2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
35 #include <linux/compiler.h>
36 #include <linux/hugetlb.h>
39 #include <asm/uaccess.h>
41 #include <asm/sections.h>
43 /* Per cpu memory for storing cpu states in case of system crash. */
44 note_buf_t __percpu
*crash_notes
;
46 /* vmcoreinfo stuff */
47 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
48 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
49 size_t vmcoreinfo_size
;
50 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
52 /* Flag to indicate we are going to kexec a new kernel */
53 bool kexec_in_progress
= false;
55 /* Location of the reserved area for the crash kernel */
56 struct resource crashk_res
= {
57 .name
= "Crash kernel",
60 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
62 struct resource crashk_low_res
= {
63 .name
= "Crash kernel",
66 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
69 int kexec_should_crash(struct task_struct
*p
)
71 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
77 * When kexec transitions to the new kernel there is a one-to-one
78 * mapping between physical and virtual addresses. On processors
79 * where you can disable the MMU this is trivial, and easy. For
80 * others it is still a simple predictable page table to setup.
82 * In that environment kexec copies the new kernel to its final
83 * resting place. This means I can only support memory whose
84 * physical address can fit in an unsigned long. In particular
85 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
86 * If the assembly stub has more restrictive requirements
87 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
88 * defined more restrictively in <asm/kexec.h>.
90 * The code for the transition from the current kernel to the
91 * the new kernel is placed in the control_code_buffer, whose size
92 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
93 * page of memory is necessary, but some architectures require more.
94 * Because this memory must be identity mapped in the transition from
95 * virtual to physical addresses it must live in the range
96 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
99 * The assembly stub in the control code buffer is passed a linked list
100 * of descriptor pages detailing the source pages of the new kernel,
101 * and the destination addresses of those source pages. As this data
102 * structure is not used in the context of the current OS, it must
105 * The code has been made to work with highmem pages and will use a
106 * destination page in its final resting place (if it happens
107 * to allocate it). The end product of this is that most of the
108 * physical address space, and most of RAM can be used.
110 * Future directions include:
111 * - allocating a page table with the control code buffer identity
112 * mapped, to simplify machine_kexec and make kexec_on_panic more
117 * KIMAGE_NO_DEST is an impossible destination address..., for
118 * allocating pages whose destination address we do not care about.
120 #define KIMAGE_NO_DEST (-1UL)
122 static int kimage_is_destination_range(struct kimage
*image
,
123 unsigned long start
, unsigned long end
);
124 static struct page
*kimage_alloc_page(struct kimage
*image
,
128 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
129 unsigned long nr_segments
,
130 struct kexec_segment __user
*segments
)
132 size_t segment_bytes
;
133 struct kimage
*image
;
137 /* Allocate a controlling structure */
139 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
144 image
->entry
= &image
->head
;
145 image
->last_entry
= &image
->head
;
146 image
->control_page
= ~0; /* By default this does not apply */
147 image
->start
= entry
;
148 image
->type
= KEXEC_TYPE_DEFAULT
;
150 /* Initialize the list of control pages */
151 INIT_LIST_HEAD(&image
->control_pages
);
153 /* Initialize the list of destination pages */
154 INIT_LIST_HEAD(&image
->dest_pages
);
156 /* Initialize the list of unusable pages */
157 INIT_LIST_HEAD(&image
->unuseable_pages
);
159 /* Read in the segments */
160 image
->nr_segments
= nr_segments
;
161 segment_bytes
= nr_segments
* sizeof(*segments
);
162 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
169 * Verify we have good destination addresses. The caller is
170 * responsible for making certain we don't attempt to load
171 * the new image into invalid or reserved areas of RAM. This
172 * just verifies it is an address we can use.
174 * Since the kernel does everything in page size chunks ensure
175 * the destination addresses are page aligned. Too many
176 * special cases crop of when we don't do this. The most
177 * insidious is getting overlapping destination addresses
178 * simply because addresses are changed to page size
181 result
= -EADDRNOTAVAIL
;
182 for (i
= 0; i
< nr_segments
; i
++) {
183 unsigned long mstart
, mend
;
185 mstart
= image
->segment
[i
].mem
;
186 mend
= mstart
+ image
->segment
[i
].memsz
;
187 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
189 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
193 /* Verify our destination addresses do not overlap.
194 * If we alloed overlapping destination addresses
195 * through very weird things can happen with no
196 * easy explanation as one segment stops on another.
