1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/sched.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
26 #define list_entry_next(pos, member) \
27 list_entry(pos->member.next, typeof(*pos), member)
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
45 * | NEW* | transient initial state
47 * | con_sock_state_init()
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
53 * | \ con_sock_state_connecting()
54 * | ----------------------
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
64 * | + con_sock_state_closing() \ |
66 * | / --------------- | |
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
74 * | CONNECTED | TCP connection established
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
89 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
90 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
91 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
92 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
93 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
94 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
97 * ceph_connection flag bits
99 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
100 * messages on errors */
101 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
102 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
103 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
104 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
106 static bool con_flag_valid(unsigned long con_flag
)
109 case CON_FLAG_LOSSYTX
:
110 case CON_FLAG_KEEPALIVE_PENDING
:
111 case CON_FLAG_WRITE_PENDING
:
112 case CON_FLAG_SOCK_CLOSED
:
113 case CON_FLAG_BACKOFF
:
120 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
122 BUG_ON(!con_flag_valid(con_flag
));
124 clear_bit(con_flag
, &con
->flags
);
127 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
129 BUG_ON(!con_flag_valid(con_flag
));
131 set_bit(con_flag
, &con
->flags
);
134 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
136 BUG_ON(!con_flag_valid(con_flag
));
138 return test_bit(con_flag
, &con
->flags
);
141 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
142 unsigned long con_flag
)
144 BUG_ON(!con_flag_valid(con_flag
));
146 return test_and_clear_bit(con_flag
, &con
->flags
);
149 static bool con_flag_test_and_set(struct ceph_connection
*con
,
150 unsigned long con_flag
)
152 BUG_ON(!con_flag_valid(con_flag
));
154 return test_and_set_bit(con_flag
, &con
->flags
);
157 /* Slab caches for frequently-allocated structures */
159 static struct kmem_cache
*ceph_msg_cache
;
160 static struct kmem_cache
*ceph_msg_data_cache
;
162 /* static tag bytes (protocol control messages) */
163 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
164 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
165 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class
;
172 * When skipping (ignoring) a block of input we read it into a "skip
173 * buffer," which is this many bytes in size.
175 #define SKIP_BUF_SIZE 1024
177 static void queue_con(struct ceph_connection
*con
);
178 static void con_work(struct work_struct
*);
179 static void con_fault(struct ceph_connection
*con
);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
191 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
193 static struct page
*zero_page
; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
199 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
200 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
202 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
205 switch (ss
->ss_family
) {
207 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
208 ntohs(in4
->sin_port
));
212 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
213 ntohs(in6
->sin6_port
));
217 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
223 EXPORT_SYMBOL(ceph_pr_addr
);
225 static void encode_my_addr(struct ceph_messenger
*msgr
)
227 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
228 ceph_encode_addr(&msgr
->my_enc_addr
);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct
*ceph_msgr_wq
;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache
);
239 ceph_msg_cache
= kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg
),
241 __alignof__(struct ceph_msg
), 0, NULL
);
246 BUG_ON(ceph_msg_data_cache
);
247 ceph_msg_data_cache
= kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data
),
249 __alignof__(struct ceph_msg_data
),
251 if (ceph_msg_data_cache
)
254 kmem_cache_destroy(ceph_msg_cache
);
255 ceph_msg_cache
= NULL
;
260 static void ceph_msgr_slab_exit(void)
262 BUG_ON(!ceph_msg_data_cache
);
263 kmem_cache_destroy(ceph_msg_data_cache
);
264 ceph_msg_data_cache
= NULL
;
266 BUG_ON(!ceph_msg_cache
);
267 kmem_cache_destroy(ceph_msg_cache
);
268 ceph_msg_cache
= NULL
;
271 static void _ceph_msgr_exit(void)
274 destroy_workqueue(ceph_msgr_wq
);
278 ceph_msgr_slab_exit();
280 BUG_ON(zero_page
== NULL
);
282 page_cache_release(zero_page
);
286 int ceph_msgr_init(void)
288 BUG_ON(zero_page
!= NULL
);
289 zero_page
= ZERO_PAGE(0);
290 page_cache_get(zero_page
);
292 if (ceph_msgr_slab_init())
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
299 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
303 pr_err("msgr_init failed to create workqueue\n");
308 EXPORT_SYMBOL(ceph_msgr_init
);
310 void ceph_msgr_exit(void)
312 BUG_ON(ceph_msgr_wq
== NULL
);
316 EXPORT_SYMBOL(ceph_msgr_exit
);
318 void ceph_msgr_flush(void)
320 flush_workqueue(ceph_msgr_wq
);
322 EXPORT_SYMBOL(ceph_msgr_flush
);
324 /* Connection socket state transition functions */
326 static void con_sock_state_init(struct ceph_connection
*con
)
330 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
331 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
332 printk("%s: unexpected old state %d\n", __func__
, old_state
);
333 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
334 CON_SOCK_STATE_CLOSED
);
337 static void con_sock_state_connecting(struct ceph_connection
*con
)
341 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
342 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
343 printk("%s: unexpected old state %d\n", __func__
, old_state
);
344 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
345 CON_SOCK_STATE_CONNECTING
);
348 static void con_sock_state_connected(struct ceph_connection
*con
)
352 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
353 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
354 printk("%s: unexpected old state %d\n", __func__
, old_state
);
355 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
356 CON_SOCK_STATE_CONNECTED
);
359 static void con_sock_state_closing(struct ceph_connection
*con
)
363 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
364 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
365 old_state
!= CON_SOCK_STATE_CONNECTED
&&
366 old_state
!= CON_SOCK_STATE_CLOSING
))
367 printk("%s: unexpected old state %d\n", __func__
, old_state
);
368 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
369 CON_SOCK_STATE_CLOSING
);
372 static void con_sock_state_closed(struct ceph_connection
*con
)
376 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
377 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
378 old_state
!= CON_SOCK_STATE_CLOSING
&&
379 old_state
!= CON_SOCK_STATE_CONNECTING
&&
380 old_state
!= CON_SOCK_STATE_CLOSED
))
381 printk("%s: unexpected old state %d\n", __func__
, old_state
);
382 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
383 CON_SOCK_STATE_CLOSED
);
387 * socket callback functions
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock
*sk
)
393 struct ceph_connection
*con
= sk
->sk_user_data
;
394 if (atomic_read(&con
->msgr
->stopping
)) {
398 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
399 dout("%s on %p state = %lu, queueing work\n", __func__
,
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock
*sk
)
408 struct ceph_connection
*con
= sk
->sk_user_data
;
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
417 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
418 if (sk_stream_is_writeable(sk
)) {
419 dout("%s %p queueing write work\n", __func__
, con
);
420 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
424 dout("%s %p nothing to write\n", __func__
, con
);
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock
*sk
)
431 struct ceph_connection
*con
= sk
->sk_user_data
;
433 dout("%s %p state = %lu sk_state = %u\n", __func__
,
434 con
, con
->state
, sk
->sk_state
);
436 switch (sk
->sk_state
) {
438 dout("%s TCP_CLOSE\n", __func__
);
440 dout("%s TCP_CLOSE_WAIT\n", __func__
);
441 con_sock_state_closing(con
);
442 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
445 case TCP_ESTABLISHED
:
446 dout("%s TCP_ESTABLISHED\n", __func__
);
447 con_sock_state_connected(con
);
450 default: /* Everything else is uninteresting */
456 * set up socket callbacks
458 static void set_sock_callbacks(struct socket
*sock
,
459 struct ceph_connection
*con
)
461 struct sock
*sk
= sock
->sk
;
462 sk
->sk_user_data
= con
;
463 sk
->sk_data_ready
= ceph_sock_data_ready
;
464 sk
->sk_write_space
= ceph_sock_write_space
;
465 sk
->sk_state_change
= ceph_sock_state_change
;
474 * initiate connection to a remote socket.
