mask
;
4501 kernfs_activate(kn
);
4507 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4509 percpu_ref_cancel_init(&cgrp
->self
.refcnt
);
4513 cgroup_kn_unlock(parent_kn
);
4517 cgroup_destroy_locked(cgrp
);
4522 * This is called when the refcnt of a css is confirmed to be killed.
4523 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4524 * initate destruction and put the css ref from kill_css().
4526 static void css_killed_work_fn(struct work_struct
*work
)
4528 struct cgroup_subsys_state
*css
=
4529 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4531 mutex_lock(&cgroup_mutex
);
4536 /* @css can't go away while we're holding cgroup_mutex */
4538 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
4540 mutex_unlock(&cgroup_mutex
);
4543 /* css kill confirmation processing requires process context, bounce */
4544 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4546 struct cgroup_subsys_state
*css
=
4547 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4549 if (atomic_dec_and_test(&css
->online_cnt
)) {
4550 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4551 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4556 * kill_css - destroy a css
4557 * @css: css to destroy
4559 * This function initiates destruction of @css by removing cgroup interface
4560 * files and putting its base reference. ->css_offline() will be invoked
4561 * asynchronously once css_tryget_online() is guaranteed to fail and when
4562 * the reference count reaches zero, @css will be released.
4564 static void kill_css(struct cgroup_subsys_state
*css
)
4566 lockdep_assert_held(&cgroup_mutex
);
4569 * This must happen before css is disassociated with its cgroup.
4570 * See seq_css() for details.
4572 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->id
);
4575 * Killing would put the base ref, but we need to keep it alive
4576 * until after ->css_offline().
4581 * cgroup core guarantees that, by the time ->css_offline() is
4582 * invoked, no new css reference will be given out via
4583 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4584 * proceed to offlining css's because percpu_ref_kill() doesn't
4585 * guarantee that the ref is seen as killed on all CPUs on return.
4587 * Use percpu_ref_kill_and_confirm() to get notifications as each
4588 * css is confirmed to be seen as killed on all CPUs.
4590 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
4594 * cgroup_destroy_locked - the first stage of cgroup destruction
4595 * @cgrp: cgroup to be destroyed
4597 * css's make use of percpu refcnts whose killing latency shouldn't be
4598 * exposed to userland and are RCU protected. Also, cgroup core needs to
4599 * guarantee that css_tryget_online() won't succeed by the time
4600 * ->css_offline() is invoked. To satisfy all the requirements,
4601 * destruction is implemented in the following two steps.
4603 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4604 * userland visible parts and start killing the percpu refcnts of
4605 * css's. Set up so that the next stage will be kicked off once all
4606 * the percpu refcnts are confirmed to be killed.
4608 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4609 * rest of destruction. Once all cgroup references are gone, the
4610 * cgroup is RCU-freed.
4612 * This function implements s1. After this step, @cgrp is gone as far as
4613 * the userland is concerned and a new cgroup with the same name may be
4614 * created. As cgroup doesn't care about the names internally, this
4615 * doesn't cause any problem.
4617 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
4618 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4620 struct cgroup_subsys_state
*css
;
4624 lockdep_assert_held(&cgroup_mutex
);
4627 * css_set_rwsem synchronizes access to ->cset_links and prevents
4628 * @cgrp from being removed while put_css_set() is in progress.
4630 down_read(&css_set_rwsem
);
4631 empty
= list_empty(&cgrp
->cset_links
);
4632 up_read(&css_set_rwsem
);
4637 * Make sure there's no live children. We can't test emptiness of
4638 * ->self.children as dead children linger on it while being
4639 * drained; otherwise, "rmdir parent/child parent" may fail.
4641 if (css_has_online_children(&cgrp
->self
))
4645 * Mark @cgrp dead. This prevents further task migration and child
4646 * creation by disabling cgroup_lock_live_group().