199 for (i
= 0; i
< nr_segments
; i
++) {
200 unsigned long mstart
, mend
;
203 mstart
= image
->segment
[i
].mem
;
204 mend
= mstart
+ image
->segment
[i
].memsz
;
205 for (j
= 0; j
< i
; j
++) {
206 unsigned long pstart
, pend
;
207 pstart
= image
->segment
[j
].mem
;
208 pend
= pstart
+ image
->segment
[j
].memsz
;
209 /* Do the segments overlap ? */
210 if ((mend
> pstart
) && (mstart
< pend
))
215 /* Ensure our buffer sizes are strictly less than
216 * our memory sizes. This should always be the case,
217 * and it is easier to check up front than to be surprised
221 for (i
= 0; i
< nr_segments
; i
++) {
222 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
237 static void kimage_free_page_list(struct list_head
*list
);
239 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
240 unsigned long nr_segments
,
241 struct kexec_segment __user
*segments
)
244 struct kimage
*image
;
246 /* Allocate and initialize a controlling structure */
248 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
253 * Find a location for the control code buffer, and add it
254 * the vector of segments so that it's pages will also be
255 * counted as destination pages.
258 image
->control_code_page
= kimage_alloc_control_pages(image
,
259 get_order(KEXEC_CONTROL_PAGE_SIZE
));
260 if (!image
->control_code_page
) {
261 pr_err("Could not allocate control_code_buffer\n");
265 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
266 if (!image
->swap_page
) {
267 pr_err("Could not allocate swap buffer\n");
275 kimage_free_page_list(&image
->control_pages
);
281 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
282 unsigned long nr_segments
,
283 struct kexec_segment __user
*segments
)
286 struct kimage
*image
;
290 /* Verify we have a valid entry point */
291 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
292 result
= -EADDRNOTAVAIL
;
296 /* Allocate and initialize a controlling structure */
297 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
301 /* Enable the special crash kernel control page
304 image
->control_page
= crashk_res
.start
;
305 image
->type
= KEXEC_TYPE_CRASH
;
308 * Verify we have good destination addresses. Normally
309 * the caller is responsible for making certain we don't
310 * attempt to load the new image into invalid or reserved
311 * areas of RAM. But crash kernels are preloaded into a
312 * reserved area of ram. We must ensure the addresses
313 * are in the reserved area otherwise preloading the
314 * kernel could corrupt things.
316 result
= -EADDRNOTAVAIL
;
317 for (i
= 0; i
< nr_segments
; i
++) {
318 unsigned long mstart
, mend
;
320 mstart
= image
->segment
[i
].mem
;
321 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
322 /* Ensure we are within the crash kernel limits */
323 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
328 * Find a location for the control code buffer, and add
329 * the vector of segments so that it's pages will also be
330 * counted as destination pages.
333 image
->control_code_page
= kimage_alloc_control_pages(image
,
334 get_order(KEXEC_CONTROL_PAGE_SIZE
));
335 if (!image
->control_code_page
) {
336 pr_err("Could not allocate control_code_buffer\n");
349 static int kimage_is_destination_range(struct kimage
*image
,
355 for (i
= 0; i
< image
->nr_segments
; i
++) {
356 unsigned long mstart
, mend
;
358 mstart
= image
->segment
[i
].mem
;
359 mend
= mstart
+ image
->segment
[i
].memsz
;
360 if ((end
> mstart
) && (start
< mend
))
367 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
371 pages
= alloc_pages(gfp_mask
, order
);
373 unsigned int count
, i
;
374 pages
->mapping
= NULL
;
375 set_page_private(pages
, order
);
377 for (i
= 0; i
< count
; i
++)
378 SetPageReserved(pages
+ i
);
384 static void kimage_free_pages(struct page
*page
)
386 unsigned int order
, count
, i
;
388 order
= page_private(page
);
390 for (i
= 0; i
< count
; i
++)
391 ClearPageReserved(page
+ i
);
392 __free_pages(page
, order
);
395 static void kimage_free_page_list(struct list_head
*list
)
397 struct list_head
*pos
, *next
;
399 list_for_each_safe(pos
, next
, list
) {
402 page
= list_entry(pos
, struct page
, lru
);
403 list_del(&page
->lru
);
404 kimage_free_pages(page
);
408 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
411 /* Control pages are special, they are the intermediaries
412 * that are needed while we copy the rest of the pages
413 * to their final resting place. As such they must
414 * not conflict with either the destination addresses
415 * or memory the kernel is already using.
417 * The only case where we really need more than one of
418 * these are for architectures where we cannot disable
419 * the MMU and must instead generate an identity mapped
420 * page table for all of the memory.
422 * At worst this runs in O(N) of the image size.
424 struct list_head extra_pages
;
429 INIT_LIST_HEAD(&extra_pages
);
431 /* Loop while I can allocate a page and the page allocated
432 * is a destination page.
435 unsigned long pfn
, epfn
, addr
, eaddr
;
437 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
440 pfn
= page_to_pfn(pages
);
442 addr
= pfn
<< PAGE_SHIFT
;
443 eaddr
= epfn
<< PAGE_SHIFT
;
444 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
445 kimage_is_destination_range(image
, addr
, eaddr
)) {
446 list_add(&pages
->lru
, &extra_pages
);
452 /* Remember the allocated page... */
453 list_add(&pages
->lru
, &image
->control_pages
);
455 /* Because the page is already in it's destination
456 * location we will never allocate another page at
457 * that address. Therefore kimage_alloc_pages
458 * will not return it (again) and we don't need
459 * to give it an entry in image->segment[].