476 static int ceph_tcp_connect(struct ceph_connection
*con
)
478 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
480 unsigned int noio_flag
;
485 /* sock_create_kern() allocates with GFP_KERNEL */
486 noio_flag
= memalloc_noio_save();
487 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
489 memalloc_noio_restore(noio_flag
);
492 sock
->sk
->sk_allocation
= GFP_NOFS
;
494 #ifdef CONFIG_LOCKDEP
495 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
498 set_sock_callbacks(sock
, con
);
500 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
502 con_sock_state_connecting(con
);
503 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
505 if (ret
== -EINPROGRESS
) {
506 dout("connect %s EINPROGRESS sk_state = %u\n",
507 ceph_pr_addr(&con
->peer_addr
.in_addr
),
509 } else if (ret
< 0) {
510 pr_err("connect %s error %d\n",
511 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
513 con
->error_msg
= "connect error";
521 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
523 struct kvec iov
= {buf
, len
};
524 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
527 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
533 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
534 int page_offset
, size_t length
)
539 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
543 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
550 * write something. @more is true if caller will be sending more data
553 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
554 size_t kvlen
, size_t len
, int more
)
556 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
560 msg
.msg_flags
|= MSG_MORE
;
562 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
564 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
570 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
571 int offset
, size_t size
, bool more
)
573 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
576 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
583 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
584 int offset
, size_t size
, bool more
)
589 /* sendpage cannot properly handle pages with page_count == 0,
590 * we need to fallback to sendmsg if that's the case */
591 if (page_count(page
) >= 1)
592 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
594 iov
.iov_base
= kmap(page
) + offset
;
596 ret
= ceph_tcp_sendmsg(sock
, &iov
, 1, size
, more
);
603 * Shutdown/close the socket for the given connection.
605 static int con_close_socket(struct ceph_connection
*con
)
609 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
611 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
612 sock_release(con
->sock
);
617 * Forcibly clear the SOCK_CLOSED flag. It gets set
618 * independent of the connection mutex, and we could have
619 * received a socket close event before we had the chance to
620 * shut the socket down.
622 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
624 con_sock_state_closed(con
);
629 * Reset a connection. Discard all incoming and outgoing messages
630 * and clear *_seq state.
632 static void ceph_msg_remove(struct ceph_msg
*msg
)
634 list_del_init(&msg
->list_head
);
635 BUG_ON(msg
->con
== NULL
);
636 msg
->con
->ops
->put(msg
->con
);
641 static void ceph_msg_remove_list(struct list_head
*head
)
643 while (!list_empty(head
)) {
644 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
646 ceph_msg_remove(msg
);
650 static void reset_connection(struct ceph_connection
*con
)
652 /* reset connection, out_queue, msg_ and connect_seq */
653 /* discard existing out_queue and msg_seq */
654 dout("reset_connection %p\n", con
);
655 ceph_msg_remove_list(&con
->out_queue
);
656 ceph_msg_remove_list(&con
->out_sent
);
659 BUG_ON(con
->in_msg
->con
!= con
);
660 con
->in_msg
->con
= NULL
;
661 ceph_msg_put(con
->in_msg
);
666 con
->connect_seq
= 0;
669 ceph_msg_put(con
->out_msg
);
673 con
->in_seq_acked
= 0;
677 * mark a peer down. drop any open connections.
679 void ceph_con_close(struct ceph_connection
*con
)
681 mutex_lock(&con
->mutex
);
682 dout("con_close %p peer %s\n", con
,
683 ceph_pr_addr(&con
->peer_addr
.in_addr
));
684 con
->state
= CON_STATE_CLOSED
;
686 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
687 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
688 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
689 con_flag_clear(con
, CON_FLAG_BACKOFF
);
691 reset_connection(con
);
692 con
->peer_global_seq
= 0;
693 cancel_delayed_work(&con
->work
);
694 con_close_socket(con
);
695 mutex_unlock(&con
->mutex
);
697 EXPORT_SYMBOL(ceph_con_close
);
700 * Reopen a closed connection, with a new peer address.
702 void ceph_con_open(struct ceph_connection
*con
,
703 __u8 entity_type
, __u64 entity_num
,
704 struct ceph_entity_addr
*addr
)
706 mutex_lock(&con
->mutex
);
707 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
709 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
710 con
->state
= CON_STATE_PREOPEN
;
712 con
->peer_name
.type
= (__u8
) entity_type
;
713 con
->peer_name
.num
= cpu_to_le64(entity_num
);
715 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
716 con
->delay
= 0; /* reset backoff memory */
717 mutex_unlock(&con
->mutex
);
720 EXPORT_SYMBOL(ceph_con_open
);
723 * return true if this connection ever successfully opened
725 bool ceph_con_opened(struct ceph_connection
*con
)
727 return con
->connect_seq
> 0;
731 * initialize a new connection.
733 void ceph_con_init(struct ceph_connection
*con
, void *private,
734 const struct ceph_connection_operations
*ops
,
735 struct ceph_messenger
*msgr
)
737 dout("con_init %p\n", con
);
738 memset(con
, 0, sizeof(*con
));
739 con
->private = private;
743 con_sock_state_init(con
);
745 mutex_init(&con
->mutex
);
746 INIT_LIST_HEAD(&con
->out_queue
);
747 INIT_LIST_HEAD(&con
->out_sent
);
748 INIT_DELAYED_WORK(&con
->work
, con_work
);
750 con
->state
= CON_STATE_CLOSED
;
752 EXPORT_SYMBOL(ceph_con_init
);
756 * We maintain a global counter to order connection attempts. Get
757 * a unique seq greater than @gt.
759 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
763 spin_lock(&msgr
->global_seq_lock
);
764 if (msgr
->global_seq
< gt
)
765 msgr
->global_seq
= gt
;
766 ret
= ++msgr
->global_seq
;
767 spin_unlock(&msgr
->global_seq_lock
);
771 static void con_out_kvec_reset(struct ceph_connection
*con
)
773 con
->out_kvec_left
= 0;
774 con
->out_kvec_bytes
= 0;
775 con
->out_kvec_cur
= &con
->out_kvec
[0];
778 static void con_out_kvec_add(struct ceph_connection
*con
,
779 size_t size
, void *data
)
783 index
= con
->out_kvec_left
;
784 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
786 con
->out_kvec
[index
].iov_len
= size
;
787 con
->out_kvec
[index
].iov_base
= data
;
788 con
->out_kvec_left
++;
789 con
->out_kvec_bytes
+= size
;
795 * For a bio data item, a piece is whatever remains of the next
796 * entry in the current bio iovec, or the first entry in the next
799 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
802 struct ceph_msg_data
*data
= cursor
->data
;
805 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
810 cursor
->resid
= min(length
, data
->bio_length
);
812 cursor
->bvec_iter
= bio
->bi_iter
;
814 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
817 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
821 struct ceph_msg_data
*data
= cursor
->data
;
823 struct bio_vec bio_vec
;
825 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
830 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
832 *page_offset
= (size_t) bio_vec
.bv_offset
;
833 BUG_ON(*page_offset
>= PAGE_SIZE
);
834 if (cursor
->last_piece
) /* pagelist offset is always 0 */
835 *length
= cursor
->resid
;
837 *length
= (size_t) bio_vec
.bv_len
;
838 BUG_ON(*length
> cursor
->resid
);
839 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
841 return bio_vec
.bv_page
;
844 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
848 struct bio_vec bio_vec
;
850 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
855 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
857 /* Advance the cursor offset */
859 BUG_ON(cursor
->resid
< bytes
);
860 cursor
->resid
-= bytes
;
862 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
864 if (bytes
< bio_vec
.bv_len
)
865 return false; /* more bytes to process in this segment */
867 /* Move on to the next segment, and possibly the next bio */
869 if (!cursor
->bvec_iter
.bi_size
) {
873 cursor
->bvec_iter
= bio
->bi_iter
;
875 memset(&cursor
->bvec_iter
, 0,
876 sizeof(cursor
->bvec_iter
));
879 if (!cursor
->last_piece
) {
880 BUG_ON(!cursor
->resid
);
882 /* A short read is OK, so use <= rather than == */
883 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
884 cursor
->last_piece
= true;
889 #endif /* CONFIG_BLOCK */
892 * For a page array, a piece comes from the first page in the array
893 * that has not already been fully consumed.
