KEYS: add missing permission check for request_key() destination
[linux/fpc-iii.git] / kernel / cpuset.c
blob6dbc4bd416ecd7825fa8a37bf5f62859fd4437fa
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
66 /* See "Frequency meter" comments, below. */
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
75 struct cpuset {
76 struct cgroup_subsys_state css;
78 unsigned long flags; /* "unsigned long" so bitops work */
79 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
80 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
83 * This is old Memory Nodes tasks took on.
85 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
86 * - A new cpuset's old_mems_allowed is initialized when some
87 * task is moved into it.
88 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
89 * cpuset.mems_allowed and have tasks' nodemask updated, and
90 * then old_mems_allowed is updated to mems_allowed.
92 nodemask_t old_mems_allowed;
94 struct fmeter fmeter; /* memory_pressure filter */
97 * Tasks are being attached to this cpuset. Used to prevent
98 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
100 int attach_in_progress;
102 /* partition number for rebuild_sched_domains() */
103 int pn;
105 /* for custom sched domain */
106 int relax_domain_level;
109 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
111 return css ? container_of(css, struct cpuset, css) : NULL;
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset *task_cs(struct task_struct *task)
117 return css_cs(task_css(task, cpuset_cgrp_id));
120 static inline struct cpuset *parent_cs(struct cpuset *cs)
122 return css_cs(cs->css.parent);
125 #ifdef CONFIG_NUMA
126 static inline bool task_has_mempolicy(struct task_struct *task)
128 return task->mempolicy;
130 #else
131 static inline bool task_has_mempolicy(struct task_struct *task)
133 return false;
135 #endif
138 /* bits in struct cpuset flags field */
139 typedef enum {
140 CS_ONLINE,
141 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE,
143 CS_MEM_HARDWALL,
144 CS_MEMORY_MIGRATE,
145 CS_SCHED_LOAD_BALANCE,
146 CS_SPREAD_PAGE,
147 CS_SPREAD_SLAB,
148 } cpuset_flagbits_t;
150 /* convenient tests for these bits */
151 static inline bool is_cpuset_online(const struct cpuset *cs)
153 return test_bit(CS_ONLINE, &cs->flags);
156 static inline int is_cpu_exclusive(const struct cpuset *cs)
158 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
161 static inline int is_mem_exclusive(const struct cpuset *cs)
163 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
166 static inline int is_mem_hardwall(const struct cpuset *cs)
168 return test_bit(CS_MEM_HARDWALL, &cs->flags);
171 static inline int is_sched_load_balance(const struct cpuset *cs)
173 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
176 static inline int is_memory_migrate(const struct cpuset *cs)
178 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
181 static inline int is_spread_page(const struct cpuset *cs)
183 return test_bit(CS_SPREAD_PAGE, &cs->flags);
186 static inline int is_spread_slab(const struct cpuset *cs)
188 return test_bit(CS_SPREAD_SLAB, &cs->flags);
191 static struct cpuset top_cpuset = {
192 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
193 (1 << CS_MEM_EXCLUSIVE)),
197 * cpuset_for_each_child - traverse online children of a cpuset
198 * @child_cs: loop cursor pointing to the current child
199 * @pos_css: used for iteration
200 * @parent_cs: target cpuset to walk children of
202 * Walk @child_cs through the online children of @parent_cs. Must be used
203 * with RCU read locked.
205 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
206 css_for_each_child((pos_css), &(parent_cs)->css) \
207 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
210 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
211 * @des_cs: loop cursor pointing to the current descendant
212 * @pos_css: used for iteration
213 * @root_cs: target cpuset to walk ancestor of
215 * Walk @des_cs through the online descendants of @root_cs. Must be used
216 * with RCU read locked. The caller may modify @pos_css by calling
217 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
218 * iteration and the first node to be visited.
220 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
221 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
222 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
225 * There are two global mutexes guarding cpuset structures - cpuset_mutex
226 * and callback_mutex. The latter may nest inside the former. We also
227 * require taking task_lock() when dereferencing a task's cpuset pointer.
228 * See "The task_lock() exception", at the end of this comment.
230 * A task must hold both mutexes to modify cpusets. If a task holds
231 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
232 * is the only task able to also acquire callback_mutex and be able to
233 * modify cpusets. It can perform various checks on the cpuset structure
234 * first, knowing nothing will change. It can also allocate memory while
235 * just holding cpuset_mutex. While it is performing these checks, various
236 * callback routines can briefly acquire callback_mutex to query cpusets.
237 * Once it is ready to make the changes, it takes callback_mutex, blocking
238 * everyone else.
240 * Calls to the kernel memory allocator can not be made while holding
241 * callback_mutex, as that would risk double tripping on callback_mutex
242 * from one of the callbacks into the cpuset code from within
243 * __alloc_pages().
245 * If a task is only holding callback_mutex, then it has read-only
246 * access to cpusets.
248 * Now, the task_struct fields mems_allowed and mempolicy may be changed
249 * by other task, we use alloc_lock in the task_struct fields to protect
250 * them.
252 * The cpuset_common_file_read() handlers only hold callback_mutex across
253 * small pieces of code, such as when reading out possibly multi-word
254 * cpumasks and nodemasks.
256 * Accessing a task's cpuset should be done in accordance with the
257 * guidelines for accessing subsystem state in kernel/cgroup.c
260 static DEFINE_MUTEX(cpuset_mutex);
261 static DEFINE_MUTEX(callback_mutex);
264 * CPU / memory hotplug is handled asynchronously.
266 static void cpuset_hotplug_workfn(struct work_struct *work);
267 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
269 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
272 * This is ugly, but preserves the userspace API for existing cpuset
273 * users. If someone tries to mount the "cpuset" filesystem, we
274 * silently switch it to mount "cgroup" instead
276 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
277 int flags, const char *unused_dev_name, void *data)
279 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
280 struct dentry *ret = ERR_PTR(-ENODEV);
281 if (cgroup_fs) {
282 char mountopts[] =
283 "cpuset,noprefix,"
284 "release_agent=/sbin/cpuset_release_agent";
285 ret = cgroup_fs->mount(cgroup_fs, flags,
286 unused_dev_name, mountopts);
287 put_filesystem(cgroup_fs);
289 return ret;
292 static struct file_system_type cpuset_fs_type = {
293 .name = "cpuset",
294 .mount = cpuset_mount,
298 * Return in pmask the portion of a cpusets's cpus_allowed that
299 * are online. If none are online, walk up the cpuset hierarchy
300 * until we find one that does have some online cpus. The top
301 * cpuset always has some cpus online.
303 * One way or another, we guarantee to return some non-empty subset
304 * of cpu_online_mask.
306 * Call with callback_mutex held.
308 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
310 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
311 cs = parent_cs(cs);
312 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
316 * Return in *pmask the portion of a cpusets's mems_allowed that
317 * are online, with memory. If none are online with memory, walk
318 * up the cpuset hierarchy until we find one that does have some
319 * online mems. The top cpuset always has some mems online.
321 * One way or another, we guarantee to return some non-empty subset
322 * of node_states[N_MEMORY].
324 * Call with callback_mutex held.
326 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
328 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
329 cs = parent_cs(cs);
330 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
334 * update task's spread flag if cpuset's page/slab spread flag is set
336 * Called with callback_mutex/cpuset_mutex held
338 static void cpuset_update_task_spread_flag(struct cpuset *cs,
339 struct task_struct *tsk)
341 if (is_spread_page(cs))
342 task_set_spread_page(tsk);
343 else
344 task_clear_spread_page(tsk);
346 if (is_spread_slab(cs))
347 task_set_spread_slab(tsk);
348 else
349 task_clear_spread_slab(tsk);
353 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
355 * One cpuset is a subset of another if all its allowed CPUs and
356 * Memory Nodes are a subset of the other, and its exclusive flags
357 * are only set if the other's are set. Call holding cpuset_mutex.
360 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
362 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
363 nodes_subset(p->mems_allowed, q->mems_allowed) &&
364 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
365 is_mem_exclusive(p) <= is_mem_exclusive(q);
369 * alloc_trial_cpuset - allocate a trial cpuset
370 * @cs: the cpuset that the trial cpuset duplicates
372 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
374 struct cpuset *trial;
376 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
377 if (!trial)
378 return NULL;
380 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
381 kfree(trial);
382 return NULL;
384 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
386 return trial;
390 * free_trial_cpuset - free the trial cpuset
391 * @trial: the trial cpuset to be freed
393 static void free_trial_cpuset(struct cpuset *trial)
395 free_cpumask_var(trial->cpus_allowed);
396 kfree(trial);
400 * validate_change() - Used to validate that any proposed cpuset change
401 * follows the structural rules for cpusets.
403 * If we replaced the flag and mask values of the current cpuset
404 * (cur) with those values in the trial cpuset (trial), would
405 * our various subset and exclusive rules still be valid? Presumes
406 * cpuset_mutex held.