462 /* Deal with the destination pages I have inadvertently allocated.
464 * Ideally I would convert multi-page allocations into single
465 * page allocations, and add everything to image->dest_pages.
467 * For now it is simpler to just free the pages.
469 kimage_free_page_list(&extra_pages
);
474 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
477 /* Control pages are special, they are the intermediaries
478 * that are needed while we copy the rest of the pages
479 * to their final resting place. As such they must
480 * not conflict with either the destination addresses
481 * or memory the kernel is already using.
483 * Control pages are also the only pags we must allocate
484 * when loading a crash kernel. All of the other pages
485 * are specified by the segments and we just memcpy
486 * into them directly.
488 * The only case where we really need more than one of
489 * these are for architectures where we cannot disable
490 * the MMU and must instead generate an identity mapped
491 * page table for all of the memory.
493 * Given the low demand this implements a very simple
494 * allocator that finds the first hole of the appropriate
495 * size in the reserved memory region, and allocates all
496 * of the memory up to and including the hole.
498 unsigned long hole_start
, hole_end
, size
;
502 size
= (1 << order
) << PAGE_SHIFT
;
503 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
504 hole_end
= hole_start
+ size
- 1;
505 while (hole_end
<= crashk_res
.end
) {
508 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
510 /* See if I overlap any of the segments */
511 for (i
= 0; i
< image
->nr_segments
; i
++) {
512 unsigned long mstart
, mend
;
514 mstart
= image
->segment
[i
].mem
;
515 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
516 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
517 /* Advance the hole to the end of the segment */
518 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
519 hole_end
= hole_start
+ size
- 1;
523 /* If I don't overlap any segments I have found my hole! */
524 if (i
== image
->nr_segments
) {
525 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
530 image
->control_page
= hole_end
;
536 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
539 struct page
*pages
= NULL
;
541 switch (image
->type
) {
542 case KEXEC_TYPE_DEFAULT
:
543 pages
= kimage_alloc_normal_control_pages(image
, order
);
545 case KEXEC_TYPE_CRASH
:
546 pages
= kimage_alloc_crash_control_pages(image
, order
);
553 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
555 if (*image
->entry
!= 0)
558 if (image
->entry
== image
->last_entry
) {
559 kimage_entry_t
*ind_page
;
562 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
566 ind_page
= page_address(page
);
567 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
568 image
->entry
= ind_page
;
569 image
->last_entry
= ind_page
+
570 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
572 *image
->entry
= entry
;
579 static int kimage_set_destination(struct kimage
*image
,
580 unsigned long destination
)
584 destination
&= PAGE_MASK
;
585 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
587 image
->destination
= destination
;
593 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
598 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
600 image
->destination
+= PAGE_SIZE
;
606 static void kimage_free_extra_pages(struct kimage
*image
)
608 /* Walk through and free any extra destination pages I may have */
609 kimage_free_page_list(&image
->dest_pages
);
611 /* Walk through and free any unusable pages I have cached */
612 kimage_free_page_list(&image
->unuseable_pages
);
615 static void kimage_terminate(struct kimage
*image
)
617 if (*image
->entry
!= 0)
620 *image
->entry
= IND_DONE
;
623 #define for_each_kimage_entry(image, ptr, entry) \
624 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
625 ptr = (entry & IND_INDIRECTION) ? \
626 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
628 static void kimage_free_entry(kimage_entry_t entry
)
632 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
633 kimage_free_pages(page
);
636 static void kimage_free(struct kimage
*image
)
638 kimage_entry_t
*ptr
, entry
;
639 kimage_entry_t ind
= 0;
644 kimage_free_extra_pages(image
);
645 for_each_kimage_entry(image
, ptr
, entry
) {
646 if (entry
& IND_INDIRECTION
) {
647 /* Free the previous indirection page */
648 if (ind
& IND_INDIRECTION
)
649 kimage_free_entry(ind
);
650 /* Save this indirection page until we are
654 } else if (entry
& IND_SOURCE
)
655 kimage_free_entry(entry
);
657 /* Free the final indirection page */
658 if (ind
& IND_INDIRECTION
)
659 kimage_free_entry(ind
);
661 /* Handle any machine specific cleanup */
662 machine_kexec_cleanup(image
);
664 /* Free the kexec control pages... */
665 kimage_free_page_list(&image
->control_pages
);
669 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
672 kimage_entry_t
*ptr
, entry
;
673 unsigned long destination
= 0;
675 for_each_kimage_entry(image
, ptr
, entry
) {
676 if (entry
& IND_DESTINATION
)
677 destination
= entry
& PAGE_MASK
;
678 else if (entry
& IND_SOURCE
) {
679 if (page
== destination
)
681 destination
+= PAGE_SIZE
;
688 static struct page
*kimage_alloc_page(struct kimage
*image
,
690 unsigned long destination
)
693 * Here we implement safeguards to ensure that a source page
694 * is not copied to its destination page before the data on
695 * the destination page is no longer useful.