895 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
898 struct ceph_msg_data
*data
= cursor
->data
;
901 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
903 BUG_ON(!data
->pages
);
904 BUG_ON(!data
->length
);
906 cursor
->resid
= min(length
, data
->length
);
907 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
908 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
909 cursor
->page_index
= 0;
910 BUG_ON(page_count
> (int)USHRT_MAX
);
911 cursor
->page_count
= (unsigned short)page_count
;
912 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
913 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
917 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
918 size_t *page_offset
, size_t *length
)
920 struct ceph_msg_data
*data
= cursor
->data
;
922 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
924 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
925 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
927 *page_offset
= cursor
->page_offset
;
928 if (cursor
->last_piece
)
929 *length
= cursor
->resid
;
931 *length
= PAGE_SIZE
- *page_offset
;
933 return data
->pages
[cursor
->page_index
];
936 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
939 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
941 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
943 /* Advance the cursor page offset */
945 cursor
->resid
-= bytes
;
946 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
947 if (!bytes
|| cursor
->page_offset
)
948 return false; /* more bytes to process in the current page */
951 return false; /* no more data */
953 /* Move on to the next page; offset is already at 0 */
955 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
956 cursor
->page_index
++;
957 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
963 * For a pagelist, a piece is whatever remains to be consumed in the
964 * first page in the list, or the front of the next page.
967 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
970 struct ceph_msg_data
*data
= cursor
->data
;
971 struct ceph_pagelist
*pagelist
;
974 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
976 pagelist
= data
->pagelist
;
980 return; /* pagelist can be assigned but empty */
982 BUG_ON(list_empty(&pagelist
->head
));
983 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
985 cursor
->resid
= min(length
, pagelist
->length
);
988 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
992 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
993 size_t *page_offset
, size_t *length
)
995 struct ceph_msg_data
*data
= cursor
->data
;
996 struct ceph_pagelist
*pagelist
;
998 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1000 pagelist
= data
->pagelist
;
1003 BUG_ON(!cursor
->page
);
1004 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1006 /* offset of first page in pagelist is always 0 */
1007 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1008 if (cursor
->last_piece
)
1009 *length
= cursor
->resid
;
1011 *length
= PAGE_SIZE
- *page_offset
;
1013 return cursor
->page
;
1016 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1019 struct ceph_msg_data
*data
= cursor
->data
;
1020 struct ceph_pagelist
*pagelist
;
1022 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1024 pagelist
= data
->pagelist
;
1027 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1028 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1030 /* Advance the cursor offset */
1032 cursor
->resid
-= bytes
;
1033 cursor
->offset
+= bytes
;
1034 /* offset of first page in pagelist is always 0 */
1035 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1036 return false; /* more bytes to process in the current page */
1039 return false; /* no more data */
1041 /* Move on to the next page */
1043 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1044 cursor
->page
= list_entry_next(cursor
->page
, lru
);
1045 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1051 * Message data is handled (sent or received) in pieces, where each
1052 * piece resides on a single page. The network layer might not
1053 * consume an entire piece at once. A data item's cursor keeps
1054 * track of which piece is next to process and how much remains to
1055 * be processed in that piece. It also tracks whether the current
1056 * piece is the last one in the data item.
1058 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1060 size_t length
= cursor
->total_resid
;
1062 switch (cursor
->data
->type
) {
1063 case CEPH_MSG_DATA_PAGELIST
:
1064 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1066 case CEPH_MSG_DATA_PAGES
:
1067 ceph_msg_data_pages_cursor_init(cursor
, length
);
1070 case CEPH_MSG_DATA_BIO
:
1071 ceph_msg_data_bio_cursor_init(cursor
, length
);
1073 #endif /* CONFIG_BLOCK */
1074 case CEPH_MSG_DATA_NONE
:
1079 cursor
->need_crc
= true;
1082 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1084 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1085 struct ceph_msg_data
*data
;
1088 BUG_ON(length
> msg
->data_length
);
1089 BUG_ON(list_empty(&msg
->data
));
1091 cursor
->data_head
= &msg
->data
;
1092 cursor
->total_resid
= length
;
1093 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1094 cursor
->data
= data
;
1096 __ceph_msg_data_cursor_init(cursor
);
1100 * Return the page containing the next piece to process for a given
1101 * data item, and supply the page offset and length of that piece.
1102 * Indicate whether this is the last piece in this data item.
1104 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1105 size_t *page_offset
, size_t *length
,
1110 switch (cursor
->data
->type
) {
1111 case CEPH_MSG_DATA_PAGELIST
:
1112 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1114 case CEPH_MSG_DATA_PAGES
:
1115 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1118 case CEPH_MSG_DATA_BIO
:
1119 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1121 #endif /* CONFIG_BLOCK */
1122 case CEPH_MSG_DATA_NONE
:
1128 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1131 *last_piece
= cursor
->last_piece
;
1137 * Returns true if the result moves the cursor on to the next piece
1140 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1145 BUG_ON(bytes
> cursor
->resid
);
1146 switch (cursor
->data
->type
) {
1147 case CEPH_MSG_DATA_PAGELIST
:
1148 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1150 case CEPH_MSG_DATA_PAGES
:
1151 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1154 case CEPH_MSG_DATA_BIO
:
1155 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1157 #endif /* CONFIG_BLOCK */
1158 case CEPH_MSG_DATA_NONE
:
1163 cursor
->total_resid
-= bytes
;
1165 if (!cursor
->resid
&& cursor
->total_resid
) {
1166 WARN_ON(!cursor
->last_piece
);
1167 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1168 cursor
->data
= list_entry_next(cursor
->data
, links
);
1169 __ceph_msg_data_cursor_init(cursor
);
1172 cursor
->need_crc
= new_piece
;
1177 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1182 /* Initialize data cursor */
1184 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1188 * Prepare footer for currently outgoing message, and finish things
1189 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1191 static void prepare_write_message_footer(struct ceph_connection
*con
)
1193 struct ceph_msg
*m
= con
->out_msg
;
1194 int v
= con
->out_kvec_left
;
1196 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1198 dout("prepare_write_message_footer %p\n", con
);
1199 con
->out_kvec_is_msg
= true;
1200 con
->out_kvec
[v
].iov_base
= &m
->footer
;
1201 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
1202 con
->out_kvec_bytes
+= sizeof(m
->footer
);
1203 con
->out_kvec_left
++;
1204 con
->out_more
= m
->more_to_follow
;
1205 con
->out_msg_done
= true;
1209 * Prepare headers for the next outgoing message.
1211 static void prepare_write_message(struct ceph_connection
*con
)
1216 con_out_kvec_reset(con
);
1217 con
->out_kvec_is_msg
= true;
1218 con
->out_msg_done
= false;
1220 /* Sneak an ack in there first? If we can get it into the same
1221 * TCP packet that's a good thing. */
1222 if (con
->in_seq
> con
->in_seq_acked
) {
1223 con
->in_seq_acked
= con
->in_seq
;
1224 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1225 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1226 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1227 &con
->out_temp_ack
);
1230 BUG_ON(list_empty(&con
->out_queue
));
1231 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1233 BUG_ON(m
->con
!= con
);
1235 /* put message on sent list */
1237 list_move_tail(&m
->list_head
, &con
->out_sent
);
1240 * only assign outgoing seq # if we haven't sent this message
1241 * yet. if it is requeued, resend with it's original seq.
1243 if (m
->needs_out_seq
) {
1244 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1245 m
->needs_out_seq
= false;
1247 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1249 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1250 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1251 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1253 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1255 /* tag + hdr + front + middle */
1256 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1257 con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
1258 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1261 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1262 m
->middle
->vec
.iov_base
);
1264 /* fill in crc (except data pages), footer */
1265 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1266 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1267 con
->out_msg
->footer
.flags
= 0;
1269 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1270 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1272 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1273 m
->middle
->vec
.iov_len
);
1274 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1276 con
->out_msg
->footer
.middle_crc
= 0;
1277 dout("%s front_crc %u middle_crc %u\n", __func__
,
1278 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1279 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1281 /* is there a data payload? */
1282 con
->out_msg
->footer
.data_crc
= 0;
1283 if (m
->data_length
) {
1284 prepare_message_data(con
->out_msg
, m
->data_length
);
1285 con
->out_more
= 1; /* data + footer will follow */
1287 /* no, queue up footer too and be done */
1288 prepare_write_message_footer(con
);
1291 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1297 static void prepare_write_ack(struct ceph_connection
*con
)
1299 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1300 con
->in_seq_acked
, con
->in_seq
);
1301 con
->in_seq_acked
= con
->in_seq
;
1303 con_out_kvec_reset(con
);
1305 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1307 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1308 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1309 &con
->out_temp_ack
);
1311 con
->out_more
= 1; /* more will follow.. eventually.. */
1312 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1316 * Prepare to share the seq during handshake
1318 static void prepare_write_seq(struct ceph_connection
*con
)
1320 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1321 con
->in_seq_acked
, con
->in_seq
);
1322 con
->in_seq_acked
= con
->in_seq
;
1324 con_out_kvec_reset(con
);
1326 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1327 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1328 &con
->out_temp_ack
);
1330 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1334 * Prepare to write keepalive byte.
