2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
67 #include <net/protocol.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
78 struct kmem_cache
*skbuff_head_cache __read_mostly
;
79 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
80 int sysctl_max_skb_frags __read_mostly
= MAX_SKB_FRAGS
;
81 EXPORT_SYMBOL(sysctl_max_skb_frags
);
84 * skb_panic - private function for out-of-line support
88 * @msg: skb_over_panic or skb_under_panic
90 * Out-of-line support for skb_put() and skb_push().
91 * Called via the wrapper skb_over_panic() or skb_under_panic().
92 * Keep out of line to prevent kernel bloat.
93 * __builtin_return_address is not used because it is not always reliable.
95 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
98 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
100 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
101 skb
->dev
? skb
->dev
->name
: "<NULL>");
105 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
107 skb_panic(skb
, sz
, addr
, __func__
);
110 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
112 skb_panic(skb
, sz
, addr
, __func__
);
116 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
117 * the caller if emergency pfmemalloc reserves are being used. If it is and
118 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
119 * may be used. Otherwise, the packet data may be discarded until enough
122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
123 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
125 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
126 unsigned long ip
, bool *pfmemalloc
)
129 bool ret_pfmemalloc
= false;
132 * Try a regular allocation, when that fails and we're not entitled
133 * to the reserves, fail.
135 obj
= kmalloc_node_track_caller(size
,
136 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
138 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
141 /* Try again but now we are using pfmemalloc reserves */
142 ret_pfmemalloc
= true;
143 obj
= kmalloc_node_track_caller(size
, flags
, node
);
147 *pfmemalloc
= ret_pfmemalloc
;
152 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
153 * 'private' fields and also do memory statistics to find all the
158 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
163 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
164 gfp_mask
& ~__GFP_DMA
, node
);
169 * Only clear those fields we need to clear, not those that we will
170 * actually initialise below. Hence, don't put any more fields after
171 * the tail pointer in struct sk_buff!
173 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
175 skb
->truesize
= sizeof(struct sk_buff
);
176 atomic_set(&skb
->users
, 1);
178 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
184 * __alloc_skb - allocate a network buffer
185 * @size: size to allocate
186 * @gfp_mask: allocation mask
187 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
188 * instead of head cache and allocate a cloned (child) skb.
189 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
190 * allocations in case the data is required for writeback
191 * @node: numa node to allocate memory on
193 * Allocate a new &sk_buff. The returned buffer has no headroom and a
194 * tail room of at least size bytes. The object has a reference count
195 * of one. The return is the buffer. On a failure the return is %NULL.
197 * Buffers may only be allocated from interrupts using a @gfp_mask of
200 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
203 struct kmem_cache
*cache
;
204 struct skb_shared_info
*shinfo
;
209 cache
= (flags
& SKB_ALLOC_FCLONE
)
210 ? skbuff_fclone_cache
: skbuff_head_cache
;
212 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
213 gfp_mask
|= __GFP_MEMALLOC
;
216 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
221 /* We do our best to align skb_shared_info on a separate cache
222 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
223 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
224 * Both skb->head and skb_shared_info are cache line aligned.
226 size
= SKB_DATA_ALIGN(size
);
227 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
228 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
231 /* kmalloc(size) might give us more room than requested.
232 * Put skb_shared_info exactly at the end of allocated zone,
233 * to allow max possible filling before reallocation.
235 size
= SKB_WITH_OVERHEAD(ksize(data
));
236 prefetchw(data
+ size
);
239 * Only clear those fields we need to clear, not those that we will
240 * actually initialise below. Hence, don't put any more fields after
241 * the tail pointer in struct sk_buff!
243 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
244 /* Account for allocated memory : skb + skb->head */
245 skb
->truesize
= SKB_TRUESIZE(size
);
246 skb
->pfmemalloc
= pfmemalloc
;
247 atomic_set(&skb
->users
, 1);
250 skb_reset_tail_pointer(skb
);
251 skb
->end
= skb
->tail
+ size
;
252 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
253 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
255 /* make sure we initialize shinfo sequentially */
256 shinfo
= skb_shinfo(skb
);
257 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
258 atomic_set(&shinfo
->dataref
, 1);
259 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
261 if (flags
& SKB_ALLOC_FCLONE
) {
262 struct sk_buff
*child
= skb
+ 1;
263 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
265 kmemcheck_annotate_bitfield(child
, flags1
);
266 kmemcheck_annotate_bitfield(child
, flags2
);
267 skb
->fclone
= SKB_FCLONE_ORIG
;
268 atomic_set(fclone_ref
, 1);
270 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
271 child
->pfmemalloc
= pfmemalloc
;
276 kmem_cache_free(cache
, skb
);
280 EXPORT_SYMBOL(__alloc_skb
);
283 * __build_skb - build a network buffer
284 * @data: data buffer provided by caller
285 * @frag_size: size of data, or 0 if head was kmalloced
287 * Allocate a new &sk_buff. Caller provides space holding head and
288 * skb_shared_info. @data must have been allocated by kmalloc() only if
289 * @frag_size is 0, otherwise data should come from the page allocator
291 * The return is the new skb buffer.
292 * On a failure the return is %NULL, and @data is not freed.
294 * Before IO, driver allocates only data buffer where NIC put incoming frame
295 * Driver should add room at head (NET_SKB_PAD) and
296 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
297 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
298 * before giving packet to stack.
299 * RX rings only contains data buffers, not full skbs.
301 struct sk_buff
*__build_skb(void *data
, unsigned int frag_size
)
303 struct skb_shared_info
*shinfo
;
305 unsigned int size
= frag_size
? : ksize(data
);
307 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
311 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
313 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
314 skb
->truesize
= SKB_TRUESIZE(size
);
315 atomic_set(&skb
->users
, 1);
318 skb_reset_tail_pointer(skb
);
319 skb
->end
= skb
->tail
+ size
;
320 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
321 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
323 /* make sure we initialize shinfo sequentially */
324 shinfo
= skb_shinfo(skb
);
325 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
326 atomic_set(&shinfo
->dataref
, 1);
327 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
332 /* build_skb() is wrapper over __build_skb(), that specifically
333 * takes care of skb->head and skb->pfmemalloc
334 * This means that if @frag_size is not zero, then @data must be backed
335 * by a page fragment, not kmalloc() or vmalloc()
337 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
339 struct sk_buff
*skb
= __build_skb(data
, frag_size
);
341 if (skb
&& frag_size
) {
343 if (virt_to_head_page(data
)->pfmemalloc
)
348 EXPORT_SYMBOL(build_skb
);
350 struct netdev_alloc_cache
{
351 struct page_frag frag
;
352 /* we maintain a pagecount bias, so that we dont dirty cache line
353 * containing page->_count every time we allocate a fragment.