4648 cgrp
->self
.flags
&= ~CSS_ONLINE
;
4650 /* initiate massacre of all css's */
4651 for_each_css(css
, ssid
, cgrp
)
4654 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
4655 raw_spin_lock(&release_list_lock
);
4656 if (!list_empty(&cgrp
->release_list
))
4657 list_del_init(&cgrp
->release_list
);
4658 raw_spin_unlock(&release_list_lock
);
4661 * Remove @cgrp directory along with the base files. @cgrp has an
4662 * extra ref on its kn.
4664 kernfs_remove(cgrp
->kn
);
4666 set_bit(CGRP_RELEASABLE
, &cgroup_parent(cgrp
)->flags
);
4667 check_for_release(cgroup_parent(cgrp
));
4669 /* put the base reference */
4670 percpu_ref_kill(&cgrp
->self
.refcnt
);
4675 static int cgroup_rmdir(struct kernfs_node
*kn
)
4677 struct cgroup
*cgrp
;
4680 cgrp
= cgroup_kn_lock_live(kn
);
4683 cgroup_get(cgrp
); /* for @kn->priv clearing */
4685 ret
= cgroup_destroy_locked(cgrp
);
4687 cgroup_kn_unlock(kn
);
4693 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
4694 .remount_fs
= cgroup_remount
,
4695 .show_options
= cgroup_show_options
,
4696 .mkdir
= cgroup_mkdir
,
4697 .rmdir
= cgroup_rmdir
,
4698 .rename
= cgroup_rename
,
4701 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
4703 struct cgroup_subsys_state
*css
;
4705 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4707 mutex_lock(&cgroup_mutex
);
4709 idr_init(&ss
->css_idr
);
4710 INIT_LIST_HEAD(&ss
->cfts
);
4712 /* Create the root cgroup state for this subsystem */
4713 ss
->root
= &cgrp_dfl_root
;
4714 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
4715 /* We don't handle early failures gracefully */
4716 BUG_ON(IS_ERR(css
));
4717 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
4720 * Root csses are never destroyed and we can't initialize
4721 * percpu_ref during early init. Disable refcnting.
4723 css
->flags
|= CSS_NO_REF
;
4726 /* allocation can't be done safely during early init */
4729 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
4730 BUG_ON(css
->id
< 0);
4733 /* Update the init_css_set to contain a subsys
4734 * pointer to this state - since the subsystem is
4735 * newly registered, all tasks and hence the
4736 * init_css_set is in the subsystem's root cgroup. */
4737 init_css_set
.subsys
[ss
->id
] = css
;
4739 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4741 /* At system boot, before all subsystems have been
4742 * registered, no tasks have been forked, so we don't
4743 * need to invoke fork callbacks here. */
4744 BUG_ON(!list_empty(&init_task
.tasks
));
4746 BUG_ON(online_css(css
));
4748 mutex_unlock(&cgroup_mutex
);
4752 * cgroup_init_early - cgroup initialization at system boot
4754 * Initialize cgroups at system boot, and initialize any
4755 * subsystems that request early init.
4757 int __init
cgroup_init_early(void)
4759 static struct cgroup_sb_opts __initdata opts
=
4760 { .flags
= CGRP_ROOT_SANE_BEHAVIOR
};
4761 struct cgroup_subsys
*ss
;
4764 init_cgroup_root(&cgrp_dfl_root
, &opts
);
4765 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
4767 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
4769 for_each_subsys(ss
, i
) {
4770 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
4771 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4772 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
4774 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
4775 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
4778 ss
->name
= cgroup_subsys_name
[i
];
4781 cgroup_init_subsys(ss
, true);
4787 * cgroup_init - cgroup initialization
4789 * Register cgroup filesystem and /proc file, and initialize
4790 * any subsystems that didn't request early init.