697 * To do this we maintain the invariant that a source page is
698 * either its own destination page, or it is not a
699 * destination page at all.
701 * That is slightly stronger than required, but the proof
702 * that no problems will not occur is trivial, and the
703 * implementation is simply to verify.
705 * When allocating all pages normally this algorithm will run
706 * in O(N) time, but in the worst case it will run in O(N^2)
707 * time. If the runtime is a problem the data structures can
714 * Walk through the list of destination pages, and see if I
717 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
718 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
719 if (addr
== destination
) {
720 list_del(&page
->lru
);
728 /* Allocate a page, if we run out of memory give up */
729 page
= kimage_alloc_pages(gfp_mask
, 0);
732 /* If the page cannot be used file it away */
733 if (page_to_pfn(page
) >
734 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
735 list_add(&page
->lru
, &image
->unuseable_pages
);
738 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
740 /* If it is the destination page we want use it */
741 if (addr
== destination
)
744 /* If the page is not a destination page use it */
745 if (!kimage_is_destination_range(image
, addr
,
750 * I know that the page is someones destination page.
751 * See if there is already a source page for this
752 * destination page. And if so swap the source pages.
754 old
= kimage_dst_used(image
, addr
);
757 unsigned long old_addr
;
758 struct page
*old_page
;
760 old_addr
= *old
& PAGE_MASK
;
761 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
762 copy_highpage(page
, old_page
);
763 *old
= addr
| (*old
& ~PAGE_MASK
);
765 /* The old page I have found cannot be a
766 * destination page, so return it if it's
767 * gfp_flags honor the ones passed in.
769 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
770 PageHighMem(old_page
)) {
771 kimage_free_pages(old_page
);
778 /* Place the page on the destination list I
781 list_add(&page
->lru
, &image
->dest_pages
);
788 static int kimage_load_normal_segment(struct kimage
*image
,
789 struct kexec_segment
*segment
)
792 size_t ubytes
, mbytes
;
794 unsigned char __user
*buf
;
798 ubytes
= segment
->bufsz
;
799 mbytes
= segment
->memsz
;
800 maddr
= segment
->mem
;
802 result
= kimage_set_destination(image
, maddr
);
809 size_t uchunk
, mchunk
;
811 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
816 result
= kimage_add_page(image
, page_to_pfn(page
)
822 /* Start with a clear page */
824 ptr
+= maddr
& ~PAGE_MASK
;
825 mchunk
= min_t(size_t, mbytes
,
826 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
827 uchunk
= min(ubytes
, mchunk
);
829 result
= copy_from_user(ptr
, buf
, uchunk
);
844 static int kimage_load_crash_segment(struct kimage
*image
,
845 struct kexec_segment
*segment
)
847 /* For crash dumps kernels we simply copy the data from
848 * user space to it's destination.
849 * We do things a page at a time for the sake of kmap.
852 size_t ubytes
, mbytes
;
854 unsigned char __user
*buf
;
858 ubytes
= segment
->bufsz
;
859 mbytes
= segment
->memsz
;
860 maddr
= segment
->mem
;
864 size_t uchunk
, mchunk
;
866 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
872 ptr
+= maddr
& ~PAGE_MASK
;
873 mchunk
= min_t(size_t, mbytes
,
874 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
875 uchunk
= min(ubytes
, mchunk
);
876 if (mchunk
> uchunk
) {
877 /* Zero the trailing part of the page */
878 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
880 result
= copy_from_user(ptr
, buf
, uchunk
);
881 kexec_flush_icache_page(page
);
896 static int kimage_load_segment(struct kimage
*image
,
897 struct kexec_segment
*segment
)
899 int result
= -ENOMEM
;
901 switch (image
->type
) {
902 case KEXEC_TYPE_DEFAULT
:
903 result
= kimage_load_normal_segment(image
, segment
);
905 case KEXEC_TYPE_CRASH
:
906 result
= kimage_load_crash_segment(image
, segment
);
914 * Exec Kernel system call: for obvious reasons only root may call it.
916 * This call breaks up into three pieces.
917 * - A generic part which loads the new kernel from the current
918 * address space, and very carefully places the data in the
921 * - A generic part that interacts with the kernel and tells all of
922 * the devices to shut down. Preventing on-going dmas, and placing
923 * the devices in a consistent state so a later kernel can
926 * - A machine specific part that includes the syscall number
927 * and then copies the image to it's final destination. And
928 * jumps into the image at entry.
930 * kexec does not sync, or unmount filesystems so if you need
931 * that to happen you need to do that yourself.