355 unsigned int pagecnt_bias
;
357 static DEFINE_PER_CPU(struct netdev_alloc_cache
, netdev_alloc_cache
);
359 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
361 struct netdev_alloc_cache
*nc
;
366 local_irq_save(flags
);
367 nc
= &__get_cpu_var(netdev_alloc_cache
);
368 if (unlikely(!nc
->frag
.page
)) {
370 for (order
= NETDEV_FRAG_PAGE_MAX_ORDER
; ;) {
371 gfp_t gfp
= gfp_mask
;
374 gfp
|= __GFP_COMP
| __GFP_NOWARN
|
378 nc
->frag
.page
= alloc_pages(gfp
, order
);
379 if (likely(nc
->frag
.page
))
384 nc
->frag
.size
= PAGE_SIZE
<< order
;
386 atomic_set(&nc
->frag
.page
->_count
, NETDEV_PAGECNT_MAX_BIAS
);
387 nc
->pagecnt_bias
= NETDEV_PAGECNT_MAX_BIAS
;
391 if (nc
->frag
.offset
+ fragsz
> nc
->frag
.size
) {
392 /* avoid unnecessary locked operations if possible */
393 if ((atomic_read(&nc
->frag
.page
->_count
) == nc
->pagecnt_bias
) ||
394 atomic_sub_and_test(nc
->pagecnt_bias
, &nc
->frag
.page
->_count
))
399 data
= page_address(nc
->frag
.page
) + nc
->frag
.offset
;
400 nc
->frag
.offset
+= fragsz
;
403 local_irq_restore(flags
);
408 * netdev_alloc_frag - allocate a page fragment
409 * @fragsz: fragment size
411 * Allocates a frag from a page for receive buffer.
412 * Uses GFP_ATOMIC allocations.
414 void *netdev_alloc_frag(unsigned int fragsz
)
416 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
418 EXPORT_SYMBOL(netdev_alloc_frag
);
421 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
422 * @dev: network device to receive on
423 * @length: length to allocate
424 * @gfp_mask: get_free_pages mask, passed to alloc_skb
426 * Allocate a new &sk_buff and assign it a usage count of one. The
427 * buffer has unspecified headroom built in. Users should allocate
428 * the headroom they think they need without accounting for the
429 * built in space. The built in space is used for optimisations.
431 * %NULL is returned if there is no free memory.
433 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
434 unsigned int length
, gfp_t gfp_mask
)
436 struct sk_buff
*skb
= NULL
;
437 unsigned int fragsz
= SKB_DATA_ALIGN(length
+ NET_SKB_PAD
) +
438 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
440 if (fragsz
<= PAGE_SIZE
&& !(gfp_mask
& (__GFP_WAIT
| GFP_DMA
))) {
443 if (sk_memalloc_socks())
444 gfp_mask
|= __GFP_MEMALLOC
;
446 data
= __netdev_alloc_frag(fragsz
, gfp_mask
);
449 skb
= build_skb(data
, fragsz
);
451 put_page(virt_to_head_page(data
));
454 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
,
455 SKB_ALLOC_RX
, NUMA_NO_NODE
);
458 skb_reserve(skb
, NET_SKB_PAD
);
463 EXPORT_SYMBOL(__netdev_alloc_skb
);
465 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
466 int size
, unsigned int truesize
)
468 skb_fill_page_desc(skb
, i
, page
, off
, size
);
470 skb
->data_len
+= size
;
471 skb
->truesize
+= truesize
;
473 EXPORT_SYMBOL(skb_add_rx_frag
);
475 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
476 unsigned int truesize
)
478 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
480 skb_frag_size_add(frag
, size
);
482 skb
->data_len
+= size
;
483 skb
->truesize
+= truesize
;
485 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
487 static void skb_drop_list(struct sk_buff
**listp
)
489 kfree_skb_list(*listp
);
493 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
495 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
498 static void skb_clone_fraglist(struct sk_buff
*skb
)
500 struct sk_buff
*list
;
502 skb_walk_frags(skb
, list
)
506 static void skb_free_head(struct sk_buff
*skb
)
509 put_page(virt_to_head_page(skb
->head
));
514 static void skb_release_data(struct sk_buff
*skb
)
517 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
518 &skb_shinfo(skb
)->dataref
)) {
519 if (skb_shinfo(skb
)->nr_frags
) {
521 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
522 skb_frag_unref(skb
, i
);
526 * If skb buf is from userspace, we need to notify the caller
527 * the lower device DMA has done;
529 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
530 struct ubuf_info
*uarg
;
532 uarg
= skb_shinfo(skb
)->destructor_arg
;
534 uarg
->callback(uarg
, true);
537 if (skb_has_frag_list(skb
))
538 skb_drop_fraglist(skb
);
545 * Free an skbuff by memory without cleaning the state.
547 static void kfree_skbmem(struct sk_buff
*skb
)
549 struct sk_buff
*other
;
550 atomic_t
*fclone_ref
;
552 switch (skb
->fclone
) {
553 case SKB_FCLONE_UNAVAILABLE
:
554 kmem_cache_free(skbuff_head_cache
, skb
);
557 case SKB_FCLONE_ORIG
:
558 fclone_ref
= (atomic_t
*) (skb
+ 2);
559 if (atomic_dec_and_test(fclone_ref
))
560 kmem_cache_free(skbuff_fclone_cache
, skb
);
563 case SKB_FCLONE_CLONE
:
564 fclone_ref
= (atomic_t
*) (skb
+ 1);
567 /* The clone portion is available for
568 * fast-cloning again.
570 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
572 if (atomic_dec_and_test(fclone_ref
))
573 kmem_cache_free(skbuff_fclone_cache
, other
);
578 static void skb_release_head_state(struct sk_buff
*skb
)
582 secpath_put(skb
->sp
);
584 if (skb
->destructor
) {
586 skb
->destructor(skb
);
588 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
589 nf_conntrack_put(skb
->nfct
);
591 #ifdef CONFIG_BRIDGE_NETFILTER
592 nf_bridge_put(skb
->nf_bridge
);
594 /* XXX: IS this still necessary? - JHS */
595 #ifdef CONFIG_NET_SCHED
597 #ifdef CONFIG_NET_CLS_ACT
603 /* Free everything but the sk_buff shell. */
604 static void skb_release_all(struct sk_buff
*skb
)
606 skb_release_head_state(skb
);
607 if (likely(skb
->head
))
608 skb_release_data(skb
);
612 * __kfree_skb - private function
615 * Free an sk_buff. Release anything attached to the buffer.
616 * Clean the state. This is an internal helper function. Users should
617 * always call kfree_skb
620 void __kfree_skb(struct sk_buff
*skb
)
622 skb_release_all(skb
);
625 EXPORT_SYMBOL(__kfree_skb
);
628 * kfree_skb - free an sk_buff
629 * @skb: buffer to free
631 * Drop a reference to the buffer and free it if the usage count has
634 void kfree_skb(struct sk_buff
*skb
)
638 if (likely(atomic_read(&skb
->users
) == 1))
640 else if (likely(!atomic_dec_and_test(&skb
->users
)))
642 trace_kfree_skb(skb
, __builtin_return_address(0));
645 EXPORT_SYMBOL(kfree_skb
);
647 void kfree_skb_list(struct sk_buff
*segs
)
650 struct sk_buff
*next
= segs
->next
;
656 EXPORT_SYMBOL(kfree_skb_list
);
659 * skb_tx_error - report an sk_buff xmit error
660 * @skb: buffer that triggered an error
662 * Report xmit error if a device callback is tracking this skb.