408 * 'cur' is the address of an actual, in-use cpuset. Operations
409 * such as list traversal that depend on the actual address of the
410 * cpuset in the list must use cur below, not trial.
412 * 'trial' is the address of bulk structure copy of cur, with
413 * perhaps one or more of the fields cpus_allowed, mems_allowed,
414 * or flags changed to new, trial values.
416 * Return 0 if valid, -errno if not.
419 static int validate_change(struct cpuset *cur, struct cpuset *trial)
421 struct cgroup_subsys_state *css;
422 struct cpuset *c, *par;
423 int ret;
425 rcu_read_lock();
427 /* Each of our child cpusets must be a subset of us */
428 ret = -EBUSY;
429 cpuset_for_each_child(c, css, cur)
430 if (!is_cpuset_subset(c, trial))
431 goto out;
433 /* Remaining checks don't apply to root cpuset */
434 ret = 0;
435 if (cur == &top_cpuset)
436 goto out;
438 par = parent_cs(cur);
440 /* We must be a subset of our parent cpuset */
441 ret = -EACCES;
442 if (!is_cpuset_subset(trial, par))
443 goto out;
446 * If either I or some sibling (!= me) is exclusive, we can't
447 * overlap
449 ret = -EINVAL;
450 cpuset_for_each_child(c, css, par) {
451 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
452 c != cur &&
453 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
454 goto out;
455 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
456 c != cur &&
457 nodes_intersects(trial->mems_allowed, c->mems_allowed))
458 goto out;
462 * Cpusets with tasks - existing or newly being attached - can't
463 * be changed to have empty cpus_allowed or mems_allowed.
465 ret = -ENOSPC;
466 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
467 if (!cpumask_empty(cur->cpus_allowed) &&
468 cpumask_empty(trial->cpus_allowed))
469 goto out;
470 if (!nodes_empty(cur->mems_allowed) &&
471 nodes_empty(trial->mems_allowed))
472 goto out;
475 ret = 0;
476 out:
477 rcu_read_unlock();
478 return ret;
481 #ifdef CONFIG_SMP
483 * Helper routine for generate_sched_domains().
484 * Do cpusets a, b have overlapping cpus_allowed masks?
486 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
488 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
491 static void
492 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
494 if (dattr->relax_domain_level < c->relax_domain_level)
495 dattr->relax_domain_level = c->relax_domain_level;
496 return;
499 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
500 struct cpuset *root_cs)
502 struct cpuset *cp;
503 struct cgroup_subsys_state *pos_css;
505 rcu_read_lock();
506 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
507 /* skip the whole subtree if @cp doesn't have any CPU */
508 if (cpumask_empty(cp->cpus_allowed)) {
509 pos_css = css_rightmost_descendant(pos_css);
510 continue;
513 if (is_sched_load_balance(cp))
514 update_domain_attr(dattr, cp);
516 rcu_read_unlock();
520 * generate_sched_domains()
522 * This function builds a partial partition of the systems CPUs
523 * A 'partial partition' is a set of non-overlapping subsets whose
524 * union is a subset of that set.
525 * The output of this function needs to be passed to kernel/sched/core.c
526 * partition_sched_domains() routine, which will rebuild the scheduler's
527 * load balancing domains (sched domains) as specified by that partial
528 * partition.
530 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
531 * for a background explanation of this.
533 * Does not return errors, on the theory that the callers of this
534 * routine would rather not worry about failures to rebuild sched
535 * domains when operating in the severe memory shortage situations
536 * that could cause allocation failures below.
538 * Must be called with cpuset_mutex held.
540 * The three key local variables below are:
541 * q - a linked-list queue of cpuset pointers, used to implement a
542 * top-down scan of all cpusets. This scan loads a pointer
543 * to each cpuset marked is_sched_load_balance into the
544 * array 'csa'. For our purposes, rebuilding the schedulers
545 * sched domains, we can ignore !is_sched_load_balance cpusets.
546 * csa - (for CpuSet Array) Array of pointers to all the cpusets
547 * that need to be load balanced, for convenient iterative
548 * access by the subsequent code that finds the best partition,
549 * i.e the set of domains (subsets) of CPUs such that the
550 * cpus_allowed of every cpuset marked is_sched_load_balance
551 * is a subset of one of these domains, while there are as
552 * many such domains as possible, each as small as possible.
553 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
554 * the kernel/sched/core.c routine partition_sched_domains() in a
555 * convenient format, that can be easily compared to the prior
556 * value to determine what partition elements (sched domains)
557 * were changed (added or removed.)
559 * Finding the best partition (set of domains):
560 * The triple nested loops below over i, j, k scan over the
561 * load balanced cpusets (using the array of cpuset pointers in
562 * csa[]) looking for pairs of cpusets that have overlapping
563 * cpus_allowed, but which don't have the same 'pn' partition
564 * number and gives them in the same partition number. It keeps
565 * looping on the 'restart' label until it can no longer find
566 * any such pairs.
568 * The union of the cpus_allowed masks from the set of
569 * all cpusets having the same 'pn' value then form the one
570 * element of the partition (one sched domain) to be passed to
571 * partition_sched_domains().
573 static int generate_sched_domains(cpumask_var_t **domains,
574 struct sched_domain_attr **attributes)
576 struct cpuset *cp; /* scans q */
577 struct cpuset **csa; /* array of all cpuset ptrs */
578 int csn; /* how many cpuset ptrs in csa so far */
579 int i, j, k; /* indices for partition finding loops */
580 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
581 struct sched_domain_attr *dattr; /* attributes for custom domains */
582 int ndoms = 0; /* number of sched domains in result */
583 int nslot; /* next empty doms[] struct cpumask slot */
584 struct cgroup_subsys_state *pos_css;
586 doms = NULL;
587 dattr = NULL;
588 csa = NULL;
590 /* Special case for the 99% of systems with one, full, sched domain */
591 if (is_sched_load_balance(&top_cpuset)) {
592 ndoms = 1;
593 doms = alloc_sched_domains(ndoms);
594 if (!doms)
595 goto done;
597 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
598 if (dattr) {
599 *dattr = SD_ATTR_INIT;
600 update_domain_attr_tree(dattr, &top_cpuset);
602 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
604 goto done;
607 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
608 if (!csa)
609 goto done;
610 csn = 0;
612 rcu_read_lock();
613 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
614 if (cp == &top_cpuset)
615 continue;
617 * Continue traversing beyond @cp iff @cp has some CPUs and
618 * isn't load balancing. The former is obvious. The
619 * latter: All child cpusets contain a subset of the
620 * parent's cpus, so just skip them, and then we call
621 * update_domain_attr_tree() to calc relax_domain_level of
622 * the corresponding sched domain.
624 if (!cpumask_empty(cp->cpus_allowed) &&
625 !is_sched_load_balance(cp))
626 continue;
628 if (is_sched_load_balance(cp))
629 csa[csn++] = cp;
631 /* skip @cp's subtree */
632 pos_css = css_rightmost_descendant(pos_css);
634 rcu_read_unlock();
636 for (i = 0; i < csn; i++)
637 csa[i]->pn = i;
638 ndoms = csn;
640 restart:
641 /* Find the best partition (set of sched domains) */
642 for (i = 0; i < csn; i++) {
643 struct cpuset *a = csa[i];
644 int apn = a->pn;
646 for (j = 0; j < csn; j++) {
647 struct cpuset *b = csa[j];
648 int bpn = b->pn;
650 if (apn != bpn && cpusets_overlap(a, b)) {
651 for (k = 0; k < csn; k++) {
652 struct cpuset *c = csa[k];
654 if (c->pn == bpn)
655 c->pn = apn;
657 ndoms--; /* one less element */
658 goto restart;
664 * Now we know how many domains to create.
665 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
667 doms = alloc_sched_domains(ndoms);
668 if (!doms)
669 goto done;
672 * The rest of the code, including the scheduler, can deal with
673 * dattr==NULL case. No need to abort if alloc fails.
675 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
677 for (nslot = 0, i = 0; i < csn; i++) {
678 struct cpuset *a = csa[i];
679 struct cpumask *dp;
680 int apn = a->pn;
682 if (apn < 0) {
683 /* Skip completed partitions */
684 continue;
687 dp = doms[nslot];
689 if (nslot == ndoms) {
690 static int warnings = 10;
691 if (warnings) {
692 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
693 nslot, ndoms, csn, i, apn);
694 warnings--;
696 continue;
699 cpumask_clear(dp);
700 if (dattr)
701 *(dattr + nslot) = SD_ATTR_INIT;
702 for (j = i; j < csn; j++) {
703 struct cpuset *b = csa[j];
705 if (apn == b->pn) {
706 cpumask_or(dp, dp, b->cpus_allowed);
707 if (dattr)
708 update_domain_attr_tree(dattr + nslot, b);
710 /* Done with this partition */
711 b->pn = -1;
714 nslot++;
716 BUG_ON(nslot != ndoms);
718 done:
719 kfree(csa);
722 * Fallback to the default domain if kmalloc() failed.