933 struct kimage
*kexec_image
;
934 struct kimage
*kexec_crash_image
;
935 int kexec_load_disabled
;
937 static DEFINE_MUTEX(kexec_mutex
);
939 SYSCALL_DEFINE4(kexec_load
, unsigned long, entry
, unsigned long, nr_segments
,
940 struct kexec_segment __user
*, segments
, unsigned long, flags
)
942 struct kimage
**dest_image
, *image
;
945 /* We only trust the superuser with rebooting the system. */
946 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
950 * Verify we have a legal set of flags
951 * This leaves us room for future extensions.
953 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
956 /* Verify we are on the appropriate architecture */
957 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
958 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
961 /* Put an artificial cap on the number
962 * of segments passed to kexec_load.
964 if (nr_segments
> KEXEC_SEGMENT_MAX
)
970 /* Because we write directly to the reserved memory
971 * region when loading crash kernels we need a mutex here to
972 * prevent multiple crash kernels from attempting to load
973 * simultaneously, and to prevent a crash kernel from loading
974 * over the top of a in use crash kernel.
976 * KISS: always take the mutex.
978 if (!mutex_trylock(&kexec_mutex
))
981 dest_image
= &kexec_image
;
982 if (flags
& KEXEC_ON_CRASH
)
983 dest_image
= &kexec_crash_image
;
984 if (nr_segments
> 0) {
987 /* Loading another kernel to reboot into */
988 if ((flags
& KEXEC_ON_CRASH
) == 0)
989 result
= kimage_normal_alloc(&image
, entry
,
990 nr_segments
, segments
);
991 /* Loading another kernel to switch to if this one crashes */
992 else if (flags
& KEXEC_ON_CRASH
) {
993 /* Free any current crash dump kernel before
996 kimage_free(xchg(&kexec_crash_image
, NULL
));
997 result
= kimage_crash_alloc(&image
, entry
,
998 nr_segments
, segments
);
999 crash_map_reserved_pages();
1004 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1005 image
->preserve_context
= 1;
1006 result
= machine_kexec_prepare(image
);
1010 for (i
= 0; i
< nr_segments
; i
++) {
1011 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1015 kimage_terminate(image
);
1016 if (flags
& KEXEC_ON_CRASH
)
1017 crash_unmap_reserved_pages();
1019 /* Install the new kernel, and Uninstall the old */
1020 image
= xchg(dest_image
, image
);
1023 mutex_unlock(&kexec_mutex
);
1030 * Add and remove page tables for crashkernel memory
1032 * Provide an empty default implementation here -- architecture
1033 * code may override this
1035 void __weak
crash_map_reserved_pages(void)
1038 void __weak
crash_unmap_reserved_pages(void)
1041 #ifdef CONFIG_COMPAT
1042 COMPAT_SYSCALL_DEFINE4(kexec_load
, compat_ulong_t
, entry
,
1043 compat_ulong_t
, nr_segments
,
1044 struct compat_kexec_segment __user
*, segments
,
1045 compat_ulong_t
, flags
)
1047 struct compat_kexec_segment in
;
1048 struct kexec_segment out
, __user
*ksegments
;
1049 unsigned long i
, result
;
1051 /* Don't allow clients that don't understand the native
1052 * architecture to do anything.
1054 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1057 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1060 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1061 for (i
= 0; i
< nr_segments
; i
++) {
1062 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1066 out
.buf
= compat_ptr(in
.buf
);
1067 out
.bufsz
= in
.bufsz
;
1069 out
.memsz
= in
.memsz
;
1071 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1076 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1080 void crash_kexec(struct pt_regs
*regs
)
1082 /* Take the kexec_mutex here to prevent sys_kexec_load
1083 * running on one cpu from replacing the crash kernel
1084 * we are using after a panic on a different cpu.
1086 * If the crash kernel was not located in a fixed area
1087 * of memory the xchg(&kexec_crash_image) would be
1088 * sufficient. But since I reuse the memory...
