2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
28 #include <asm/irq_regs.h>
30 #include "tick-internal.h"
32 #include <trace/events/timer.h>
35 * Per cpu nohz control structure
37 DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
42 static ktime_t last_jiffies_update
;
44 struct tick_sched
*tick_get_tick_sched(int cpu
)
46 return &per_cpu(tick_cpu_sched
, cpu
);
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now
)
54 unsigned long ticks
= 0;
58 * Do a quick check without holding jiffies_lock:
60 delta
= ktime_sub(now
, last_jiffies_update
);
61 if (delta
.tv64
< tick_period
.tv64
)
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock
);
67 delta
= ktime_sub(now
, last_jiffies_update
);
68 if (delta
.tv64
>= tick_period
.tv64
) {
70 delta
= ktime_sub(delta
, tick_period
);
71 last_jiffies_update
= ktime_add(last_jiffies_update
,
74 /* Slow path for long timeouts */
75 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
76 s64 incr
= ktime_to_ns(tick_period
);
78 ticks
= ktime_divns(delta
, incr
);
80 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
88 write_sequnlock(&jiffies_lock
);
91 write_sequnlock(&jiffies_lock
);
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t
tick_init_jiffy_update(void)
102 write_seqlock(&jiffies_lock
);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update
.tv64
== 0)
105 last_jiffies_update
= tick_next_period
;
106 period
= last_jiffies_update
;
107 write_sequnlock(&jiffies_lock
);
112 static void tick_sched_do_timer(ktime_t now
)
114 int cpu
= smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
124 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
125 && !tick_nohz_full_cpu(cpu
))
126 tick_do_timer_cpu
= cpu
;
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu
== cpu
)
131 tick_do_update_jiffies64(now
);
134 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts
->tick_stopped
) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current
))
151 update_process_times(user_mode(regs
));
152 profile_tick(CPU_PROFILING
);
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask
;
157 bool tick_nohz_full_running
;
159 static bool can_stop_full_tick(void)
161 WARN_ON_ONCE(!irqs_disabled());
163 if (!sched_can_stop_tick()) {
164 trace_tick_stop(0, "more than 1 task in runqueue\n");
168 if (!posix_cpu_timers_can_stop_tick(current
)) {
169 trace_tick_stop(0, "posix timers running\n");
173 if (!perf_event_can_stop_tick()) {
174 trace_tick_stop(0, "perf events running\n");
178 /* sched_clock_tick() needs us? */
179 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 * TODO: kick full dynticks CPUs when
182 * sched_clock_stable is set.
184 if (!sched_clock_stable()) {
185 trace_tick_stop(0, "unstable sched clock\n");
187 * Don't allow the user to think they can get
188 * full NO_HZ with this machine.
190 WARN_ONCE(tick_nohz_full_running
,
191 "NO_HZ FULL will not work with unstable sched clock");
199 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
);
202 * Re-evaluate the need for the tick on the current CPU
203 * and restart it if necessary.
205 void __tick_nohz_full_check(void)
207 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
209 if (tick_nohz_full_cpu(smp_processor_id())) {
210 if (ts
->tick_stopped
&& !is_idle_task(current
)) {
211 if (!can_stop_full_tick())
212 tick_nohz_restart_sched_tick(ts
, ktime_get());
217 static void nohz_full_kick_work_func(struct irq_work
*work
)
219 __tick_nohz_full_check();
222 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
223 .func
= nohz_full_kick_work_func
,
227 * Kick the current CPU if it's full dynticks in order to force it to
228 * re-evaluate its dependency on the tick and restart it if necessary.
230 void tick_nohz_full_kick(void)
232 if (tick_nohz_full_cpu(smp_processor_id()))
233 irq_work_queue(&__get_cpu_var(nohz_full_kick_work
));
236 static void nohz_full_kick_ipi(void *info
)
238 __tick_nohz_full_check();
242 * Kick all full dynticks CPUs in order to force these to re-evaluate
243 * their dependency on the tick and restart it if necessary.
245 void tick_nohz_full_kick_all(void)
247 if (!tick_nohz_full_running
)
251 smp_call_function_many(tick_nohz_full_mask
,
252 nohz_full_kick_ipi
, NULL
, false);
253 tick_nohz_full_kick();
258 * Re-evaluate the need for the tick as we switch the current task.
259 * It might need the tick due to per task/process properties:
260 * perf events, posix cpu timers, ...