663 * skb must be freed afterwards.
665 void skb_tx_error(struct sk_buff
*skb
)
667 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
668 struct ubuf_info
*uarg
;
670 uarg
= skb_shinfo(skb
)->destructor_arg
;
672 uarg
->callback(uarg
, false);
673 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
676 EXPORT_SYMBOL(skb_tx_error
);
679 * consume_skb - free an skbuff
680 * @skb: buffer to free
682 * Drop a ref to the buffer and free it if the usage count has hit zero
683 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
684 * is being dropped after a failure and notes that
686 void consume_skb(struct sk_buff
*skb
)
690 if (likely(atomic_read(&skb
->users
) == 1))
692 else if (likely(!atomic_dec_and_test(&skb
->users
)))
694 trace_consume_skb(skb
);
697 EXPORT_SYMBOL(consume_skb
);
699 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
701 new->tstamp
= old
->tstamp
;
703 new->transport_header
= old
->transport_header
;
704 new->network_header
= old
->network_header
;
705 new->mac_header
= old
->mac_header
;
706 new->inner_protocol
= old
->inner_protocol
;
707 new->inner_transport_header
= old
->inner_transport_header
;
708 new->inner_network_header
= old
->inner_network_header
;
709 new->inner_mac_header
= old
->inner_mac_header
;
710 skb_dst_copy(new, old
);
711 skb_copy_hash(new, old
);
712 new->ooo_okay
= old
->ooo_okay
;
713 new->no_fcs
= old
->no_fcs
;
714 new->encapsulation
= old
->encapsulation
;
715 new->encap_hdr_csum
= old
->encap_hdr_csum
;
716 new->csum_valid
= old
->csum_valid
;
717 new->csum_complete_sw
= old
->csum_complete_sw
;
719 new->sp
= secpath_get(old
->sp
);
721 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
722 new->csum
= old
->csum
;
723 new->ignore_df
= old
->ignore_df
;
724 new->pkt_type
= old
->pkt_type
;
725 new->ip_summed
= old
->ip_summed
;
726 skb_copy_queue_mapping(new, old
);
727 new->priority
= old
->priority
;
728 #if IS_ENABLED(CONFIG_IP_VS)
729 new->ipvs_property
= old
->ipvs_property
;
731 new->pfmemalloc
= old
->pfmemalloc
;
732 new->protocol
= old
->protocol
;
733 new->mark
= old
->mark
;
734 new->skb_iif
= old
->skb_iif
;
736 #ifdef CONFIG_NET_SCHED
737 new->tc_index
= old
->tc_index
;
738 #ifdef CONFIG_NET_CLS_ACT
739 new->tc_verd
= old
->tc_verd
;
742 new->vlan_proto
= old
->vlan_proto
;
743 new->vlan_tci
= old
->vlan_tci
;
745 skb_copy_secmark(new, old
);
747 #ifdef CONFIG_NET_RX_BUSY_POLL
748 new->napi_id
= old
->napi_id
;
753 * You should not add any new code to this function. Add it to
754 * __copy_skb_header above instead.
756 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
758 #define C(x) n->x = skb->x
760 n
->next
= n
->prev
= NULL
;
762 __copy_skb_header(n
, skb
);
767 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
770 n
->destructor
= NULL
;
777 atomic_set(&n
->users
, 1);
779 atomic_inc(&(skb_shinfo(skb
)->dataref
));
787 * skb_morph - morph one skb into another
788 * @dst: the skb to receive the contents
789 * @src: the skb to supply the contents
791 * This is identical to skb_clone except that the target skb is
792 * supplied by the user.
794 * The target skb is returned upon exit.
796 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
798 skb_release_all(dst
);
799 return __skb_clone(dst
, src
);
801 EXPORT_SYMBOL_GPL(skb_morph
);
804 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
805 * @skb: the skb to modify
806 * @gfp_mask: allocation priority
808 * This must be called on SKBTX_DEV_ZEROCOPY skb.
809 * It will copy all frags into kernel and drop the reference
810 * to userspace pages.
812 * If this function is called from an interrupt gfp_mask() must be
815 * Returns 0 on success or a negative error code on failure
816 * to allocate kernel memory to copy to.
818 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
821 int num_frags
= skb_shinfo(skb
)->nr_frags
;
822 struct page
*page
, *head
= NULL
;
823 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
825 for (i
= 0; i
< num_frags
; i
++) {
827 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
829 page
= alloc_page(gfp_mask
);
832 struct page
*next
= (struct page
*)page_private(head
);
838 vaddr
= kmap_atomic(skb_frag_page(f
));
839 memcpy(page_address(page
),
840 vaddr
+ f
->page_offset
, skb_frag_size(f
));
841 kunmap_atomic(vaddr
);
842 set_page_private(page
, (unsigned long)head
);
846 /* skb frags release userspace buffers */
847 for (i
= 0; i
< num_frags
; i
++)
848 skb_frag_unref(skb
, i
);
850 uarg
->callback(uarg
, false);
852 /* skb frags point to kernel buffers */
853 for (i
= num_frags
- 1; i
>= 0; i
--) {
854 __skb_fill_page_desc(skb
, i
, head
, 0,
855 skb_shinfo(skb
)->frags
[i
].size
);
856 head
= (struct page
*)page_private(head
);
859 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
862 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
865 * skb_clone - duplicate an sk_buff
866 * @skb: buffer to clone
867 * @gfp_mask: allocation priority
869 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
870 * copies share the same packet data but not structure. The new
871 * buffer has a reference count of 1. If the allocation fails the
872 * function returns %NULL otherwise the new buffer is returned.
874 * If this function is called from an interrupt gfp_mask() must be
878 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
882 if (skb_orphan_frags(skb
, gfp_mask
))
886 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
887 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
888 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
889 n
->fclone
= SKB_FCLONE_CLONE
;
890 atomic_inc(fclone_ref
);
892 if (skb_pfmemalloc(skb
))
893 gfp_mask
|= __GFP_MEMALLOC
;
895 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
899 kmemcheck_annotate_bitfield(n
, flags1
);
900 kmemcheck_annotate_bitfield(n
, flags2
);
901 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
904 return __skb_clone(n
, skb
);
906 EXPORT_SYMBOL(skb_clone
);
908 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
910 /* Only adjust this if it actually is csum_start rather than csum */
911 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
912 skb
->csum_start
+= off
;
913 /* {transport,network,mac}_header and tail are relative to skb->head */
914 skb
->transport_header
+= off
;
915 skb
->network_header
+= off
;
916 if (skb_mac_header_was_set(skb
))
917 skb
->mac_header
+= off
;
918 skb
->inner_transport_header
+= off
;
919 skb
->inner_network_header
+= off
;
920 skb
->inner_mac_header
+= off
;
923 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
925 __copy_skb_header(new, old
);
927 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
928 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
929 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
932 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
934 if (skb_pfmemalloc(skb
))
940 * skb_copy - create private copy of an sk_buff
941 * @skb: buffer to copy
942 * @gfp_mask: allocation priority
944 * Make a copy of both an &sk_buff and its data. This is used when the
945 * caller wishes to modify the data and needs a private copy of the
946 * data to alter. Returns %NULL on failure or the pointer to the buffer
947 * on success. The returned buffer has a reference count of 1.
