KEYS: add missing permission check for request_key() destination
[linux/fpc-iii.git] / net / ceph / messenger.c
blob6a2236aee1ce99526be7bbd0004583f1a8709351
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/sched.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
26 #define list_entry_next(pos, member) \
27 list_entry(pos->member.next, typeof(*pos), member)
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
87 * connection states
89 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
90 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
91 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
92 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
93 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
94 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
97 * ceph_connection flag bits
99 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
100 * messages on errors */
101 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
102 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
103 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
104 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
106 static bool con_flag_valid(unsigned long con_flag)
108 switch (con_flag) {
109 case CON_FLAG_LOSSYTX:
110 case CON_FLAG_KEEPALIVE_PENDING:
111 case CON_FLAG_WRITE_PENDING:
112 case CON_FLAG_SOCK_CLOSED:
113 case CON_FLAG_BACKOFF:
114 return true;
115 default:
116 return false;
120 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
122 BUG_ON(!con_flag_valid(con_flag));
124 clear_bit(con_flag, &con->flags);
127 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
129 BUG_ON(!con_flag_valid(con_flag));
131 set_bit(con_flag, &con->flags);
134 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
136 BUG_ON(!con_flag_valid(con_flag));
138 return test_bit(con_flag, &con->flags);
141 static bool con_flag_test_and_clear(struct ceph_connection *con,
142 unsigned long con_flag)
144 BUG_ON(!con_flag_valid(con_flag));
146 return test_and_clear_bit(con_flag, &con->flags);
149 static bool con_flag_test_and_set(struct ceph_connection *con,
150 unsigned long con_flag)
152 BUG_ON(!con_flag_valid(con_flag));
154 return test_and_set_bit(con_flag, &con->flags);
157 /* Slab caches for frequently-allocated structures */
159 static struct kmem_cache *ceph_msg_cache;
160 static struct kmem_cache *ceph_msg_data_cache;
162 /* static tag bytes (protocol control messages) */
163 static char tag_msg = CEPH_MSGR_TAG_MSG;
164 static char tag_ack = CEPH_MSGR_TAG_ACK;
165 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
172 * When skipping (ignoring) a block of input we read it into a "skip
173 * buffer," which is this many bytes in size.
175 #define SKIP_BUF_SIZE 1024
177 static void queue_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193 static struct page *zero_page; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 int i;
198 char *s;
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 s = addr_str[i];
205 switch (ss->ss_family) {
206 case AF_INET:
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
209 break;
211 case AF_INET6:
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
214 break;
216 default:
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 ss->ss_family);
221 return s;
223 EXPORT_SYMBOL(ceph_pr_addr);
225 static void encode_my_addr(struct ceph_messenger *msgr)
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct *ceph_msgr_wq;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg),
241 __alignof__(struct ceph_msg), 0, NULL);
243 if (!ceph_msg_cache)
244 return -ENOMEM;
246 BUG_ON(ceph_msg_data_cache);
247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data),
249 __alignof__(struct ceph_msg_data),
250 0, NULL);
251 if (ceph_msg_data_cache)
252 return 0;
254 kmem_cache_destroy(ceph_msg_cache);
255 ceph_msg_cache = NULL;
257 return -ENOMEM;
260 static void ceph_msgr_slab_exit(void)
262 BUG_ON(!ceph_msg_data_cache);
263 kmem_cache_destroy(ceph_msg_data_cache);
264 ceph_msg_data_cache = NULL;
266 BUG_ON(!ceph_msg_cache);
267 kmem_cache_destroy(ceph_msg_cache);
268 ceph_msg_cache = NULL;
271 static void _ceph_msgr_exit(void)
273 if (ceph_msgr_wq) {
274 destroy_workqueue(ceph_msgr_wq);
275 ceph_msgr_wq = NULL;
278 ceph_msgr_slab_exit();
280 BUG_ON(zero_page == NULL);
281 kunmap(zero_page);
282 page_cache_release(zero_page);
283 zero_page = NULL;
286 int ceph_msgr_init(void)
288 BUG_ON(zero_page != NULL);
289 zero_page = ZERO_PAGE(0);
290 page_cache_get(zero_page);
292 if (ceph_msgr_slab_init())
293 return -ENOMEM;
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 if (ceph_msgr_wq)
301 return 0;
303 pr_err("msgr_init failed to create workqueue\n");
304 _ceph_msgr_exit();
306 return -ENOMEM;
308 EXPORT_SYMBOL(ceph_msgr_init);
310 void ceph_msgr_exit(void)
312 BUG_ON(ceph_msgr_wq == NULL);
314 _ceph_msgr_exit();
316 EXPORT_SYMBOL(ceph_msgr_exit);
318 void ceph_msgr_flush(void)
320 flush_workqueue(ceph_msgr_wq);
322 EXPORT_SYMBOL(ceph_msgr_flush);
324 /* Connection socket state transition functions */
326 static void con_sock_state_init(struct ceph_connection *con)
328 int old_state;
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 printk("%s: unexpected old state %d\n", __func__, old_state);
333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 CON_SOCK_STATE_CLOSED);
337 static void con_sock_state_connecting(struct ceph_connection *con)
339 int old_state;
341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 printk("%s: unexpected old state %d\n", __func__, old_state);
344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 CON_SOCK_STATE_CONNECTING);
348 static void con_sock_state_connected(struct ceph_connection *con)
350 int old_state;
352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CONNECTED);
359 static void con_sock_state_closing(struct ceph_connection *con)
361 int old_state;
363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 old_state != CON_SOCK_STATE_CONNECTED &&
366 old_state != CON_SOCK_STATE_CLOSING))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSING);
372 static void con_sock_state_closed(struct ceph_connection *con)
374 int old_state;
376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 old_state != CON_SOCK_STATE_CLOSING &&
379 old_state != CON_SOCK_STATE_CONNECTING &&
380 old_state != CON_SOCK_STATE_CLOSED))
381 printk("%s: unexpected old state %d\n", __func__, old_state);
382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 CON_SOCK_STATE_CLOSED);
387 * socket callback functions
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
393 struct ceph_connection *con = sk->sk_user_data;
394 if (atomic_read(&con->msgr->stopping)) {
395 return;
398 if (sk->sk_state != TCP_CLOSE_WAIT) {
399 dout("%s on %p state = %lu, queueing work\n", __func__,
400 con, con->state);
401 queue_con(con);
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
408 struct ceph_connection *con = sk->sk_user_data;
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 if (sk_stream_is_writeable(sk)) {
419 dout("%s %p queueing write work\n", __func__, con);
420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 queue_con(con);
423 } else {
424 dout("%s %p nothing to write\n", __func__, con);
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
431 struct ceph_connection *con = sk->sk_user_data;
433 dout("%s %p state = %lu sk_state = %u\n", __func__,
434 con, con->state, sk->sk_state);
436 switch (sk->sk_state) {
437 case TCP_CLOSE:
438 dout("%s TCP_CLOSE\n", __func__);
439 case TCP_CLOSE_WAIT:
440 dout("%s TCP_CLOSE_WAIT\n", __func__);
441 con_sock_state_closing(con);
442 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 queue_con(con);
444 break;
445 case TCP_ESTABLISHED:
446 dout("%s TCP_ESTABLISHED\n", __func__);
447 con_sock_state_connected(con);
448 queue_con(con);
449 break;
450 default: /* Everything else is uninteresting */
451 break;
456 * set up socket callbacks
458 static void set_sock_callbacks(struct socket *sock,
459 struct ceph_connection *con)
461 struct sock *sk = sock->sk;
462 sk->sk_user_data = con;
463 sk->sk_data_ready = ceph_sock_data_ready;
464 sk->sk_write_space = ceph_sock_write_space;
465 sk->sk_state_change = ceph_sock_state_change;
470 * socket helpers
474 * initiate connection to a remote socket.
476 static int ceph_tcp_connect(struct ceph_connection *con)
478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 struct socket *sock;
480 unsigned int noio_flag;
481 int ret;
483 BUG_ON(con->sock);
485 /* sock_create_kern() allocates with GFP_KERNEL */
486 noio_flag = memalloc_noio_save();
487 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
488 IPPROTO_TCP, &sock);
489 memalloc_noio_restore(noio_flag);
490 if (ret)
491 return ret;
492 sock->sk->sk_allocation = GFP_NOFS;
494 #ifdef CONFIG_LOCKDEP
495 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
496 #endif
498 set_sock_callbacks(sock, con);
500 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
502 con_sock_state_connecting(con);
503 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
504 O_NONBLOCK);
505 if (ret == -EINPROGRESS) {
506 dout("connect %s EINPROGRESS sk_state = %u\n",
507 ceph_pr_addr(&con->peer_addr.in_addr),
508 sock->sk->sk_state);
509 } else if (ret < 0) {
510 pr_err("connect %s error %d\n",
511 ceph_pr_addr(&con->peer_addr.in_addr), ret);
512 sock_release(sock);
513 con->error_msg = "connect error";
515 return ret;
517 con->sock = sock;
518 return 0;
521 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
523 struct kvec iov = {buf, len};
524 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
525 int r;
527 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
528 if (r == -EAGAIN)
529 r = 0;
530 return r;
533 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
534 int page_offset, size_t length)
536 void *kaddr;
537 int ret;
539 BUG_ON(page_offset + length > PAGE_SIZE);
541 kaddr = kmap(page);
542 BUG_ON(!kaddr);
543 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
544 kunmap(page);
546 return ret;
550 * write something. @more is true if caller will be sending more data
551 * shortly.
553 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
554 size_t kvlen, size_t len, int more)
556 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
557 int r;
559 if (more)
560 msg.msg_flags |= MSG_MORE;
561 else
562 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
564 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
565 if (r == -EAGAIN)
566 r = 0;
567 return r;
570 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
571 int offset, size_t size, bool more)
573 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
574 int ret;
576 ret = kernel_sendpage(sock, page, offset, size, flags);
577 if (ret == -EAGAIN)
578 ret = 0;
580 return ret;
583 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
584 int offset, size_t size, bool more)
586 int ret;
587 struct kvec iov;
589 /* sendpage cannot properly handle pages with page_count == 0,
590 * we need to fallback to sendmsg if that's the case */
591 if (page_count(page) >= 1)
592 return __ceph_tcp_sendpage(sock, page, offset, size, more);
594 iov.iov_base = kmap(page) + offset;
595 iov.iov_len = size;
596 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
597 kunmap(page);
599 return ret;
603 * Shutdown/close the socket for the given connection.
