2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
24 #include "tick-internal.h"
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
31 static struct tick_device tick_broadcast_device
;
32 static cpumask_var_t tick_broadcast_mask
;
33 static cpumask_var_t tick_broadcast_on
;
34 static cpumask_var_t tmpmask
;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock
);
36 static int tick_broadcast_force
;
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu
);
41 static inline void tick_broadcast_clear_oneshot(int cpu
) { }
45 * Debugging: see timer_list.c
47 struct tick_device
*tick_get_broadcast_device(void)
49 return &tick_broadcast_device
;
52 struct cpumask
*tick_get_broadcast_mask(void)
54 return tick_broadcast_mask
;
58 * Start the device in periodic mode
60 static void tick_broadcast_start_periodic(struct clock_event_device
*bc
)
63 tick_setup_periodic(bc
, 1);
67 * Check, if the device can be utilized as broadcast device:
69 static bool tick_check_broadcast_device(struct clock_event_device
*curdev
,
70 struct clock_event_device
*newdev
)
72 if ((newdev
->features
& CLOCK_EVT_FEAT_DUMMY
) ||
73 (newdev
->features
& CLOCK_EVT_FEAT_PERCPU
) ||
74 (newdev
->features
& CLOCK_EVT_FEAT_C3STOP
))
77 if (tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
&&
78 !(newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
))
81 return !curdev
|| newdev
->rating
> curdev
->rating
;
85 * Conditionally install/replace broadcast device
87 void tick_install_broadcast_device(struct clock_event_device
*dev
)
89 struct clock_event_device
*cur
= tick_broadcast_device
.evtdev
;
91 if (!tick_check_broadcast_device(cur
, dev
))
94 if (!try_module_get(dev
->owner
))
97 clockevents_exchange_device(cur
, dev
);
99 cur
->event_handler
= clockevents_handle_noop
;
100 tick_broadcast_device
.evtdev
= dev
;
101 if (!cpumask_empty(tick_broadcast_mask
))
102 tick_broadcast_start_periodic(dev
);
104 * Inform all cpus about this. We might be in a situation
105 * where we did not switch to oneshot mode because the per cpu
106 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
107 * of a oneshot capable broadcast device. Without that
108 * notification the systems stays stuck in periodic mode
111 if (dev
->features
& CLOCK_EVT_FEAT_ONESHOT
)
116 * Check, if the device is the broadcast device
118 int tick_is_broadcast_device(struct clock_event_device
*dev
)
120 return (dev
&& tick_broadcast_device
.evtdev
== dev
);
123 int tick_broadcast_update_freq(struct clock_event_device
*dev
, u32 freq
)
127 if (tick_is_broadcast_device(dev
)) {
128 raw_spin_lock(&tick_broadcast_lock
);
129 ret
= __clockevents_update_freq(dev
, freq
);
130 raw_spin_unlock(&tick_broadcast_lock
);
136 static void err_broadcast(const struct cpumask
*mask
)
138 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 static void tick_device_setup_broadcast_func(struct clock_event_device
*dev
)
144 dev
->broadcast
= tick_broadcast
;
145 if (!dev
->broadcast
) {
146 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
148 dev
->broadcast
= err_broadcast
;
153 * Check, if the device is disfunctional and a place holder, which
154 * needs to be handled by the broadcast device.
156 int tick_device_uses_broadcast(struct clock_event_device
*dev
, int cpu
)
158 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
162 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
165 * Devices might be registered with both periodic and oneshot
166 * mode disabled. This signals, that the device needs to be
167 * operated from the broadcast device and is a placeholder for
168 * the cpu local device.
170 if (!tick_device_is_functional(dev
)) {
171 dev
->event_handler
= tick_handle_periodic
;
172 tick_device_setup_broadcast_func(dev
);
173 cpumask_set_cpu(cpu
, tick_broadcast_mask
);
174 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
175 tick_broadcast_start_periodic(bc
);
177 tick_broadcast_setup_oneshot(bc
);
181 * Clear the broadcast bit for this cpu if the
182 * device is not power state affected.
184 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
185 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
187 tick_device_setup_broadcast_func(dev
);
190 * Clear the broadcast bit if the CPU is not in
191 * periodic broadcast on state.