949 * As by-product this function converts non-linear &sk_buff to linear
950 * one, so that &sk_buff becomes completely private and caller is allowed
951 * to modify all the data of returned buffer. This means that this
952 * function is not recommended for use in circumstances when only
953 * header is going to be modified. Use pskb_copy() instead.
956 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
958 int headerlen
= skb_headroom(skb
);
959 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
960 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
961 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
966 /* Set the data pointer */
967 skb_reserve(n
, headerlen
);
968 /* Set the tail pointer and length */
969 skb_put(n
, skb
->len
);
971 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
974 copy_skb_header(n
, skb
);
977 EXPORT_SYMBOL(skb_copy
);
980 * __pskb_copy_fclone - create copy of an sk_buff with private head.
981 * @skb: buffer to copy
982 * @headroom: headroom of new skb
983 * @gfp_mask: allocation priority
984 * @fclone: if true allocate the copy of the skb from the fclone
985 * cache instead of the head cache; it is recommended to set this
986 * to true for the cases where the copy will likely be cloned
988 * Make a copy of both an &sk_buff and part of its data, located
989 * in header. Fragmented data remain shared. This is used when
990 * the caller wishes to modify only header of &sk_buff and needs
991 * private copy of the header to alter. Returns %NULL on failure
992 * or the pointer to the buffer on success.
993 * The returned buffer has a reference count of 1.
996 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
997 gfp_t gfp_mask
, bool fclone
)
999 unsigned int size
= skb_headlen(skb
) + headroom
;
1000 int flags
= skb_alloc_rx_flag(skb
) | (fclone
? SKB_ALLOC_FCLONE
: 0);
1001 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
, flags
, NUMA_NO_NODE
);
1006 /* Set the data pointer */
1007 skb_reserve(n
, headroom
);
1008 /* Set the tail pointer and length */
1009 skb_put(n
, skb_headlen(skb
));
1010 /* Copy the bytes */
1011 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1013 n
->truesize
+= skb
->data_len
;
1014 n
->data_len
= skb
->data_len
;
1017 if (skb_shinfo(skb
)->nr_frags
) {
1020 if (skb_orphan_frags(skb
, gfp_mask
)) {
1025 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1026 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1027 skb_frag_ref(skb
, i
);
1029 skb_shinfo(n
)->nr_frags
= i
;
1032 if (skb_has_frag_list(skb
)) {
1033 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1034 skb_clone_fraglist(n
);
1037 copy_skb_header(n
, skb
);
1041 EXPORT_SYMBOL(__pskb_copy_fclone
);
1044 * pskb_expand_head - reallocate header of &sk_buff
1045 * @skb: buffer to reallocate
1046 * @nhead: room to add at head
1047 * @ntail: room to add at tail
1048 * @gfp_mask: allocation priority
1050 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1051 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1052 * reference count of 1. Returns zero in the case of success or error,
1053 * if expansion failed. In the last case, &sk_buff is not changed.
1055 * All the pointers pointing into skb header may change and must be
1056 * reloaded after call to this function.
1059 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1064 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1069 if (skb_shared(skb
))
1072 size
= SKB_DATA_ALIGN(size
);
1074 if (skb_pfmemalloc(skb
))
1075 gfp_mask
|= __GFP_MEMALLOC
;
1076 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1077 gfp_mask
, NUMA_NO_NODE
, NULL
);
1080 size
= SKB_WITH_OVERHEAD(ksize(data
));
1082 /* Copy only real data... and, alas, header. This should be
1083 * optimized for the cases when header is void.
1085 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1087 memcpy((struct skb_shared_info
*)(data
+ size
),
1089 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1092 * if shinfo is shared we must drop the old head gracefully, but if it
1093 * is not we can just drop the old head and let the existing refcount
1094 * be since all we did is relocate the values
1096 if (skb_cloned(skb
)) {
1097 /* copy this zero copy skb frags */
1098 if (skb_orphan_frags(skb
, gfp_mask
))
1100 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1101 skb_frag_ref(skb
, i
);
1103 if (skb_has_frag_list(skb
))
1104 skb_clone_fraglist(skb
);
1106 skb_release_data(skb
);
1110 off
= (data
+ nhead
) - skb
->head
;
1115 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1119 skb
->end
= skb
->head
+ size
;
1122 skb_headers_offset_update(skb
, nhead
);
1126 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1134 EXPORT_SYMBOL(pskb_expand_head
);
1136 /* Make private copy of skb with writable head and some headroom */
1138 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1140 struct sk_buff
*skb2
;
1141 int delta
= headroom
- skb_headroom(skb
);
1144 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1146 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1147 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1155 EXPORT_SYMBOL(skb_realloc_headroom
);
1158 * skb_copy_expand - copy and expand sk_buff
1159 * @skb: buffer to copy
1160 * @newheadroom: new free bytes at head
1161 * @newtailroom: new free bytes at tail
1162 * @gfp_mask: allocation priority
1164 * Make a copy of both an &sk_buff and its data and while doing so
1165 * allocate additional space.
1167 * This is used when the caller wishes to modify the data and needs a
1168 * private copy of the data to alter as well as more space for new fields.
1169 * Returns %NULL on failure or the pointer to the buffer
1170 * on success. The returned buffer has a reference count of 1.
1172 * You must pass %GFP_ATOMIC as the allocation priority if this function
1173 * is called from an interrupt.
1175 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1176 int newheadroom
, int newtailroom
,
1180 * Allocate the copy buffer
1182 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1183 gfp_mask
, skb_alloc_rx_flag(skb
),
1185 int oldheadroom
= skb_headroom(skb
);
1186 int head_copy_len
, head_copy_off
;
1191 skb_reserve(n
, newheadroom
);
1193 /* Set the tail pointer and length */
1194 skb_put(n
, skb
->len
);
1196 head_copy_len
= oldheadroom
;
1198 if (newheadroom
<= head_copy_len
)
1199 head_copy_len
= newheadroom
;
1201 head_copy_off
= newheadroom
- head_copy_len
;
1203 /* Copy the linear header and data. */
1204 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1205 skb
->len
+ head_copy_len
))
1208 copy_skb_header(n
, skb
);
1210 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1214 EXPORT_SYMBOL(skb_copy_expand
);
1217 * skb_pad - zero pad the tail of an skb
1218 * @skb: buffer to pad
1219 * @pad: space to pad
1221 * Ensure that a buffer is followed by a padding area that is zero
1222 * filled. Used by network drivers which may DMA or transfer data
1223 * beyond the buffer end onto the wire.
1225 * May return error in out of memory cases. The skb is freed on error.