723 * See comments in partition_sched_domains().
725 if (doms == NULL)
726 ndoms = 1;
728 *domains = doms;
729 *attributes = dattr;
730 return ndoms;
734 * Rebuild scheduler domains.
736 * If the flag 'sched_load_balance' of any cpuset with non-empty
737 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
738 * which has that flag enabled, or if any cpuset with a non-empty
739 * 'cpus' is removed, then call this routine to rebuild the
740 * scheduler's dynamic sched domains.
742 * Call with cpuset_mutex held. Takes get_online_cpus().
744 static void rebuild_sched_domains_locked(void)
746 struct sched_domain_attr *attr;
747 cpumask_var_t *doms;
748 int ndoms;
750 lockdep_assert_held(&cpuset_mutex);
751 get_online_cpus();
754 * We have raced with CPU hotplug. Don't do anything to avoid
755 * passing doms with offlined cpu to partition_sched_domains().
756 * Anyways, hotplug work item will rebuild sched domains.
758 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
759 goto out;
761 /* Generate domain masks and attrs */
762 ndoms = generate_sched_domains(&doms, &attr);
764 /* Have scheduler rebuild the domains */
765 partition_sched_domains(ndoms, doms, attr);
766 out:
767 put_online_cpus();
769 #else /* !CONFIG_SMP */
770 static void rebuild_sched_domains_locked(void)
773 #endif /* CONFIG_SMP */
775 void rebuild_sched_domains(void)
777 mutex_lock(&cpuset_mutex);
778 rebuild_sched_domains_locked();
779 mutex_unlock(&cpuset_mutex);
783 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
784 * @cs: the cpuset in interest
786 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
787 * with non-empty cpus. We use effective cpumask whenever:
788 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
789 * if the cpuset they reside in has no cpus)
790 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
792 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
793 * exception. See comments there.
795 static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
797 while (cpumask_empty(cs->cpus_allowed))
798 cs = parent_cs(cs);
799 return cs;
803 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
804 * @cs: the cpuset in interest
806 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
807 * with non-empty memss. We use effective nodemask whenever:
808 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
809 * if the cpuset they reside in has no mems)
810 * - we want to retrieve task_cs(tsk)'s mems_allowed.
812 * Called with cpuset_mutex held.
814 static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
816 while (nodes_empty(cs->mems_allowed))
817 cs = parent_cs(cs);
818 return cs;
822 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
823 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
825 * Iterate through each task of @cs updating its cpus_allowed to the
826 * effective cpuset's. As this function is called with cpuset_mutex held,
827 * cpuset membership stays stable.
829 static void update_tasks_cpumask(struct cpuset *cs)
831 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
832 struct css_task_iter it;
833 struct task_struct *task;
835 css_task_iter_start(&cs->css, &it);
836 while ((task = css_task_iter_next(&it)))
837 set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
838 css_task_iter_end(&it);
842 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
843 * @root_cs: the root cpuset of the hierarchy
844 * @update_root: update root cpuset or not?
846 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
847 * which take on cpumask of @root_cs.
849 * Called with cpuset_mutex held
851 static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
853 struct cpuset *cp;
854 struct cgroup_subsys_state *pos_css;
856 rcu_read_lock();
857 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
858 if (cp == root_cs) {
859 if (!update_root)
860 continue;
861 } else {
862 /* skip the whole subtree if @cp have some CPU */
863 if (!cpumask_empty(cp->cpus_allowed)) {
864 pos_css = css_rightmost_descendant(pos_css);
865 continue;
868 if (!css_tryget_online(&cp->css))
869 continue;
870 rcu_read_unlock();
872 update_tasks_cpumask(cp);
874 rcu_read_lock();
875 css_put(&cp->css);
877 rcu_read_unlock();
881 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
882 * @cs: the cpuset to consider
883 * @trialcs: trial cpuset
884 * @buf: buffer of cpu numbers written to this cpuset
886 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
887 const char *buf)
889 int retval;
890 int is_load_balanced;
892 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
893 if (cs == &top_cpuset)
894 return -EACCES;
897 * An empty cpus_allowed is ok only if the cpuset has no tasks.
898 * Since cpulist_parse() fails on an empty mask, we special case
899 * that parsing. The validate_change() call ensures that cpusets
900 * with tasks have cpus.
902 if (!*buf) {
903 cpumask_clear(trialcs->cpus_allowed);
904 } else {
905 retval = cpulist_parse(buf, trialcs->cpus_allowed);
906 if (retval < 0)
907 return retval;
909 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
910 return -EINVAL;
913 /* Nothing to do if the cpus didn't change */
914 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
915 return 0;
917 retval = validate_change(cs, trialcs);
918 if (retval < 0)
919 return retval;
921 is_load_balanced = is_sched_load_balance(trialcs);
923 mutex_lock(&callback_mutex);
924 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
925 mutex_unlock(&callback_mutex);
927 update_tasks_cpumask_hier(cs, true);
929 if (is_load_balanced)
930 rebuild_sched_domains_locked();
931 return 0;
935 * cpuset_migrate_mm
937 * Migrate memory region from one set of nodes to another.
939 * Temporarilly set tasks mems_allowed to target nodes of migration,
940 * so that the migration code can allocate pages on these nodes.
942 * While the mm_struct we are migrating is typically from some
943 * other task, the task_struct mems_allowed that we are hacking
944 * is for our current task, which must allocate new pages for that
945 * migrating memory region.
948 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
949 const nodemask_t *to)
951 struct task_struct *tsk = current;
952 struct cpuset *mems_cs;
954 tsk->mems_allowed = *to;
956 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
958 rcu_read_lock();
959 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
960 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
961 rcu_read_unlock();
965 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
966 * @tsk: the task to change
967 * @newmems: new nodes that the task will be set
969 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
970 * we structure updates as setting all new allowed nodes, then clearing newly
971 * disallowed ones.
973 static void cpuset_change_task_nodemask(struct task_struct *tsk,
974 nodemask_t *newmems)
976 bool need_loop;
979 * Allow tasks that have access to memory reserves because they have
980 * been OOM killed to get memory anywhere.
982 if (unlikely(test_thread_flag(TIF_MEMDIE)))
983 return;
984 if (current->flags & PF_EXITING) /* Let dying task have memory */
985 return;
987 task_lock(tsk);
989 * Determine if a loop is necessary if another thread is doing
990 * read_mems_allowed_begin(). If at least one node remains unchanged and
991 * tsk does not have a mempolicy, then an empty nodemask will not be
992 * possible when mems_allowed is larger than a word.
994 need_loop = task_has_mempolicy(tsk) ||
995 !nodes_intersects(*newmems, tsk->mems_allowed);
997 if (need_loop) {
998 local_irq_disable();
999 write_seqcount_begin(&tsk->mems_allowed_seq);
1002 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1003 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1005 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1006 tsk->mems_allowed = *newmems;
1008 if (need_loop) {
1009 write_seqcount_end(&tsk->mems_allowed_seq);
1010 local_irq_enable();
1013 task_unlock(tsk);
1016 static void *cpuset_being_rebound;
1019 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1020 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1022 * Iterate through each task of @cs updating its mems_allowed to the
1023 * effective cpuset's. As this function is called with cpuset_mutex held,
1024 * cpuset membership stays stable.
1026 static void update_tasks_nodemask(struct cpuset *cs)
1028 static nodemask_t newmems; /* protected by cpuset_mutex */
1029 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1030 struct css_task_iter it;
1031 struct task_struct *task;
1033 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1035 guarantee_online_mems(mems_cs, &newmems);
1038 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1039 * take while holding tasklist_lock. Forks can happen - the
1040 * mpol_dup() cpuset_being_rebound check will catch such forks,
1041 * and rebind their vma mempolicies too. Because we still hold
1042 * the global cpuset_mutex, we know that no other rebind effort
1043 * will be contending for the global variable cpuset_being_rebound.
1044 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1045 * is idempotent. Also migrate pages in each mm to new nodes.
1047 css_task_iter_start(&cs->css, &it);
1048 while ((task = css_task_iter_next(&it))) {
1049 struct mm_struct *mm;
1050 bool migrate;
1052 cpuset_change_task_nodemask(task, &newmems);
1054 mm = get_task_mm(task);
1055 if (!mm)
1056 continue;
1058 migrate = is_memory_migrate(cs);
1060 mpol_rebind_mm(mm, &cs->mems_allowed);
1061 if (migrate)
1062 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1063 mmput(mm);
1065 css_task_iter_end(&it);
1068 * All the tasks' nodemasks have been updated, update
1069 * cs->old_mems_allowed.
1071 cs->old_mems_allowed = newmems;
1073 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1074 cpuset_being_rebound = NULL;
1078 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1079 * @cs: the root cpuset of the hierarchy
1080 * @update_root: update the root cpuset or not?
1082 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1083 * which take on nodemask of @root_cs.