605 static int con_close_socket(struct ceph_connection *con)
607 int rc = 0;
609 dout("con_close_socket on %p sock %p\n", con, con->sock);
610 if (con->sock) {
611 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
612 sock_release(con->sock);
613 con->sock = NULL;
617 * Forcibly clear the SOCK_CLOSED flag. It gets set
618 * independent of the connection mutex, and we could have
619 * received a socket close event before we had the chance to
620 * shut the socket down.
622 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
624 con_sock_state_closed(con);
625 return rc;
629 * Reset a connection. Discard all incoming and outgoing messages
630 * and clear *_seq state.
632 static void ceph_msg_remove(struct ceph_msg *msg)
634 list_del_init(&msg->list_head);
635 BUG_ON(msg->con == NULL);
636 msg->con->ops->put(msg->con);
637 msg->con = NULL;
639 ceph_msg_put(msg);
641 static void ceph_msg_remove_list(struct list_head *head)
643 while (!list_empty(head)) {
644 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
645 list_head);
646 ceph_msg_remove(msg);
650 static void reset_connection(struct ceph_connection *con)
652 /* reset connection, out_queue, msg_ and connect_seq */
653 /* discard existing out_queue and msg_seq */
654 dout("reset_connection %p\n", con);
655 ceph_msg_remove_list(&con->out_queue);
656 ceph_msg_remove_list(&con->out_sent);
658 if (con->in_msg) {
659 BUG_ON(con->in_msg->con != con);
660 con->in_msg->con = NULL;
661 ceph_msg_put(con->in_msg);
662 con->in_msg = NULL;
663 con->ops->put(con);
666 con->connect_seq = 0;
667 con->out_seq = 0;
668 if (con->out_msg) {
669 ceph_msg_put(con->out_msg);
670 con->out_msg = NULL;
672 con->in_seq = 0;
673 con->in_seq_acked = 0;
677 * mark a peer down. drop any open connections.
679 void ceph_con_close(struct ceph_connection *con)
681 mutex_lock(&con->mutex);
682 dout("con_close %p peer %s\n", con,
683 ceph_pr_addr(&con->peer_addr.in_addr));
684 con->state = CON_STATE_CLOSED;
686 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
687 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
688 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
689 con_flag_clear(con, CON_FLAG_BACKOFF);
691 reset_connection(con);
692 con->peer_global_seq = 0;
693 cancel_delayed_work(&con->work);
694 con_close_socket(con);
695 mutex_unlock(&con->mutex);
697 EXPORT_SYMBOL(ceph_con_close);
700 * Reopen a closed connection, with a new peer address.
702 void ceph_con_open(struct ceph_connection *con,
703 __u8 entity_type, __u64 entity_num,
704 struct ceph_entity_addr *addr)
706 mutex_lock(&con->mutex);
707 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
709 WARN_ON(con->state != CON_STATE_CLOSED);
710 con->state = CON_STATE_PREOPEN;
712 con->peer_name.type = (__u8) entity_type;
713 con->peer_name.num = cpu_to_le64(entity_num);
715 memcpy(&con->peer_addr, addr, sizeof(*addr));
716 con->delay = 0; /* reset backoff memory */
717 mutex_unlock(&con->mutex);
718 queue_con(con);
720 EXPORT_SYMBOL(ceph_con_open);
723 * return true if this connection ever successfully opened
725 bool ceph_con_opened(struct ceph_connection *con)
727 return con->connect_seq > 0;
731 * initialize a new connection.
733 void ceph_con_init(struct ceph_connection *con, void *private,
734 const struct ceph_connection_operations *ops,
735 struct ceph_messenger *msgr)
737 dout("con_init %p\n", con);
738 memset(con, 0, sizeof(*con));
739 con->private = private;
740 con->ops = ops;
741 con->msgr = msgr;
743 con_sock_state_init(con);
745 mutex_init(&con->mutex);
746 INIT_LIST_HEAD(&con->out_queue);
747 INIT_LIST_HEAD(&con->out_sent);
748 INIT_DELAYED_WORK(&con->work, con_work);
750 con->state = CON_STATE_CLOSED;
752 EXPORT_SYMBOL(ceph_con_init);
756 * We maintain a global counter to order connection attempts. Get
757 * a unique seq greater than @gt.
759 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
761 u32 ret;
763 spin_lock(&msgr->global_seq_lock);
764 if (msgr->global_seq < gt)
765 msgr->global_seq = gt;
766 ret = ++msgr->global_seq;
767 spin_unlock(&msgr->global_seq_lock);
768 return ret;
771 static void con_out_kvec_reset(struct ceph_connection *con)
773 con->out_kvec_left = 0;
774 con->out_kvec_bytes = 0;
775 con->out_kvec_cur = &con->out_kvec[0];
778 static void con_out_kvec_add(struct ceph_connection *con,
779 size_t size, void *data)
781 int index;
783 index = con->out_kvec_left;
784 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
786 con->out_kvec[index].iov_len = size;
787 con->out_kvec[index].iov_base = data;
788 con->out_kvec_left++;
789 con->out_kvec_bytes += size;
792 #ifdef CONFIG_BLOCK
795 * For a bio data item, a piece is whatever remains of the next
796 * entry in the current bio iovec, or the first entry in the next
797 * bio in the list.
799 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
800 size_t length)
802 struct ceph_msg_data *data = cursor->data;
803 struct bio *bio;
805 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
807 bio = data->bio;
808 BUG_ON(!bio);
810 cursor->resid = min(length, data->bio_length);
811 cursor->bio = bio;
812 cursor->bvec_iter = bio->bi_iter;
813 cursor->last_piece =
814 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
817 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
818 size_t *page_offset,
819 size_t *length)
821 struct ceph_msg_data *data = cursor->data;
822 struct bio *bio;
823 struct bio_vec bio_vec;
825 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
827 bio = cursor->bio;
828 BUG_ON(!bio);
830 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
832 *page_offset = (size_t) bio_vec.bv_offset;
833 BUG_ON(*page_offset >= PAGE_SIZE);
834 if (cursor->last_piece) /* pagelist offset is always 0 */
835 *length = cursor->resid;
836 else
837 *length = (size_t) bio_vec.bv_len;
838 BUG_ON(*length > cursor->resid);
839 BUG_ON(*page_offset + *length > PAGE_SIZE);
841 return bio_vec.bv_page;
844 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
845 size_t bytes)
847 struct bio *bio;
848 struct bio_vec bio_vec;
850 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
852 bio = cursor->bio;
853 BUG_ON(!bio);
855 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
857 /* Advance the cursor offset */
859 BUG_ON(cursor->resid < bytes);
860 cursor->resid -= bytes;
862 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
864 if (bytes < bio_vec.bv_len)
865 return false; /* more bytes to process in this segment */
867 /* Move on to the next segment, and possibly the next bio */
869 if (!cursor->bvec_iter.bi_size) {
870 bio = bio->bi_next;
871 cursor->bio = bio;
872 if (bio)
873 cursor->bvec_iter = bio->bi_iter;
874 else
875 memset(&cursor->bvec_iter, 0,
876 sizeof(cursor->bvec_iter));
879 if (!cursor->last_piece) {
880 BUG_ON(!cursor->resid);
881 BUG_ON(!bio);
882 /* A short read is OK, so use <= rather than == */
883 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
884 cursor->last_piece = true;
887 return true;
889 #endif /* CONFIG_BLOCK */
892 * For a page array, a piece comes from the first page in the array
893 * that has not already been fully consumed.
895 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
896 size_t length)
898 struct ceph_msg_data *data = cursor->data;
899 int page_count;
901 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
903 BUG_ON(!data->pages);
904 BUG_ON(!data->length);
906 cursor->resid = min(length, data->length);
907 page_count = calc_pages_for(data->alignment, (u64)data->length);
908 cursor->page_offset = data->alignment & ~PAGE_MASK;
909 cursor->page_index = 0;
910 BUG_ON(page_count > (int)USHRT_MAX);
911 cursor->page_count = (unsigned short)page_count;
912 BUG_ON(length > SIZE_MAX - cursor->page_offset);
913 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
916 static struct page *
917 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
918 size_t *page_offset, size_t *length)
920 struct ceph_msg_data *data = cursor->data;
922 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
924 BUG_ON(cursor->page_index >= cursor->page_count);
925 BUG_ON(cursor->page_offset >= PAGE_SIZE);
927 *page_offset = cursor->page_offset;
928 if (cursor->last_piece)
929 *length = cursor->resid;
930 else
931 *length = PAGE_SIZE - *page_offset;
933 return data->pages[cursor->page_index];
936 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
937 size_t bytes)
939 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
941 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
943 /* Advance the cursor page offset */
945 cursor->resid -= bytes;
946 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
947 if (!bytes || cursor->page_offset)
948 return false; /* more bytes to process in the current page */
950 if (!cursor->resid)
951 return false; /* no more data */
953 /* Move on to the next page; offset is already at 0 */
955 BUG_ON(cursor->page_index >= cursor->page_count);
956 cursor->page_index++;
957 cursor->last_piece = cursor->resid <= PAGE_SIZE;
959 return true;
963 * For a pagelist, a piece is whatever remains to be consumed in the
964 * first page in the list, or the front of the next page.
966 static void
967 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
968 size_t length)
970 struct ceph_msg_data *data = cursor->data;
971 struct ceph_pagelist *pagelist;
972 struct page *page;
974 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
976 pagelist = data->pagelist;
977 BUG_ON(!pagelist);
979 if (!length)
980 return; /* pagelist can be assigned but empty */
982 BUG_ON(list_empty(&pagelist->head));
983 page = list_first_entry(&pagelist->head, struct page, lru);
985 cursor->resid = min(length, pagelist->length);
986 cursor->page = page;
987 cursor->offset = 0;
988 cursor->last_piece = cursor->resid <= PAGE_SIZE;
991 static struct page *
992 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
993 size_t *page_offset, size_t *length)
995 struct ceph_msg_data *data = cursor->data;
996 struct ceph_pagelist *pagelist;
998 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1000 pagelist = data->pagelist;
1001 BUG_ON(!pagelist);
1003 BUG_ON(!cursor->page);
1004 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1006 /* offset of first page in pagelist is always 0 */
1007 *page_offset = cursor->offset & ~PAGE_MASK;
1008 if (cursor->last_piece)
1009 *length = cursor->resid;
1010 else
1011 *length = PAGE_SIZE - *page_offset;
1013 return cursor->page;
1016 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1017 size_t bytes)
1019 struct ceph_msg_data *data = cursor->data;
1020 struct ceph_pagelist *pagelist;
1022 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1024 pagelist = data->pagelist;
1025 BUG_ON(!pagelist);
1027 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1028 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1030 /* Advance the cursor offset */
1032 cursor->resid -= bytes;
1033 cursor->offset += bytes;
1034 /* offset of first page in pagelist is always 0 */
1035 if (!bytes || cursor->offset & ~PAGE_MASK)
1036 return false; /* more bytes to process in the current page */
1038 if (!cursor->resid)
1039 return false; /* no more data */
1041 /* Move on to the next page */
1043 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1044 cursor->page = list_entry_next(cursor->page, lru);
1045 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1047 return true;
1051 * Message data is handled (sent or received) in pieces, where each
1052 * piece resides on a single page. The network layer might not
1053 * consume an entire piece at once. A data item's cursor keeps
1054 * track of which piece is next to process and how much remains to
1055 * be processed in that piece. It also tracks whether the current
1056 * piece is the last one in the data item.