193 if (!cpumask_test_cpu(cpu
, tick_broadcast_on
))
194 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
196 switch (tick_broadcast_device
.mode
) {
197 case TICKDEV_MODE_ONESHOT
:
199 * If the system is in oneshot mode we can
200 * unconditionally clear the oneshot mask bit,
201 * because the CPU is running and therefore
202 * not in an idle state which causes the power
203 * state affected device to stop. Let the
204 * caller initialize the device.
206 tick_broadcast_clear_oneshot(cpu
);
210 case TICKDEV_MODE_PERIODIC
:
212 * If the system is in periodic mode, check
213 * whether the broadcast device can be
216 if (cpumask_empty(tick_broadcast_mask
) && bc
)
217 clockevents_shutdown(bc
);
219 * If we kept the cpu in the broadcast mask,
220 * tell the caller to leave the per cpu device
221 * in shutdown state. The periodic interrupt
222 * is delivered by the broadcast device.
224 ret
= cpumask_test_cpu(cpu
, tick_broadcast_mask
);
232 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
236 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
237 int tick_receive_broadcast(void)
239 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
240 struct clock_event_device
*evt
= td
->evtdev
;
245 if (!evt
->event_handler
)
248 evt
->event_handler(evt
);
254 * Broadcast the event to the cpus, which are set in the mask (mangled).
256 static void tick_do_broadcast(struct cpumask
*mask
)
258 int cpu
= smp_processor_id();
259 struct tick_device
*td
;
262 * Check, if the current cpu is in the mask
264 if (cpumask_test_cpu(cpu
, mask
)) {
265 cpumask_clear_cpu(cpu
, mask
);
266 td
= &per_cpu(tick_cpu_device
, cpu
);
267 td
->evtdev
->event_handler(td
->evtdev
);
270 if (!cpumask_empty(mask
)) {
272 * It might be necessary to actually check whether the devices
273 * have different broadcast functions. For now, just use the
274 * one of the first device. This works as long as we have this
275 * misfeature only on x86 (lapic)
277 td
= &per_cpu(tick_cpu_device
, cpumask_first(mask
));
278 td
->evtdev
->broadcast(mask
);
283 * Periodic broadcast:
284 * - invoke the broadcast handlers
286 static void tick_do_periodic_broadcast(void)
288 cpumask_and(tmpmask
, cpu_online_mask
, tick_broadcast_mask
);
289 tick_do_broadcast(tmpmask
);
293 * Event handler for periodic broadcast ticks
295 static void tick_handle_periodic_broadcast(struct clock_event_device
*dev
)
299 raw_spin_lock(&tick_broadcast_lock
);
301 tick_do_periodic_broadcast();
304 * The device is in periodic mode. No reprogramming necessary:
306 if (dev
->mode
== CLOCK_EVT_MODE_PERIODIC
)
310 * Setup the next period for devices, which do not have
311 * periodic mode. We read dev->next_event first and add to it
312 * when the event already expired. clockevents_program_event()
313 * sets dev->next_event only when the event is really
314 * programmed to the device.
316 for (next
= dev
->next_event
; ;) {
317 next
= ktime_add(next
, tick_period
);
319 if (!clockevents_program_event(dev
, next
, false))
321 tick_do_periodic_broadcast();
324 raw_spin_unlock(&tick_broadcast_lock
);
328 * Powerstate information: The system enters/leaves a state, where
329 * affected devices might stop
331 static void tick_do_broadcast_on_off(unsigned long *reason
)
333 struct clock_event_device
*bc
, *dev
;
334 struct tick_device
*td
;
338 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
340 cpu
= smp_processor_id();
341 td
= &per_cpu(tick_cpu_device
, cpu
);
343 bc
= tick_broadcast_device
.evtdev
;
346 * Is the device not affected by the powerstate ?