1085 * Called with cpuset_mutex held
1087 static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
1089 struct cpuset *cp;
1090 struct cgroup_subsys_state *pos_css;
1092 rcu_read_lock();
1093 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1094 if (cp == root_cs) {
1095 if (!update_root)
1096 continue;
1097 } else {
1098 /* skip the whole subtree if @cp have some CPU */
1099 if (!nodes_empty(cp->mems_allowed)) {
1100 pos_css = css_rightmost_descendant(pos_css);
1101 continue;
1104 if (!css_tryget_online(&cp->css))
1105 continue;
1106 rcu_read_unlock();
1108 update_tasks_nodemask(cp);
1110 rcu_read_lock();
1111 css_put(&cp->css);
1113 rcu_read_unlock();
1117 * Handle user request to change the 'mems' memory placement
1118 * of a cpuset. Needs to validate the request, update the
1119 * cpusets mems_allowed, and for each task in the cpuset,
1120 * update mems_allowed and rebind task's mempolicy and any vma
1121 * mempolicies and if the cpuset is marked 'memory_migrate',
1122 * migrate the tasks pages to the new memory.
1124 * Call with cpuset_mutex held. May take callback_mutex during call.
1125 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1126 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1127 * their mempolicies to the cpusets new mems_allowed.
1129 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1130 const char *buf)
1132 int retval;
1135 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1136 * it's read-only
1138 if (cs == &top_cpuset) {
1139 retval = -EACCES;
1140 goto done;
1144 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1145 * Since nodelist_parse() fails on an empty mask, we special case
1146 * that parsing. The validate_change() call ensures that cpusets
1147 * with tasks have memory.
1149 if (!*buf) {
1150 nodes_clear(trialcs->mems_allowed);
1151 } else {
1152 retval = nodelist_parse(buf, trialcs->mems_allowed);
1153 if (retval < 0)
1154 goto done;
1156 if (!nodes_subset(trialcs->mems_allowed,
1157 node_states[N_MEMORY])) {
1158 retval = -EINVAL;
1159 goto done;
1163 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1164 retval = 0; /* Too easy - nothing to do */
1165 goto done;
1167 retval = validate_change(cs, trialcs);
1168 if (retval < 0)
1169 goto done;
1171 mutex_lock(&callback_mutex);
1172 cs->mems_allowed = trialcs->mems_allowed;
1173 mutex_unlock(&callback_mutex);
1175 update_tasks_nodemask_hier(cs, true);
1176 done:
1177 return retval;
1180 int current_cpuset_is_being_rebound(void)
1182 int ret;
1184 rcu_read_lock();
1185 ret = task_cs(current) == cpuset_being_rebound;
1186 rcu_read_unlock();
1188 return ret;
1191 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1193 #ifdef CONFIG_SMP
1194 if (val < -1 || val >= sched_domain_level_max)
1195 return -EINVAL;
1196 #endif
1198 if (val != cs->relax_domain_level) {
1199 cs->relax_domain_level = val;
1200 if (!cpumask_empty(cs->cpus_allowed) &&
1201 is_sched_load_balance(cs))
1202 rebuild_sched_domains_locked();
1205 return 0;
1209 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1210 * @cs: the cpuset in which each task's spread flags needs to be changed
1212 * Iterate through each task of @cs updating its spread flags. As this
1213 * function is called with cpuset_mutex held, cpuset membership stays
1214 * stable.
1216 static void update_tasks_flags(struct cpuset *cs)
1218 struct css_task_iter it;
1219 struct task_struct *task;
1221 css_task_iter_start(&cs->css, &it);
1222 while ((task = css_task_iter_next(&it)))
1223 cpuset_update_task_spread_flag(cs, task);
1224 css_task_iter_end(&it);
1228 * update_flag - read a 0 or a 1 in a file and update associated flag
1229 * bit: the bit to update (see cpuset_flagbits_t)
1230 * cs: the cpuset to update
1231 * turning_on: whether the flag is being set or cleared
1233 * Call with cpuset_mutex held.
1236 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1237 int turning_on)
1239 struct cpuset *trialcs;
1240 int balance_flag_changed;
1241 int spread_flag_changed;
1242 int err;
1244 trialcs = alloc_trial_cpuset(cs);
1245 if (!trialcs)
1246 return -ENOMEM;
1248 if (turning_on)
1249 set_bit(bit, &trialcs->flags);
1250 else
1251 clear_bit(bit, &trialcs->flags);
1253 err = validate_change(cs, trialcs);
1254 if (err < 0)
1255 goto out;
1257 balance_flag_changed = (is_sched_load_balance(cs) !=
1258 is_sched_load_balance(trialcs));
1260 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1261 || (is_spread_page(cs) != is_spread_page(trialcs)));
1263 mutex_lock(&callback_mutex);
1264 cs->flags = trialcs->flags;
1265 mutex_unlock(&callback_mutex);
1267 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1268 rebuild_sched_domains_locked();
1270 if (spread_flag_changed)
1271 update_tasks_flags(cs);
1272 out:
1273 free_trial_cpuset(trialcs);
1274 return err;
1278 * Frequency meter - How fast is some event occurring?
1280 * These routines manage a digitally filtered, constant time based,
1281 * event frequency meter. There are four routines:
1282 * fmeter_init() - initialize a frequency meter.
1283 * fmeter_markevent() - called each time the event happens.
1284 * fmeter_getrate() - returns the recent rate of such events.
1285 * fmeter_update() - internal routine used to update fmeter.
1287 * A common data structure is passed to each of these routines,
1288 * which is used to keep track of the state required to manage the
1289 * frequency meter and its digital filter.
1291 * The filter works on the number of events marked per unit time.
1292 * The filter is single-pole low-pass recursive (IIR). The time unit
1293 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1294 * simulate 3 decimal digits of precision (multiplied by 1000).
1296 * With an FM_COEF of 933, and a time base of 1 second, the filter
1297 * has a half-life of 10 seconds, meaning that if the events quit
1298 * happening, then the rate returned from the fmeter_getrate()
1299 * will be cut in half each 10 seconds, until it converges to zero.
1301 * It is not worth doing a real infinitely recursive filter. If more
1302 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1303 * just compute FM_MAXTICKS ticks worth, by which point the level
1304 * will be stable.
1306 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1307 * arithmetic overflow in the fmeter_update() routine.
1309 * Given the simple 32 bit integer arithmetic used, this meter works
1310 * best for reporting rates between one per millisecond (msec) and
1311 * one per 32 (approx) seconds. At constant rates faster than one
1312 * per msec it maxes out at values just under 1,000,000. At constant
1313 * rates between one per msec, and one per second it will stabilize
1314 * to a value N*1000, where N is the rate of events per second.
1315 * At constant rates between one per second and one per 32 seconds,
1316 * it will be choppy, moving up on the seconds that have an event,
1317 * and then decaying until the next event. At rates slower than
1318 * about one in 32 seconds, it decays all the way back to zero between
1319 * each event.
1322 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1323 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1324 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1325 #define FM_SCALE 1000 /* faux fixed point scale */
1327 /* Initialize a frequency meter */
1328 static void fmeter_init(struct fmeter *fmp)
1330 fmp->cnt = 0;
1331 fmp->val = 0;
1332 fmp->time = 0;
1333 spin_lock_init(&fmp->lock);
1336 /* Internal meter update - process cnt events and update value */
1337 static void fmeter_update(struct fmeter *fmp)
1339 time_t now = get_seconds();
1340 time_t ticks = now - fmp->time;
1342 if (ticks == 0)
1343 return;
1345 ticks = min(FM_MAXTICKS, ticks);
1346 while (ticks-- > 0)
1347 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1348 fmp->time = now;
1350 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1351 fmp->cnt = 0;
1354 /* Process any previous ticks, then bump cnt by one (times scale). */
1355 static void fmeter_markevent(struct fmeter *fmp)
1357 spin_lock(&fmp->lock);
1358 fmeter_update(fmp);
1359 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1360 spin_unlock(&fmp->lock);
1363 /* Process any previous ticks, then return current value. */
1364 static int fmeter_getrate(struct fmeter *fmp)
1366 int val;
1368 spin_lock(&fmp->lock);
1369 fmeter_update(fmp);
1370 val = fmp->val;
1371 spin_unlock(&fmp->lock);
1372 return val;
1375 static struct cpuset *cpuset_attach_old_cs;
1377 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1378 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1379 struct cgroup_taskset *tset)
1381 struct cpuset *cs = css_cs(css);
1382 struct task_struct *task;
1383 int ret;
1385 /* used later by cpuset_attach() */
1386 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1388 mutex_lock(&cpuset_mutex);
1391 * We allow to move tasks into an empty cpuset if sane_behavior
1392 * flag is set.