262 void __tick_nohz_task_switch(struct task_struct
*tsk
)
266 local_irq_save(flags
);
268 if (!tick_nohz_full_cpu(smp_processor_id()))
271 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
272 tick_nohz_full_kick();
275 local_irq_restore(flags
);
278 /* Parse the boot-time nohz CPU list from the kernel parameters. */
279 static int __init
tick_nohz_full_setup(char *str
)
283 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
284 if (cpulist_parse(str
, tick_nohz_full_mask
) < 0) {
285 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
289 cpu
= smp_processor_id();
290 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
291 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu
);
292 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
294 tick_nohz_full_running
= true;
298 __setup("nohz_full=", tick_nohz_full_setup
);
300 static int tick_nohz_cpu_down_callback(struct notifier_block
*nfb
,
301 unsigned long action
,
304 unsigned int cpu
= (unsigned long)hcpu
;
306 switch (action
& ~CPU_TASKS_FROZEN
) {
307 case CPU_DOWN_PREPARE
:
309 * If we handle the timekeeping duty for full dynticks CPUs,
310 * we can't safely shutdown that CPU.
312 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
320 * Worst case string length in chunks of CPU range seems 2 steps
321 * separations: 0,2,4,6,...
322 * This is NR_CPUS + sizeof('\0')
324 static char __initdata nohz_full_buf
[NR_CPUS
+ 1];
326 static int tick_nohz_init_all(void)
330 #ifdef CONFIG_NO_HZ_FULL_ALL
331 if (!alloc_cpumask_var(&tick_nohz_full_mask
, GFP_KERNEL
)) {
332 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
336 cpumask_setall(tick_nohz_full_mask
);
337 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask
);
338 tick_nohz_full_running
= true;
343 void __init
tick_nohz_init(void)
347 if (!tick_nohz_full_running
) {
348 if (tick_nohz_init_all() < 0)
352 for_each_cpu(cpu
, tick_nohz_full_mask
)
353 context_tracking_cpu_set(cpu
);
355 cpu_notifier(tick_nohz_cpu_down_callback
, 0);
356 cpulist_scnprintf(nohz_full_buf
, sizeof(nohz_full_buf
), tick_nohz_full_mask
);
357 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf
);
362 * NOHZ - aka dynamic tick functionality
364 #ifdef CONFIG_NO_HZ_COMMON
368 static int tick_nohz_enabled __read_mostly
= 1;
369 int tick_nohz_active __read_mostly
;
371 * Enable / Disable tickless mode
373 static int __init
setup_tick_nohz(char *str
)
375 if (!strcmp(str
, "off"))
376 tick_nohz_enabled
= 0;
377 else if (!strcmp(str
, "on"))
378 tick_nohz_enabled
= 1;
384 __setup("nohz=", setup_tick_nohz
);
387 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
389 * Called from interrupt entry when the CPU was idle
391 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
392 * must be updated. Otherwise an interrupt handler could use a stale jiffy
393 * value. We do this unconditionally on any cpu, as we don't know whether the
394 * cpu, which has the update task assigned is in a long sleep.
396 static void tick_nohz_update_jiffies(ktime_t now
)
400 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
402 local_irq_save(flags
);
403 tick_do_update_jiffies64(now
);
404 local_irq_restore(flags
);
406 touch_softlockup_watchdog();
410 * Updates the per cpu time idle statistics counters
413 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
417 if (ts
->idle_active
) {
418 delta
= ktime_sub(now
, ts
->idle_entrytime
);
419 if (nr_iowait_cpu(cpu
) > 0)
420 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
422 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
423 ts
->idle_entrytime
= now
;
426 if (last_update_time
)
427 *last_update_time
= ktime_to_us(now
);
431 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
433 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
436 sched_clock_idle_wakeup_event(0);
439 static ktime_t
tick_nohz_start_idle(struct tick_sched
*ts
)
441 ktime_t now
= ktime_get();
443 ts
->idle_entrytime
= now
;
445 sched_clock_idle_sleep_event();
450 * get_cpu_idle_time_us - get the total idle time of a cpu
451 * @cpu: CPU number to query
452 * @last_update_time: variable to store update time in. Do not update
455 * Return the cummulative idle time (since boot) for a given
456 * CPU, in microseconds.
458 * This time is measured via accounting rather than sampling,
459 * and is as accurate as ktime_get() is.
461 * This function returns -1 if NOHZ is not enabled.