1058 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1060 size_t length = cursor->total_resid;
1062 switch (cursor->data->type) {
1063 case CEPH_MSG_DATA_PAGELIST:
1064 ceph_msg_data_pagelist_cursor_init(cursor, length);
1065 break;
1066 case CEPH_MSG_DATA_PAGES:
1067 ceph_msg_data_pages_cursor_init(cursor, length);
1068 break;
1069 #ifdef CONFIG_BLOCK
1070 case CEPH_MSG_DATA_BIO:
1071 ceph_msg_data_bio_cursor_init(cursor, length);
1072 break;
1073 #endif /* CONFIG_BLOCK */
1074 case CEPH_MSG_DATA_NONE:
1075 default:
1076 /* BUG(); */
1077 break;
1079 cursor->need_crc = true;
1082 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1084 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1085 struct ceph_msg_data *data;
1087 BUG_ON(!length);
1088 BUG_ON(length > msg->data_length);
1089 BUG_ON(list_empty(&msg->data));
1091 cursor->data_head = &msg->data;
1092 cursor->total_resid = length;
1093 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1094 cursor->data = data;
1096 __ceph_msg_data_cursor_init(cursor);
1100 * Return the page containing the next piece to process for a given
1101 * data item, and supply the page offset and length of that piece.
1102 * Indicate whether this is the last piece in this data item.
1104 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1105 size_t *page_offset, size_t *length,
1106 bool *last_piece)
1108 struct page *page;
1110 switch (cursor->data->type) {
1111 case CEPH_MSG_DATA_PAGELIST:
1112 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1113 break;
1114 case CEPH_MSG_DATA_PAGES:
1115 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1116 break;
1117 #ifdef CONFIG_BLOCK
1118 case CEPH_MSG_DATA_BIO:
1119 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1120 break;
1121 #endif /* CONFIG_BLOCK */
1122 case CEPH_MSG_DATA_NONE:
1123 default:
1124 page = NULL;
1125 break;
1127 BUG_ON(!page);
1128 BUG_ON(*page_offset + *length > PAGE_SIZE);
1129 BUG_ON(!*length);
1130 if (last_piece)
1131 *last_piece = cursor->last_piece;
1133 return page;
1137 * Returns true if the result moves the cursor on to the next piece
1138 * of the data item.
1140 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1141 size_t bytes)
1143 bool new_piece;
1145 BUG_ON(bytes > cursor->resid);
1146 switch (cursor->data->type) {
1147 case CEPH_MSG_DATA_PAGELIST:
1148 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1149 break;
1150 case CEPH_MSG_DATA_PAGES:
1151 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1152 break;
1153 #ifdef CONFIG_BLOCK
1154 case CEPH_MSG_DATA_BIO:
1155 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1156 break;
1157 #endif /* CONFIG_BLOCK */
1158 case CEPH_MSG_DATA_NONE:
1159 default:
1160 BUG();
1161 break;
1163 cursor->total_resid -= bytes;
1165 if (!cursor->resid && cursor->total_resid) {
1166 WARN_ON(!cursor->last_piece);
1167 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1168 cursor->data = list_entry_next(cursor->data, links);
1169 __ceph_msg_data_cursor_init(cursor);
1170 new_piece = true;
1172 cursor->need_crc = new_piece;
1174 return new_piece;
1177 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1179 BUG_ON(!msg);
1180 BUG_ON(!data_len);
1182 /* Initialize data cursor */
1184 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1188 * Prepare footer for currently outgoing message, and finish things
1189 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1191 static void prepare_write_message_footer(struct ceph_connection *con)
1193 struct ceph_msg *m = con->out_msg;
1194 int v = con->out_kvec_left;
1196 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1198 dout("prepare_write_message_footer %p\n", con);
1199 con->out_kvec_is_msg = true;
1200 con->out_kvec[v].iov_base = &m->footer;
1201 con->out_kvec[v].iov_len = sizeof(m->footer);
1202 con->out_kvec_bytes += sizeof(m->footer);
1203 con->out_kvec_left++;
1204 con->out_more = m->more_to_follow;
1205 con->out_msg_done = true;
1209 * Prepare headers for the next outgoing message.
1211 static void prepare_write_message(struct ceph_connection *con)
1213 struct ceph_msg *m;
1214 u32 crc;
1216 con_out_kvec_reset(con);
1217 con->out_kvec_is_msg = true;
1218 con->out_msg_done = false;
1220 /* Sneak an ack in there first? If we can get it into the same
1221 * TCP packet that's a good thing. */
1222 if (con->in_seq > con->in_seq_acked) {
1223 con->in_seq_acked = con->in_seq;
1224 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1225 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1226 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1227 &con->out_temp_ack);
1230 BUG_ON(list_empty(&con->out_queue));
1231 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1232 con->out_msg = m;
1233 BUG_ON(m->con != con);
1235 /* put message on sent list */
1236 ceph_msg_get(m);
1237 list_move_tail(&m->list_head, &con->out_sent);
1240 * only assign outgoing seq # if we haven't sent this message
1241 * yet. if it is requeued, resend with it's original seq.
1243 if (m->needs_out_seq) {
1244 m->hdr.seq = cpu_to_le64(++con->out_seq);
1245 m->needs_out_seq = false;
1247 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1249 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1250 m, con->out_seq, le16_to_cpu(m->hdr.type),
1251 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1252 m->data_length);
1253 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1255 /* tag + hdr + front + middle */
1256 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1257 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1258 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1260 if (m->middle)
1261 con_out_kvec_add(con, m->middle->vec.iov_len,
1262 m->middle->vec.iov_base);
1264 /* fill in crc (except data pages), footer */
1265 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1266 con->out_msg->hdr.crc = cpu_to_le32(crc);
1267 con->out_msg->footer.flags = 0;
1269 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1270 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1271 if (m->middle) {
1272 crc = crc32c(0, m->middle->vec.iov_base,
1273 m->middle->vec.iov_len);
1274 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1275 } else
1276 con->out_msg->footer.middle_crc = 0;
1277 dout("%s front_crc %u middle_crc %u\n", __func__,
1278 le32_to_cpu(con->out_msg->footer.front_crc),
1279 le32_to_cpu(con->out_msg->footer.middle_crc));
1281 /* is there a data payload? */
1282 con->out_msg->footer.data_crc = 0;
1283 if (m->data_length) {
1284 prepare_message_data(con->out_msg, m->data_length);
1285 con->out_more = 1; /* data + footer will follow */
1286 } else {
1287 /* no, queue up footer too and be done */
1288 prepare_write_message_footer(con);
1291 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1295 * Prepare an ack.
1297 static void prepare_write_ack(struct ceph_connection *con)
1299 dout("prepare_write_ack %p %llu -> %llu\n", con,
1300 con->in_seq_acked, con->in_seq);
1301 con->in_seq_acked = con->in_seq;
1303 con_out_kvec_reset(con);
1305 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1307 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1308 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1309 &con->out_temp_ack);
1311 con->out_more = 1; /* more will follow.. eventually.. */
1312 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1316 * Prepare to share the seq during handshake
1318 static void prepare_write_seq(struct ceph_connection *con)
1320 dout("prepare_write_seq %p %llu -> %llu\n", con,
1321 con->in_seq_acked, con->in_seq);
1322 con->in_seq_acked = con->in_seq;
1324 con_out_kvec_reset(con);
1326 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1327 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1328 &con->out_temp_ack);
1330 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1334 * Prepare to write keepalive byte.
1336 static void prepare_write_keepalive(struct ceph_connection *con)
1338 dout("prepare_write_keepalive %p\n", con);
1339 con_out_kvec_reset(con);
1340 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1341 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1345 * Connection negotiation.
1348 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1349 int *auth_proto)
1351 struct ceph_auth_handshake *auth;
1353 if (!con->ops->get_authorizer) {
1354 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1355 con->out_connect.authorizer_len = 0;
1356 return NULL;
1359 /* Can't hold the mutex while getting authorizer */
1360 mutex_unlock(&con->mutex);
1361 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1362 mutex_lock(&con->mutex);
1364 if (IS_ERR(auth))
1365 return auth;
1366 if (con->state != CON_STATE_NEGOTIATING)
1367 return ERR_PTR(-EAGAIN);
1369 con->auth_reply_buf = auth->authorizer_reply_buf;
1370 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1371 return auth;
1375 * We connected to a peer and are saying hello.
1377 static void prepare_write_banner(struct ceph_connection *con)
1379 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1380 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1381 &con->msgr->my_enc_addr);
1383 con->out_more = 0;
1384 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1387 static int prepare_write_connect(struct ceph_connection *con)
1389 unsigned int global_seq = get_global_seq(con->msgr, 0);
1390 int proto;
1391 int auth_proto;
1392 struct ceph_auth_handshake *auth;
1394 switch (con->peer_name.type) {
1395 case CEPH_ENTITY_TYPE_MON:
1396 proto = CEPH_MONC_PROTOCOL;
1397 break;
1398 case CEPH_ENTITY_TYPE_OSD:
1399 proto = CEPH_OSDC_PROTOCOL;
1400 break;
1401 case CEPH_ENTITY_TYPE_MDS:
1402 proto = CEPH_MDSC_PROTOCOL;
1403 break;
1404 default:
1405 BUG();
1408 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1409 con->connect_seq, global_seq, proto);
1411 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1412 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1413 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1414 con->out_connect.global_seq = cpu_to_le32(global_seq);
1415 con->out_connect.protocol_version = cpu_to_le32(proto);
1416 con->out_connect.flags = 0;
1418 auth_proto = CEPH_AUTH_UNKNOWN;
1419 auth = get_connect_authorizer(con, &auth_proto);
1420 if (IS_ERR(auth))
1421 return PTR_ERR(auth);
1423 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1424 con->out_connect.authorizer_len = auth ?