1394 ret = -ENOSPC;
1395 if (!cgroup_sane_behavior(css->cgroup) &&
1396 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1397 goto out_unlock;
1399 cgroup_taskset_for_each(task, tset) {
1401 * Kthreads which disallow setaffinity shouldn't be moved
1402 * to a new cpuset; we don't want to change their cpu
1403 * affinity and isolating such threads by their set of
1404 * allowed nodes is unnecessary. Thus, cpusets are not
1405 * applicable for such threads. This prevents checking for
1406 * success of set_cpus_allowed_ptr() on all attached tasks
1407 * before cpus_allowed may be changed.
1409 ret = -EINVAL;
1410 if (task->flags & PF_NO_SETAFFINITY)
1411 goto out_unlock;
1412 ret = security_task_setscheduler(task);
1413 if (ret)
1414 goto out_unlock;
1418 * Mark attach is in progress. This makes validate_change() fail
1419 * changes which zero cpus/mems_allowed.
1421 cs->attach_in_progress++;
1422 ret = 0;
1423 out_unlock:
1424 mutex_unlock(&cpuset_mutex);
1425 return ret;
1428 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1429 struct cgroup_taskset *tset)
1431 mutex_lock(&cpuset_mutex);
1432 css_cs(css)->attach_in_progress--;
1433 mutex_unlock(&cpuset_mutex);
1437 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1438 * but we can't allocate it dynamically there. Define it global and
1439 * allocate from cpuset_init().
1441 static cpumask_var_t cpus_attach;
1443 static void cpuset_attach(struct cgroup_subsys_state *css,
1444 struct cgroup_taskset *tset)
1446 /* static buf protected by cpuset_mutex */
1447 static nodemask_t cpuset_attach_nodemask_to;
1448 struct mm_struct *mm;
1449 struct task_struct *task;
1450 struct task_struct *leader = cgroup_taskset_first(tset);
1451 struct cpuset *cs = css_cs(css);
1452 struct cpuset *oldcs = cpuset_attach_old_cs;
1453 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1454 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1456 mutex_lock(&cpuset_mutex);
1458 /* prepare for attach */
1459 if (cs == &top_cpuset)
1460 cpumask_copy(cpus_attach, cpu_possible_mask);
1461 else
1462 guarantee_online_cpus(cpus_cs, cpus_attach);
1464 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1466 cgroup_taskset_for_each(task, tset) {
1468 * can_attach beforehand should guarantee that this doesn't
1469 * fail. TODO: have a better way to handle failure here
1471 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1473 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1474 cpuset_update_task_spread_flag(cs, task);
1478 * Change mm, possibly for multiple threads in a threadgroup. This is
1479 * expensive and may sleep.
1481 cpuset_attach_nodemask_to = cs->mems_allowed;
1482 mm = get_task_mm(leader);
1483 if (mm) {
1484 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1486 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1489 * old_mems_allowed is the same with mems_allowed here, except
1490 * if this task is being moved automatically due to hotplug.
1491 * In that case @mems_allowed has been updated and is empty,
1492 * so @old_mems_allowed is the right nodesets that we migrate
1493 * mm from.
1495 if (is_memory_migrate(cs)) {
1496 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1497 &cpuset_attach_nodemask_to);
1499 mmput(mm);
1502 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1504 cs->attach_in_progress--;
1505 if (!cs->attach_in_progress)
1506 wake_up(&cpuset_attach_wq);
1508 mutex_unlock(&cpuset_mutex);
1511 /* The various types of files and directories in a cpuset file system */
1513 typedef enum {
1514 FILE_MEMORY_MIGRATE,
1515 FILE_CPULIST,
1516 FILE_MEMLIST,
1517 FILE_CPU_EXCLUSIVE,
1518 FILE_MEM_EXCLUSIVE,
1519 FILE_MEM_HARDWALL,
1520 FILE_SCHED_LOAD_BALANCE,
1521 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1522 FILE_MEMORY_PRESSURE_ENABLED,
1523 FILE_MEMORY_PRESSURE,
1524 FILE_SPREAD_PAGE,
1525 FILE_SPREAD_SLAB,
1526 } cpuset_filetype_t;
1528 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1529 u64 val)
1531 struct cpuset *cs = css_cs(css);
1532 cpuset_filetype_t type = cft->private;
1533 int retval = 0;
1535 mutex_lock(&cpuset_mutex);
1536 if (!is_cpuset_online(cs)) {
1537 retval = -ENODEV;
1538 goto out_unlock;
1541 switch (type) {
1542 case FILE_CPU_EXCLUSIVE:
1543 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1544 break;
1545 case FILE_MEM_EXCLUSIVE:
1546 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1547 break;
1548 case FILE_MEM_HARDWALL:
1549 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1550 break;
1551 case FILE_SCHED_LOAD_BALANCE:
1552 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1553 break;
1554 case FILE_MEMORY_MIGRATE:
1555 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1556 break;
1557 case FILE_MEMORY_PRESSURE_ENABLED:
1558 cpuset_memory_pressure_enabled = !!val;
1559 break;
1560 case FILE_MEMORY_PRESSURE:
1561 retval = -EACCES;
1562 break;
1563 case FILE_SPREAD_PAGE:
1564 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1565 break;
1566 case FILE_SPREAD_SLAB:
1567 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1568 break;
1569 default:
1570 retval = -EINVAL;
1571 break;
1573 out_unlock:
1574 mutex_unlock(&cpuset_mutex);
1575 return retval;
1578 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1579 s64 val)
1581 struct cpuset *cs = css_cs(css);
1582 cpuset_filetype_t type = cft->private;
1583 int retval = -ENODEV;
1585 mutex_lock(&cpuset_mutex);
1586 if (!is_cpuset_online(cs))
1587 goto out_unlock;
1589 switch (type) {
1590 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1591 retval = update_relax_domain_level(cs, val);
1592 break;
1593 default:
1594 retval = -EINVAL;
1595 break;
1597 out_unlock:
1598 mutex_unlock(&cpuset_mutex);
1599 return retval;
1603 * Common handling for a write to a "cpus" or "mems" file.
1605 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1606 char *buf, size_t nbytes, loff_t off)
1608 struct cpuset *cs = css_cs(of_css(of));
1609 struct cpuset *trialcs;
1610 int retval = -ENODEV;
1612 buf = strstrip(buf);
1615 * CPU or memory hotunplug may leave @cs w/o any execution
1616 * resources, in which case the hotplug code asynchronously updates
1617 * configuration and transfers all tasks to the nearest ancestor
1618 * which can execute.
1620 * As writes to "cpus" or "mems" may restore @cs's execution
1621 * resources, wait for the previously scheduled operations before
1622 * proceeding, so that we don't end up keep removing tasks added
1623 * after execution capability is restored.
1625 * cpuset_hotplug_work calls back into cgroup core via
1626 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1627 * operation like this one can lead to a deadlock through kernfs
1628 * active_ref protection. Let's break the protection. Losing the
1629 * protection is okay as we check whether @cs is online after
1630 * grabbing cpuset_mutex anyway. This only happens on the legacy
1631 * hierarchies.
1633 css_get(&cs->css);
1634 kernfs_break_active_protection(of->kn);
1635 flush_work(&cpuset_hotplug_work);
1637 mutex_lock(&cpuset_mutex);
1638 if (!is_cpuset_online(cs))
1639 goto out_unlock;
1641 trialcs = alloc_trial_cpuset(cs);
1642 if (!trialcs) {
1643 retval = -ENOMEM;
1644 goto out_unlock;
1647 switch (of_cft(of)->private) {
1648 case FILE_CPULIST:
1649 retval = update_cpumask(cs, trialcs, buf);
1650 break;
1651 case FILE_MEMLIST:
1652 retval = update_nodemask(cs, trialcs, buf);
1653 break;
1654 default:
1655 retval = -EINVAL;
1656 break;
1659 free_trial_cpuset(trialcs);
1660 out_unlock:
1661 mutex_unlock(&cpuset_mutex);
1662 kernfs_unbreak_active_protection(of->kn);
1663 css_put(&cs->css);
1664 return retval ?: nbytes;
1668 * These ascii lists should be read in a single call, by using a user
1669 * buffer large enough to hold the entire map. If read in smaller
1670 * chunks, there is no guarantee of atomicity. Since the display format
1671 * used, list of ranges of sequential numbers, is variable length,
1672 * and since these maps can change value dynamically, one could read
1673 * gibberish by doing partial reads while a list was changing.