463 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
465 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
468 if (!tick_nohz_active
)
472 if (last_update_time
) {
473 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
474 idle
= ts
->idle_sleeptime
;
476 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
477 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
479 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
481 idle
= ts
->idle_sleeptime
;
485 return ktime_to_us(idle
);
488 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
491 * get_cpu_iowait_time_us - get the total iowait time of a cpu
492 * @cpu: CPU number to query
493 * @last_update_time: variable to store update time in. Do not update
496 * Return the cummulative iowait time (since boot) for a given
497 * CPU, in microseconds.
499 * This time is measured via accounting rather than sampling,
500 * and is as accurate as ktime_get() is.
502 * This function returns -1 if NOHZ is not enabled.
504 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
506 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
509 if (!tick_nohz_active
)
513 if (last_update_time
) {
514 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
515 iowait
= ts
->iowait_sleeptime
;
517 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
518 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
520 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
522 iowait
= ts
->iowait_sleeptime
;
526 return ktime_to_us(iowait
);
528 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
530 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
531 ktime_t now
, int cpu
)
533 unsigned long seq
, last_jiffies
, next_jiffies
, delta_jiffies
;
534 ktime_t last_update
, expires
, ret
= { .tv64
= 0 };
535 unsigned long rcu_delta_jiffies
;
536 struct clock_event_device
*dev
= __get_cpu_var(tick_cpu_device
).evtdev
;
539 time_delta
= timekeeping_max_deferment();
541 /* Read jiffies and the time when jiffies were updated last */
543 seq
= read_seqbegin(&jiffies_lock
);
544 last_update
= last_jiffies_update
;
545 last_jiffies
= jiffies
;
546 } while (read_seqretry(&jiffies_lock
, seq
));
548 if (rcu_needs_cpu(cpu
, &rcu_delta_jiffies
) ||
549 arch_needs_cpu(cpu
) || irq_work_needs_cpu()) {
550 next_jiffies
= last_jiffies
+ 1;
553 /* Get the next timer wheel timer */
554 next_jiffies
= get_next_timer_interrupt(last_jiffies
);
555 delta_jiffies
= next_jiffies
- last_jiffies
;
556 if (rcu_delta_jiffies
< delta_jiffies
) {
557 next_jiffies
= last_jiffies
+ rcu_delta_jiffies
;
558 delta_jiffies
= rcu_delta_jiffies
;
563 * Do not stop the tick, if we are only one off (or less)
564 * or if the cpu is required for RCU:
566 if (!ts
->tick_stopped
&& delta_jiffies
<= 1)
569 /* Schedule the tick, if we are at least one jiffie off */
570 if ((long)delta_jiffies
>= 1) {
573 * If this cpu is the one which updates jiffies, then
574 * give up the assignment and let it be taken by the
575 * cpu which runs the tick timer next, which might be
576 * this cpu as well. If we don't drop this here the
577 * jiffies might be stale and do_timer() never
578 * invoked. Keep track of the fact that it was the one
579 * which had the do_timer() duty last. If this cpu is
580 * the one which had the do_timer() duty last, we
581 * limit the sleep time to the timekeeping
582 * max_deferement value which we retrieved
583 * above. Otherwise we can sleep as long as we want.
585 if (cpu
== tick_do_timer_cpu
) {
586 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
587 ts
->do_timer_last
= 1;
588 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
589 time_delta
= KTIME_MAX
;
590 ts
->do_timer_last
= 0;
591 } else if (!ts
->do_timer_last
) {
592 time_delta
= KTIME_MAX
;
595 #ifdef CONFIG_NO_HZ_FULL
597 time_delta
= min(time_delta
,
598 scheduler_tick_max_deferment());
603 * calculate the expiry time for the next timer wheel
604 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
605 * that there is no timer pending or at least extremely
606 * far into the future (12 days for HZ=1000). In this
607 * case we set the expiry to the end of time.
609 if (likely(delta_jiffies
< NEXT_TIMER_MAX_DELTA
)) {
611 * Calculate the time delta for the next timer event.
612 * If the time delta exceeds the maximum time delta
613 * permitted by the current clocksource then adjust
614 * the time delta accordingly to ensure the
615 * clocksource does not wrap.