1090 if (mutex_trylock(&kexec_mutex
)) {
1091 if (kexec_crash_image
) {
1092 struct pt_regs fixed_regs
;
1094 crash_setup_regs(&fixed_regs
, regs
);
1095 crash_save_vmcoreinfo();
1096 machine_crash_shutdown(&fixed_regs
);
1097 machine_kexec(kexec_crash_image
);
1099 mutex_unlock(&kexec_mutex
);
1103 size_t crash_get_memory_size(void)
1106 mutex_lock(&kexec_mutex
);
1107 if (crashk_res
.end
!= crashk_res
.start
)
1108 size
= resource_size(&crashk_res
);
1109 mutex_unlock(&kexec_mutex
);
1113 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
1118 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
1119 free_reserved_page(pfn_to_page(addr
>> PAGE_SHIFT
));
1122 int crash_shrink_memory(unsigned long new_size
)
1125 unsigned long start
, end
;
1126 unsigned long old_size
;
1127 struct resource
*ram_res
;
1129 mutex_lock(&kexec_mutex
);
1131 if (kexec_crash_image
) {
1135 start
= crashk_res
.start
;
1136 end
= crashk_res
.end
;
1137 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
1138 if (new_size
>= old_size
) {
1139 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
1143 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
1149 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
1150 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
1152 crash_map_reserved_pages();
1153 crash_free_reserved_phys_range(end
, crashk_res
.end
);
1155 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
1156 release_resource(&crashk_res
);
1158 ram_res
->start
= end
;
1159 ram_res
->end
= crashk_res
.end
;
1160 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
;
1161 ram_res
->name
= "System RAM";
1163 crashk_res
.end
= end
- 1;
1165 insert_resource(&iomem_resource
, ram_res
);
1166 crash_unmap_reserved_pages();
1169 mutex_unlock(&kexec_mutex
);
1173 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1176 struct elf_note note
;
1178 note
.n_namesz
= strlen(name
) + 1;
1179 note
.n_descsz
= data_len
;
1181 memcpy(buf
, ¬e
, sizeof(note
));
1182 buf
+= (sizeof(note
) + 3)/4;
1183 memcpy(buf
, name
, note
.n_namesz
);
1184 buf
+= (note
.n_namesz
+ 3)/4;
1185 memcpy(buf
, data
, note
.n_descsz
);
1186 buf
+= (note
.n_descsz
+ 3)/4;
1191 static void final_note(u32
*buf
)
1193 struct elf_note note
;
1198 memcpy(buf
, ¬e
, sizeof(note
));
1201 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1203 struct elf_prstatus prstatus
;
1206 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1209 /* Using ELF notes here is opportunistic.
1210 * I need a well defined structure format
1211 * for the data I pass, and I need tags
1212 * on the data to indicate what information I have
1213 * squirrelled away. ELF notes happen to provide
1214 * all of that, so there is no need to invent something new.
1216 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1219 memset(&prstatus
, 0, sizeof(prstatus
));
1220 prstatus
.pr_pid
= current
->pid
;
1221 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1222 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1223 &prstatus
, sizeof(prstatus
));
1227 static int __init
crash_notes_memory_init(void)
1229 /* Allocate memory for saving cpu registers. */
1230 crash_notes
= alloc_percpu(note_buf_t
);
1232 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1237 subsys_initcall(crash_notes_memory_init
);
1241 * parsing the "crashkernel" commandline
1243 * this code is intended to be called from architecture specific code
1248 * This function parses command lines in the format
1250 * crashkernel=ramsize-range:size[,...][@offset]
1252 * The function returns 0 on success and -EINVAL on failure.
1254 static int __init
parse_crashkernel_mem(char *cmdline
,
1255 unsigned long long system_ram
,
1256 unsigned long long *crash_size
,
1257 unsigned long long *crash_base
)
1259 char *cur
= cmdline
, *tmp
;
1261 /* for each entry of the comma-separated list */
1263 unsigned long long start
, end
= ULLONG_MAX
, size
;
1265 /* get the start of the range */
1266 start
= memparse(cur
, &tmp
);
1268 pr_warn("crashkernel: Memory value expected\n");
1273 pr_warn("crashkernel: '-' expected\n");
1278 /* if no ':' is here, than we read the end */
1280 end
= memparse(cur
, &tmp
);
1282 pr_warn("crashkernel: Memory value expected\n");
1287 pr_warn("crashkernel: end <= start\n");
1293 pr_warn("crashkernel: ':' expected\n");
1298 size
= memparse(cur
, &tmp
);
1300 pr_warn("Memory value expected\n");
1304 if (size
>= system_ram
) {
1305 pr_warn("crashkernel: invalid size\n");
1310 if (system_ram
>= start
&& system_ram
< end
) {
1314 } while (*cur
++ == ',');
1316 if (*crash_size
> 0) {
1317 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1321 *crash_base
= memparse(cur
, &tmp
);
1323 pr_warn("Memory value expected after '@'\n");
1333 * That function parses "simple" (old) crashkernel command lines like
1335 * crashkernel=size[@offset]
1337 * It returns 0 on success and -EINVAL on failure.
1339 static int __init
parse_crashkernel_simple(char *cmdline
,
1340 unsigned long long *crash_size
,
1341 unsigned long long *crash_base
)
1343 char *cur
= cmdline
;
1345 *crash_size
= memparse(cmdline
, &cur
);
1346 if (cmdline
== cur
) {
1347 pr_warn("crashkernel: memory value expected\n");
1352 *crash_base
= memparse(cur
+1, &cur
);
1353 else if (*cur
!= ' ' && *cur
!= '\0') {
1354 pr_warn("crashkernel: unrecognized char\n");
1361 #define SUFFIX_HIGH 0
1362 #define SUFFIX_LOW 1
1363 #define SUFFIX_NULL 2
1364 static __initdata
char *suffix_tbl
[] = {
1365 [SUFFIX_HIGH
] = ",high",
1366 [SUFFIX_LOW
] = ",low",
1367 [SUFFIX_NULL
] = NULL
,
1371 * That function parses "suffix" crashkernel command lines like
1373 * crashkernel=size,[high|low]
1375 * It returns 0 on success and -EINVAL on failure.