1336 static void prepare_write_keepalive(struct ceph_connection
*con
)
1338 dout("prepare_write_keepalive %p\n", con
);
1339 con_out_kvec_reset(con
);
1340 con_out_kvec_add(con
, sizeof (tag_keepalive
), &tag_keepalive
);
1341 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1345 * Connection negotiation.
1348 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1351 struct ceph_auth_handshake
*auth
;
1353 if (!con
->ops
->get_authorizer
) {
1354 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1355 con
->out_connect
.authorizer_len
= 0;
1359 /* Can't hold the mutex while getting authorizer */
1360 mutex_unlock(&con
->mutex
);
1361 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1362 mutex_lock(&con
->mutex
);
1366 if (con
->state
!= CON_STATE_NEGOTIATING
)
1367 return ERR_PTR(-EAGAIN
);
1369 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1370 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1375 * We connected to a peer and are saying hello.
1377 static void prepare_write_banner(struct ceph_connection
*con
)
1379 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1380 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1381 &con
->msgr
->my_enc_addr
);
1384 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1387 static int prepare_write_connect(struct ceph_connection
*con
)
1389 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1392 struct ceph_auth_handshake
*auth
;
1394 switch (con
->peer_name
.type
) {
1395 case CEPH_ENTITY_TYPE_MON
:
1396 proto
= CEPH_MONC_PROTOCOL
;
1398 case CEPH_ENTITY_TYPE_OSD
:
1399 proto
= CEPH_OSDC_PROTOCOL
;
1401 case CEPH_ENTITY_TYPE_MDS
:
1402 proto
= CEPH_MDSC_PROTOCOL
;
1408 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1409 con
->connect_seq
, global_seq
, proto
);
1411 con
->out_connect
.features
= cpu_to_le64(con
->msgr
->supported_features
);
1412 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1413 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1414 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1415 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1416 con
->out_connect
.flags
= 0;
1418 auth_proto
= CEPH_AUTH_UNKNOWN
;
1419 auth
= get_connect_authorizer(con
, &auth_proto
);
1421 return PTR_ERR(auth
);
1423 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1424 con
->out_connect
.authorizer_len
= auth
?
1425 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1427 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1429 if (auth
&& auth
->authorizer_buf_len
)
1430 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1431 auth
->authorizer_buf
);
1434 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1440 * write as much of pending kvecs to the socket as we can.
1442 * 0 -> socket full, but more to do
1445 static int write_partial_kvec(struct ceph_connection
*con
)
1449 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1450 while (con
->out_kvec_bytes
> 0) {
1451 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1452 con
->out_kvec_left
, con
->out_kvec_bytes
,
1456 con
->out_kvec_bytes
-= ret
;
1457 if (con
->out_kvec_bytes
== 0)
1460 /* account for full iov entries consumed */
1461 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1462 BUG_ON(!con
->out_kvec_left
);
1463 ret
-= con
->out_kvec_cur
->iov_len
;
1464 con
->out_kvec_cur
++;
1465 con
->out_kvec_left
--;
1467 /* and for a partially-consumed entry */
1469 con
->out_kvec_cur
->iov_len
-= ret
;
1470 con
->out_kvec_cur
->iov_base
+= ret
;
1473 con
->out_kvec_left
= 0;
1474 con
->out_kvec_is_msg
= false;
1477 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1478 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1479 return ret
; /* done! */
1482 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1483 unsigned int page_offset
,
1484 unsigned int length
)
1489 BUG_ON(kaddr
== NULL
);
1490 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1496 * Write as much message data payload as we can. If we finish, queue
1498 * 1 -> done, footer is now queued in out_kvec[].
1499 * 0 -> socket full, but more to do
1502 static int write_partial_message_data(struct ceph_connection
*con
)
1504 struct ceph_msg
*msg
= con
->out_msg
;
1505 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1506 bool do_datacrc
= !con
->msgr
->nocrc
;
1509 dout("%s %p msg %p\n", __func__
, con
, msg
);
1511 if (list_empty(&msg
->data
))
1515 * Iterate through each page that contains data to be
1516 * written, and send as much as possible for each.
1518 * If we are calculating the data crc (the default), we will
1519 * need to map the page. If we have no pages, they have
1520 * been revoked, so use the zero page.
1522 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1523 while (cursor
->resid
) {
1531 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
1533 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1534 length
, last_piece
);
1537 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1541 if (do_datacrc
&& cursor
->need_crc
)
1542 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1543 need_crc
= ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
1546 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1548 /* prepare and queue up footer, too */
1550 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1552 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1553 con_out_kvec_reset(con
);
1554 prepare_write_message_footer(con
);
1556 return 1; /* must return > 0 to indicate success */
1562 static int write_partial_skip(struct ceph_connection
*con
)
1566 while (con
->out_skip
> 0) {
1567 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1569 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1572 con
->out_skip
-= ret
;
1580 * Prepare to read connection handshake, or an ack.
1582 static void prepare_read_banner(struct ceph_connection
*con
)
1584 dout("prepare_read_banner %p\n", con
);
1585 con
->in_base_pos
= 0;
1588 static void prepare_read_connect(struct ceph_connection
*con
)
1590 dout("prepare_read_connect %p\n", con
);
1591 con
->in_base_pos
= 0;
1594 static void prepare_read_ack(struct ceph_connection
*con
)
1596 dout("prepare_read_ack %p\n", con
);
1597 con
->in_base_pos
= 0;
1600 static void prepare_read_seq(struct ceph_connection
*con
)
1602 dout("prepare_read_seq %p\n", con
);
1603 con
->in_base_pos
= 0;
1604 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1607 static void prepare_read_tag(struct ceph_connection
*con
)
1609 dout("prepare_read_tag %p\n", con
);
1610 con
->in_base_pos
= 0;
1611 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1615 * Prepare to read a message.
1617 static int prepare_read_message(struct ceph_connection
*con
)
1619 dout("prepare_read_message %p\n", con
);
1620 BUG_ON(con
->in_msg
!= NULL
);
1621 con
->in_base_pos
= 0;
1622 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1627 static int read_partial(struct ceph_connection
*con
,
1628 int end
, int size
, void *object
)
1630 while (con
->in_base_pos
< end
) {
1631 int left
= end
- con
->in_base_pos
;
1632 int have
= size
- left
;
1633 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1636 con
->in_base_pos
+= ret
;
1643 * Read all or part of the connect-side handshake on a new connection
1645 static int read_partial_banner(struct ceph_connection
*con
)
1651 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1654 size
= strlen(CEPH_BANNER
);
1656 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1660 size
= sizeof (con
->actual_peer_addr
);
1662 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1666 size
= sizeof (con
->peer_addr_for_me
);
1668 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1676 static int read_partial_connect(struct ceph_connection
*con
)
1682 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1684 size
= sizeof (con
->in_reply
);
1686 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1690 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1692 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1696 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1697 con
, (int)con
->in_reply
.tag
,
1698 le32_to_cpu(con
->in_reply
.connect_seq
),
1699 le32_to_cpu(con
->in_reply
.global_seq
));
1706 * Verify the hello banner looks okay.
1708 static int verify_hello(struct ceph_connection
*con
)
1710 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1711 pr_err("connect to %s got bad banner\n",
1712 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1713 con
->error_msg
= "protocol error, bad banner";
1719 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1721 switch (ss
->ss_family
) {
1723 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1726 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1727 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1728 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1729 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1734 static int addr_port(struct sockaddr_storage
*ss
)
1736 switch (ss
->ss_family
) {
1738 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1740 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1745 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1747 switch (ss
->ss_family
) {
1749 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1752 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1758 * Unlike other *_pton function semantics, zero indicates success.