1425 cpu_to_le32(auth->authorizer_buf_len) : 0;
1427 con_out_kvec_add(con, sizeof (con->out_connect),
1428 &con->out_connect);
1429 if (auth && auth->authorizer_buf_len)
1430 con_out_kvec_add(con, auth->authorizer_buf_len,
1431 auth->authorizer_buf);
1433 con->out_more = 0;
1434 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1436 return 0;
1440 * write as much of pending kvecs to the socket as we can.
1441 * 1 -> done
1442 * 0 -> socket full, but more to do
1443 * <0 -> error
1445 static int write_partial_kvec(struct ceph_connection *con)
1447 int ret;
1449 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1450 while (con->out_kvec_bytes > 0) {
1451 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1452 con->out_kvec_left, con->out_kvec_bytes,
1453 con->out_more);
1454 if (ret <= 0)
1455 goto out;
1456 con->out_kvec_bytes -= ret;
1457 if (con->out_kvec_bytes == 0)
1458 break; /* done */
1460 /* account for full iov entries consumed */
1461 while (ret >= con->out_kvec_cur->iov_len) {
1462 BUG_ON(!con->out_kvec_left);
1463 ret -= con->out_kvec_cur->iov_len;
1464 con->out_kvec_cur++;
1465 con->out_kvec_left--;
1467 /* and for a partially-consumed entry */
1468 if (ret) {
1469 con->out_kvec_cur->iov_len -= ret;
1470 con->out_kvec_cur->iov_base += ret;
1473 con->out_kvec_left = 0;
1474 con->out_kvec_is_msg = false;
1475 ret = 1;
1476 out:
1477 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1478 con->out_kvec_bytes, con->out_kvec_left, ret);
1479 return ret; /* done! */
1482 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1483 unsigned int page_offset,
1484 unsigned int length)
1486 char *kaddr;
1488 kaddr = kmap(page);
1489 BUG_ON(kaddr == NULL);
1490 crc = crc32c(crc, kaddr + page_offset, length);
1491 kunmap(page);
1493 return crc;
1496 * Write as much message data payload as we can. If we finish, queue
1497 * up the footer.
1498 * 1 -> done, footer is now queued in out_kvec[].
1499 * 0 -> socket full, but more to do
1500 * <0 -> error
1502 static int write_partial_message_data(struct ceph_connection *con)
1504 struct ceph_msg *msg = con->out_msg;
1505 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1506 bool do_datacrc = !con->msgr->nocrc;
1507 u32 crc;
1509 dout("%s %p msg %p\n", __func__, con, msg);
1511 if (list_empty(&msg->data))
1512 return -EINVAL;
1515 * Iterate through each page that contains data to be
1516 * written, and send as much as possible for each.
1518 * If we are calculating the data crc (the default), we will
1519 * need to map the page. If we have no pages, they have
1520 * been revoked, so use the zero page.
1522 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1523 while (cursor->resid) {
1524 struct page *page;
1525 size_t page_offset;
1526 size_t length;
1527 bool last_piece;
1528 bool need_crc;
1529 int ret;
1531 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1532 &last_piece);
1533 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1534 length, last_piece);
1535 if (ret <= 0) {
1536 if (do_datacrc)
1537 msg->footer.data_crc = cpu_to_le32(crc);
1539 return ret;
1541 if (do_datacrc && cursor->need_crc)
1542 crc = ceph_crc32c_page(crc, page, page_offset, length);
1543 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1546 dout("%s %p msg %p done\n", __func__, con, msg);
1548 /* prepare and queue up footer, too */
1549 if (do_datacrc)
1550 msg->footer.data_crc = cpu_to_le32(crc);
1551 else
1552 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1553 con_out_kvec_reset(con);
1554 prepare_write_message_footer(con);
1556 return 1; /* must return > 0 to indicate success */
1560 * write some zeros
1562 static int write_partial_skip(struct ceph_connection *con)
1564 int ret;
1566 while (con->out_skip > 0) {
1567 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1569 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1570 if (ret <= 0)
1571 goto out;
1572 con->out_skip -= ret;
1574 ret = 1;
1575 out:
1576 return ret;
1580 * Prepare to read connection handshake, or an ack.
1582 static void prepare_read_banner(struct ceph_connection *con)
1584 dout("prepare_read_banner %p\n", con);
1585 con->in_base_pos = 0;
1588 static void prepare_read_connect(struct ceph_connection *con)
1590 dout("prepare_read_connect %p\n", con);
1591 con->in_base_pos = 0;
1594 static void prepare_read_ack(struct ceph_connection *con)
1596 dout("prepare_read_ack %p\n", con);
1597 con->in_base_pos = 0;
1600 static void prepare_read_seq(struct ceph_connection *con)
1602 dout("prepare_read_seq %p\n", con);
1603 con->in_base_pos = 0;
1604 con->in_tag = CEPH_MSGR_TAG_SEQ;
1607 static void prepare_read_tag(struct ceph_connection *con)
1609 dout("prepare_read_tag %p\n", con);
1610 con->in_base_pos = 0;
1611 con->in_tag = CEPH_MSGR_TAG_READY;
1615 * Prepare to read a message.
1617 static int prepare_read_message(struct ceph_connection *con)
1619 dout("prepare_read_message %p\n", con);
1620 BUG_ON(con->in_msg != NULL);
1621 con->in_base_pos = 0;
1622 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1623 return 0;
1627 static int read_partial(struct ceph_connection *con,
1628 int end, int size, void *object)
1630 while (con->in_base_pos < end) {
1631 int left = end - con->in_base_pos;
1632 int have = size - left;
1633 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1634 if (ret <= 0)
1635 return ret;
1636 con->in_base_pos += ret;
1638 return 1;
1643 * Read all or part of the connect-side handshake on a new connection
1645 static int read_partial_banner(struct ceph_connection *con)
1647 int size;
1648 int end;
1649 int ret;
1651 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1653 /* peer's banner */
1654 size = strlen(CEPH_BANNER);
1655 end = size;
1656 ret = read_partial(con, end, size, con->in_banner);
1657 if (ret <= 0)
1658 goto out;
1660 size = sizeof (con->actual_peer_addr);
1661 end += size;
1662 ret = read_partial(con, end, size, &con->actual_peer_addr);
1663 if (ret <= 0)
1664 goto out;
1666 size = sizeof (con->peer_addr_for_me);
1667 end += size;
1668 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1669 if (ret <= 0)
1670 goto out;
1672 out:
1673 return ret;
1676 static int read_partial_connect(struct ceph_connection *con)
1678 int size;
1679 int end;
1680 int ret;
1682 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1684 size = sizeof (con->in_reply);
1685 end = size;
1686 ret = read_partial(con, end, size, &con->in_reply);
1687 if (ret <= 0)
1688 goto out;
1690 size = le32_to_cpu(con->in_reply.authorizer_len);
1691 end += size;
1692 ret = read_partial(con, end, size, con->auth_reply_buf);
1693 if (ret <= 0)
1694 goto out;
1696 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1697 con, (int)con->in_reply.tag,
1698 le32_to_cpu(con->in_reply.connect_seq),
1699 le32_to_cpu(con->in_reply.global_seq));
1700 out:
1701 return ret;
1706 * Verify the hello banner looks okay.
1708 static int verify_hello(struct ceph_connection *con)
1710 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1711 pr_err("connect to %s got bad banner\n",
1712 ceph_pr_addr(&con->peer_addr.in_addr));
1713 con->error_msg = "protocol error, bad banner";
1714 return -1;
1716 return 0;
1719 static bool addr_is_blank(struct sockaddr_storage *ss)
1721 switch (ss->ss_family) {
1722 case AF_INET:
1723 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1724 case AF_INET6:
1725 return
1726 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1727 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1728 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1729 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1731 return false;
1734 static int addr_port(struct sockaddr_storage *ss)
1736 switch (ss->ss_family) {
1737 case AF_INET:
1738 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1739 case AF_INET6:
1740 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1742 return 0;
1745 static void addr_set_port(struct sockaddr_storage *ss, int p)
1747 switch (ss->ss_family) {
1748 case AF_INET:
1749 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1750 break;
1751 case AF_INET6:
1752 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1753 break;
1758 * Unlike other *_pton function semantics, zero indicates success.
1760 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1761 char delim, const char **ipend)
1763 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1764 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1766 memset(ss, 0, sizeof(*ss));
1768 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1769 ss->ss_family = AF_INET;
1770 return 0;
1773 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1774 ss->ss_family = AF_INET6;
1775 return 0;
1778 return -EINVAL;
1782 * Extract hostname string and resolve using kernel DNS facility.
1784 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1785 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1786 struct sockaddr_storage *ss, char delim, const char **ipend)
1788 const char *end, *delim_p;
1789 char *colon_p, *ip_addr = NULL;
1790 int ip_len, ret;
1793 * The end of the hostname occurs immediately preceding the delimiter or
1794 * the port marker (':') where the delimiter takes precedence.
1796 delim_p = memchr(name, delim, namelen);
1797 colon_p = memchr(name, ':', namelen);
1799 if (delim_p && colon_p)
1800 end = delim_p < colon_p ? delim_p : colon_p;
1801 else if (!delim_p && colon_p)
1802 end = colon_p;
1803 else {
1804 end = delim_p;
1805 if (!end) /* case: hostname:/ */
1806 end = name + namelen;
1809 if (end <= name)
1810 return -EINVAL;
1812 /* do dns_resolve upcall */
1813 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1814 if (ip_len > 0)
1815 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1816 else
1817 ret = -ESRCH;
1819 kfree(ip_addr);
1821 *ipend = end;
1823 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1824 ret, ret ? "failed" : ceph_pr_addr(ss));
1826 return ret;
1828 #else
1829 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1830 struct sockaddr_storage *ss, char delim, const char **ipend)
1832 return -EINVAL;
1834 #endif
1837 * Parse a server name (IP or hostname). If a valid IP address is not found
1838 * then try to extract a hostname to resolve using userspace DNS upcall.