1675 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1677 struct cpuset *cs = css_cs(seq_css(sf));
1678 cpuset_filetype_t type = seq_cft(sf)->private;
1679 ssize_t count;
1680 char *buf, *s;
1681 int ret = 0;
1683 count = seq_get_buf(sf, &buf);
1684 s = buf;
1686 mutex_lock(&callback_mutex);
1688 switch (type) {
1689 case FILE_CPULIST:
1690 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1691 break;
1692 case FILE_MEMLIST:
1693 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1694 break;
1695 default:
1696 ret = -EINVAL;
1697 goto out_unlock;
1700 if (s < buf + count - 1) {
1701 *s++ = '\n';
1702 seq_commit(sf, s - buf);
1703 } else {
1704 seq_commit(sf, -1);
1706 out_unlock:
1707 mutex_unlock(&callback_mutex);
1708 return ret;
1711 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1713 struct cpuset *cs = css_cs(css);
1714 cpuset_filetype_t type = cft->private;
1715 switch (type) {
1716 case FILE_CPU_EXCLUSIVE:
1717 return is_cpu_exclusive(cs);
1718 case FILE_MEM_EXCLUSIVE:
1719 return is_mem_exclusive(cs);
1720 case FILE_MEM_HARDWALL:
1721 return is_mem_hardwall(cs);
1722 case FILE_SCHED_LOAD_BALANCE:
1723 return is_sched_load_balance(cs);
1724 case FILE_MEMORY_MIGRATE:
1725 return is_memory_migrate(cs);
1726 case FILE_MEMORY_PRESSURE_ENABLED:
1727 return cpuset_memory_pressure_enabled;
1728 case FILE_MEMORY_PRESSURE:
1729 return fmeter_getrate(&cs->fmeter);
1730 case FILE_SPREAD_PAGE:
1731 return is_spread_page(cs);
1732 case FILE_SPREAD_SLAB:
1733 return is_spread_slab(cs);
1734 default:
1735 BUG();
1738 /* Unreachable but makes gcc happy */
1739 return 0;
1742 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1744 struct cpuset *cs = css_cs(css);
1745 cpuset_filetype_t type = cft->private;
1746 switch (type) {
1747 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1748 return cs->relax_domain_level;
1749 default:
1750 BUG();
1753 /* Unrechable but makes gcc happy */
1754 return 0;
1759 * for the common functions, 'private' gives the type of file
1762 static struct cftype files[] = {
1764 .name = "cpus",
1765 .seq_show = cpuset_common_seq_show,
1766 .write = cpuset_write_resmask,
1767 .max_write_len = (100U + 6 * NR_CPUS),
1768 .private = FILE_CPULIST,
1772 .name = "mems",
1773 .seq_show = cpuset_common_seq_show,
1774 .write = cpuset_write_resmask,
1775 .max_write_len = (100U + 6 * MAX_NUMNODES),
1776 .private = FILE_MEMLIST,
1780 .name = "cpu_exclusive",
1781 .read_u64 = cpuset_read_u64,
1782 .write_u64 = cpuset_write_u64,
1783 .private = FILE_CPU_EXCLUSIVE,
1787 .name = "mem_exclusive",
1788 .read_u64 = cpuset_read_u64,
1789 .write_u64 = cpuset_write_u64,
1790 .private = FILE_MEM_EXCLUSIVE,
1794 .name = "mem_hardwall",
1795 .read_u64 = cpuset_read_u64,
1796 .write_u64 = cpuset_write_u64,
1797 .private = FILE_MEM_HARDWALL,
1801 .name = "sched_load_balance",
1802 .read_u64 = cpuset_read_u64,
1803 .write_u64 = cpuset_write_u64,
1804 .private = FILE_SCHED_LOAD_BALANCE,
1808 .name = "sched_relax_domain_level",
1809 .read_s64 = cpuset_read_s64,
1810 .write_s64 = cpuset_write_s64,
1811 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1815 .name = "memory_migrate",
1816 .read_u64 = cpuset_read_u64,
1817 .write_u64 = cpuset_write_u64,
1818 .private = FILE_MEMORY_MIGRATE,
1822 .name = "memory_pressure",
1823 .read_u64 = cpuset_read_u64,
1824 .write_u64 = cpuset_write_u64,
1825 .private = FILE_MEMORY_PRESSURE,
1826 .mode = S_IRUGO,
1830 .name = "memory_spread_page",
1831 .read_u64 = cpuset_read_u64,
1832 .write_u64 = cpuset_write_u64,
1833 .private = FILE_SPREAD_PAGE,
1837 .name = "memory_spread_slab",
1838 .read_u64 = cpuset_read_u64,
1839 .write_u64 = cpuset_write_u64,
1840 .private = FILE_SPREAD_SLAB,
1844 .name = "memory_pressure_enabled",
1845 .flags = CFTYPE_ONLY_ON_ROOT,
1846 .read_u64 = cpuset_read_u64,
1847 .write_u64 = cpuset_write_u64,
1848 .private = FILE_MEMORY_PRESSURE_ENABLED,
1851 { } /* terminate */
1855 * cpuset_css_alloc - allocate a cpuset css
1856 * cgrp: control group that the new cpuset will be part of
1859 static struct cgroup_subsys_state *
1860 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1862 struct cpuset *cs;
1864 if (!parent_css)
1865 return &top_cpuset.css;
1867 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1868 if (!cs)
1869 return ERR_PTR(-ENOMEM);
1870 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1871 kfree(cs);
1872 return ERR_PTR(-ENOMEM);
1875 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1876 cpumask_clear(cs->cpus_allowed);
1877 nodes_clear(cs->mems_allowed);
1878 fmeter_init(&cs->fmeter);
1879 cs->relax_domain_level = -1;
1881 return &cs->css;
1884 static int cpuset_css_online(struct cgroup_subsys_state *css)
1886 struct cpuset *cs = css_cs(css);
1887 struct cpuset *parent = parent_cs(cs);
1888 struct cpuset *tmp_cs;
1889 struct cgroup_subsys_state *pos_css;
1891 if (!parent)
1892 return 0;
1894 mutex_lock(&cpuset_mutex);
1896 set_bit(CS_ONLINE, &cs->flags);
1897 if (is_spread_page(parent))
1898 set_bit(CS_SPREAD_PAGE, &cs->flags);
1899 if (is_spread_slab(parent))
1900 set_bit(CS_SPREAD_SLAB, &cs->flags);
1902 cpuset_inc();
1904 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1905 goto out_unlock;
1908 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1909 * set. This flag handling is implemented in cgroup core for
1910 * histrical reasons - the flag may be specified during mount.
1912 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1913 * refuse to clone the configuration - thereby refusing the task to
1914 * be entered, and as a result refusing the sys_unshare() or
1915 * clone() which initiated it. If this becomes a problem for some
1916 * users who wish to allow that scenario, then this could be
1917 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1918 * (and likewise for mems) to the new cgroup.
1920 rcu_read_lock();
1921 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1922 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1923 rcu_read_unlock();
1924 goto out_unlock;
1927 rcu_read_unlock();
1929 mutex_lock(&callback_mutex);
1930 cs->mems_allowed = parent->mems_allowed;
1931 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1932 mutex_unlock(&callback_mutex);
1933 out_unlock:
1934 mutex_unlock(&cpuset_mutex);
1935 return 0;
1939 * If the cpuset being removed has its flag 'sched_load_balance'
1940 * enabled, then simulate turning sched_load_balance off, which
1941 * will call rebuild_sched_domains_locked().
1944 static void cpuset_css_offline(struct cgroup_subsys_state *css)
1946 struct cpuset *cs = css_cs(css);
1948 mutex_lock(&cpuset_mutex);
1950 if (is_sched_load_balance(cs))
1951 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1953 cpuset_dec();
1954 clear_bit(CS_ONLINE, &cs->flags);
1956 mutex_unlock(&cpuset_mutex);
1959 static void cpuset_css_free(struct cgroup_subsys_state *css)
1961 struct cpuset *cs = css_cs(css);
1963 free_cpumask_var(cs->cpus_allowed);
1964 kfree(cs);
1968 * Make sure the new task conform to the current state of its parent,
1969 * which could have been changed by cpuset just after it inherits the
1970 * state from the parent and before it sits on the cgroup's task list.
1972 void cpuset_fork(struct task_struct *task)
1974 if (task_css_is_root(task, cpuset_cgrp_id))
1975 return;
1977 set_cpus_allowed_ptr(task, &current->cpus_allowed);
1978 task->mems_allowed = current->mems_allowed;
1981 struct cgroup_subsys cpuset_cgrp_subsys = {
1982 .css_alloc = cpuset_css_alloc,
1983 .css_online = cpuset_css_online,
1984 .css_offline = cpuset_css_offline,
1985 .css_free = cpuset_css_free,
1986 .can_attach = cpuset_can_attach,
1987 .cancel_attach = cpuset_cancel_attach,
1988 .attach = cpuset_attach,
1989 .fork = cpuset_fork,
1990 .base_cftypes = files,
1991 .early_init = 1,
1995 * cpuset_init - initialize cpusets at system boot
1997 * Description: Initialize top_cpuset and the cpuset internal file system,
2000 int __init cpuset_init(void)
2002 int err = 0;
2004 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2005 BUG();
2007 cpumask_setall(top_cpuset.cpus_allowed);
2008 nodes_setall(top_cpuset.mems_allowed);
2010 fmeter_init(&top_cpuset.fmeter);
2011 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2012 top_cpuset.relax_domain_level = -1;
2014 err = register_filesystem(&cpuset_fs_type);
2015 if (err < 0)
2016 return err;
2018 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2019 BUG();
2021 return 0;
2025 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2026 * or memory nodes, we need to walk over the cpuset hierarchy,
2027 * removing that CPU or node from all cpusets. If this removes the
2028 * last CPU or node from a cpuset, then move the tasks in the empty
2029 * cpuset to its next-highest non-empty parent.