1228 int skb_pad(struct sk_buff
*skb
, int pad
)
1233 /* If the skbuff is non linear tailroom is always zero.. */
1234 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1235 memset(skb
->data
+skb
->len
, 0, pad
);
1239 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1240 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1241 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1246 /* FIXME: The use of this function with non-linear skb's really needs
1249 err
= skb_linearize(skb
);
1253 memset(skb
->data
+ skb
->len
, 0, pad
);
1260 EXPORT_SYMBOL(skb_pad
);
1263 * pskb_put - add data to the tail of a potentially fragmented buffer
1264 * @skb: start of the buffer to use
1265 * @tail: tail fragment of the buffer to use
1266 * @len: amount of data to add
1268 * This function extends the used data area of the potentially
1269 * fragmented buffer. @tail must be the last fragment of @skb -- or
1270 * @skb itself. If this would exceed the total buffer size the kernel
1271 * will panic. A pointer to the first byte of the extra data is
1275 unsigned char *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1278 skb
->data_len
+= len
;
1281 return skb_put(tail
, len
);
1283 EXPORT_SYMBOL_GPL(pskb_put
);
1286 * skb_put - add data to a buffer
1287 * @skb: buffer to use
1288 * @len: amount of data to add
1290 * This function extends the used data area of the buffer. If this would
1291 * exceed the total buffer size the kernel will panic. A pointer to the
1292 * first byte of the extra data is returned.
1294 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1296 unsigned char *tmp
= skb_tail_pointer(skb
);
1297 SKB_LINEAR_ASSERT(skb
);
1300 if (unlikely(skb
->tail
> skb
->end
))
1301 skb_over_panic(skb
, len
, __builtin_return_address(0));
1304 EXPORT_SYMBOL(skb_put
);
1307 * skb_push - add data to the start of a buffer
1308 * @skb: buffer to use
1309 * @len: amount of data to add
1311 * This function extends the used data area of the buffer at the buffer
1312 * start. If this would exceed the total buffer headroom the kernel will
1313 * panic. A pointer to the first byte of the extra data is returned.
1315 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1319 if (unlikely(skb
->data
<skb
->head
))
1320 skb_under_panic(skb
, len
, __builtin_return_address(0));
1323 EXPORT_SYMBOL(skb_push
);
1326 * skb_pull - remove data from the start of a buffer
1327 * @skb: buffer to use
1328 * @len: amount of data to remove
1330 * This function removes data from the start of a buffer, returning
1331 * the memory to the headroom. A pointer to the next data in the buffer
1332 * is returned. Once the data has been pulled future pushes will overwrite
1335 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1337 return skb_pull_inline(skb
, len
);
1339 EXPORT_SYMBOL(skb_pull
);
1342 * skb_trim - remove end from a buffer
1343 * @skb: buffer to alter
1346 * Cut the length of a buffer down by removing data from the tail. If
1347 * the buffer is already under the length specified it is not modified.
1348 * The skb must be linear.
1350 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1353 __skb_trim(skb
, len
);
1355 EXPORT_SYMBOL(skb_trim
);
1357 /* Trims skb to length len. It can change skb pointers.
1360 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1362 struct sk_buff
**fragp
;
1363 struct sk_buff
*frag
;
1364 int offset
= skb_headlen(skb
);
1365 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1369 if (skb_cloned(skb
) &&
1370 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1377 for (; i
< nfrags
; i
++) {
1378 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1385 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1388 skb_shinfo(skb
)->nr_frags
= i
;
1390 for (; i
< nfrags
; i
++)
1391 skb_frag_unref(skb
, i
);
1393 if (skb_has_frag_list(skb
))
1394 skb_drop_fraglist(skb
);
1398 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1399 fragp
= &frag
->next
) {
1400 int end
= offset
+ frag
->len
;
1402 if (skb_shared(frag
)) {
1403 struct sk_buff
*nfrag
;
1405 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1406 if (unlikely(!nfrag
))
1409 nfrag
->next
= frag
->next
;
1421 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1425 skb_drop_list(&frag
->next
);
1430 if (len
> skb_headlen(skb
)) {
1431 skb
->data_len
-= skb
->len
- len
;
1436 skb_set_tail_pointer(skb
, len
);
1441 EXPORT_SYMBOL(___pskb_trim
);
1444 * __pskb_pull_tail - advance tail of skb header
1445 * @skb: buffer to reallocate
1446 * @delta: number of bytes to advance tail
1448 * The function makes a sense only on a fragmented &sk_buff,
1449 * it expands header moving its tail forward and copying necessary
1450 * data from fragmented part.
1452 * &sk_buff MUST have reference count of 1.
1454 * Returns %NULL (and &sk_buff does not change) if pull failed
1455 * or value of new tail of skb in the case of success.
1457 * All the pointers pointing into skb header may change and must be
1458 * reloaded after call to this function.
1461 /* Moves tail of skb head forward, copying data from fragmented part,
1462 * when it is necessary.
1463 * 1. It may fail due to malloc failure.
1464 * 2. It may change skb pointers.
1466 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1468 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1470 /* If skb has not enough free space at tail, get new one
1471 * plus 128 bytes for future expansions. If we have enough
1472 * room at tail, reallocate without expansion only if skb is cloned.
1474 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1476 if (eat
> 0 || skb_cloned(skb
)) {
1477 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1482 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1485 /* Optimization: no fragments, no reasons to preestimate
1486 * size of pulled pages. Superb.
1488 if (!skb_has_frag_list(skb
))
1491 /* Estimate size of pulled pages. */
1493 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1494 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1501 /* If we need update frag list, we are in troubles.
1502 * Certainly, it possible to add an offset to skb data,
1503 * but taking into account that pulling is expected to
1504 * be very rare operation, it is worth to fight against
1505 * further bloating skb head and crucify ourselves here instead.
1506 * Pure masohism, indeed. 8)8)
1509 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1510 struct sk_buff
*clone
= NULL
;
1511 struct sk_buff
*insp
= NULL
;
1516 if (list
->len
<= eat
) {
1517 /* Eaten as whole. */
1522 /* Eaten partially. */
1524 if (skb_shared(list
)) {
1525 /* Sucks! We need to fork list. :-( */
1526 clone
= skb_clone(list
, GFP_ATOMIC
);
1532 /* This may be pulled without
1536 if (!pskb_pull(list
, eat
)) {
1544 /* Free pulled out fragments. */
1545 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1546 skb_shinfo(skb
)->frag_list
= list
->next
;
1549 /* And insert new clone at head. */
1552 skb_shinfo(skb
)->frag_list
= clone
;
1555 /* Success! Now we may commit changes to skb data. */
1560 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1561 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1564 skb_frag_unref(skb
, i
);
1567 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1569 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1570 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1576 skb_shinfo(skb
)->nr_frags
= k
;
1579 skb
->data_len
-= delta
;
1581 return skb_tail_pointer(skb
);
1583 EXPORT_SYMBOL(__pskb_pull_tail
);
1586 * skb_copy_bits - copy bits from skb to kernel buffer
1588 * @offset: offset in source
1589 * @to: destination buffer
1590 * @len: number of bytes to copy
1592 * Copy the specified number of bytes from the source skb to the
1593 * destination buffer.
1596 * If its prototype is ever changed,
1597 * check arch/{*}/net/{*}.S files,
1598 * since it is called from BPF assembly code.