1840 static int ceph_parse_server_name(const char *name, size_t namelen,
1841 struct sockaddr_storage *ss, char delim, const char **ipend)
1843 int ret;
1845 ret = ceph_pton(name, namelen, ss, delim, ipend);
1846 if (ret)
1847 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1849 return ret;
1853 * Parse an ip[:port] list into an addr array. Use the default
1854 * monitor port if a port isn't specified.
1856 int ceph_parse_ips(const char *c, const char *end,
1857 struct ceph_entity_addr *addr,
1858 int max_count, int *count)
1860 int i, ret = -EINVAL;
1861 const char *p = c;
1863 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1864 for (i = 0; i < max_count; i++) {
1865 const char *ipend;
1866 struct sockaddr_storage *ss = &addr[i].in_addr;
1867 int port;
1868 char delim = ',';
1870 if (*p == '[') {
1871 delim = ']';
1872 p++;
1875 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1876 if (ret)
1877 goto bad;
1878 ret = -EINVAL;
1880 p = ipend;
1882 if (delim == ']') {
1883 if (*p != ']') {
1884 dout("missing matching ']'\n");
1885 goto bad;
1887 p++;
1890 /* port? */
1891 if (p < end && *p == ':') {
1892 port = 0;
1893 p++;
1894 while (p < end && *p >= '0' && *p <= '9') {
1895 port = (port * 10) + (*p - '0');
1896 p++;
1898 if (port == 0)
1899 port = CEPH_MON_PORT;
1900 else if (port > 65535)
1901 goto bad;
1902 } else {
1903 port = CEPH_MON_PORT;
1906 addr_set_port(ss, port);
1908 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1910 if (p == end)
1911 break;
1912 if (*p != ',')
1913 goto bad;
1914 p++;
1917 if (p != end)
1918 goto bad;
1920 if (count)
1921 *count = i + 1;
1922 return 0;
1924 bad:
1925 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1926 return ret;
1928 EXPORT_SYMBOL(ceph_parse_ips);
1930 static int process_banner(struct ceph_connection *con)
1932 dout("process_banner on %p\n", con);
1934 if (verify_hello(con) < 0)
1935 return -1;
1937 ceph_decode_addr(&con->actual_peer_addr);
1938 ceph_decode_addr(&con->peer_addr_for_me);
1941 * Make sure the other end is who we wanted. note that the other
1942 * end may not yet know their ip address, so if it's 0.0.0.0, give
1943 * them the benefit of the doubt.
1945 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1946 sizeof(con->peer_addr)) != 0 &&
1947 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1948 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1949 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1950 ceph_pr_addr(&con->peer_addr.in_addr),
1951 (int)le32_to_cpu(con->peer_addr.nonce),
1952 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1953 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1954 con->error_msg = "wrong peer at address";
1955 return -1;
1959 * did we learn our address?
1961 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1962 int port = addr_port(&con->msgr->inst.addr.in_addr);
1964 memcpy(&con->msgr->inst.addr.in_addr,
1965 &con->peer_addr_for_me.in_addr,
1966 sizeof(con->peer_addr_for_me.in_addr));
1967 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1968 encode_my_addr(con->msgr);
1969 dout("process_banner learned my addr is %s\n",
1970 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1973 return 0;
1976 static int process_connect(struct ceph_connection *con)
1978 u64 sup_feat = con->msgr->supported_features;
1979 u64 req_feat = con->msgr->required_features;
1980 u64 server_feat = ceph_sanitize_features(
1981 le64_to_cpu(con->in_reply.features));
1982 int ret;
1984 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1986 if (con->auth_reply_buf) {
1988 * Any connection that defines ->get_authorizer()
1989 * should also define ->verify_authorizer_reply().
1990 * See get_connect_authorizer().
1992 ret = con->ops->verify_authorizer_reply(con, 0);
1993 if (ret < 0) {
1994 con->error_msg = "bad authorize reply";
1995 return ret;
1999 switch (con->in_reply.tag) {
2000 case CEPH_MSGR_TAG_FEATURES:
2001 pr_err("%s%lld %s feature set mismatch,"
2002 " my %llx < server's %llx, missing %llx\n",
2003 ENTITY_NAME(con->peer_name),
2004 ceph_pr_addr(&con->peer_addr.in_addr),
2005 sup_feat, server_feat, server_feat & ~sup_feat);
2006 con->error_msg = "missing required protocol features";
2007 reset_connection(con);
2008 return -1;
2010 case CEPH_MSGR_TAG_BADPROTOVER:
2011 pr_err("%s%lld %s protocol version mismatch,"
2012 " my %d != server's %d\n",
2013 ENTITY_NAME(con->peer_name),
2014 ceph_pr_addr(&con->peer_addr.in_addr),
2015 le32_to_cpu(con->out_connect.protocol_version),
2016 le32_to_cpu(con->in_reply.protocol_version));
2017 con->error_msg = "protocol version mismatch";
2018 reset_connection(con);
2019 return -1;
2021 case CEPH_MSGR_TAG_BADAUTHORIZER:
2022 con->auth_retry++;
2023 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2024 con->auth_retry);
2025 if (con->auth_retry == 2) {
2026 con->error_msg = "connect authorization failure";
2027 return -1;
2029 con_out_kvec_reset(con);
2030 ret = prepare_write_connect(con);
2031 if (ret < 0)
2032 return ret;
2033 prepare_read_connect(con);
2034 break;
2036 case CEPH_MSGR_TAG_RESETSESSION:
2038 * If we connected with a large connect_seq but the peer
2039 * has no record of a session with us (no connection, or
2040 * connect_seq == 0), they will send RESETSESION to indicate
2041 * that they must have reset their session, and may have
2042 * dropped messages.
2044 dout("process_connect got RESET peer seq %u\n",
2045 le32_to_cpu(con->in_reply.connect_seq));
2046 pr_err("%s%lld %s connection reset\n",
2047 ENTITY_NAME(con->peer_name),
2048 ceph_pr_addr(&con->peer_addr.in_addr));
2049 reset_connection(con);
2050 con_out_kvec_reset(con);
2051 ret = prepare_write_connect(con);
2052 if (ret < 0)
2053 return ret;
2054 prepare_read_connect(con);
2056 /* Tell ceph about it. */
2057 mutex_unlock(&con->mutex);
2058 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2059 if (con->ops->peer_reset)
2060 con->ops->peer_reset(con);
2061 mutex_lock(&con->mutex);
2062 if (con->state != CON_STATE_NEGOTIATING)
2063 return -EAGAIN;
2064 break;
2066 case CEPH_MSGR_TAG_RETRY_SESSION:
2068 * If we sent a smaller connect_seq than the peer has, try
2069 * again with a larger value.
2071 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2072 le32_to_cpu(con->out_connect.connect_seq),
2073 le32_to_cpu(con->in_reply.connect_seq));
2074 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2075 con_out_kvec_reset(con);
2076 ret = prepare_write_connect(con);
2077 if (ret < 0)
2078 return ret;
2079 prepare_read_connect(con);
2080 break;
2082 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2084 * If we sent a smaller global_seq than the peer has, try
2085 * again with a larger value.
2087 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2088 con->peer_global_seq,
2089 le32_to_cpu(con->in_reply.global_seq));
2090 get_global_seq(con->msgr,
2091 le32_to_cpu(con->in_reply.global_seq));
2092 con_out_kvec_reset(con);
2093 ret = prepare_write_connect(con);
2094 if (ret < 0)
2095 return ret;
2096 prepare_read_connect(con);
2097 break;
2099 case CEPH_MSGR_TAG_SEQ:
2100 case CEPH_MSGR_TAG_READY:
2101 if (req_feat & ~server_feat) {
2102 pr_err("%s%lld %s protocol feature mismatch,"
2103 " my required %llx > server's %llx, need %llx\n",
2104 ENTITY_NAME(con->peer_name),
2105 ceph_pr_addr(&con->peer_addr.in_addr),
2106 req_feat, server_feat, req_feat & ~server_feat);
2107 con->error_msg = "missing required protocol features";
2108 reset_connection(con);
2109 return -1;
2112 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2113 con->state = CON_STATE_OPEN;
2114 con->auth_retry = 0; /* we authenticated; clear flag */
2115 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2116 con->connect_seq++;
2117 con->peer_features = server_feat;
2118 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2119 con->peer_global_seq,
2120 le32_to_cpu(con->in_reply.connect_seq),
2121 con->connect_seq);
2122 WARN_ON(con->connect_seq !=
2123 le32_to_cpu(con->in_reply.connect_seq));
2125 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2126 con_flag_set(con, CON_FLAG_LOSSYTX);
2128 con->delay = 0; /* reset backoff memory */
2130 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2131 prepare_write_seq(con);
2132 prepare_read_seq(con);
2133 } else {
2134 prepare_read_tag(con);
2136 break;
2138 case CEPH_MSGR_TAG_WAIT:
2140 * If there is a connection race (we are opening
2141 * connections to each other), one of us may just have
2142 * to WAIT. This shouldn't happen if we are the
2143 * client.
2145 pr_err("process_connect got WAIT as client\n");
2146 con->error_msg = "protocol error, got WAIT as client";
2147 return -1;
2149 default:
2150 pr_err("connect protocol error, will retry\n");
2151 con->error_msg = "protocol error, garbage tag during connect";
2152 return -1;
2154 return 0;
2159 * read (part of) an ack
2161 static int read_partial_ack(struct ceph_connection *con)
2163 int size = sizeof (con->in_temp_ack);
2164 int end = size;
2166 return read_partial(con, end, size, &con->in_temp_ack);
2170 * We can finally discard anything that's been acked.