4792 int __init
cgroup_init(void)
4794 struct cgroup_subsys
*ss
;
4798 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
4800 mutex_lock(&cgroup_mutex
);
4802 /* Add init_css_set to the hash table */
4803 key
= css_set_hash(init_css_set
.subsys
);
4804 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
4806 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
4808 mutex_unlock(&cgroup_mutex
);
4810 for_each_subsys(ss
, ssid
) {
4811 if (ss
->early_init
) {
4812 struct cgroup_subsys_state
*css
=
4813 init_css_set
.subsys
[ss
->id
];
4815 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
4817 BUG_ON(css
->id
< 0);
4819 cgroup_init_subsys(ss
, false);
4822 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
4823 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
4826 * Setting dfl_root subsys_mask needs to consider the
4827 * disabled flag and cftype registration needs kmalloc,
4828 * both of which aren't available during early_init.
4830 if (!ss
->disabled
) {
4831 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
4832 WARN_ON(cgroup_add_cftypes(ss
, ss
->base_cftypes
));
4836 err
= sysfs_create_mount_point(fs_kobj
, "cgroup");
4840 err
= register_filesystem(&cgroup_fs_type
);
4842 sysfs_remove_mount_point(fs_kobj
, "cgroup");
4846 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
4850 static int __init
cgroup_wq_init(void)
4853 * There isn't much point in executing destruction path in
4854 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4855 * Use 1 for @max_active.
4857 * We would prefer to do this in cgroup_init() above, but that
4858 * is called before init_workqueues(): so leave this until after.
4860 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
4861 BUG_ON(!cgroup_destroy_wq
);
4864 * Used to destroy pidlists and separate to serve as flush domain.
4865 * Cap @max_active to 1 too.
4867 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
4869 BUG_ON(!cgroup_pidlist_destroy_wq
);
4873 core_initcall(cgroup_wq_init
);
4876 * proc_cgroup_show()
4877 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4878 * - Used for /proc/<pid>/cgroup.
4881 /* TODO: Use a proper seq_file iterator */
4882 int proc_cgroup_show(struct seq_file
*m
, void *v
)
4885 struct task_struct
*tsk
;
4888 struct cgroup_root
*root
;
4891 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
4897 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
4903 mutex_lock(&cgroup_mutex
);
4904 down_read(&css_set_rwsem
);
4906 for_each_root(root
) {
4907 struct cgroup_subsys
*ss
;
4908 struct cgroup
*cgrp
;
4909 int ssid
, count
= 0;
4911 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_root_visible
)
4914 seq_printf(m
, "%d:", root
->hierarchy_id
);
4915 for_each_subsys(ss
, ssid
)
4916 if (root
->subsys_mask
& (1 << ssid
))
4917 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
4918 if (strlen(root
->name
))
4919 seq_printf(m
, "%sname=%s", count
? "," : "",
4922 cgrp
= task_cgroup_from_root(tsk
, root
);
4923 path
= cgroup_path(cgrp
, buf
, PATH_MAX
);
4925 retval
= -ENAMETOOLONG
;
4933 up_read(&css_set_rwsem
);
4934 mutex_unlock(&cgroup_mutex
);
4935 put_task_struct(tsk
);
4942 /* Display information about each subsystem and each hierarchy */
4943 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4945 struct cgroup_subsys
*ss
;
4948 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4950 * ideally we don't want subsystems moving around while we do this.
4951 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4952 * subsys/hierarchy state.
4954 mutex_lock(&cgroup_mutex
);
4956 for_each_subsys(ss
, i
)
4957 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4958 ss
->name
, ss
->root
->hierarchy_id
,
4959 atomic_read(&ss
->root
->nr_cgrps
), !ss
->disabled
);
4961 mutex_unlock(&cgroup_mutex
);
4965 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4967 return single_open(file
, proc_cgroupstats_show
, NULL
);
4970 static const struct file_operations proc_cgroupstats_operations
= {
4971 .open
= cgroupstats_open
,
4973 .llseek
= seq_lseek
,
4974 .release
= single_release
,
4978 * cgroup_fork - initialize cgroup related fields during copy_process()
4979 * @child: pointer to task_struct of forking parent process.