1600 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1602 int start
= skb_headlen(skb
);
1603 struct sk_buff
*frag_iter
;
1606 if (offset
> (int)skb
->len
- len
)
1610 if ((copy
= start
- offset
) > 0) {
1613 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1614 if ((len
-= copy
) == 0)
1620 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1622 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1624 WARN_ON(start
> offset
+ len
);
1626 end
= start
+ skb_frag_size(f
);
1627 if ((copy
= end
- offset
) > 0) {
1633 vaddr
= kmap_atomic(skb_frag_page(f
));
1635 vaddr
+ f
->page_offset
+ offset
- start
,
1637 kunmap_atomic(vaddr
);
1639 if ((len
-= copy
) == 0)
1647 skb_walk_frags(skb
, frag_iter
) {
1650 WARN_ON(start
> offset
+ len
);
1652 end
= start
+ frag_iter
->len
;
1653 if ((copy
= end
- offset
) > 0) {
1656 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1658 if ((len
-= copy
) == 0)
1672 EXPORT_SYMBOL(skb_copy_bits
);
1675 * Callback from splice_to_pipe(), if we need to release some pages
1676 * at the end of the spd in case we error'ed out in filling the pipe.
1678 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1680 put_page(spd
->pages
[i
]);
1683 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1684 unsigned int *offset
,
1687 struct page_frag
*pfrag
= sk_page_frag(sk
);
1689 if (!sk_page_frag_refill(sk
, pfrag
))
1692 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1694 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1695 page_address(page
) + *offset
, *len
);
1696 *offset
= pfrag
->offset
;
1697 pfrag
->offset
+= *len
;
1702 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1704 unsigned int offset
)
1706 return spd
->nr_pages
&&
1707 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1708 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1709 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1713 * Fill page/offset/length into spd, if it can hold more pages.
1715 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1716 struct pipe_inode_info
*pipe
, struct page
*page
,
1717 unsigned int *len
, unsigned int offset
,
1721 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1725 page
= linear_to_page(page
, len
, &offset
, sk
);
1729 if (spd_can_coalesce(spd
, page
, offset
)) {
1730 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1734 spd
->pages
[spd
->nr_pages
] = page
;
1735 spd
->partial
[spd
->nr_pages
].len
= *len
;
1736 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1742 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1743 unsigned int plen
, unsigned int *off
,
1745 struct splice_pipe_desc
*spd
, bool linear
,
1747 struct pipe_inode_info
*pipe
)
1752 /* skip this segment if already processed */
1758 /* ignore any bits we already processed */
1764 unsigned int flen
= min(*len
, plen
);
1766 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1772 } while (*len
&& plen
);
1778 * Map linear and fragment data from the skb to spd. It reports true if the
1779 * pipe is full or if we already spliced the requested length.
1781 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1782 unsigned int *offset
, unsigned int *len
,
1783 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1787 /* map the linear part :
1788 * If skb->head_frag is set, this 'linear' part is backed by a
1789 * fragment, and if the head is not shared with any clones then
1790 * we can avoid a copy since we own the head portion of this page.
1792 if (__splice_segment(virt_to_page(skb
->data
),
1793 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1796 skb_head_is_locked(skb
),
1801 * then map the fragments
1803 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1804 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1806 if (__splice_segment(skb_frag_page(f
),
1807 f
->page_offset
, skb_frag_size(f
),
1808 offset
, len
, spd
, false, sk
, pipe
))
1816 * Map data from the skb to a pipe. Should handle both the linear part,
1817 * the fragments, and the frag list. It does NOT handle frag lists within
1818 * the frag list, if such a thing exists. We'd probably need to recurse to
1819 * handle that cleanly.
1821 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1822 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1825 struct partial_page partial
[MAX_SKB_FRAGS
];
1826 struct page
*pages
[MAX_SKB_FRAGS
];
1827 struct splice_pipe_desc spd
= {
1830 .nr_pages_max
= MAX_SKB_FRAGS
,
1832 .ops
= &nosteal_pipe_buf_ops
,
1833 .spd_release
= sock_spd_release
,
1835 struct sk_buff
*frag_iter
;
1836 struct sock
*sk
= skb
->sk
;
1840 * __skb_splice_bits() only fails if the output has no room left,
1841 * so no point in going over the frag_list for the error case.
1843 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1849 * now see if we have a frag_list to map
1851 skb_walk_frags(skb
, frag_iter
) {
1854 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1861 * Drop the socket lock, otherwise we have reverse
1862 * locking dependencies between sk_lock and i_mutex
1863 * here as compared to sendfile(). We enter here
1864 * with the socket lock held, and splice_to_pipe() will
1865 * grab the pipe inode lock. For sendfile() emulation,
1866 * we call into ->sendpage() with the i_mutex lock held
1867 * and networking will grab the socket lock.
1870 ret
= splice_to_pipe(pipe
, &spd
);
1878 * skb_store_bits - store bits from kernel buffer to skb
1879 * @skb: destination buffer
1880 * @offset: offset in destination
1881 * @from: source buffer
1882 * @len: number of bytes to copy
1884 * Copy the specified number of bytes from the source buffer to the
1885 * destination skb. This function handles all the messy bits of
1886 * traversing fragment lists and such.
1889 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1891 int start
= skb_headlen(skb
);
1892 struct sk_buff
*frag_iter
;
1895 if (offset
> (int)skb
->len
- len
)
1898 if ((copy
= start
- offset
) > 0) {
1901 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1902 if ((len
-= copy
) == 0)
1908 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1909 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1912 WARN_ON(start
> offset
+ len
);
1914 end
= start
+ skb_frag_size(frag
);
1915 if ((copy
= end
- offset
) > 0) {
1921 vaddr
= kmap_atomic(skb_frag_page(frag
));
1922 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1924 kunmap_atomic(vaddr
);
1926 if ((len
-= copy
) == 0)
1934 skb_walk_frags(skb
, frag_iter
) {
1937 WARN_ON(start
> offset
+ len
);
1939 end
= start
+ frag_iter
->len
;
1940 if ((copy
= end
- offset
) > 0) {
1943 if (skb_store_bits(frag_iter
, offset
- start
,
1946 if ((len
-= copy
) == 0)
1959 EXPORT_SYMBOL(skb_store_bits
);
1961 /* Checksum skb data. */
1962 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
1963 __wsum csum
, const struct skb_checksum_ops
*ops
)
1965 int start
= skb_headlen(skb
);
1966 int i
, copy
= start
- offset
;
1967 struct sk_buff
*frag_iter
;
1970 /* Checksum header. */
1974 csum
= ops
->update(skb
->data
+ offset
, copy
, csum
);
1975 if ((len
-= copy
) == 0)
1981 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1983 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1985 WARN_ON(start
> offset
+ len
);
1987 end
= start
+ skb_frag_size(frag
);
1988 if ((copy
= end
- offset
) > 0) {
1994 vaddr
= kmap_atomic(skb_frag_page(frag
));
1995 csum2
= ops
->update(vaddr
+ frag
->page_offset
+
1996 offset
- start
, copy
, 0);
1997 kunmap_atomic(vaddr
);
1998 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2007 skb_walk_frags(skb
, frag_iter
) {
2010 WARN_ON(start
> offset
+ len
);
2012 end
= start
+ frag_iter
->len
;
2013 if ((copy
= end
- offset
) > 0) {
2017 csum2
= __skb_checksum(frag_iter
, offset
- start
,
2019 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2020 if ((len
-= copy
) == 0)
2031 EXPORT_SYMBOL(__skb_checksum
);
2033 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2034 int len
, __wsum csum
)
2036 const struct skb_checksum_ops ops
= {
2037 .update
= csum_partial_ext
,
2038 .combine
= csum_block_add_ext
,
2041 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2043 EXPORT_SYMBOL(skb_checksum
);
2045 /* Both of above in one bottle. */
2047 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2048 u8
*to
, int len
, __wsum csum
)
2050 int start
= skb_headlen(skb
);
2051 int i
, copy
= start
- offset
;
2052 struct sk_buff
*frag_iter
;
2059 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2061 if ((len
-= copy
) == 0)
2068 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2071 WARN_ON(start
> offset
+ len
);
2073 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2074 if ((copy
= end
- offset
) > 0) {
2077 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2081 vaddr
= kmap_atomic(skb_frag_page(frag
));
2082 csum2
= csum_partial_copy_nocheck(vaddr
+
2086 kunmap_atomic(vaddr
);
2087 csum
= csum_block_add(csum
, csum2
, pos
);
2097 skb_walk_frags(skb
, frag_iter
) {
2101 WARN_ON(start
> offset
+ len
);
2103 end
= start
+ frag_iter
->len
;
2104 if ((copy
= end
- offset
) > 0) {
2107 csum2
= skb_copy_and_csum_bits(frag_iter
,
2110 csum
= csum_block_add(csum
, csum2
, pos
);
2111 if ((len
-= copy
) == 0)
2122 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2125 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2126 * @from: source buffer
2128 * Calculates the amount of linear headroom needed in the 'to' skb passed
2129 * into skb_zerocopy().