2172 static void process_ack(struct ceph_connection *con)
2174 struct ceph_msg *m;
2175 u64 ack = le64_to_cpu(con->in_temp_ack);
2176 u64 seq;
2178 while (!list_empty(&con->out_sent)) {
2179 m = list_first_entry(&con->out_sent, struct ceph_msg,
2180 list_head);
2181 seq = le64_to_cpu(m->hdr.seq);
2182 if (seq > ack)
2183 break;
2184 dout("got ack for seq %llu type %d at %p\n", seq,
2185 le16_to_cpu(m->hdr.type), m);
2186 m->ack_stamp = jiffies;
2187 ceph_msg_remove(m);
2189 prepare_read_tag(con);
2193 static int read_partial_message_section(struct ceph_connection *con,
2194 struct kvec *section,
2195 unsigned int sec_len, u32 *crc)
2197 int ret, left;
2199 BUG_ON(!section);
2201 while (section->iov_len < sec_len) {
2202 BUG_ON(section->iov_base == NULL);
2203 left = sec_len - section->iov_len;
2204 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2205 section->iov_len, left);
2206 if (ret <= 0)
2207 return ret;
2208 section->iov_len += ret;
2210 if (section->iov_len == sec_len)
2211 *crc = crc32c(0, section->iov_base, section->iov_len);
2213 return 1;
2216 static int read_partial_msg_data(struct ceph_connection *con)
2218 struct ceph_msg *msg = con->in_msg;
2219 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2220 const bool do_datacrc = !con->msgr->nocrc;
2221 struct page *page;
2222 size_t page_offset;
2223 size_t length;
2224 u32 crc = 0;
2225 int ret;
2227 BUG_ON(!msg);
2228 if (list_empty(&msg->data))
2229 return -EIO;
2231 if (do_datacrc)
2232 crc = con->in_data_crc;
2233 while (cursor->resid) {
2234 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2235 NULL);
2236 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2237 if (ret <= 0) {
2238 if (do_datacrc)
2239 con->in_data_crc = crc;
2241 return ret;
2244 if (do_datacrc)
2245 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2246 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2248 if (do_datacrc)
2249 con->in_data_crc = crc;
2251 return 1; /* must return > 0 to indicate success */
2255 * read (part of) a message.
2257 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2259 static int read_partial_message(struct ceph_connection *con)
2261 struct ceph_msg *m = con->in_msg;
2262 int size;
2263 int end;
2264 int ret;
2265 unsigned int front_len, middle_len, data_len;
2266 bool do_datacrc = !con->msgr->nocrc;
2267 u64 seq;
2268 u32 crc;
2270 dout("read_partial_message con %p msg %p\n", con, m);
2272 /* header */
2273 size = sizeof (con->in_hdr);
2274 end = size;
2275 ret = read_partial(con, end, size, &con->in_hdr);
2276 if (ret <= 0)
2277 return ret;
2279 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2280 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2281 pr_err("read_partial_message bad hdr "
2282 " crc %u != expected %u\n",
2283 crc, con->in_hdr.crc);
2284 return -EBADMSG;
2287 front_len = le32_to_cpu(con->in_hdr.front_len);
2288 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2289 return -EIO;
2290 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2291 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2292 return -EIO;
2293 data_len = le32_to_cpu(con->in_hdr.data_len);
2294 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2295 return -EIO;
2297 /* verify seq# */
2298 seq = le64_to_cpu(con->in_hdr.seq);
2299 if ((s64)seq - (s64)con->in_seq < 1) {
2300 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2301 ENTITY_NAME(con->peer_name),
2302 ceph_pr_addr(&con->peer_addr.in_addr),
2303 seq, con->in_seq + 1);
2304 con->in_base_pos = -front_len - middle_len - data_len -
2305 sizeof(m->footer);
2306 con->in_tag = CEPH_MSGR_TAG_READY;
2307 return 1;
2308 } else if ((s64)seq - (s64)con->in_seq > 1) {
2309 pr_err("read_partial_message bad seq %lld expected %lld\n",
2310 seq, con->in_seq + 1);
2311 con->error_msg = "bad message sequence # for incoming message";
2312 return -EBADMSG;
2315 /* allocate message? */
2316 if (!con->in_msg) {
2317 int skip = 0;
2319 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2320 front_len, data_len);
2321 ret = ceph_con_in_msg_alloc(con, &skip);
2322 if (ret < 0)
2323 return ret;
2325 BUG_ON(!con->in_msg ^ skip);
2326 if (con->in_msg && data_len > con->in_msg->data_length) {
2327 pr_warning("%s skipping long message (%u > %zd)\n",
2328 __func__, data_len, con->in_msg->data_length);
2329 ceph_msg_put(con->in_msg);
2330 con->in_msg = NULL;
2331 skip = 1;
2333 if (skip) {
2334 /* skip this message */
2335 dout("alloc_msg said skip message\n");
2336 con->in_base_pos = -front_len - middle_len - data_len -
2337 sizeof(m->footer);
2338 con->in_tag = CEPH_MSGR_TAG_READY;
2339 con->in_seq++;
2340 return 1;
2343 BUG_ON(!con->in_msg);
2344 BUG_ON(con->in_msg->con != con);
2345 m = con->in_msg;
2346 m->front.iov_len = 0; /* haven't read it yet */
2347 if (m->middle)
2348 m->middle->vec.iov_len = 0;
2350 /* prepare for data payload, if any */
2352 if (data_len)
2353 prepare_message_data(con->in_msg, data_len);
2356 /* front */
2357 ret = read_partial_message_section(con, &m->front, front_len,
2358 &con->in_front_crc);
2359 if (ret <= 0)
2360 return ret;
2362 /* middle */
2363 if (m->middle) {
2364 ret = read_partial_message_section(con, &m->middle->vec,
2365 middle_len,
2366 &con->in_middle_crc);
2367 if (ret <= 0)
2368 return ret;
2371 /* (page) data */
2372 if (data_len) {
2373 ret = read_partial_msg_data(con);
2374 if (ret <= 0)
2375 return ret;
2378 /* footer */
2379 size = sizeof (m->footer);
2380 end += size;
2381 ret = read_partial(con, end, size, &m->footer);
2382 if (ret <= 0)
2383 return ret;
2385 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2386 m, front_len, m->footer.front_crc, middle_len,
2387 m->footer.middle_crc, data_len, m->footer.data_crc);
2389 /* crc ok? */
2390 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2391 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2392 m, con->in_front_crc, m->footer.front_crc);
2393 return -EBADMSG;
2395 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2396 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2397 m, con->in_middle_crc, m->footer.middle_crc);
2398 return -EBADMSG;
2400 if (do_datacrc &&
2401 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2402 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2403 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2404 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2405 return -EBADMSG;
2408 return 1; /* done! */
2412 * Process message. This happens in the worker thread. The callback should
2413 * be careful not to do anything that waits on other incoming messages or it
2414 * may deadlock.
2416 static void process_message(struct ceph_connection *con)
2418 struct ceph_msg *msg;
2420 BUG_ON(con->in_msg->con != con);
2421 con->in_msg->con = NULL;
2422 msg = con->in_msg;
2423 con->in_msg = NULL;
2424 con->ops->put(con);
2426 /* if first message, set peer_name */
2427 if (con->peer_name.type == 0)
2428 con->peer_name = msg->hdr.src;
2430 con->in_seq++;
2431 mutex_unlock(&con->mutex);
2433 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2434 msg, le64_to_cpu(msg->hdr.seq),
2435 ENTITY_NAME(msg->hdr.src),
2436 le16_to_cpu(msg->hdr.type),
2437 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2438 le32_to_cpu(msg->hdr.front_len),
2439 le32_to_cpu(msg->hdr.data_len),
2440 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2441 con->ops->dispatch(con, msg);
2443 mutex_lock(&con->mutex);
2448 * Write something to the socket. Called in a worker thread when the
2449 * socket appears to be writeable and we have something ready to send.
2451 static int try_write(struct ceph_connection *con)
2453 int ret = 1;
2455 dout("try_write start %p state %lu\n", con, con->state);
2457 more:
2458 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2460 /* open the socket first? */
2461 if (con->state == CON_STATE_PREOPEN) {
2462 BUG_ON(con->sock);
2463 con->state = CON_STATE_CONNECTING;
2465 con_out_kvec_reset(con);
2466 prepare_write_banner(con);
2467 prepare_read_banner(con);
2469 BUG_ON(con->in_msg);
2470 con->in_tag = CEPH_MSGR_TAG_READY;
2471 dout("try_write initiating connect on %p new state %lu\n",
2472 con, con->state);
2473 ret = ceph_tcp_connect(con);
2474 if (ret < 0) {
2475 con->error_msg = "connect error";
2476 goto out;
2480 more_kvec:
2481 /* kvec data queued? */
2482 if (con->out_skip) {
2483 ret = write_partial_skip(con);
2484 if (ret <= 0)
2485 goto out;
2487 if (con->out_kvec_left) {
2488 ret = write_partial_kvec(con);
2489 if (ret <= 0)
2490 goto out;
2493 /* msg pages? */
2494 if (con->out_msg) {
2495 if (con->out_msg_done) {
2496 ceph_msg_put(con->out_msg);
2497 con->out_msg = NULL; /* we're done with this one */
2498 goto do_next;
2501 ret = write_partial_message_data(con);
2502 if (ret == 1)
2503 goto more_kvec; /* we need to send the footer, too! */
2504 if (ret == 0)
2505 goto out;
2506 if (ret < 0) {
2507 dout("try_write write_partial_message_data err %d\n",
2508 ret);
2509 goto out;
2513 do_next:
2514 if (con->state == CON_STATE_OPEN) {
2515 /* is anything else pending? */
2516 if (!list_empty(&con->out_queue)) {
2517 prepare_write_message(con);
2518 goto more;
2520 if (con->in_seq > con->in_seq_acked) {
2521 prepare_write_ack(con);
2522 goto more;
2524 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2525 prepare_write_keepalive(con);
2526 goto more;
2530 /* Nothing to do! */
2531 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2532 dout("try_write nothing else to write.\n");
2533 ret = 0;
2534 out:
2535 dout("try_write done on %p ret %d\n", con, ret);
2536 return ret;
2542 * Read what we can from the socket.
2544 static int try_read(struct ceph_connection *con)
2546 int ret = -1;
2548 more:
2549 dout("try_read start on %p state %lu\n", con, con->state);
2550 if (con->state != CON_STATE_CONNECTING &&
2551 con->state != CON_STATE_NEGOTIATING &&
2552 con->state != CON_STATE_OPEN)
2553 return 0;
2555 BUG_ON(!con->sock);
2557 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2558 con->in_base_pos);
2560 if (con->state == CON_STATE_CONNECTING) {
2561 dout("try_read connecting\n");
2562 ret = read_partial_banner(con);
2563 if (ret <= 0)
2564 goto out;
2565 ret = process_banner(con);
2566 if (ret < 0)
2567 goto out;
2569 con->state = CON_STATE_NEGOTIATING;
2572 * Received banner is good, exchange connection info.
2573 * Do not reset out_kvec, as sending our banner raced
2574 * with receiving peer banner after connect completed.