617 time_delta
= min_t(u64
, time_delta
,
618 tick_period
.tv64
* delta_jiffies
);
621 if (time_delta
< KTIME_MAX
)
622 expires
= ktime_add_ns(last_update
, time_delta
);
624 expires
.tv64
= KTIME_MAX
;
626 /* Skip reprogram of event if its not changed */
627 if (ts
->tick_stopped
&& ktime_equal(expires
, dev
->next_event
))
633 * nohz_stop_sched_tick can be called several times before
634 * the nohz_restart_sched_tick is called. This happens when
635 * interrupts arrive which do not cause a reschedule. In the
636 * first call we save the current tick time, so we can restart
637 * the scheduler tick in nohz_restart_sched_tick.
639 if (!ts
->tick_stopped
) {
640 nohz_balance_enter_idle(cpu
);
641 calc_load_enter_idle();
643 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
644 ts
->tick_stopped
= 1;
645 trace_tick_stop(1, " ");
649 * If the expiration time == KTIME_MAX, then
650 * in this case we simply stop the tick timer.
652 if (unlikely(expires
.tv64
== KTIME_MAX
)) {
653 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
654 hrtimer_cancel(&ts
->sched_timer
);
658 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
659 hrtimer_start(&ts
->sched_timer
, expires
,
660 HRTIMER_MODE_ABS_PINNED
);
661 /* Check, if the timer was already in the past */
662 if (hrtimer_active(&ts
->sched_timer
))
664 } else if (!tick_program_event(expires
, 0))
667 * We are past the event already. So we crossed a
668 * jiffie boundary. Update jiffies and raise the
671 tick_do_update_jiffies64(ktime_get());
673 raise_softirq_irqoff(TIMER_SOFTIRQ
);
675 ts
->next_jiffies
= next_jiffies
;
676 ts
->last_jiffies
= last_jiffies
;
677 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
682 static void tick_nohz_full_stop_tick(struct tick_sched
*ts
)
684 #ifdef CONFIG_NO_HZ_FULL
685 int cpu
= smp_processor_id();
687 if (!tick_nohz_full_cpu(cpu
) || is_idle_task(current
))
690 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
693 if (!can_stop_full_tick())
696 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
700 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
703 * If this cpu is offline and it is the one which updates
704 * jiffies, then give up the assignment and let it be taken by
705 * the cpu which runs the tick timer next. If we don't drop
706 * this here the jiffies might be stale and do_timer() never
709 if (unlikely(!cpu_online(cpu
))) {
710 if (cpu
== tick_do_timer_cpu
)
711 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
715 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
716 ts
->sleep_length
= (ktime_t
) { .tv64
= NSEC_PER_SEC
/HZ
};
723 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
724 static int ratelimit
;
726 if (ratelimit
< 10 &&
727 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
728 pr_warn("NOHZ: local_softirq_pending %02x\n",
729 (unsigned int) local_softirq_pending());
735 if (tick_nohz_full_enabled()) {
737 * Keep the tick alive to guarantee timekeeping progression
738 * if there are full dynticks CPUs around
740 if (tick_do_timer_cpu
== cpu
)
743 * Boot safety: make sure the timekeeping duty has been
744 * assigned before entering dyntick-idle mode,
746 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
753 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
755 ktime_t now
, expires
;
756 int cpu
= smp_processor_id();
758 now
= tick_nohz_start_idle(ts
);
760 if (can_stop_idle_tick(cpu
, ts
)) {
761 int was_stopped
= ts
->tick_stopped
;
765 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
766 if (expires
.tv64
> 0LL) {
768 ts
->idle_expires
= expires
;
771 if (!was_stopped
&& ts
->tick_stopped
)
772 ts
->idle_jiffies
= ts
->last_jiffies
;
777 * tick_nohz_idle_enter - stop the idle tick from the idle task
779 * When the next event is more than a tick into the future, stop the idle tick
780 * Called when we start the idle loop.
782 * The arch is responsible of calling:
784 * - rcu_idle_enter() after its last use of RCU before the CPU is put
786 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
788 void tick_nohz_idle_enter(void)
790 struct tick_sched
*ts
;
792 WARN_ON_ONCE(irqs_disabled());
795 * Update the idle state in the scheduler domain hierarchy
796 * when tick_nohz_stop_sched_tick() is called from the idle loop.
797 * State will be updated to busy during the first busy tick after
800 set_cpu_sd_state_idle();
804 ts
= &__get_cpu_var(tick_cpu_sched
);
806 __tick_nohz_idle_enter(ts
);
812 * tick_nohz_irq_exit - update next tick event from interrupt exit
814 * When an interrupt fires while we are idle and it doesn't cause
815 * a reschedule, it may still add, modify or delete a timer, enqueue
816 * an RCU callback, etc...