348 if (!dev
|| !(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
351 if (!tick_device_is_functional(dev
))
354 bc_stopped
= cpumask_empty(tick_broadcast_mask
);
357 case CLOCK_EVT_NOTIFY_BROADCAST_ON
:
358 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE
:
359 cpumask_set_cpu(cpu
, tick_broadcast_on
);
360 if (!cpumask_test_and_set_cpu(cpu
, tick_broadcast_mask
)) {
361 if (tick_broadcast_device
.mode
==
362 TICKDEV_MODE_PERIODIC
)
363 clockevents_shutdown(dev
);
365 if (*reason
== CLOCK_EVT_NOTIFY_BROADCAST_FORCE
)
366 tick_broadcast_force
= 1;
368 case CLOCK_EVT_NOTIFY_BROADCAST_OFF
:
369 if (tick_broadcast_force
)
371 cpumask_clear_cpu(cpu
, tick_broadcast_on
);
372 if (!tick_device_is_functional(dev
))
374 if (cpumask_test_and_clear_cpu(cpu
, tick_broadcast_mask
)) {
375 if (tick_broadcast_device
.mode
==
376 TICKDEV_MODE_PERIODIC
)
377 tick_setup_periodic(dev
, 0);
382 if (cpumask_empty(tick_broadcast_mask
)) {
384 clockevents_shutdown(bc
);
385 } else if (bc_stopped
) {
386 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
387 tick_broadcast_start_periodic(bc
);
389 tick_broadcast_setup_oneshot(bc
);
392 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
396 * Powerstate information: The system enters/leaves a state, where
397 * affected devices might stop.
399 void tick_broadcast_on_off(unsigned long reason
, int *oncpu
)
401 if (!cpumask_test_cpu(*oncpu
, cpu_online_mask
))
402 printk(KERN_ERR
"tick-broadcast: ignoring broadcast for "
403 "offline CPU #%d\n", *oncpu
);
405 tick_do_broadcast_on_off(&reason
);
409 * Set the periodic handler depending on broadcast on/off
411 void tick_set_periodic_handler(struct clock_event_device
*dev
, int broadcast
)
414 dev
->event_handler
= tick_handle_periodic
;
416 dev
->event_handler
= tick_handle_periodic_broadcast
;
420 * Remove a CPU from broadcasting
422 void tick_shutdown_broadcast(unsigned int *cpup
)
424 struct clock_event_device
*bc
;
426 unsigned int cpu
= *cpup
;
428 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
430 bc
= tick_broadcast_device
.evtdev
;
431 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
432 cpumask_clear_cpu(cpu
, tick_broadcast_on
);
434 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
) {
435 if (bc
&& cpumask_empty(tick_broadcast_mask
))
436 clockevents_shutdown(bc
);
439 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
442 void tick_suspend_broadcast(void)
444 struct clock_event_device
*bc
;
447 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
449 bc
= tick_broadcast_device
.evtdev
;
451 clockevents_shutdown(bc
);
453 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
456 int tick_resume_broadcast(void)
458 struct clock_event_device
*bc
;
462 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
464 bc
= tick_broadcast_device
.evtdev
;
467 clockevents_set_mode(bc
, CLOCK_EVT_MODE_RESUME
);
469 switch (tick_broadcast_device
.mode
) {
470 case TICKDEV_MODE_PERIODIC
:
471 if (!cpumask_empty(tick_broadcast_mask
))
472 tick_broadcast_start_periodic(bc
);
473 broadcast
= cpumask_test_cpu(smp_processor_id(),
474 tick_broadcast_mask
);
476 case TICKDEV_MODE_ONESHOT
:
477 if (!cpumask_empty(tick_broadcast_mask
))
478 broadcast
= tick_resume_broadcast_oneshot(bc
);
482 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
488 #ifdef CONFIG_TICK_ONESHOT
490 static cpumask_var_t tick_broadcast_oneshot_mask
;
491 static cpumask_var_t tick_broadcast_pending_mask
;
492 static cpumask_var_t tick_broadcast_force_mask
;
495 * Exposed for debugging: see timer_list.c
497 struct cpumask
*tick_get_broadcast_oneshot_mask(void)
499 return tick_broadcast_oneshot_mask
;
503 * Called before going idle with interrupts disabled. Checks whether a
504 * broadcast event from the other core is about to happen. We detected
505 * that in tick_broadcast_oneshot_control(). The callsite can use this
506 * to avoid a deep idle transition as we are about to get the
507 * broadcast IPI right away.