2576 ret = prepare_write_connect(con);
2577 if (ret < 0)
2578 goto out;
2579 prepare_read_connect(con);
2581 /* Send connection info before awaiting response */
2582 goto out;
2585 if (con->state == CON_STATE_NEGOTIATING) {
2586 dout("try_read negotiating\n");
2587 ret = read_partial_connect(con);
2588 if (ret <= 0)
2589 goto out;
2590 ret = process_connect(con);
2591 if (ret < 0)
2592 goto out;
2593 goto more;
2596 WARN_ON(con->state != CON_STATE_OPEN);
2598 if (con->in_base_pos < 0) {
2600 * skipping + discarding content.
2602 * FIXME: there must be a better way to do this!
2604 static char buf[SKIP_BUF_SIZE];
2605 int skip = min((int) sizeof (buf), -con->in_base_pos);
2607 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2608 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2609 if (ret <= 0)
2610 goto out;
2611 con->in_base_pos += ret;
2612 if (con->in_base_pos)
2613 goto more;
2615 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2617 * what's next?
2619 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2620 if (ret <= 0)
2621 goto out;
2622 dout("try_read got tag %d\n", (int)con->in_tag);
2623 switch (con->in_tag) {
2624 case CEPH_MSGR_TAG_MSG:
2625 prepare_read_message(con);
2626 break;
2627 case CEPH_MSGR_TAG_ACK:
2628 prepare_read_ack(con);
2629 break;
2630 case CEPH_MSGR_TAG_CLOSE:
2631 con_close_socket(con);
2632 con->state = CON_STATE_CLOSED;
2633 goto out;
2634 default:
2635 goto bad_tag;
2638 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2639 ret = read_partial_message(con);
2640 if (ret <= 0) {
2641 switch (ret) {
2642 case -EBADMSG:
2643 con->error_msg = "bad crc";
2644 ret = -EIO;
2645 break;
2646 case -EIO:
2647 con->error_msg = "io error";
2648 break;
2650 goto out;
2652 if (con->in_tag == CEPH_MSGR_TAG_READY)
2653 goto more;
2654 process_message(con);
2655 if (con->state == CON_STATE_OPEN)
2656 prepare_read_tag(con);
2657 goto more;
2659 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2660 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2662 * the final handshake seq exchange is semantically
2663 * equivalent to an ACK
2665 ret = read_partial_ack(con);
2666 if (ret <= 0)
2667 goto out;
2668 process_ack(con);
2669 goto more;
2672 out:
2673 dout("try_read done on %p ret %d\n", con, ret);
2674 return ret;
2676 bad_tag:
2677 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2678 con->error_msg = "protocol error, garbage tag";
2679 ret = -1;
2680 goto out;
2685 * Atomically queue work on a connection after the specified delay.
2686 * Bump @con reference to avoid races with connection teardown.
2687 * Returns 0 if work was queued, or an error code otherwise.
2689 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2691 if (!con->ops->get(con)) {
2692 dout("%s %p ref count 0\n", __func__, con);
2694 return -ENOENT;
2697 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2698 dout("%s %p - already queued\n", __func__, con);
2699 con->ops->put(con);
2701 return -EBUSY;
2704 dout("%s %p %lu\n", __func__, con, delay);
2706 return 0;
2709 static void queue_con(struct ceph_connection *con)
2711 (void) queue_con_delay(con, 0);
2714 static bool con_sock_closed(struct ceph_connection *con)
2716 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2717 return false;
2719 #define CASE(x) \
2720 case CON_STATE_ ## x: \
2721 con->error_msg = "socket closed (con state " #x ")"; \
2722 break;
2724 switch (con->state) {
2725 CASE(CLOSED);
2726 CASE(PREOPEN);
2727 CASE(CONNECTING);
2728 CASE(NEGOTIATING);
2729 CASE(OPEN);
2730 CASE(STANDBY);
2731 default:
2732 pr_warning("%s con %p unrecognized state %lu\n",
2733 __func__, con, con->state);
2734 con->error_msg = "unrecognized con state";
2735 BUG();
2736 break;
2738 #undef CASE
2740 return true;
2743 static bool con_backoff(struct ceph_connection *con)
2745 int ret;
2747 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2748 return false;
2750 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2751 if (ret) {
2752 dout("%s: con %p FAILED to back off %lu\n", __func__,
2753 con, con->delay);
2754 BUG_ON(ret == -ENOENT);
2755 con_flag_set(con, CON_FLAG_BACKOFF);
2758 return true;
2761 /* Finish fault handling; con->mutex must *not* be held here */
2763 static void con_fault_finish(struct ceph_connection *con)
2766 * in case we faulted due to authentication, invalidate our
2767 * current tickets so that we can get new ones.
2769 if (con->auth_retry && con->ops->invalidate_authorizer) {
2770 dout("calling invalidate_authorizer()\n");
2771 con->ops->invalidate_authorizer(con);
2774 if (con->ops->fault)
2775 con->ops->fault(con);
2779 * Do some work on a connection. Drop a connection ref when we're done.
2781 static void con_work(struct work_struct *work)
2783 struct ceph_connection *con = container_of(work, struct ceph_connection,
2784 work.work);
2785 bool fault;
2787 mutex_lock(&con->mutex);
2788 while (true) {
2789 int ret;
2791 if ((fault = con_sock_closed(con))) {
2792 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2793 break;
2795 if (con_backoff(con)) {
2796 dout("%s: con %p BACKOFF\n", __func__, con);
2797 break;
2799 if (con->state == CON_STATE_STANDBY) {
2800 dout("%s: con %p STANDBY\n", __func__, con);
2801 break;
2803 if (con->state == CON_STATE_CLOSED) {
2804 dout("%s: con %p CLOSED\n", __func__, con);
2805 BUG_ON(con->sock);
2806 break;
2808 if (con->state == CON_STATE_PREOPEN) {
2809 dout("%s: con %p PREOPEN\n", __func__, con);
2810 BUG_ON(con->sock);
2813 ret = try_read(con);
2814 if (ret < 0) {
2815 if (ret == -EAGAIN)
2816 continue;
2817 con->error_msg = "socket error on read";
2818 fault = true;
2819 break;
2822 ret = try_write(con);
2823 if (ret < 0) {
2824 if (ret == -EAGAIN)
2825 continue;
2826 con->error_msg = "socket error on write";
2827 fault = true;
2830 break; /* If we make it to here, we're done */
2832 if (fault)
2833 con_fault(con);
2834 mutex_unlock(&con->mutex);
2836 if (fault)
2837 con_fault_finish(con);
2839 con->ops->put(con);
2843 * Generic error/fault handler. A retry mechanism is used with
2844 * exponential backoff
2846 static void con_fault(struct ceph_connection *con)
2848 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2849 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2850 dout("fault %p state %lu to peer %s\n",
2851 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2853 WARN_ON(con->state != CON_STATE_CONNECTING &&
2854 con->state != CON_STATE_NEGOTIATING &&
2855 con->state != CON_STATE_OPEN);
2857 con_close_socket(con);
2859 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2860 dout("fault on LOSSYTX channel, marking CLOSED\n");
2861 con->state = CON_STATE_CLOSED;
2862 return;
2865 if (con->in_msg) {
2866 BUG_ON(con->in_msg->con != con);
2867 con->in_msg->con = NULL;
2868 ceph_msg_put(con->in_msg);
2869 con->in_msg = NULL;
2870 con->ops->put(con);
2873 /* Requeue anything that hasn't been acked */
2874 list_splice_init(&con->out_sent, &con->out_queue);
2876 /* If there are no messages queued or keepalive pending, place
2877 * the connection in a STANDBY state */
2878 if (list_empty(&con->out_queue) &&
2879 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2880 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2881 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2882 con->state = CON_STATE_STANDBY;
2883 } else {
2884 /* retry after a delay. */
2885 con->state = CON_STATE_PREOPEN;
2886 if (con->delay == 0)
2887 con->delay = BASE_DELAY_INTERVAL;
2888 else if (con->delay < MAX_DELAY_INTERVAL)
2889 con->delay *= 2;
2890 con_flag_set(con, CON_FLAG_BACKOFF);
2891 queue_con(con);
2898 * initialize a new messenger instance
2900 void ceph_messenger_init(struct ceph_messenger *msgr,
2901 struct ceph_entity_addr *myaddr,
2902 u64 supported_features,
2903 u64 required_features,
2904 bool nocrc)
2906 msgr->supported_features = supported_features;
2907 msgr->required_features = required_features;
2909 spin_lock_init(&msgr->global_seq_lock);
2911 if (myaddr)
2912 msgr->inst.addr = *myaddr;
2914 /* select a random nonce */
2915 msgr->inst.addr.type = 0;
2916 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2917 encode_my_addr(msgr);
2918 msgr->nocrc = nocrc;
2920 atomic_set(&msgr->stopping, 0);
2922 dout("%s %p\n", __func__, msgr);
2924 EXPORT_SYMBOL(ceph_messenger_init);
2926 static void clear_standby(struct ceph_connection *con)
2928 /* come back from STANDBY? */
2929 if (con->state == CON_STATE_STANDBY) {
2930 dout("clear_standby %p and ++connect_seq\n", con);
2931 con->state = CON_STATE_PREOPEN;
2932 con->connect_seq++;
2933 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2934 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2939 * Queue up an outgoing message on the given connection.