2132 skb_zerocopy_headlen(const struct sk_buff
*from
)
2134 unsigned int hlen
= 0;
2136 if (!from
->head_frag
||
2137 skb_headlen(from
) < L1_CACHE_BYTES
||
2138 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2139 hlen
= skb_headlen(from
);
2141 if (skb_has_frag_list(from
))
2146 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2149 * skb_zerocopy - Zero copy skb to skb
2150 * @to: destination buffer
2151 * @from: source buffer
2152 * @len: number of bytes to copy from source buffer
2153 * @hlen: size of linear headroom in destination buffer
2155 * Copies up to `len` bytes from `from` to `to` by creating references
2156 * to the frags in the source buffer.
2158 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2159 * headroom in the `to` buffer.
2162 * 0: everything is OK
2163 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2164 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2167 skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
, int len
, int hlen
)
2170 int plen
= 0; /* length of skb->head fragment */
2173 unsigned int offset
;
2175 BUG_ON(!from
->head_frag
&& !hlen
);
2177 /* dont bother with small payloads */
2178 if (len
<= skb_tailroom(to
))
2179 return skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2182 ret
= skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2187 plen
= min_t(int, skb_headlen(from
), len
);
2189 page
= virt_to_head_page(from
->head
);
2190 offset
= from
->data
- (unsigned char *)page_address(page
);
2191 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2198 to
->truesize
+= len
+ plen
;
2199 to
->len
+= len
+ plen
;
2200 to
->data_len
+= len
+ plen
;
2202 if (unlikely(skb_orphan_frags(from
, GFP_ATOMIC
))) {
2207 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2210 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2211 skb_shinfo(to
)->frags
[j
].size
= min_t(int, skb_shinfo(to
)->frags
[j
].size
, len
);
2212 len
-= skb_shinfo(to
)->frags
[j
].size
;
2213 skb_frag_ref(to
, j
);
2216 skb_shinfo(to
)->nr_frags
= j
;
2220 EXPORT_SYMBOL_GPL(skb_zerocopy
);
2222 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2227 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2228 csstart
= skb_checksum_start_offset(skb
);
2230 csstart
= skb_headlen(skb
);
2232 BUG_ON(csstart
> skb_headlen(skb
));
2234 skb_copy_from_linear_data(skb
, to
, csstart
);
2237 if (csstart
!= skb
->len
)
2238 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2239 skb
->len
- csstart
, 0);
2241 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2242 long csstuff
= csstart
+ skb
->csum_offset
;
2244 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2247 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2250 * skb_dequeue - remove from the head of the queue
2251 * @list: list to dequeue from
2253 * Remove the head of the list. The list lock is taken so the function
2254 * may be used safely with other locking list functions. The head item is
2255 * returned or %NULL if the list is empty.
2258 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2260 unsigned long flags
;
2261 struct sk_buff
*result
;
2263 spin_lock_irqsave(&list
->lock
, flags
);
2264 result
= __skb_dequeue(list
);
2265 spin_unlock_irqrestore(&list
->lock
, flags
);
2268 EXPORT_SYMBOL(skb_dequeue
);
2271 * skb_dequeue_tail - remove from the tail of the queue
2272 * @list: list to dequeue from
2274 * Remove the tail of the list. The list lock is taken so the function
2275 * may be used safely with other locking list functions. The tail item is
2276 * returned or %NULL if the list is empty.
2278 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2280 unsigned long flags
;
2281 struct sk_buff
*result
;
2283 spin_lock_irqsave(&list
->lock
, flags
);
2284 result
= __skb_dequeue_tail(list
);
2285 spin_unlock_irqrestore(&list
->lock
, flags
);
2288 EXPORT_SYMBOL(skb_dequeue_tail
);
2291 * skb_queue_purge - empty a list
2292 * @list: list to empty
2294 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2295 * the list and one reference dropped. This function takes the list
2296 * lock and is atomic with respect to other list locking functions.
2298 void skb_queue_purge(struct sk_buff_head
*list
)
2300 struct sk_buff
*skb
;
2301 while ((skb
= skb_dequeue(list
)) != NULL
)
2304 EXPORT_SYMBOL(skb_queue_purge
);
2307 * skb_queue_head - queue a buffer at the list head
2308 * @list: list to use
2309 * @newsk: buffer to queue
2311 * Queue a buffer at the start of the list. This function takes the
2312 * list lock and can be used safely with other locking &sk_buff functions
2315 * A buffer cannot be placed on two lists at the same time.
2317 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2319 unsigned long flags
;
2321 spin_lock_irqsave(&list
->lock
, flags
);
2322 __skb_queue_head(list
, newsk
);
2323 spin_unlock_irqrestore(&list
->lock
, flags
);
2325 EXPORT_SYMBOL(skb_queue_head
);
2328 * skb_queue_tail - queue a buffer at the list tail
2329 * @list: list to use
2330 * @newsk: buffer to queue
2332 * Queue a buffer at the tail of the list. This function takes the
2333 * list lock and can be used safely with other locking &sk_buff functions
2336 * A buffer cannot be placed on two lists at the same time.