509 int tick_check_broadcast_expired(void)
511 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask
);
515 * Set broadcast interrupt affinity
517 static void tick_broadcast_set_affinity(struct clock_event_device
*bc
,
518 const struct cpumask
*cpumask
)
520 if (!(bc
->features
& CLOCK_EVT_FEAT_DYNIRQ
))
523 if (cpumask_equal(bc
->cpumask
, cpumask
))
526 bc
->cpumask
= cpumask
;
527 irq_set_affinity(bc
->irq
, bc
->cpumask
);
530 static int tick_broadcast_set_event(struct clock_event_device
*bc
, int cpu
,
531 ktime_t expires
, int force
)
535 if (bc
->mode
!= CLOCK_EVT_MODE_ONESHOT
)
536 clockevents_set_mode(bc
, CLOCK_EVT_MODE_ONESHOT
);
538 ret
= clockevents_program_event(bc
, expires
, force
);
540 tick_broadcast_set_affinity(bc
, cpumask_of(cpu
));
544 int tick_resume_broadcast_oneshot(struct clock_event_device
*bc
)
546 clockevents_set_mode(bc
, CLOCK_EVT_MODE_ONESHOT
);
551 * Called from irq_enter() when idle was interrupted to reenable the
554 void tick_check_oneshot_broadcast_this_cpu(void)
556 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask
)) {
557 struct tick_device
*td
= &__get_cpu_var(tick_cpu_device
);
560 * We might be in the middle of switching over from
561 * periodic to oneshot. If the CPU has not yet
562 * switched over, leave the device alone.
564 if (td
->mode
== TICKDEV_MODE_ONESHOT
) {
565 clockevents_set_mode(td
->evtdev
,
566 CLOCK_EVT_MODE_ONESHOT
);
572 * Handle oneshot mode broadcasting
574 static void tick_handle_oneshot_broadcast(struct clock_event_device
*dev
)
576 struct tick_device
*td
;
577 ktime_t now
, next_event
;
578 int cpu
, next_cpu
= 0;
580 raw_spin_lock(&tick_broadcast_lock
);
582 dev
->next_event
.tv64
= KTIME_MAX
;
583 next_event
.tv64
= KTIME_MAX
;
584 cpumask_clear(tmpmask
);
586 /* Find all expired events */
587 for_each_cpu(cpu
, tick_broadcast_oneshot_mask
) {
588 td
= &per_cpu(tick_cpu_device
, cpu
);
589 if (td
->evtdev
->next_event
.tv64
<= now
.tv64
) {
590 cpumask_set_cpu(cpu
, tmpmask
);
592 * Mark the remote cpu in the pending mask, so
593 * it can avoid reprogramming the cpu local
594 * timer in tick_broadcast_oneshot_control().
596 cpumask_set_cpu(cpu
, tick_broadcast_pending_mask
);
597 } else if (td
->evtdev
->next_event
.tv64
< next_event
.tv64
) {
598 next_event
.tv64
= td
->evtdev
->next_event
.tv64
;
604 * Remove the current cpu from the pending mask. The event is
605 * delivered immediately in tick_do_broadcast() !
607 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask
);
609 /* Take care of enforced broadcast requests */
610 cpumask_or(tmpmask
, tmpmask
, tick_broadcast_force_mask
);
611 cpumask_clear(tick_broadcast_force_mask
);
614 * Sanity check. Catch the case where we try to broadcast to
617 if (WARN_ON_ONCE(!cpumask_subset(tmpmask
, cpu_online_mask
)))
618 cpumask_and(tmpmask
, tmpmask
, cpu_online_mask
);
621 * Wakeup the cpus which have an expired event.
623 tick_do_broadcast(tmpmask
);
626 * Two reasons for reprogram:
628 * - The global event did not expire any CPU local
629 * events. This happens in dyntick mode, as the maximum PIT
630 * delta is quite small.
632 * - There are pending events on sleeping CPUs which were not
635 if (next_event
.tv64
!= KTIME_MAX
) {
637 * Rearm the broadcast device. If event expired,
640 if (tick_broadcast_set_event(dev
, next_cpu
, next_event
, 0))
643 raw_spin_unlock(&tick_broadcast_lock
);
646 static int broadcast_needs_cpu(struct clock_event_device
*bc
, int cpu
)
648 if (!(bc
->features
& CLOCK_EVT_FEAT_HRTIMER
))
650 if (bc
->next_event
.tv64
== KTIME_MAX
)
652 return bc
->bound_on
== cpu
? -EBUSY
: 0;
655 static void broadcast_shutdown_local(struct clock_event_device
*bc
,
656 struct clock_event_device
*dev
)
659 * For hrtimer based broadcasting we cannot shutdown the cpu
660 * local device if our own event is the first one to expire or
661 * if we own the broadcast timer.