1760 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1761 char delim
, const char **ipend
)
1763 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1764 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1766 memset(ss
, 0, sizeof(*ss
));
1768 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1769 ss
->ss_family
= AF_INET
;
1773 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1774 ss
->ss_family
= AF_INET6
;
1782 * Extract hostname string and resolve using kernel DNS facility.
1784 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1785 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1786 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1788 const char *end
, *delim_p
;
1789 char *colon_p
, *ip_addr
= NULL
;
1793 * The end of the hostname occurs immediately preceding the delimiter or
1794 * the port marker (':') where the delimiter takes precedence.
1796 delim_p
= memchr(name
, delim
, namelen
);
1797 colon_p
= memchr(name
, ':', namelen
);
1799 if (delim_p
&& colon_p
)
1800 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1801 else if (!delim_p
&& colon_p
)
1805 if (!end
) /* case: hostname:/ */
1806 end
= name
+ namelen
;
1812 /* do dns_resolve upcall */
1813 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1815 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1823 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1824 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1829 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1830 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1837 * Parse a server name (IP or hostname). If a valid IP address is not found
1838 * then try to extract a hostname to resolve using userspace DNS upcall.
1840 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1841 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1845 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1847 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1853 * Parse an ip[:port] list into an addr array. Use the default
1854 * monitor port if a port isn't specified.
1856 int ceph_parse_ips(const char *c
, const char *end
,
1857 struct ceph_entity_addr
*addr
,
1858 int max_count
, int *count
)
1860 int i
, ret
= -EINVAL
;
1863 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1864 for (i
= 0; i
< max_count
; i
++) {
1866 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1875 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1884 dout("missing matching ']'\n");
1891 if (p
< end
&& *p
== ':') {
1894 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1895 port
= (port
* 10) + (*p
- '0');
1899 port
= CEPH_MON_PORT
;
1900 else if (port
> 65535)
1903 port
= CEPH_MON_PORT
;
1906 addr_set_port(ss
, port
);
1908 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1925 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1928 EXPORT_SYMBOL(ceph_parse_ips
);
1930 static int process_banner(struct ceph_connection
*con
)
1932 dout("process_banner on %p\n", con
);
1934 if (verify_hello(con
) < 0)
1937 ceph_decode_addr(&con
->actual_peer_addr
);
1938 ceph_decode_addr(&con
->peer_addr_for_me
);
1941 * Make sure the other end is who we wanted. note that the other
1942 * end may not yet know their ip address, so if it's 0.0.0.0, give
1943 * them the benefit of the doubt.
1945 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1946 sizeof(con
->peer_addr
)) != 0 &&
1947 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1948 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1949 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1950 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1951 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1952 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1953 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1954 con
->error_msg
= "wrong peer at address";
1959 * did we learn our address?
1961 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1962 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1964 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1965 &con
->peer_addr_for_me
.in_addr
,
1966 sizeof(con
->peer_addr_for_me
.in_addr
));
1967 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1968 encode_my_addr(con
->msgr
);
1969 dout("process_banner learned my addr is %s\n",
1970 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1976 static int process_connect(struct ceph_connection
*con
)
1978 u64 sup_feat
= con
->msgr
->supported_features
;
1979 u64 req_feat
= con
->msgr
->required_features
;
1980 u64 server_feat
= ceph_sanitize_features(
1981 le64_to_cpu(con
->in_reply
.features
));
1984 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1986 if (con
->auth_reply_buf
) {
1988 * Any connection that defines ->get_authorizer()
1989 * should also define ->verify_authorizer_reply().
1990 * See get_connect_authorizer().
1992 ret
= con
->ops
->verify_authorizer_reply(con
, 0);
1994 con
->error_msg
= "bad authorize reply";
1999 switch (con
->in_reply
.tag
) {
2000 case CEPH_MSGR_TAG_FEATURES
:
2001 pr_err("%s%lld %s feature set mismatch,"
2002 " my %llx < server's %llx, missing %llx\n",
2003 ENTITY_NAME(con
->peer_name
),
2004 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2005 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
2006 con
->error_msg
= "missing required protocol features";
2007 reset_connection(con
);
2010 case CEPH_MSGR_TAG_BADPROTOVER
:
2011 pr_err("%s%lld %s protocol version mismatch,"
2012 " my %d != server's %d\n",
2013 ENTITY_NAME(con
->peer_name
),
2014 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2015 le32_to_cpu(con
->out_connect
.protocol_version
),
2016 le32_to_cpu(con
->in_reply
.protocol_version
));
2017 con
->error_msg
= "protocol version mismatch";
2018 reset_connection(con
);
2021 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2023 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2025 if (con
->auth_retry
== 2) {
2026 con
->error_msg
= "connect authorization failure";
2029 con_out_kvec_reset(con
);
2030 ret
= prepare_write_connect(con
);
2033 prepare_read_connect(con
);
2036 case CEPH_MSGR_TAG_RESETSESSION
:
2038 * If we connected with a large connect_seq but the peer
2039 * has no record of a session with us (no connection, or
2040 * connect_seq == 0), they will send RESETSESION to indicate
2041 * that they must have reset their session, and may have
2044 dout("process_connect got RESET peer seq %u\n",
2045 le32_to_cpu(con
->in_reply
.connect_seq
));
2046 pr_err("%s%lld %s connection reset\n",
2047 ENTITY_NAME(con
->peer_name
),
2048 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2049 reset_connection(con
);
2050 con_out_kvec_reset(con
);
2051 ret
= prepare_write_connect(con
);
2054 prepare_read_connect(con
);
2056 /* Tell ceph about it. */
2057 mutex_unlock(&con
->mutex
);
2058 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2059 if (con
->ops
->peer_reset
)
2060 con
->ops
->peer_reset(con
);
2061 mutex_lock(&con
->mutex
);
2062 if (con
->state
!= CON_STATE_NEGOTIATING
)
2066 case CEPH_MSGR_TAG_RETRY_SESSION
:
2068 * If we sent a smaller connect_seq than the peer has, try
2069 * again with a larger value.
2071 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2072 le32_to_cpu(con
->out_connect
.connect_seq
),
2073 le32_to_cpu(con
->in_reply
.connect_seq
));
2074 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2075 con_out_kvec_reset(con
);
2076 ret
= prepare_write_connect(con
);
2079 prepare_read_connect(con
);
2082 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2084 * If we sent a smaller global_seq than the peer has, try
2085 * again with a larger value.
2087 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2088 con
->peer_global_seq
,
2089 le32_to_cpu(con
->in_reply
.global_seq
));
2090 get_global_seq(con
->msgr
,
2091 le32_to_cpu(con
->in_reply
.global_seq
));
2092 con_out_kvec_reset(con
);
2093 ret
= prepare_write_connect(con
);
2096 prepare_read_connect(con
);
2099 case CEPH_MSGR_TAG_SEQ
:
2100 case CEPH_MSGR_TAG_READY
:
2101 if (req_feat
& ~server_feat
) {
2102 pr_err("%s%lld %s protocol feature mismatch,"
2103 " my required %llx > server's %llx, need %llx\n",
2104 ENTITY_NAME(con
->peer_name
),
2105 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2106 req_feat
, server_feat
, req_feat
& ~server_feat
);
2107 con
->error_msg
= "missing required protocol features";
2108 reset_connection(con
);
2112 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2113 con
->state
= CON_STATE_OPEN
;
2114 con
->auth_retry
= 0; /* we authenticated; clear flag */
2115 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2117 con
->peer_features
= server_feat
;
2118 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2119 con
->peer_global_seq
,
2120 le32_to_cpu(con
->in_reply
.connect_seq
),
2122 WARN_ON(con
->connect_seq
!=
2123 le32_to_cpu(con
->in_reply
.connect_seq
));
2125 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2126 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2128 con
->delay
= 0; /* reset backoff memory */
2130 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2131 prepare_write_seq(con
);
2132 prepare_read_seq(con
);
2134 prepare_read_tag(con
);
2138 case CEPH_MSGR_TAG_WAIT
:
2140 * If there is a connection race (we are opening
2141 * connections to each other), one of us may just have
2142 * to WAIT. This shouldn't happen if we are the
2145 pr_err("process_connect got WAIT as client\n");
2146 con
->error_msg
= "protocol error, got WAIT as client";
2150 pr_err("connect protocol error, will retry\n");
2151 con
->error_msg
= "protocol error, garbage tag during connect";
2159 * read (part of) an ack
2161 static int read_partial_ack(struct ceph_connection
*con
)
2163 int size
= sizeof (con
->in_temp_ack
);
2166 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2170 * We can finally discard anything that's been acked.