817 * So we need to re-calculate and reprogram the next tick event.
819 void tick_nohz_irq_exit(void)
821 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
824 __tick_nohz_idle_enter(ts
);
826 tick_nohz_full_stop_tick(ts
);
830 * tick_nohz_get_sleep_length - return the length of the current sleep
832 * Called from power state control code with interrupts disabled
834 ktime_t
tick_nohz_get_sleep_length(void)
836 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
838 return ts
->sleep_length
;
841 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
843 hrtimer_cancel(&ts
->sched_timer
);
844 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
847 /* Forward the time to expire in the future */
848 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
850 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
851 hrtimer_start_expires(&ts
->sched_timer
,
852 HRTIMER_MODE_ABS_PINNED
);
853 /* Check, if the timer was already in the past */
854 if (hrtimer_active(&ts
->sched_timer
))
857 if (!tick_program_event(
858 hrtimer_get_expires(&ts
->sched_timer
), 0))
861 /* Reread time and update jiffies */
863 tick_do_update_jiffies64(now
);
867 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
869 /* Update jiffies first */
870 tick_do_update_jiffies64(now
);
871 update_cpu_load_nohz();
873 calc_load_exit_idle();
874 touch_softlockup_watchdog();
876 * Cancel the scheduled timer and restore the tick
878 ts
->tick_stopped
= 0;
879 ts
->idle_exittime
= now
;
881 tick_nohz_restart(ts
, now
);
884 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
886 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
889 if (vtime_accounting_enabled())
892 * We stopped the tick in idle. Update process times would miss the
893 * time we slept as update_process_times does only a 1 tick
894 * accounting. Enforce that this is accounted to idle !
896 ticks
= jiffies
- ts
->idle_jiffies
;
898 * We might be one off. Do not randomly account a huge number of ticks!
900 if (ticks
&& ticks
< LONG_MAX
)
901 account_idle_ticks(ticks
);
906 * tick_nohz_idle_exit - restart the idle tick from the idle task
908 * Restart the idle tick when the CPU is woken up from idle
909 * This also exit the RCU extended quiescent state. The CPU
910 * can use RCU again after this function is called.
912 void tick_nohz_idle_exit(void)
914 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
919 WARN_ON_ONCE(!ts
->inidle
);
923 if (ts
->idle_active
|| ts
->tick_stopped
)
927 tick_nohz_stop_idle(ts
, now
);
929 if (ts
->tick_stopped
) {
930 tick_nohz_restart_sched_tick(ts
, now
);
931 tick_nohz_account_idle_ticks(ts
);
937 static int tick_nohz_reprogram(struct tick_sched
*ts
, ktime_t now
)
939 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
940 return tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 0);
944 * The nohz low res interrupt handler
946 static void tick_nohz_handler(struct clock_event_device
*dev
)
948 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
949 struct pt_regs
*regs
= get_irq_regs();
950 ktime_t now
= ktime_get();
952 dev
->next_event
.tv64
= KTIME_MAX
;
954 tick_sched_do_timer(now
);
955 tick_sched_handle(ts
, regs
);
957 while (tick_nohz_reprogram(ts
, now
)) {
959 tick_do_update_jiffies64(now
);
964 * tick_nohz_switch_to_nohz - switch to nohz mode
966 static void tick_nohz_switch_to_nohz(void)
968 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
971 if (!tick_nohz_enabled
)
975 if (tick_switch_to_oneshot(tick_nohz_handler
)) {
979 tick_nohz_active
= 1;
980 ts
->nohz_mode
= NOHZ_MODE_LOWRES
;
983 * Recycle the hrtimer in ts, so we can share the
984 * hrtimer_forward with the highres code.
986 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
987 /* Get the next period */
988 next
= tick_init_jiffy_update();
991 hrtimer_set_expires(&ts
->sched_timer
, next
);
992 if (!tick_program_event(next
, 0))
994 next
= ktime_add(next
, tick_period
);
1000 * When NOHZ is enabled and the tick is stopped, we need to kick the
1001 * tick timer from irq_enter() so that the jiffies update is kept
1002 * alive during long running softirqs. That's ugly as hell, but
1003 * correctness is key even if we need to fix the offending softirq in
1006 * Note, this is different to tick_nohz_restart. We just kick the
1007 * timer and do not touch the other magic bits which need to be done
1008 * when idle is left.