663 if (bc
->features
& CLOCK_EVT_FEAT_HRTIMER
) {
664 if (broadcast_needs_cpu(bc
, smp_processor_id()))
666 if (dev
->next_event
.tv64
< bc
->next_event
.tv64
)
669 clockevents_set_mode(dev
, CLOCK_EVT_MODE_SHUTDOWN
);
672 static void broadcast_move_bc(int deadcpu
)
674 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
676 if (!bc
|| !broadcast_needs_cpu(bc
, deadcpu
))
678 /* This moves the broadcast assignment to this cpu */
679 clockevents_program_event(bc
, bc
->next_event
, 1);
683 * Powerstate information: The system enters/leaves a state, where
684 * affected devices might stop
685 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
687 int tick_broadcast_oneshot_control(unsigned long reason
)
689 struct clock_event_device
*bc
, *dev
;
690 struct tick_device
*td
;
696 * Periodic mode does not care about the enter/exit of power
699 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
703 * We are called with preemtion disabled from the depth of the
704 * idle code, so we can't be moved away.
706 cpu
= smp_processor_id();
707 td
= &per_cpu(tick_cpu_device
, cpu
);
710 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
713 bc
= tick_broadcast_device
.evtdev
;
715 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
716 if (reason
== CLOCK_EVT_NOTIFY_BROADCAST_ENTER
) {
717 if (!cpumask_test_and_set_cpu(cpu
, tick_broadcast_oneshot_mask
)) {
718 WARN_ON_ONCE(cpumask_test_cpu(cpu
, tick_broadcast_pending_mask
));
719 broadcast_shutdown_local(bc
, dev
);
721 * We only reprogram the broadcast timer if we
722 * did not mark ourself in the force mask and
723 * if the cpu local event is earlier than the
724 * broadcast event. If the current CPU is in
725 * the force mask, then we are going to be
726 * woken by the IPI right away.
728 if (!cpumask_test_cpu(cpu
, tick_broadcast_force_mask
) &&
729 dev
->next_event
.tv64
< bc
->next_event
.tv64
)
730 tick_broadcast_set_event(bc
, cpu
, dev
->next_event
, 1);
733 * If the current CPU owns the hrtimer broadcast
734 * mechanism, it cannot go deep idle and we remove the
735 * CPU from the broadcast mask. We don't have to go
736 * through the EXIT path as the local timer is not
739 ret
= broadcast_needs_cpu(bc
, cpu
);
741 cpumask_clear_cpu(cpu
, tick_broadcast_oneshot_mask
);
743 if (cpumask_test_and_clear_cpu(cpu
, tick_broadcast_oneshot_mask
)) {
744 clockevents_set_mode(dev
, CLOCK_EVT_MODE_ONESHOT
);
746 * The cpu which was handling the broadcast
747 * timer marked this cpu in the broadcast
748 * pending mask and fired the broadcast
749 * IPI. So we are going to handle the expired
750 * event anyway via the broadcast IPI
751 * handler. No need to reprogram the timer
752 * with an already expired event.
754 if (cpumask_test_and_clear_cpu(cpu
,
755 tick_broadcast_pending_mask
))
759 * Bail out if there is no next event.
761 if (dev
->next_event
.tv64
== KTIME_MAX
)
764 * If the pending bit is not set, then we are
765 * either the CPU handling the broadcast
766 * interrupt or we got woken by something else.
768 * We are not longer in the broadcast mask, so
769 * if the cpu local expiry time is already
770 * reached, we would reprogram the cpu local
771 * timer with an already expired event.
773 * This can lead to a ping-pong when we return
774 * to idle and therefor rearm the broadcast
775 * timer before the cpu local timer was able
776 * to fire. This happens because the forced
777 * reprogramming makes sure that the event
778 * will happen in the future and depending on
779 * the min_delta setting this might be far
780 * enough out that the ping-pong starts.
782 * If the cpu local next_event has expired
783 * then we know that the broadcast timer
784 * next_event has expired as well and
785 * broadcast is about to be handled. So we
786 * avoid reprogramming and enforce that the
787 * broadcast handler, which did not run yet,
788 * will invoke the cpu local handler.
790 * We cannot call the handler directly from
791 * here, because we might be in a NOHZ phase
792 * and we did not go through the irq_enter()
796 if (dev
->next_event
.tv64
<= now
.tv64
) {
797 cpumask_set_cpu(cpu
, tick_broadcast_force_mask
);
801 * We got woken by something else. Reprogram
802 * the cpu local timer device.