2172 static void process_ack(struct ceph_connection
*con
)
2175 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2178 while (!list_empty(&con
->out_sent
)) {
2179 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2181 seq
= le64_to_cpu(m
->hdr
.seq
);
2184 dout("got ack for seq %llu type %d at %p\n", seq
,
2185 le16_to_cpu(m
->hdr
.type
), m
);
2186 m
->ack_stamp
= jiffies
;
2189 prepare_read_tag(con
);
2193 static int read_partial_message_section(struct ceph_connection
*con
,
2194 struct kvec
*section
,
2195 unsigned int sec_len
, u32
*crc
)
2201 while (section
->iov_len
< sec_len
) {
2202 BUG_ON(section
->iov_base
== NULL
);
2203 left
= sec_len
- section
->iov_len
;
2204 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2205 section
->iov_len
, left
);
2208 section
->iov_len
+= ret
;
2210 if (section
->iov_len
== sec_len
)
2211 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2216 static int read_partial_msg_data(struct ceph_connection
*con
)
2218 struct ceph_msg
*msg
= con
->in_msg
;
2219 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2220 const bool do_datacrc
= !con
->msgr
->nocrc
;
2228 if (list_empty(&msg
->data
))
2232 crc
= con
->in_data_crc
;
2233 while (cursor
->resid
) {
2234 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
2236 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2239 con
->in_data_crc
= crc
;
2245 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2246 (void) ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
2249 con
->in_data_crc
= crc
;
2251 return 1; /* must return > 0 to indicate success */
2255 * read (part of) a message.
2257 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2259 static int read_partial_message(struct ceph_connection
*con
)
2261 struct ceph_msg
*m
= con
->in_msg
;
2265 unsigned int front_len
, middle_len
, data_len
;
2266 bool do_datacrc
= !con
->msgr
->nocrc
;
2270 dout("read_partial_message con %p msg %p\n", con
, m
);
2273 size
= sizeof (con
->in_hdr
);
2275 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2279 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2280 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2281 pr_err("read_partial_message bad hdr "
2282 " crc %u != expected %u\n",
2283 crc
, con
->in_hdr
.crc
);
2287 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2288 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2290 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2291 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2293 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2294 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2298 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2299 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2300 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2301 ENTITY_NAME(con
->peer_name
),
2302 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2303 seq
, con
->in_seq
+ 1);
2304 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2306 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2308 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2309 pr_err("read_partial_message bad seq %lld expected %lld\n",
2310 seq
, con
->in_seq
+ 1);
2311 con
->error_msg
= "bad message sequence # for incoming message";
2315 /* allocate message? */
2319 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2320 front_len
, data_len
);
2321 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2325 BUG_ON(!con
->in_msg
^ skip
);
2326 if (con
->in_msg
&& data_len
> con
->in_msg
->data_length
) {
2327 pr_warning("%s skipping long message (%u > %zd)\n",
2328 __func__
, data_len
, con
->in_msg
->data_length
);
2329 ceph_msg_put(con
->in_msg
);
2334 /* skip this message */
2335 dout("alloc_msg said skip message\n");
2336 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2338 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2343 BUG_ON(!con
->in_msg
);
2344 BUG_ON(con
->in_msg
->con
!= con
);
2346 m
->front
.iov_len
= 0; /* haven't read it yet */
2348 m
->middle
->vec
.iov_len
= 0;
2350 /* prepare for data payload, if any */
2353 prepare_message_data(con
->in_msg
, data_len
);
2357 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2358 &con
->in_front_crc
);
2364 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2366 &con
->in_middle_crc
);
2373 ret
= read_partial_msg_data(con
);
2379 size
= sizeof (m
->footer
);
2381 ret
= read_partial(con
, end
, size
, &m
->footer
);
2385 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2386 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2387 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2390 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2391 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2392 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2395 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2396 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2397 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2401 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2402 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2403 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2404 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2408 return 1; /* done! */
2412 * Process message. This happens in the worker thread. The callback should
2413 * be careful not to do anything that waits on other incoming messages or it
2416 static void process_message(struct ceph_connection
*con
)
2418 struct ceph_msg
*msg
;
2420 BUG_ON(con
->in_msg
->con
!= con
);
2421 con
->in_msg
->con
= NULL
;
2426 /* if first message, set peer_name */
2427 if (con
->peer_name
.type
== 0)
2428 con
->peer_name
= msg
->hdr
.src
;
2431 mutex_unlock(&con
->mutex
);
2433 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2434 msg
, le64_to_cpu(msg
->hdr
.seq
),
2435 ENTITY_NAME(msg
->hdr
.src
),
2436 le16_to_cpu(msg
->hdr
.type
),
2437 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2438 le32_to_cpu(msg
->hdr
.front_len
),
2439 le32_to_cpu(msg
->hdr
.data_len
),
2440 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2441 con
->ops
->dispatch(con
, msg
);
2443 mutex_lock(&con
->mutex
);
2448 * Write something to the socket. Called in a worker thread when the
2449 * socket appears to be writeable and we have something ready to send.
2451 static int try_write(struct ceph_connection
*con
)
2455 dout("try_write start %p state %lu\n", con
, con
->state
);
2458 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2460 /* open the socket first? */
2461 if (con
->state
== CON_STATE_PREOPEN
) {
2463 con
->state
= CON_STATE_CONNECTING
;
2465 con_out_kvec_reset(con
);
2466 prepare_write_banner(con
);
2467 prepare_read_banner(con
);
2469 BUG_ON(con
->in_msg
);
2470 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2471 dout("try_write initiating connect on %p new state %lu\n",
2473 ret
= ceph_tcp_connect(con
);
2475 con
->error_msg
= "connect error";
2481 /* kvec data queued? */
2482 if (con
->out_skip
) {
2483 ret
= write_partial_skip(con
);
2487 if (con
->out_kvec_left
) {
2488 ret
= write_partial_kvec(con
);
2495 if (con
->out_msg_done
) {
2496 ceph_msg_put(con
->out_msg
);
2497 con
->out_msg
= NULL
; /* we're done with this one */
2501 ret
= write_partial_message_data(con
);
2503 goto more_kvec
; /* we need to send the footer, too! */
2507 dout("try_write write_partial_message_data err %d\n",
2514 if (con
->state
== CON_STATE_OPEN
) {
2515 /* is anything else pending? */
2516 if (!list_empty(&con
->out_queue
)) {
2517 prepare_write_message(con
);
2520 if (con
->in_seq
> con
->in_seq_acked
) {
2521 prepare_write_ack(con
);
2524 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2525 prepare_write_keepalive(con
);
2530 /* Nothing to do! */
2531 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2532 dout("try_write nothing else to write.\n");
2535 dout("try_write done on %p ret %d\n", con
, ret
);
2542 * Read what we can from the socket.
2544 static int try_read(struct ceph_connection
*con
)
2549 dout("try_read start on %p state %lu\n", con
, con
->state
);
2550 if (con
->state
!= CON_STATE_CONNECTING
&&
2551 con
->state
!= CON_STATE_NEGOTIATING
&&
2552 con
->state
!= CON_STATE_OPEN
)
2557 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2560 if (con
->state
== CON_STATE_CONNECTING
) {
2561 dout("try_read connecting\n");
2562 ret
= read_partial_banner(con
);
2565 ret
= process_banner(con
);
2569 con
->state
= CON_STATE_NEGOTIATING
;
2572 * Received banner is good, exchange connection info.
2573 * Do not reset out_kvec, as sending our banner raced
2574 * with receiving peer banner after connect completed.