1010 static void tick_nohz_kick_tick(struct tick_sched
*ts
, ktime_t now
)
1013 /* Switch back to 2.6.27 behaviour */
1017 * Do not touch the tick device, when the next expiry is either
1018 * already reached or less/equal than the tick period.
1020 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
1021 if (delta
.tv64
<= tick_period
.tv64
)
1024 tick_nohz_restart(ts
, now
);
1028 static inline void tick_nohz_irq_enter(void)
1030 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1033 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1036 if (ts
->idle_active
)
1037 tick_nohz_stop_idle(ts
, now
);
1038 if (ts
->tick_stopped
) {
1039 tick_nohz_update_jiffies(now
);
1040 tick_nohz_kick_tick(ts
, now
);
1046 static inline void tick_nohz_switch_to_nohz(void) { }
1047 static inline void tick_nohz_irq_enter(void) { }
1049 #endif /* CONFIG_NO_HZ_COMMON */
1052 * Called from irq_enter to notify about the possible interruption of idle()
1054 void tick_irq_enter(void)
1056 tick_check_oneshot_broadcast_this_cpu();
1057 tick_nohz_irq_enter();
1061 * High resolution timer specific code
1063 #ifdef CONFIG_HIGH_RES_TIMERS
1065 * We rearm the timer until we get disabled by the idle code.
1066 * Called with interrupts disabled.
1068 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1070 struct tick_sched
*ts
=
1071 container_of(timer
, struct tick_sched
, sched_timer
);
1072 struct pt_regs
*regs
= get_irq_regs();
1073 ktime_t now
= ktime_get();
1075 tick_sched_do_timer(now
);
1078 * Do not call, when we are not in irq context and have
1079 * no valid regs pointer
1082 tick_sched_handle(ts
, regs
);
1084 hrtimer_forward(timer
, now
, tick_period
);
1086 return HRTIMER_RESTART
;
1089 static int sched_skew_tick
;
1091 static int __init
skew_tick(char *str
)
1093 get_option(&str
, &sched_skew_tick
);
1097 early_param("skew_tick", skew_tick
);
1100 * tick_setup_sched_timer - setup the tick emulation timer
1102 void tick_setup_sched_timer(void)
1104 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1105 ktime_t now
= ktime_get();
1108 * Emulate tick processing via per-CPU hrtimers:
1110 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1111 ts
->sched_timer
.function
= tick_sched_timer
;
1113 /* Get the next period (per cpu) */
1114 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1116 /* Offset the tick to avert jiffies_lock contention. */
1117 if (sched_skew_tick
) {
1118 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1119 do_div(offset
, num_possible_cpus());
1120 offset
*= smp_processor_id();
1121 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1125 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1126 hrtimer_start_expires(&ts
->sched_timer
,
1127 HRTIMER_MODE_ABS_PINNED
);
1128 /* Check, if the timer was already in the past */
1129 if (hrtimer_active(&ts
->sched_timer
))
1134 #ifdef CONFIG_NO_HZ_COMMON
1135 if (tick_nohz_enabled
) {
1136 ts
->nohz_mode
= NOHZ_MODE_HIGHRES
;
1137 tick_nohz_active
= 1;
1141 #endif /* HIGH_RES_TIMERS */
1143 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1144 void tick_cancel_sched_timer(int cpu
)
1146 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1148 # ifdef CONFIG_HIGH_RES_TIMERS
1149 if (ts
->sched_timer
.base
)
1150 hrtimer_cancel(&ts
->sched_timer
);
1153 memset(ts
, 0, sizeof(*ts
));
1158 * Async notification about clocksource changes
1160 void tick_clock_notify(void)
1164 for_each_possible_cpu(cpu
)
1165 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1169 * Async notification about clock event changes
1171 void tick_oneshot_notify(void)
1173 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1175 set_bit(0, &ts
->check_clocks
);
1179 * Check, if a change happened, which makes oneshot possible.
1181 * Called cyclic from the hrtimer softirq (driven by the timer
1182 * softirq) allow_nohz signals, that we can switch into low-res nohz
1183 * mode, because high resolution timers are disabled (either compile
1186 int tick_check_oneshot_change(int allow_nohz
)
1188 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1190 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1193 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1196 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1202 tick_nohz_switch_to_nohz();