2031 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2033 struct cpuset *parent;
2036 * Find its next-highest non-empty parent, (top cpuset
2037 * has online cpus, so can't be empty).
2039 parent = parent_cs(cs);
2040 while (cpumask_empty(parent->cpus_allowed) ||
2041 nodes_empty(parent->mems_allowed))
2042 parent = parent_cs(parent);
2044 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2045 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2046 pr_cont_cgroup_name(cs->css.cgroup);
2047 pr_cont("\n");
2052 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2053 * @cs: cpuset in interest
2055 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2056 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2057 * all its tasks are moved to the nearest ancestor with both resources.
2059 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2061 static cpumask_t off_cpus;
2062 static nodemask_t off_mems;
2063 bool is_empty;
2064 bool sane = cgroup_sane_behavior(cs->css.cgroup);
2066 retry:
2067 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2069 mutex_lock(&cpuset_mutex);
2072 * We have raced with task attaching. We wait until attaching
2073 * is finished, so we won't attach a task to an empty cpuset.
2075 if (cs->attach_in_progress) {
2076 mutex_unlock(&cpuset_mutex);
2077 goto retry;
2080 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2081 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2083 mutex_lock(&callback_mutex);
2084 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2085 mutex_unlock(&callback_mutex);
2088 * If sane_behavior flag is set, we need to update tasks' cpumask
2089 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2090 * call update_tasks_cpumask() if the cpuset becomes empty, as
2091 * the tasks in it will be migrated to an ancestor.
2093 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2094 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2095 update_tasks_cpumask(cs);
2097 mutex_lock(&callback_mutex);
2098 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2099 mutex_unlock(&callback_mutex);
2102 * If sane_behavior flag is set, we need to update tasks' nodemask
2103 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2104 * call update_tasks_nodemask() if the cpuset becomes empty, as
2105 * the tasks in it will be migratd to an ancestor.
2107 if ((sane && nodes_empty(cs->mems_allowed)) ||
2108 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2109 update_tasks_nodemask(cs);
2111 is_empty = cpumask_empty(cs->cpus_allowed) ||
2112 nodes_empty(cs->mems_allowed);
2114 mutex_unlock(&cpuset_mutex);
2117 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2119 * Otherwise move tasks to the nearest ancestor with execution
2120 * resources. This is full cgroup operation which will
2121 * also call back into cpuset. Should be done outside any lock.
2123 if (!sane && is_empty)
2124 remove_tasks_in_empty_cpuset(cs);
2128 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2130 * This function is called after either CPU or memory configuration has
2131 * changed and updates cpuset accordingly. The top_cpuset is always
2132 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2133 * order to make cpusets transparent (of no affect) on systems that are
2134 * actively using CPU hotplug but making no active use of cpusets.
2136 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2137 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2138 * all descendants.
2140 * Note that CPU offlining during suspend is ignored. We don't modify
2141 * cpusets across suspend/resume cycles at all.
2143 static void cpuset_hotplug_workfn(struct work_struct *work)
2145 static cpumask_t new_cpus;
2146 static nodemask_t new_mems;
2147 bool cpus_updated, mems_updated;
2149 mutex_lock(&cpuset_mutex);
2151 /* fetch the available cpus/mems and find out which changed how */
2152 cpumask_copy(&new_cpus, cpu_active_mask);
2153 new_mems = node_states[N_MEMORY];
2155 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2156 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2158 /* synchronize cpus_allowed to cpu_active_mask */
2159 if (cpus_updated) {
2160 mutex_lock(&callback_mutex);
2161 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2162 mutex_unlock(&callback_mutex);
2163 /* we don't mess with cpumasks of tasks in top_cpuset */
2166 /* synchronize mems_allowed to N_MEMORY */
2167 if (mems_updated) {
2168 mutex_lock(&callback_mutex);
2169 top_cpuset.mems_allowed = new_mems;
2170 mutex_unlock(&callback_mutex);
2171 update_tasks_nodemask(&top_cpuset);
2174 mutex_unlock(&cpuset_mutex);
2176 /* if cpus or mems changed, we need to propagate to descendants */
2177 if (cpus_updated || mems_updated) {
2178 struct cpuset *cs;
2179 struct cgroup_subsys_state *pos_css;
2181 rcu_read_lock();
2182 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2183 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2184 continue;
2185 rcu_read_unlock();
2187 cpuset_hotplug_update_tasks(cs);
2189 rcu_read_lock();
2190 css_put(&cs->css);
2192 rcu_read_unlock();
2195 /* rebuild sched domains if cpus_allowed has changed */
2196 if (cpus_updated)
2197 rebuild_sched_domains();
2200 void cpuset_update_active_cpus(bool cpu_online)
2203 * We're inside cpu hotplug critical region which usually nests
2204 * inside cgroup synchronization. Bounce actual hotplug processing
2205 * to a work item to avoid reverse locking order.
2207 * We still need to do partition_sched_domains() synchronously;
2208 * otherwise, the scheduler will get confused and put tasks to the
2209 * dead CPU. Fall back to the default single domain.
2210 * cpuset_hotplug_workfn() will rebuild it as necessary.
2212 partition_sched_domains(1, NULL, NULL);
2213 schedule_work(&cpuset_hotplug_work);
2217 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2218 * Call this routine anytime after node_states[N_MEMORY] changes.
2219 * See cpuset_update_active_cpus() for CPU hotplug handling.
2221 static int cpuset_track_online_nodes(struct notifier_block *self,
2222 unsigned long action, void *arg)
2224 schedule_work(&cpuset_hotplug_work);
2225 return NOTIFY_OK;
2228 static struct notifier_block cpuset_track_online_nodes_nb = {
2229 .notifier_call = cpuset_track_online_nodes,
2230 .priority = 10, /* ??! */
2234 * cpuset_init_smp - initialize cpus_allowed
2236 * Description: Finish top cpuset after cpu, node maps are initialized
2238 void __init cpuset_init_smp(void)
2240 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2241 top_cpuset.mems_allowed = node_states[N_MEMORY];
2242 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2244 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2248 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2249 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2250 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2252 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2253 * attached to the specified @tsk. Guaranteed to return some non-empty
2254 * subset of cpu_online_mask, even if this means going outside the
2255 * tasks cpuset.
2258 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2260 struct cpuset *cpus_cs;
2262 mutex_lock(&callback_mutex);
2263 rcu_read_lock();
2264 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2265 guarantee_online_cpus(cpus_cs, pmask);
2266 rcu_read_unlock();
2267 mutex_unlock(&callback_mutex);
2270 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2272 struct cpuset *cpus_cs;
2274 rcu_read_lock();
2275 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2276 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2277 rcu_read_unlock();
2280 * We own tsk->cpus_allowed, nobody can change it under us.
2282 * But we used cs && cs->cpus_allowed lockless and thus can
2283 * race with cgroup_attach_task() or update_cpumask() and get
2284 * the wrong tsk->cpus_allowed. However, both cases imply the
2285 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2286 * which takes task_rq_lock().
2288 * If we are called after it dropped the lock we must see all
2289 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2290 * set any mask even if it is not right from task_cs() pov,
2291 * the pending set_cpus_allowed_ptr() will fix things.
2293 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2294 * if required.
2298 void cpuset_init_current_mems_allowed(void)
2300 nodes_setall(current->mems_allowed);
2304 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2305 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2307 * Description: Returns the nodemask_t mems_allowed of the cpuset
2308 * attached to the specified @tsk. Guaranteed to return some non-empty
2309 * subset of node_states[N_MEMORY], even if this means going outside the
2310 * tasks cpuset.
2313 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2315 struct cpuset *mems_cs;
2316 nodemask_t mask;
2318 mutex_lock(&callback_mutex);
2319 rcu_read_lock();
2320 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2321 guarantee_online_mems(mems_cs, &mask);
2322 rcu_read_unlock();
2323 mutex_unlock(&callback_mutex);
2325 return mask;
2329 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2330 * @nodemask: the nodemask to be checked
2332 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2334 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2336 return nodes_intersects(*nodemask, current->mems_allowed);
2340 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2341 * mem_hardwall ancestor to the specified cpuset. Call holding
2342 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2343 * (an unusual configuration), then returns the root cpuset.
2345 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2347 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2348 cs = parent_cs(cs);
2349 return cs;
2353 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2354 * @node: is this an allowed node?
2355 * @gfp_mask: memory allocation flags
2357 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2358 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2359 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2360 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2361 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2362 * flag, yes.
2363 * Otherwise, no.
2365 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2366 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2367 * might sleep, and might allow a node from an enclosing cpuset.
2369 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2370 * cpusets, and never sleeps.