804 tick_program_event(dev
->next_event
, 1);
808 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
813 * Reset the one shot broadcast for a cpu
815 * Called with tick_broadcast_lock held
817 static void tick_broadcast_clear_oneshot(int cpu
)
819 cpumask_clear_cpu(cpu
, tick_broadcast_oneshot_mask
);
820 cpumask_clear_cpu(cpu
, tick_broadcast_pending_mask
);
823 static void tick_broadcast_init_next_event(struct cpumask
*mask
,
826 struct tick_device
*td
;
829 for_each_cpu(cpu
, mask
) {
830 td
= &per_cpu(tick_cpu_device
, cpu
);
832 td
->evtdev
->next_event
= expires
;
837 * tick_broadcast_setup_oneshot - setup the broadcast device
839 void tick_broadcast_setup_oneshot(struct clock_event_device
*bc
)
841 int cpu
= smp_processor_id();
843 /* Set it up only once ! */
844 if (bc
->event_handler
!= tick_handle_oneshot_broadcast
) {
845 int was_periodic
= bc
->mode
== CLOCK_EVT_MODE_PERIODIC
;
847 bc
->event_handler
= tick_handle_oneshot_broadcast
;
850 * We must be careful here. There might be other CPUs
851 * waiting for periodic broadcast. We need to set the
852 * oneshot_mask bits for those and program the
853 * broadcast device to fire.
855 cpumask_copy(tmpmask
, tick_broadcast_mask
);
856 cpumask_clear_cpu(cpu
, tmpmask
);
857 cpumask_or(tick_broadcast_oneshot_mask
,
858 tick_broadcast_oneshot_mask
, tmpmask
);
860 if (was_periodic
&& !cpumask_empty(tmpmask
)) {
861 clockevents_set_mode(bc
, CLOCK_EVT_MODE_ONESHOT
);
862 tick_broadcast_init_next_event(tmpmask
,
864 tick_broadcast_set_event(bc
, cpu
, tick_next_period
, 1);
866 bc
->next_event
.tv64
= KTIME_MAX
;
869 * The first cpu which switches to oneshot mode sets
870 * the bit for all other cpus which are in the general
871 * (periodic) broadcast mask. So the bit is set and
872 * would prevent the first broadcast enter after this
873 * to program the bc device.
875 tick_broadcast_clear_oneshot(cpu
);
880 * Select oneshot operating mode for the broadcast device
882 void tick_broadcast_switch_to_oneshot(void)
884 struct clock_event_device
*bc
;
887 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
889 tick_broadcast_device
.mode
= TICKDEV_MODE_ONESHOT
;
890 bc
= tick_broadcast_device
.evtdev
;
892 tick_broadcast_setup_oneshot(bc
);
894 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
899 * Remove a dead CPU from broadcasting
901 void tick_shutdown_broadcast_oneshot(unsigned int *cpup
)
904 unsigned int cpu
= *cpup
;
906 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
909 * Clear the broadcast masks for the dead cpu, but do not stop
910 * the broadcast device!
912 cpumask_clear_cpu(cpu
, tick_broadcast_oneshot_mask
);
913 cpumask_clear_cpu(cpu
, tick_broadcast_pending_mask
);
914 cpumask_clear_cpu(cpu
, tick_broadcast_force_mask
);
916 broadcast_move_bc(cpu
);
918 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
922 * Check, whether the broadcast device is in one shot mode
924 int tick_broadcast_oneshot_active(void)
926 return tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
;
930 * Check whether the broadcast device supports oneshot.
932 bool tick_broadcast_oneshot_available(void)
934 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
936 return bc
? bc
->features
& CLOCK_EVT_FEAT_ONESHOT
: false;
941 void __init
tick_broadcast_init(void)
943 zalloc_cpumask_var(&tick_broadcast_mask
, GFP_NOWAIT
);
944 zalloc_cpumask_var(&tick_broadcast_on
, GFP_NOWAIT
);
945 zalloc_cpumask_var(&tmpmask
, GFP_NOWAIT
);
946 #ifdef CONFIG_TICK_ONESHOT
947 zalloc_cpumask_var(&tick_broadcast_oneshot_mask
, GFP_NOWAIT
);
948 zalloc_cpumask_var(&tick_broadcast_pending_mask
, GFP_NOWAIT
);
949 zalloc_cpumask_var(&tick_broadcast_force_mask
, GFP_NOWAIT
);