2576 ret
= prepare_write_connect(con
);
2579 prepare_read_connect(con
);
2581 /* Send connection info before awaiting response */
2585 if (con
->state
== CON_STATE_NEGOTIATING
) {
2586 dout("try_read negotiating\n");
2587 ret
= read_partial_connect(con
);
2590 ret
= process_connect(con
);
2596 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2598 if (con
->in_base_pos
< 0) {
2600 * skipping + discarding content.
2602 * FIXME: there must be a better way to do this!
2604 static char buf
[SKIP_BUF_SIZE
];
2605 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2607 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2608 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2611 con
->in_base_pos
+= ret
;
2612 if (con
->in_base_pos
)
2615 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2619 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2622 dout("try_read got tag %d\n", (int)con
->in_tag
);
2623 switch (con
->in_tag
) {
2624 case CEPH_MSGR_TAG_MSG
:
2625 prepare_read_message(con
);
2627 case CEPH_MSGR_TAG_ACK
:
2628 prepare_read_ack(con
);
2630 case CEPH_MSGR_TAG_CLOSE
:
2631 con_close_socket(con
);
2632 con
->state
= CON_STATE_CLOSED
;
2638 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2639 ret
= read_partial_message(con
);
2643 con
->error_msg
= "bad crc";
2647 con
->error_msg
= "io error";
2652 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2654 process_message(con
);
2655 if (con
->state
== CON_STATE_OPEN
)
2656 prepare_read_tag(con
);
2659 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2660 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2662 * the final handshake seq exchange is semantically
2663 * equivalent to an ACK
2665 ret
= read_partial_ack(con
);
2673 dout("try_read done on %p ret %d\n", con
, ret
);
2677 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2678 con
->error_msg
= "protocol error, garbage tag";
2685 * Atomically queue work on a connection after the specified delay.
2686 * Bump @con reference to avoid races with connection teardown.
2687 * Returns 0 if work was queued, or an error code otherwise.
2689 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2691 if (!con
->ops
->get(con
)) {
2692 dout("%s %p ref count 0\n", __func__
, con
);
2697 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2698 dout("%s %p - already queued\n", __func__
, con
);
2704 dout("%s %p %lu\n", __func__
, con
, delay
);
2709 static void queue_con(struct ceph_connection
*con
)
2711 (void) queue_con_delay(con
, 0);
2714 static bool con_sock_closed(struct ceph_connection
*con
)
2716 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2720 case CON_STATE_ ## x: \
2721 con->error_msg = "socket closed (con state " #x ")"; \
2724 switch (con
->state
) {
2732 pr_warning("%s con %p unrecognized state %lu\n",
2733 __func__
, con
, con
->state
);
2734 con
->error_msg
= "unrecognized con state";
2743 static bool con_backoff(struct ceph_connection
*con
)
2747 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2750 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2752 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2754 BUG_ON(ret
== -ENOENT
);
2755 con_flag_set(con
, CON_FLAG_BACKOFF
);
2761 /* Finish fault handling; con->mutex must *not* be held here */
2763 static void con_fault_finish(struct ceph_connection
*con
)
2766 * in case we faulted due to authentication, invalidate our
2767 * current tickets so that we can get new ones.
2769 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2770 dout("calling invalidate_authorizer()\n");
2771 con
->ops
->invalidate_authorizer(con
);
2774 if (con
->ops
->fault
)
2775 con
->ops
->fault(con
);
2779 * Do some work on a connection. Drop a connection ref when we're done.
2781 static void con_work(struct work_struct
*work
)
2783 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2787 mutex_lock(&con
->mutex
);
2791 if ((fault
= con_sock_closed(con
))) {
2792 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2795 if (con_backoff(con
)) {
2796 dout("%s: con %p BACKOFF\n", __func__
, con
);
2799 if (con
->state
== CON_STATE_STANDBY
) {
2800 dout("%s: con %p STANDBY\n", __func__
, con
);
2803 if (con
->state
== CON_STATE_CLOSED
) {
2804 dout("%s: con %p CLOSED\n", __func__
, con
);
2808 if (con
->state
== CON_STATE_PREOPEN
) {
2809 dout("%s: con %p PREOPEN\n", __func__
, con
);
2813 ret
= try_read(con
);
2817 con
->error_msg
= "socket error on read";
2822 ret
= try_write(con
);
2826 con
->error_msg
= "socket error on write";
2830 break; /* If we make it to here, we're done */
2834 mutex_unlock(&con
->mutex
);
2837 con_fault_finish(con
);
2843 * Generic error/fault handler. A retry mechanism is used with
2844 * exponential backoff
2846 static void con_fault(struct ceph_connection
*con
)
2848 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2849 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2850 dout("fault %p state %lu to peer %s\n",
2851 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2853 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2854 con
->state
!= CON_STATE_NEGOTIATING
&&
2855 con
->state
!= CON_STATE_OPEN
);
2857 con_close_socket(con
);
2859 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2860 dout("fault on LOSSYTX channel, marking CLOSED\n");
2861 con
->state
= CON_STATE_CLOSED
;
2866 BUG_ON(con
->in_msg
->con
!= con
);
2867 con
->in_msg
->con
= NULL
;
2868 ceph_msg_put(con
->in_msg
);
2873 /* Requeue anything that hasn't been acked */
2874 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2876 /* If there are no messages queued or keepalive pending, place
2877 * the connection in a STANDBY state */
2878 if (list_empty(&con
->out_queue
) &&
2879 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2880 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2881 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2882 con
->state
= CON_STATE_STANDBY
;
2884 /* retry after a delay. */
2885 con
->state
= CON_STATE_PREOPEN
;
2886 if (con
->delay
== 0)
2887 con
->delay
= BASE_DELAY_INTERVAL
;
2888 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2890 con_flag_set(con
, CON_FLAG_BACKOFF
);
2898 * initialize a new messenger instance
2900 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2901 struct ceph_entity_addr
*myaddr
,
2902 u64 supported_features
,
2903 u64 required_features
,
2906 msgr
->supported_features
= supported_features
;
2907 msgr
->required_features
= required_features
;
2909 spin_lock_init(&msgr
->global_seq_lock
);
2912 msgr
->inst
.addr
= *myaddr
;
2914 /* select a random nonce */
2915 msgr
->inst
.addr
.type
= 0;
2916 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2917 encode_my_addr(msgr
);
2918 msgr
->nocrc
= nocrc
;
2920 atomic_set(&msgr
->stopping
, 0);
2922 dout("%s %p\n", __func__
, msgr
);
2924 EXPORT_SYMBOL(ceph_messenger_init
);
2926 static void clear_standby(struct ceph_connection
*con
)
2928 /* come back from STANDBY? */
2929 if (con
->state
== CON_STATE_STANDBY
) {
2930 dout("clear_standby %p and ++connect_seq\n", con
);
2931 con
->state
= CON_STATE_PREOPEN
;
2933 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
2934 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
2939 * Queue up an outgoing message on the given connection.