4981 * A task is associated with the init_css_set until cgroup_post_fork()
4982 * attaches it to the parent's css_set. Empty cg_list indicates that
4983 * @child isn't holding reference to its css_set.
4985 void cgroup_fork(struct task_struct
*child
)
4987 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
4988 INIT_LIST_HEAD(&child
->cg_list
);
4992 * cgroup_post_fork - called on a new task after adding it to the task list
4993 * @child: the task in question
4995 * Adds the task to the list running through its css_set if necessary and
4996 * call the subsystem fork() callbacks. Has to be after the task is
4997 * visible on the task list in case we race with the first call to
4998 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5001 void cgroup_post_fork(struct task_struct
*child
)
5003 struct cgroup_subsys
*ss
;
5007 * This may race against cgroup_enable_task_cg_links(). As that
5008 * function sets use_task_css_set_links before grabbing
5009 * tasklist_lock and we just went through tasklist_lock to add
5010 * @child, it's guaranteed that either we see the set
5011 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5012 * @child during its iteration.
5014 * If we won the race, @child is associated with %current's
5015 * css_set. Grabbing css_set_rwsem guarantees both that the
5016 * association is stable, and, on completion of the parent's
5017 * migration, @child is visible in the source of migration or
5018 * already in the destination cgroup. This guarantee is necessary
5019 * when implementing operations which need to migrate all tasks of
5020 * a cgroup to another.
5022 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5023 * will remain in init_css_set. This is safe because all tasks are
5024 * in the init_css_set before cg_links is enabled and there's no
5025 * operation which transfers all tasks out of init_css_set.
5027 if (use_task_css_set_links
) {
5028 struct css_set
*cset
;
5030 down_write(&css_set_rwsem
);
5031 cset
= task_css_set(current
);
5032 if (list_empty(&child
->cg_list
)) {
5033 rcu_assign_pointer(child
->cgroups
, cset
);
5034 list_add(&child
->cg_list
, &cset
->tasks
);
5037 up_write(&css_set_rwsem
);
5041 * Call ss->fork(). This must happen after @child is linked on
5042 * css_set; otherwise, @child might change state between ->fork()
5043 * and addition to css_set.
5045 if (need_forkexit_callback
) {
5046 for_each_subsys(ss
, i
)
5053 * cgroup_exit - detach cgroup from exiting task
5054 * @tsk: pointer to task_struct of exiting process
5056 * Description: Detach cgroup from @tsk and release it.
5058 * Note that cgroups marked notify_on_release force every task in
5059 * them to take the global cgroup_mutex mutex when exiting.
5060 * This could impact scaling on very large systems. Be reluctant to
5061 * use notify_on_release cgroups where very high task exit scaling
5062 * is required on large systems.
5064 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5065 * call cgroup_exit() while the task is still competent to handle
5066 * notify_on_release(), then leave the task attached to the root cgroup in
5067 * each hierarchy for the remainder of its exit. No need to bother with
5068 * init_css_set refcnting. init_css_set never goes away and we can't race
5069 * with migration path - PF_EXITING is visible to migration path.
5071 void cgroup_exit(struct task_struct
*tsk
)
5073 struct cgroup_subsys
*ss
;
5074 struct css_set
*cset
;
5075 bool put_cset
= false;
5079 * Unlink from @tsk from its css_set. As migration path can't race
5080 * with us, we can check cg_list without grabbing css_set_rwsem.