1377 static int __init
parse_crashkernel_suffix(char *cmdline
,
1378 unsigned long long *crash_size
,
1379 unsigned long long *crash_base
,
1382 char *cur
= cmdline
;
1384 *crash_size
= memparse(cmdline
, &cur
);
1385 if (cmdline
== cur
) {
1386 pr_warn("crashkernel: memory value expected\n");
1390 /* check with suffix */
1391 if (strncmp(cur
, suffix
, strlen(suffix
))) {
1392 pr_warn("crashkernel: unrecognized char\n");
1395 cur
+= strlen(suffix
);
1396 if (*cur
!= ' ' && *cur
!= '\0') {
1397 pr_warn("crashkernel: unrecognized char\n");
1404 static __init
char *get_last_crashkernel(char *cmdline
,
1408 char *p
= cmdline
, *ck_cmdline
= NULL
;
1410 /* find crashkernel and use the last one if there are more */
1411 p
= strstr(p
, name
);
1413 char *end_p
= strchr(p
, ' ');
1417 end_p
= p
+ strlen(p
);
1422 /* skip the one with any known suffix */
1423 for (i
= 0; suffix_tbl
[i
]; i
++) {
1424 q
= end_p
- strlen(suffix_tbl
[i
]);
1425 if (!strncmp(q
, suffix_tbl
[i
],
1426 strlen(suffix_tbl
[i
])))
1431 q
= end_p
- strlen(suffix
);
1432 if (!strncmp(q
, suffix
, strlen(suffix
)))
1436 p
= strstr(p
+1, name
);
1445 static int __init
__parse_crashkernel(char *cmdline
,
1446 unsigned long long system_ram
,
1447 unsigned long long *crash_size
,
1448 unsigned long long *crash_base
,
1452 char *first_colon
, *first_space
;
1455 BUG_ON(!crash_size
|| !crash_base
);
1459 ck_cmdline
= get_last_crashkernel(cmdline
, name
, suffix
);
1464 ck_cmdline
+= strlen(name
);
1467 return parse_crashkernel_suffix(ck_cmdline
, crash_size
,
1468 crash_base
, suffix
);
1470 * if the commandline contains a ':', then that's the extended
1471 * syntax -- if not, it must be the classic syntax
1473 first_colon
= strchr(ck_cmdline
, ':');
1474 first_space
= strchr(ck_cmdline
, ' ');
1475 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1476 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1477 crash_size
, crash_base
);
1479 return parse_crashkernel_simple(ck_cmdline
, crash_size
, crash_base
);
1483 * That function is the entry point for command line parsing and should be
1484 * called from the arch-specific code.
1486 int __init
parse_crashkernel(char *cmdline
,
1487 unsigned long long system_ram
,
1488 unsigned long long *crash_size
,
1489 unsigned long long *crash_base
)
1491 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1492 "crashkernel=", NULL
);
1495 int __init
parse_crashkernel_high(char *cmdline
,
1496 unsigned long long system_ram
,
1497 unsigned long long *crash_size
,
1498 unsigned long long *crash_base
)
1500 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1501 "crashkernel=", suffix_tbl
[SUFFIX_HIGH
]);
1504 int __init
parse_crashkernel_low(char *cmdline
,
1505 unsigned long long system_ram
,
1506 unsigned long long *crash_size
,
1507 unsigned long long *crash_base
)
1509 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1510 "crashkernel=", suffix_tbl
[SUFFIX_LOW
]);
1513 static void update_vmcoreinfo_note(void)
1515 u32
*buf
= vmcoreinfo_note
;
1517 if (!vmcoreinfo_size
)
1519 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1524 void crash_save_vmcoreinfo(void)
1526 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1527 update_vmcoreinfo_note();
1530 void vmcoreinfo_append_str(const char *fmt
, ...)