2941 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2943 /* set src+dst */
2944 msg->hdr.src = con->msgr->inst.name;
2945 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2946 msg->needs_out_seq = true;
2948 mutex_lock(&con->mutex);
2950 if (con->state == CON_STATE_CLOSED) {
2951 dout("con_send %p closed, dropping %p\n", con, msg);
2952 ceph_msg_put(msg);
2953 mutex_unlock(&con->mutex);
2954 return;
2957 BUG_ON(msg->con != NULL);
2958 msg->con = con->ops->get(con);
2959 BUG_ON(msg->con == NULL);
2961 BUG_ON(!list_empty(&msg->list_head));
2962 list_add_tail(&msg->list_head, &con->out_queue);
2963 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2964 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2965 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2966 le32_to_cpu(msg->hdr.front_len),
2967 le32_to_cpu(msg->hdr.middle_len),
2968 le32_to_cpu(msg->hdr.data_len));
2970 clear_standby(con);
2971 mutex_unlock(&con->mutex);
2973 /* if there wasn't anything waiting to send before, queue
2974 * new work */
2975 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2976 queue_con(con);
2978 EXPORT_SYMBOL(ceph_con_send);
2981 * Revoke a message that was previously queued for send
2983 void ceph_msg_revoke(struct ceph_msg *msg)
2985 struct ceph_connection *con = msg->con;
2987 if (!con)
2988 return; /* Message not in our possession */
2990 mutex_lock(&con->mutex);
2991 if (!list_empty(&msg->list_head)) {
2992 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2993 list_del_init(&msg->list_head);
2994 BUG_ON(msg->con == NULL);
2995 msg->con->ops->put(msg->con);
2996 msg->con = NULL;
2997 msg->hdr.seq = 0;
2999 ceph_msg_put(msg);
3001 if (con->out_msg == msg) {
3002 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3003 con->out_msg = NULL;
3004 if (con->out_kvec_is_msg) {
3005 con->out_skip = con->out_kvec_bytes;
3006 con->out_kvec_is_msg = false;
3008 msg->hdr.seq = 0;
3010 ceph_msg_put(msg);
3012 mutex_unlock(&con->mutex);
3016 * Revoke a message that we may be reading data into
3018 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3020 struct ceph_connection *con;
3022 BUG_ON(msg == NULL);
3023 if (!msg->con) {
3024 dout("%s msg %p null con\n", __func__, msg);
3026 return; /* Message not in our possession */
3029 con = msg->con;
3030 mutex_lock(&con->mutex);
3031 if (con->in_msg == msg) {
3032 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3033 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3034 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3036 /* skip rest of message */
3037 dout("%s %p msg %p revoked\n", __func__, con, msg);
3038 con->in_base_pos = con->in_base_pos -
3039 sizeof(struct ceph_msg_header) -
3040 front_len -
3041 middle_len -
3042 data_len -
3043 sizeof(struct ceph_msg_footer);
3044 ceph_msg_put(con->in_msg);
3045 con->in_msg = NULL;
3046 con->in_tag = CEPH_MSGR_TAG_READY;
3047 con->in_seq++;
3048 } else {
3049 dout("%s %p in_msg %p msg %p no-op\n",
3050 __func__, con, con->in_msg, msg);
3052 mutex_unlock(&con->mutex);
3056 * Queue a keepalive byte to ensure the tcp connection is alive.
3058 void ceph_con_keepalive(struct ceph_connection *con)
3060 dout("con_keepalive %p\n", con);
3061 mutex_lock(&con->mutex);
3062 clear_standby(con);
3063 mutex_unlock(&con->mutex);
3064 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3065 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3066 queue_con(con);
3068 EXPORT_SYMBOL(ceph_con_keepalive);
3070 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3072 struct ceph_msg_data *data;
3074 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3075 return NULL;
3077 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3078 if (!data)
3079 return NULL;
3081 data->type = type;
3082 INIT_LIST_HEAD(&data->links);
3084 return data;
3087 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3089 if (!data)
3090 return;
3092 WARN_ON(!list_empty(&data->links));
3093 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3094 ceph_pagelist_release(data->pagelist);
3095 kfree(data->pagelist);
3097 kmem_cache_free(ceph_msg_data_cache, data);
3100 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3101 size_t length, size_t alignment)
3103 struct ceph_msg_data *data;
3105 BUG_ON(!pages);
3106 BUG_ON(!length);
3108 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3109 BUG_ON(!data);
3110 data->pages = pages;
3111 data->length = length;
3112 data->alignment = alignment & ~PAGE_MASK;
3114 list_add_tail(&data->links, &msg->data);
3115 msg->data_length += length;
3117 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3119 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3120 struct ceph_pagelist *pagelist)
3122 struct ceph_msg_data *data;
3124 BUG_ON(!pagelist);
3125 BUG_ON(!pagelist->length);
3127 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3128 BUG_ON(!data);
3129 data->pagelist = pagelist;
3131 list_add_tail(&data->links, &msg->data);
3132 msg->data_length += pagelist->length;
3134 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3136 #ifdef CONFIG_BLOCK
3137 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3138 size_t length)
3140 struct ceph_msg_data *data;
3142 BUG_ON(!bio);
3144 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3145 BUG_ON(!data);
3146 data->bio = bio;
3147 data->bio_length = length;
3149 list_add_tail(&data->links, &msg->data);
3150 msg->data_length += length;
3152 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3153 #endif /* CONFIG_BLOCK */
3156 * construct a new message with given type, size
3157 * the new msg has a ref count of 1.
3159 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3160 bool can_fail)
3162 struct ceph_msg *m;
3164 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3165 if (m == NULL)
3166 goto out;
3168 m->hdr.type = cpu_to_le16(type);
3169 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3170 m->hdr.front_len = cpu_to_le32(front_len);
3172 INIT_LIST_HEAD(&m->list_head);
3173 kref_init(&m->kref);
3174 INIT_LIST_HEAD(&m->data);
3176 /* front */
3177 if (front_len) {
3178 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3179 if (m->front.iov_base == NULL) {
3180 dout("ceph_msg_new can't allocate %d bytes\n",
3181 front_len);
3182 goto out2;
3184 } else {
3185 m->front.iov_base = NULL;
3187 m->front_alloc_len = m->front.iov_len = front_len;
3189 dout("ceph_msg_new %p front %d\n", m, front_len);
3190 return m;
3192 out2:
3193 ceph_msg_put(m);
3194 out:
3195 if (!can_fail) {
3196 pr_err("msg_new can't create type %d front %d\n", type,
3197 front_len);
3198 WARN_ON(1);
3199 } else {
3200 dout("msg_new can't create type %d front %d\n", type,
3201 front_len);
3203 return NULL;
3205 EXPORT_SYMBOL(ceph_msg_new);
3208 * Allocate "middle" portion of a message, if it is needed and wasn't
3209 * allocated by alloc_msg. This allows us to read a small fixed-size
3210 * per-type header in the front and then gracefully fail (i.e.,
3211 * propagate the error to the caller based on info in the front) when
3212 * the middle is too large.
3214 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3216 int type = le16_to_cpu(msg->hdr.type);
3217 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3219 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3220 ceph_msg_type_name(type), middle_len);
3221 BUG_ON(!middle_len);
3222 BUG_ON(msg->middle);
3224 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3225 if (!msg->middle)
3226 return -ENOMEM;
3227 return 0;
3231 * Allocate a message for receiving an incoming message on a
3232 * connection, and save the result in con->in_msg. Uses the
3233 * connection's private alloc_msg op if available.
3235 * Returns 0 on success, or a negative error code.
3237 * On success, if we set *skip = 1:
3238 * - the next message should be skipped and ignored.
3239 * - con->in_msg == NULL
3240 * or if we set *skip = 0:
3241 * - con->in_msg is non-null.
3242 * On error (ENOMEM, EAGAIN, ...),
3243 * - con->in_msg == NULL
3245 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3247 struct ceph_msg_header *hdr = &con->in_hdr;
3248 int middle_len = le32_to_cpu(hdr->middle_len);
3249 struct ceph_msg *msg;
3250 int ret = 0;
3252 BUG_ON(con->in_msg != NULL);
3253 BUG_ON(!con->ops->alloc_msg);
3255 mutex_unlock(&con->mutex);
3256 msg = con->ops->alloc_msg(con, hdr, skip);
3257 mutex_lock(&con->mutex);
3258 if (con->state != CON_STATE_OPEN) {
3259 if (msg)
3260 ceph_msg_put(msg);
3261 return -EAGAIN;
3263 if (msg) {
3264 BUG_ON(*skip);
3265 con->in_msg = msg;
3266 con->in_msg->con = con->ops->get(con);
3267 BUG_ON(con->in_msg->con == NULL);
3268 } else {
3270 * Null message pointer means either we should skip
3271 * this message or we couldn't allocate memory. The
3272 * former is not an error.
3274 if (*skip)
3275 return 0;
3276 con->error_msg = "error allocating memory for incoming message";
3278 return -ENOMEM;
3280 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3282 if (middle_len && !con->in_msg->middle) {
3283 ret = ceph_alloc_middle(con, con->in_msg);
3284 if (ret < 0) {
3285 ceph_msg_put(con->in_msg);
3286 con->in_msg = NULL;
3290 return ret;
3295 * Free a generically kmalloc'd message.
3297 void ceph_msg_kfree(struct ceph_msg *m)
3299 dout("msg_kfree %p\n", m);
3300 ceph_kvfree(m->front.iov_base);
3301 kmem_cache_free(ceph_msg_cache, m);
3305 * Drop a msg ref. Destroy as needed.
3307 void ceph_msg_last_put(struct kref *kref)
3309 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3310 LIST_HEAD(data);
3311 struct list_head *links;
3312 struct list_head *next;
3314 dout("ceph_msg_put last one on %p\n", m);
3315 WARN_ON(!list_empty(&m->list_head));
3317 /* drop middle, data, if any */
3318 if (m->middle) {
3319 ceph_buffer_put(m->middle);
3320 m->middle = NULL;
3323 list_splice_init(&m->data, &data);
3324 list_for_each_safe(links, next, &data) {
3325 struct ceph_msg_data *data;
3327 data = list_entry(links, struct ceph_msg_data, links);
3328 list_del_init(links);
3329 ceph_msg_data_destroy(data);
3331 m->data_length = 0;
3333 if (m->pool)
3334 ceph_msgpool_put(m->pool, m);
3335 else
3336 ceph_msg_kfree(m);
3338 EXPORT_SYMBOL(ceph_msg_last_put);
3340 void ceph_msg_dump(struct ceph_msg *msg)
3342 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3343 msg->front_alloc_len, msg->data_length);
3344 print_hex_dump(KERN_DEBUG, "header: ",
3345 DUMP_PREFIX_OFFSET, 16, 1,
3346 &msg->hdr, sizeof(msg->hdr), true);
3347 print_hex_dump(KERN_DEBUG, " front: ",
3348 DUMP_PREFIX_OFFSET, 16, 1,
3349 msg->front.iov_base, msg->front.iov_len, true);
3350 if (msg->middle)
3351 print_hex_dump(KERN_DEBUG, "middle: ",
3352 DUMP_PREFIX_OFFSET, 16, 1,
3353 msg->middle->vec.iov_base,
3354 msg->middle->vec.iov_len, true);
3355 print_hex_dump(KERN_DEBUG, "footer: ",
3356 DUMP_PREFIX_OFFSET, 16, 1,
3357 &msg->footer, sizeof(msg->footer), true);
3359 EXPORT_SYMBOL(ceph_msg_dump);