5082 if (!list_empty(&tsk
->cg_list
)) {
5083 down_write(&css_set_rwsem
);
5084 list_del_init(&tsk
->cg_list
);
5085 up_write(&css_set_rwsem
);
5089 /* Reassign the task to the init_css_set. */
5090 cset
= task_css_set(tsk
);
5091 RCU_INIT_POINTER(tsk
->cgroups
, &init_css_set
);
5093 if (need_forkexit_callback
) {
5094 /* see cgroup_post_fork() for details */
5095 for_each_subsys(ss
, i
) {
5097 struct cgroup_subsys_state
*old_css
= cset
->subsys
[i
];
5098 struct cgroup_subsys_state
*css
= task_css(tsk
, i
);
5100 ss
->exit(css
, old_css
, tsk
);
5106 put_css_set(cset
, true);
5109 static void check_for_release(struct cgroup
*cgrp
)
5111 if (cgroup_is_releasable(cgrp
) && list_empty(&cgrp
->cset_links
) &&
5112 !css_has_online_children(&cgrp
->self
)) {
5114 * Control Group is currently removeable. If it's not
5115 * already queued for a userspace notification, queue
5118 int need_schedule_work
= 0;
5120 raw_spin_lock(&release_list_lock
);
5121 if (!cgroup_is_dead(cgrp
) &&
5122 list_empty(&cgrp
->release_list
)) {
5123 list_add(&cgrp
->release_list
, &release_list
);
5124 need_schedule_work
= 1;
5126 raw_spin_unlock(&release_list_lock
);
5127 if (need_schedule_work
)
5128 schedule_work(&release_agent_work
);
5133 * Notify userspace when a cgroup is released, by running the
5134 * configured release agent with the name of the cgroup (path
5135 * relative to the root of cgroup file system) as the argument.
5137 * Most likely, this user command will try to rmdir this cgroup.
5139 * This races with the possibility that some other task will be
5140 * attached to this cgroup before it is removed, or that some other
5141 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5142 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5143 * unused, and this cgroup will be reprieved from its death sentence,
5144 * to continue to serve a useful existence. Next time it's released,
5145 * we will get notified again, if it still has 'notify_on_release' set.
5147 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5148 * means only wait until the task is successfully execve()'d. The
5149 * separate release agent task is forked by call_usermodehelper(),
5150 * then control in this thread returns here, without waiting for the
5151 * release agent task. We don't bother to wait because the caller of
5152 * this routine has no use for the exit status of the release agent
5153 * task, so no sense holding our caller up for that.
5155 static void cgroup_release_agent(struct work_struct
*work
)
5157 BUG_ON(work
!= &release_agent_work
);
5158 mutex_lock(&cgroup_mutex
);
5159 raw_spin_lock(&release_list_lock
);
5160 while (!list_empty(&release_list
)) {
5161 char *argv
[3], *envp
[3];
5163 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
5164 struct cgroup
*cgrp
= list_entry(release_list
.next
,
5167 list_del_init(&cgrp
->release_list
);
5168 raw_spin_unlock(&release_list_lock
);
5169 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5172 path
= cgroup_path(cgrp
, pathbuf
, PATH_MAX
);
5175 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5180 argv
[i
++] = agentbuf
;
5185 /* minimal command environment */
5186 envp
[i
++] = "HOME=/";
5187 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5190 /* Drop the lock while we invoke the usermode helper,
5191 * since the exec could involve hitting disk and hence
5192 * be a slow process */
5193 mutex_unlock(&cgroup_mutex
);
5194 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5195 mutex_lock(&cgroup_mutex
);
5199 raw_spin_lock(&release_list_lock
);
5201 raw_spin_unlock(&release_list_lock
);
5202 mutex_unlock(&cgroup_mutex
);
5205 static int __init
cgroup_disable(char *str
)
5207 struct cgroup_subsys
*ss
;
5211 while ((token
= strsep(&str
, ",")) != NULL
) {
5215 for_each_subsys(ss
, i
) {
5216 if (!strcmp(token
, ss
->name
)) {
5218 printk(KERN_INFO
"Disabling %s control group"
5219 " subsystem\n", ss
->name
);
5226 __setup("cgroup_disable=", cgroup_disable
);
5229 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5230 * @dentry: directory dentry of interest
5231 * @ss: subsystem of interest
5233 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5234 * to get the corresponding css and return it. If such css doesn't exist
5235 * or can't be pinned, an ERR_PTR value is returned.