2941 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2944 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2945 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2946 msg
->needs_out_seq
= true;
2948 mutex_lock(&con
->mutex
);
2950 if (con
->state
== CON_STATE_CLOSED
) {
2951 dout("con_send %p closed, dropping %p\n", con
, msg
);
2953 mutex_unlock(&con
->mutex
);
2957 BUG_ON(msg
->con
!= NULL
);
2958 msg
->con
= con
->ops
->get(con
);
2959 BUG_ON(msg
->con
== NULL
);
2961 BUG_ON(!list_empty(&msg
->list_head
));
2962 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2963 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2964 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2965 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2966 le32_to_cpu(msg
->hdr
.front_len
),
2967 le32_to_cpu(msg
->hdr
.middle_len
),
2968 le32_to_cpu(msg
->hdr
.data_len
));
2971 mutex_unlock(&con
->mutex
);
2973 /* if there wasn't anything waiting to send before, queue
2975 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
2978 EXPORT_SYMBOL(ceph_con_send
);
2981 * Revoke a message that was previously queued for send
2983 void ceph_msg_revoke(struct ceph_msg
*msg
)
2985 struct ceph_connection
*con
= msg
->con
;
2988 return; /* Message not in our possession */
2990 mutex_lock(&con
->mutex
);
2991 if (!list_empty(&msg
->list_head
)) {
2992 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
2993 list_del_init(&msg
->list_head
);
2994 BUG_ON(msg
->con
== NULL
);
2995 msg
->con
->ops
->put(msg
->con
);
3001 if (con
->out_msg
== msg
) {
3002 dout("%s %p msg %p - was sending\n", __func__
, con
, msg
);
3003 con
->out_msg
= NULL
;
3004 if (con
->out_kvec_is_msg
) {
3005 con
->out_skip
= con
->out_kvec_bytes
;
3006 con
->out_kvec_is_msg
= false;
3012 mutex_unlock(&con
->mutex
);
3016 * Revoke a message that we may be reading data into
3018 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3020 struct ceph_connection
*con
;
3022 BUG_ON(msg
== NULL
);
3024 dout("%s msg %p null con\n", __func__
, msg
);
3026 return; /* Message not in our possession */
3030 mutex_lock(&con
->mutex
);
3031 if (con
->in_msg
== msg
) {
3032 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3033 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3034 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3036 /* skip rest of message */
3037 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3038 con
->in_base_pos
= con
->in_base_pos
-
3039 sizeof(struct ceph_msg_header
) -
3043 sizeof(struct ceph_msg_footer
);
3044 ceph_msg_put(con
->in_msg
);
3046 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3049 dout("%s %p in_msg %p msg %p no-op\n",
3050 __func__
, con
, con
->in_msg
, msg
);
3052 mutex_unlock(&con
->mutex
);
3056 * Queue a keepalive byte to ensure the tcp connection is alive.
3058 void ceph_con_keepalive(struct ceph_connection
*con
)
3060 dout("con_keepalive %p\n", con
);
3061 mutex_lock(&con
->mutex
);
3063 mutex_unlock(&con
->mutex
);
3064 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3065 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3068 EXPORT_SYMBOL(ceph_con_keepalive
);
3070 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3072 struct ceph_msg_data
*data
;
3074 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3077 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3082 INIT_LIST_HEAD(&data
->links
);
3087 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3092 WARN_ON(!list_empty(&data
->links
));
3093 if (data
->type
== CEPH_MSG_DATA_PAGELIST
) {
3094 ceph_pagelist_release(data
->pagelist
);
3095 kfree(data
->pagelist
);
3097 kmem_cache_free(ceph_msg_data_cache
, data
);
3100 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3101 size_t length
, size_t alignment
)
3103 struct ceph_msg_data
*data
;
3108 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3110 data
->pages
= pages
;
3111 data
->length
= length
;
3112 data
->alignment
= alignment
& ~PAGE_MASK
;
3114 list_add_tail(&data
->links
, &msg
->data
);
3115 msg
->data_length
+= length
;
3117 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3119 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3120 struct ceph_pagelist
*pagelist
)
3122 struct ceph_msg_data
*data
;
3125 BUG_ON(!pagelist
->length
);
3127 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3129 data
->pagelist
= pagelist
;
3131 list_add_tail(&data
->links
, &msg
->data
);
3132 msg
->data_length
+= pagelist
->length
;
3134 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3137 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3140 struct ceph_msg_data
*data
;
3144 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3147 data
->bio_length
= length
;
3149 list_add_tail(&data
->links
, &msg
->data
);
3150 msg
->data_length
+= length
;
3152 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3153 #endif /* CONFIG_BLOCK */
3156 * construct a new message with given type, size
3157 * the new msg has a ref count of 1.
3159 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3164 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3168 m
->hdr
.type
= cpu_to_le16(type
);
3169 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3170 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3172 INIT_LIST_HEAD(&m
->list_head
);
3173 kref_init(&m
->kref
);
3174 INIT_LIST_HEAD(&m
->data
);
3178 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3179 if (m
->front
.iov_base
== NULL
) {
3180 dout("ceph_msg_new can't allocate %d bytes\n",
3185 m
->front
.iov_base
= NULL
;
3187 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3189 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3196 pr_err("msg_new can't create type %d front %d\n", type
,
3200 dout("msg_new can't create type %d front %d\n", type
,
3205 EXPORT_SYMBOL(ceph_msg_new
);
3208 * Allocate "middle" portion of a message, if it is needed and wasn't
3209 * allocated by alloc_msg. This allows us to read a small fixed-size
3210 * per-type header in the front and then gracefully fail (i.e.,
3211 * propagate the error to the caller based on info in the front) when
3212 * the middle is too large.
3214 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3216 int type
= le16_to_cpu(msg
->hdr
.type
);
3217 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3219 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3220 ceph_msg_type_name(type
), middle_len
);
3221 BUG_ON(!middle_len
);
3222 BUG_ON(msg
->middle
);
3224 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3231 * Allocate a message for receiving an incoming message on a
3232 * connection, and save the result in con->in_msg. Uses the
3233 * connection's private alloc_msg op if available.
3235 * Returns 0 on success, or a negative error code.
3237 * On success, if we set *skip = 1:
3238 * - the next message should be skipped and ignored.
3239 * - con->in_msg == NULL
3240 * or if we set *skip = 0:
3241 * - con->in_msg is non-null.
3242 * On error (ENOMEM, EAGAIN, ...),
3243 * - con->in_msg == NULL
3245 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3247 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3248 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3249 struct ceph_msg
*msg
;
3252 BUG_ON(con
->in_msg
!= NULL
);
3253 BUG_ON(!con
->ops
->alloc_msg
);
3255 mutex_unlock(&con
->mutex
);
3256 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3257 mutex_lock(&con
->mutex
);
3258 if (con
->state
!= CON_STATE_OPEN
) {
3266 con
->in_msg
->con
= con
->ops
->get(con
);
3267 BUG_ON(con
->in_msg
->con
== NULL
);
3270 * Null message pointer means either we should skip
3271 * this message or we couldn't allocate memory. The
3272 * former is not an error.
3276 con
->error_msg
= "error allocating memory for incoming message";
3280 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3282 if (middle_len
&& !con
->in_msg
->middle
) {
3283 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3285 ceph_msg_put(con
->in_msg
);
3295 * Free a generically kmalloc'd message.
3297 void ceph_msg_kfree(struct ceph_msg
*m
)
3299 dout("msg_kfree %p\n", m
);
3300 ceph_kvfree(m
->front
.iov_base
);
3301 kmem_cache_free(ceph_msg_cache
, m
);
3305 * Drop a msg ref. Destroy as needed.
3307 void ceph_msg_last_put(struct kref
*kref
)
3309 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3311 struct list_head
*links
;
3312 struct list_head
*next
;
3314 dout("ceph_msg_put last one on %p\n", m
);
3315 WARN_ON(!list_empty(&m
->list_head
));
3317 /* drop middle, data, if any */
3319 ceph_buffer_put(m
->middle
);
3323 list_splice_init(&m
->data
, &data
);
3324 list_for_each_safe(links
, next
, &data
) {
3325 struct ceph_msg_data
*data
;
3327 data
= list_entry(links
, struct ceph_msg_data
, links
);
3328 list_del_init(links
);
3329 ceph_msg_data_destroy(data
);
3334 ceph_msgpool_put(m
->pool
, m
);
3338 EXPORT_SYMBOL(ceph_msg_last_put
);
3340 void ceph_msg_dump(struct ceph_msg
*msg
)
3342 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3343 msg
->front_alloc_len
, msg
->data_length
);
3344 print_hex_dump(KERN_DEBUG
, "header: ",
3345 DUMP_PREFIX_OFFSET
, 16, 1,
3346 &msg
->hdr
, sizeof(msg
->hdr
), true);
3347 print_hex_dump(KERN_DEBUG
, " front: ",
3348 DUMP_PREFIX_OFFSET
, 16, 1,
3349 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3351 print_hex_dump(KERN_DEBUG
, "middle: ",
3352 DUMP_PREFIX_OFFSET
, 16, 1,
3353 msg
->middle
->vec
.iov_base
,
3354 msg
->middle
->vec
.iov_len
, true);
3355 print_hex_dump(KERN_DEBUG
, "footer: ",
3356 DUMP_PREFIX_OFFSET
, 16, 1,
3357 &msg
->footer
, sizeof(msg
->footer
), true);
3359 EXPORT_SYMBOL(ceph_msg_dump
);