1536 va_start(args
, fmt
);
1537 r
= vscnprintf(buf
, sizeof(buf
), fmt
, args
);
1540 r
= min(r
, vmcoreinfo_max_size
- vmcoreinfo_size
);
1542 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1544 vmcoreinfo_size
+= r
;
1548 * provide an empty default implementation here -- architecture
1549 * code may override this
1551 void __weak
arch_crash_save_vmcoreinfo(void)
1554 unsigned long __weak
paddr_vmcoreinfo_note(void)
1556 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1559 static int __init
crash_save_vmcoreinfo_init(void)
1561 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1562 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1564 VMCOREINFO_SYMBOL(init_uts_ns
);
1565 VMCOREINFO_SYMBOL(node_online_map
);
1567 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1569 VMCOREINFO_SYMBOL(_stext
);
1570 VMCOREINFO_SYMBOL(vmap_area_list
);
1572 #ifndef CONFIG_NEED_MULTIPLE_NODES
1573 VMCOREINFO_SYMBOL(mem_map
);
1574 VMCOREINFO_SYMBOL(contig_page_data
);
1576 #ifdef CONFIG_SPARSEMEM
1577 VMCOREINFO_SYMBOL(mem_section
);
1578 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1579 VMCOREINFO_STRUCT_SIZE(mem_section
);
1580 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1582 VMCOREINFO_STRUCT_SIZE(page
);
1583 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1584 VMCOREINFO_STRUCT_SIZE(zone
);
1585 VMCOREINFO_STRUCT_SIZE(free_area
);
1586 VMCOREINFO_STRUCT_SIZE(list_head
);
1587 VMCOREINFO_SIZE(nodemask_t
);
1588 VMCOREINFO_OFFSET(page
, flags
);
1589 VMCOREINFO_OFFSET(page
, _count
);
1590 VMCOREINFO_OFFSET(page
, mapping
);
1591 VMCOREINFO_OFFSET(page
, lru
);
1592 VMCOREINFO_OFFSET(page
, _mapcount
);
1593 VMCOREINFO_OFFSET(page
, private);
1594 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1595 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1596 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1597 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1599 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1600 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1601 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1602 VMCOREINFO_OFFSET(zone
, free_area
);
1603 VMCOREINFO_OFFSET(zone
, vm_stat
);
1604 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1605 VMCOREINFO_OFFSET(free_area
, free_list
);
1606 VMCOREINFO_OFFSET(list_head
, next
);
1607 VMCOREINFO_OFFSET(list_head
, prev
);
1608 VMCOREINFO_OFFSET(vmap_area
, va_start
);
1609 VMCOREINFO_OFFSET(vmap_area
, list
);
1610 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1611 log_buf_kexec_setup();
1612 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1613 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1614 VMCOREINFO_NUMBER(PG_lru
);
1615 VMCOREINFO_NUMBER(PG_private
);
1616 VMCOREINFO_NUMBER(PG_swapcache
);
1617 VMCOREINFO_NUMBER(PG_slab
);
1618 #ifdef CONFIG_MEMORY_FAILURE
1619 VMCOREINFO_NUMBER(PG_hwpoison
);
1621 VMCOREINFO_NUMBER(PG_head_mask
);
1622 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE
);
1623 #ifdef CONFIG_HUGETLBFS
1624 VMCOREINFO_SYMBOL(free_huge_page
);
1627 arch_crash_save_vmcoreinfo();
1628 update_vmcoreinfo_note();
1633 subsys_initcall(crash_save_vmcoreinfo_init
);
1636 * Move into place and start executing a preloaded standalone
1637 * executable. If nothing was preloaded return an error.
1639 int kernel_kexec(void)
1643 if (!mutex_trylock(&kexec_mutex
))
1650 #ifdef CONFIG_KEXEC_JUMP
1651 if (kexec_image
->preserve_context
) {
1652 lock_system_sleep();
1653 pm_prepare_console();
1654 error
= freeze_processes();
1657 goto Restore_console
;
1660 error
= dpm_suspend_start(PMSG_FREEZE
);
1662 goto Resume_console
;
1663 /* At this point, dpm_suspend_start() has been called,
1664 * but *not* dpm_suspend_end(). We *must* call
1665 * dpm_suspend_end() now. Otherwise, drivers for
1666 * some devices (e.g. interrupt controllers) become
1667 * desynchronized with the actual state of the
1668 * hardware at resume time, and evil weirdness ensues.
1670 error
= dpm_suspend_end(PMSG_FREEZE
);
1672 goto Resume_devices
;
1673 error
= disable_nonboot_cpus();
1676 local_irq_disable();
1677 error
= syscore_suspend();
1683 kexec_in_progress
= true;
1684 kernel_restart_prepare(NULL
);
1685 migrate_to_reboot_cpu();
1688 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1689 * no further code needs to use CPU hotplug (which is true in
1690 * the reboot case). However, the kexec path depends on using
1691 * CPU hotplug again; so re-enable it here.
1693 cpu_hotplug_enable();
1694 pr_emerg("Starting new kernel\n");
1698 machine_kexec(kexec_image
);
1700 #ifdef CONFIG_KEXEC_JUMP
1701 if (kexec_image
->preserve_context
) {
1706 enable_nonboot_cpus();
1707 dpm_resume_start(PMSG_RESTORE
);
1709 dpm_resume_end(PMSG_RESTORE
);
1714 pm_restore_console();
1715 unlock_system_sleep();
1720 mutex_unlock(&kexec_mutex
);