2372 * The __GFP_THISNODE placement logic is really handled elsewhere,
2373 * by forcibly using a zonelist starting at a specified node, and by
2374 * (in get_page_from_freelist()) refusing to consider the zones for
2375 * any node on the zonelist except the first. By the time any such
2376 * calls get to this routine, we should just shut up and say 'yes'.
2378 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2379 * and do not allow allocations outside the current tasks cpuset
2380 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2381 * GFP_KERNEL allocations are not so marked, so can escape to the
2382 * nearest enclosing hardwalled ancestor cpuset.
2384 * Scanning up parent cpusets requires callback_mutex. The
2385 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2386 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2387 * current tasks mems_allowed came up empty on the first pass over
2388 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2389 * cpuset are short of memory, might require taking the callback_mutex
2390 * mutex.
2392 * The first call here from mm/page_alloc:get_page_from_freelist()
2393 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2394 * so no allocation on a node outside the cpuset is allowed (unless
2395 * in interrupt, of course).
2397 * The second pass through get_page_from_freelist() doesn't even call
2398 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2399 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2400 * in alloc_flags. That logic and the checks below have the combined
2401 * affect that:
2402 * in_interrupt - any node ok (current task context irrelevant)
2403 * GFP_ATOMIC - any node ok
2404 * TIF_MEMDIE - any node ok
2405 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2406 * GFP_USER - only nodes in current tasks mems allowed ok.
2408 * Rule:
2409 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2410 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2411 * the code that might scan up ancestor cpusets and sleep.
2413 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2415 struct cpuset *cs; /* current cpuset ancestors */
2416 int allowed; /* is allocation in zone z allowed? */
2418 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2419 return 1;
2420 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2421 if (node_isset(node, current->mems_allowed))
2422 return 1;
2424 * Allow tasks that have access to memory reserves because they have
2425 * been OOM killed to get memory anywhere.
2427 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2428 return 1;
2429 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2430 return 0;
2432 if (current->flags & PF_EXITING) /* Let dying task have memory */
2433 return 1;
2435 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2436 mutex_lock(&callback_mutex);
2438 rcu_read_lock();
2439 cs = nearest_hardwall_ancestor(task_cs(current));
2440 allowed = node_isset(node, cs->mems_allowed);
2441 rcu_read_unlock();
2443 mutex_unlock(&callback_mutex);
2444 return allowed;
2448 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2449 * @node: is this an allowed node?
2450 * @gfp_mask: memory allocation flags
2452 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2453 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2454 * yes. If the task has been OOM killed and has access to memory reserves as
2455 * specified by the TIF_MEMDIE flag, yes.
2456 * Otherwise, no.
2458 * The __GFP_THISNODE placement logic is really handled elsewhere,
2459 * by forcibly using a zonelist starting at a specified node, and by
2460 * (in get_page_from_freelist()) refusing to consider the zones for
2461 * any node on the zonelist except the first. By the time any such
2462 * calls get to this routine, we should just shut up and say 'yes'.
2464 * Unlike the cpuset_node_allowed_softwall() variant, above,
2465 * this variant requires that the node be in the current task's
2466 * mems_allowed or that we're in interrupt. It does not scan up the
2467 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2468 * It never sleeps.
2470 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2472 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2473 return 1;
2474 if (node_isset(node, current->mems_allowed))
2475 return 1;
2477 * Allow tasks that have access to memory reserves because they have
2478 * been OOM killed to get memory anywhere.
2480 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2481 return 1;
2482 return 0;
2486 * cpuset_mem_spread_node() - On which node to begin search for a file page
2487 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2489 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2490 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2491 * and if the memory allocation used cpuset_mem_spread_node()
2492 * to determine on which node to start looking, as it will for
2493 * certain page cache or slab cache pages such as used for file
2494 * system buffers and inode caches, then instead of starting on the
2495 * local node to look for a free page, rather spread the starting
2496 * node around the tasks mems_allowed nodes.
2498 * We don't have to worry about the returned node being offline
2499 * because "it can't happen", and even if it did, it would be ok.
2501 * The routines calling guarantee_online_mems() are careful to
2502 * only set nodes in task->mems_allowed that are online. So it
2503 * should not be possible for the following code to return an
2504 * offline node. But if it did, that would be ok, as this routine
2505 * is not returning the node where the allocation must be, only
2506 * the node where the search should start. The zonelist passed to
2507 * __alloc_pages() will include all nodes. If the slab allocator
2508 * is passed an offline node, it will fall back to the local node.
2509 * See kmem_cache_alloc_node().
2512 static int cpuset_spread_node(int *rotor)
2514 int node;
2516 node = next_node(*rotor, current->mems_allowed);
2517 if (node == MAX_NUMNODES)
2518 node = first_node(current->mems_allowed);
2519 *rotor = node;
2520 return node;
2523 int cpuset_mem_spread_node(void)
2525 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2526 current->cpuset_mem_spread_rotor =
2527 node_random(&current->mems_allowed);
2529 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2532 int cpuset_slab_spread_node(void)
2534 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2535 current->cpuset_slab_spread_rotor =
2536 node_random(&current->mems_allowed);
2538 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2541 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2544 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2545 * @tsk1: pointer to task_struct of some task.
2546 * @tsk2: pointer to task_struct of some other task.
2548 * Description: Return true if @tsk1's mems_allowed intersects the
2549 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2550 * one of the task's memory usage might impact the memory available
2551 * to the other.
2554 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2555 const struct task_struct *tsk2)
2557 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2560 #define CPUSET_NODELIST_LEN (256)
2563 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2564 * @tsk: pointer to task_struct of some task.
2566 * Description: Prints @task's name, cpuset name, and cached copy of its
2567 * mems_allowed to the kernel log.
2569 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2571 /* Statically allocated to prevent using excess stack. */
2572 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2573 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2574 struct cgroup *cgrp;
2576 spin_lock(&cpuset_buffer_lock);
2577 rcu_read_lock();
2579 cgrp = task_cs(tsk)->css.cgroup;
2580 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2581 tsk->mems_allowed);
2582 pr_info("%s cpuset=", tsk->comm);
2583 pr_cont_cgroup_name(cgrp);
2584 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2586 rcu_read_unlock();
2587 spin_unlock(&cpuset_buffer_lock);
2591 * Collection of memory_pressure is suppressed unless
2592 * this flag is enabled by writing "1" to the special
2593 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2596 int cpuset_memory_pressure_enabled __read_mostly;
2599 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2601 * Keep a running average of the rate of synchronous (direct)
2602 * page reclaim efforts initiated by tasks in each cpuset.
2604 * This represents the rate at which some task in the cpuset
2605 * ran low on memory on all nodes it was allowed to use, and
2606 * had to enter the kernels page reclaim code in an effort to
2607 * create more free memory by tossing clean pages or swapping
2608 * or writing dirty pages.
2610 * Display to user space in the per-cpuset read-only file
2611 * "memory_pressure". Value displayed is an integer
2612 * representing the recent rate of entry into the synchronous
2613 * (direct) page reclaim by any task attached to the cpuset.
2616 void __cpuset_memory_pressure_bump(void)
2618 rcu_read_lock();
2619 fmeter_markevent(&task_cs(current)->fmeter);
2620 rcu_read_unlock();
2623 #ifdef CONFIG_PROC_PID_CPUSET
2625 * proc_cpuset_show()
2626 * - Print tasks cpuset path into seq_file.
2627 * - Used for /proc/<pid>/cpuset.
2628 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2629 * doesn't really matter if tsk->cpuset changes after we read it,
2630 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2631 * anyway.
2633 int proc_cpuset_show(struct seq_file *m, void *unused_v)
2635 struct pid *pid;
2636 struct task_struct *tsk;
2637 char *buf, *p;
2638 struct cgroup_subsys_state *css;
2639 int retval;
2641 retval = -ENOMEM;
2642 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2643 if (!buf)
2644 goto out;
2646 retval = -ESRCH;
2647 pid = m->private;
2648 tsk = get_pid_task(pid, PIDTYPE_PID);
2649 if (!tsk)
2650 goto out_free;
2652 retval = -ENAMETOOLONG;
2653 rcu_read_lock();
2654 css = task_css(tsk, cpuset_cgrp_id);
2655 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2656 rcu_read_unlock();
2657 if (!p)
2658 goto out_put_task;
2659 seq_puts(m, p);
2660 seq_putc(m, '\n');
2661 retval = 0;
2662 out_put_task:
2663 put_task_struct(tsk);
2664 out_free:
2665 kfree(buf);
2666 out:
2667 return retval;
2669 #endif /* CONFIG_PROC_PID_CPUSET */
2671 /* Display task mems_allowed in /proc/<pid>/status file. */
2672 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2674 seq_puts(m, "Mems_allowed:\t");
2675 seq_nodemask(m, &task->mems_allowed);
2676 seq_puts(m, "\n");
2677 seq_puts(m, "Mems_allowed_list:\t");
2678 seq_nodemask_list(m, &task->mems_allowed);
2679 seq_puts(m, "\n");