5237 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5238 struct cgroup_subsys
*ss
)
5240 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5241 struct cgroup_subsys_state
*css
= NULL
;
5242 struct cgroup
*cgrp
;
5244 /* is @dentry a cgroup dir? */
5245 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
5246 kernfs_type(kn
) != KERNFS_DIR
)
5247 return ERR_PTR(-EBADF
);
5252 * This path doesn't originate from kernfs and @kn could already
5253 * have been or be removed at any point. @kn->priv is RCU
5254 * protected for this access. See css_release_work_fn() for details.
5256 cgrp
= rcu_dereference(kn
->priv
);
5258 css
= cgroup_css(cgrp
, ss
);
5260 if (!css
|| !css_tryget_online(css
))
5261 css
= ERR_PTR(-ENOENT
);
5268 * css_from_id - lookup css by id
5269 * @id: the cgroup id
5270 * @ss: cgroup subsys to be looked into
5272 * Returns the css if there's valid one with @id, otherwise returns NULL.
5273 * Should be called under rcu_read_lock().
5275 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5277 WARN_ON_ONCE(!rcu_read_lock_held());
5278 return idr_find(&ss
->css_idr
, id
);
5281 #ifdef CONFIG_CGROUP_DEBUG
5282 static struct cgroup_subsys_state
*
5283 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5285 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5288 return ERR_PTR(-ENOMEM
);
5293 static void debug_css_free(struct cgroup_subsys_state
*css
)
5298 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5301 return cgroup_task_count(css
->cgroup
);
5304 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5307 return (u64
)(unsigned long)current
->cgroups
;
5310 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5316 count
= atomic_read(&task_css_set(current
)->refcount
);
5321 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
5323 struct cgrp_cset_link
*link
;
5324 struct css_set
*cset
;
5327 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
5331 down_read(&css_set_rwsem
);
5333 cset
= rcu_dereference(current
->cgroups
);
5334 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5335 struct cgroup
*c
= link
->cgrp
;
5337 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
5338 seq_printf(seq
, "Root %d group %s\n",
5339 c
->root
->hierarchy_id
, name_buf
);
5342 up_read(&css_set_rwsem
);
5347 #define MAX_TASKS_SHOWN_PER_CSS 25
5348 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
5350 struct cgroup_subsys_state
*css
= seq_css(seq
);
5351 struct cgrp_cset_link
*link
;
5353 down_read(&css_set_rwsem
);
5354 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5355 struct css_set
*cset
= link
->cset
;
5356 struct task_struct
*task
;
5359 seq_printf(seq
, "css_set %p\n", cset
);
5361 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5362 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5364 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5367 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
5368 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5370 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5374 seq_puts(seq
, " ...\n");
5376 up_read(&css_set_rwsem
);
5380 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5382 return test_bit(CGRP_RELEASABLE
, &css
->cgroup
->flags
);
5385 static struct cftype debug_files
[] = {
5387 .name
= "taskcount",
5388 .read_u64
= debug_taskcount_read
,
5392 .name
= "current_css_set",
5393 .read_u64
= current_css_set_read
,
5397 .name
= "current_css_set_refcount",
5398 .read_u64
= current_css_set_refcount_read
,
5402 .name
= "current_css_set_cg_links",
5403 .seq_show
= current_css_set_cg_links_read
,
5407 .name
= "cgroup_css_links",
5408 .seq_show
= cgroup_css_links_read
,
5412 .name
= "releasable",
5413 .read_u64
= releasable_read
,
5419 struct cgroup_subsys debug_cgrp_subsys
= {
5420 .css_alloc
= debug_css_alloc
,
5421 .css_free
= debug_css_free
,
5422 .base_cftypes
= debug_files
,
5424 #endif /* CONFIG_CGROUP_DEBUG */