2338 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2340 unsigned long flags
;
2342 spin_lock_irqsave(&list
->lock
, flags
);
2343 __skb_queue_tail(list
, newsk
);
2344 spin_unlock_irqrestore(&list
->lock
, flags
);
2346 EXPORT_SYMBOL(skb_queue_tail
);
2349 * skb_unlink - remove a buffer from a list
2350 * @skb: buffer to remove
2351 * @list: list to use
2353 * Remove a packet from a list. The list locks are taken and this
2354 * function is atomic with respect to other list locked calls
2356 * You must know what list the SKB is on.
2358 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2360 unsigned long flags
;
2362 spin_lock_irqsave(&list
->lock
, flags
);
2363 __skb_unlink(skb
, list
);
2364 spin_unlock_irqrestore(&list
->lock
, flags
);
2366 EXPORT_SYMBOL(skb_unlink
);
2369 * skb_append - append a buffer
2370 * @old: buffer to insert after
2371 * @newsk: buffer to insert
2372 * @list: list to use
2374 * Place a packet after a given packet in a list. The list locks are taken
2375 * and this function is atomic with respect to other list locked calls.
2376 * A buffer cannot be placed on two lists at the same time.
2378 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2380 unsigned long flags
;
2382 spin_lock_irqsave(&list
->lock
, flags
);
2383 __skb_queue_after(list
, old
, newsk
);
2384 spin_unlock_irqrestore(&list
->lock
, flags
);
2386 EXPORT_SYMBOL(skb_append
);
2389 * skb_insert - insert a buffer
2390 * @old: buffer to insert before
2391 * @newsk: buffer to insert
2392 * @list: list to use
2394 * Place a packet before a given packet in a list. The list locks are
2395 * taken and this function is atomic with respect to other list locked
2398 * A buffer cannot be placed on two lists at the same time.
2400 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2402 unsigned long flags
;
2404 spin_lock_irqsave(&list
->lock
, flags
);
2405 __skb_insert(newsk
, old
->prev
, old
, list
);
2406 spin_unlock_irqrestore(&list
->lock
, flags
);
2408 EXPORT_SYMBOL(skb_insert
);
2410 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2411 struct sk_buff
* skb1
,
2412 const u32 len
, const int pos
)
2416 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2418 /* And move data appendix as is. */
2419 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2420 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2422 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2423 skb_shinfo(skb
)->nr_frags
= 0;
2424 skb1
->data_len
= skb
->data_len
;
2425 skb1
->len
+= skb1
->data_len
;
2428 skb_set_tail_pointer(skb
, len
);
2431 static inline void skb_split_no_header(struct sk_buff
*skb
,
2432 struct sk_buff
* skb1
,
2433 const u32 len
, int pos
)
2436 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2438 skb_shinfo(skb
)->nr_frags
= 0;
2439 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2441 skb
->data_len
= len
- pos
;
2443 for (i
= 0; i
< nfrags
; i
++) {
2444 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2446 if (pos
+ size
> len
) {
2447 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2451 * We have two variants in this case:
2452 * 1. Move all the frag to the second
2453 * part, if it is possible. F.e.
2454 * this approach is mandatory for TUX,
2455 * where splitting is expensive.
2456 * 2. Split is accurately. We make this.
2458 skb_frag_ref(skb
, i
);
2459 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2460 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2461 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2462 skb_shinfo(skb
)->nr_frags
++;
2466 skb_shinfo(skb
)->nr_frags
++;
2469 skb_shinfo(skb1
)->nr_frags
= k
;
2473 * skb_split - Split fragmented skb to two parts at length len.
2474 * @skb: the buffer to split
2475 * @skb1: the buffer to receive the second part
2476 * @len: new length for skb
2478 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2480 int pos
= skb_headlen(skb
);
2482 skb_shinfo(skb1
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2483 if (len
< pos
) /* Split line is inside header. */
2484 skb_split_inside_header(skb
, skb1
, len
, pos
);
2485 else /* Second chunk has no header, nothing to copy. */
2486 skb_split_no_header(skb
, skb1
, len
, pos
);
2488 EXPORT_SYMBOL(skb_split
);
2490 /* Shifting from/to a cloned skb is a no-go.
2492 * Caller cannot keep skb_shinfo related pointers past calling here!
2494 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2496 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2500 * skb_shift - Shifts paged data partially from skb to another
2501 * @tgt: buffer into which tail data gets added
2502 * @skb: buffer from which the paged data comes from
2503 * @shiftlen: shift up to this many bytes
2505 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2506 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2507 * It's up to caller to free skb if everything was shifted.
2509 * If @tgt runs out of frags, the whole operation is aborted.
2511 * Skb cannot include anything else but paged data while tgt is allowed
2512 * to have non-paged data as well.
2514 * TODO: full sized shift could be optimized but that would need
2515 * specialized skb free'er to handle frags without up-to-date nr_frags.
2517 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2519 int from
, to
, merge
, todo
;
2520 struct skb_frag_struct
*fragfrom
, *fragto
;
2522 BUG_ON(shiftlen
> skb
->len
);
2523 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2527 to
= skb_shinfo(tgt
)->nr_frags
;
2528 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2530 /* Actual merge is delayed until the point when we know we can
2531 * commit all, so that we don't have to undo partial changes
2534 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2535 fragfrom
->page_offset
)) {
2540 todo
-= skb_frag_size(fragfrom
);
2542 if (skb_prepare_for_shift(skb
) ||
2543 skb_prepare_for_shift(tgt
))
2546 /* All previous frag pointers might be stale! */
2547 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2548 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2550 skb_frag_size_add(fragto
, shiftlen
);
2551 skb_frag_size_sub(fragfrom
, shiftlen
);
2552 fragfrom
->page_offset
+= shiftlen
;
2560 /* Skip full, not-fitting skb to avoid expensive operations */
2561 if ((shiftlen
== skb
->len
) &&
2562 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2565 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2568 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2569 if (to
== MAX_SKB_FRAGS
)
2572 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2573 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2575 if (todo
>= skb_frag_size(fragfrom
)) {
2576 *fragto
= *fragfrom
;
2577 todo
-= skb_frag_size(fragfrom
);
2582 __skb_frag_ref(fragfrom
);
2583 fragto
->page
= fragfrom
->page
;
2584 fragto
->page_offset
= fragfrom
->page_offset
;
2585 skb_frag_size_set(fragto
, todo
);
2587 fragfrom
->page_offset
+= todo
;
2588 skb_frag_size_sub(fragfrom
, todo
);
2596 /* Ready to "commit" this state change to tgt */
2597 skb_shinfo(tgt
)->nr_frags
= to
;
2600 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2601 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2603 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2604 __skb_frag_unref(fragfrom
);
2607 /* Reposition in the original skb */
2609 while (from
< skb_shinfo(skb
)->nr_frags
)
2610 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2611 skb_shinfo(skb
)->nr_frags
= to
;
2613 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2616 /* Most likely the tgt won't ever need its checksum anymore, skb on
2617 * the other hand might need it if it needs to be resent
2619 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2620 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2622 /* Yak, is it really working this way? Some helper please? */
2623 skb
->len
-= shiftlen
;
2624 skb
->data_len
-= shiftlen
;
2625 skb
->truesize
-= shiftlen
;
2626 tgt
->len
+= shiftlen
;
2627 tgt
->data_len
+= shiftlen
;
2628 tgt
->truesize
+= shiftlen
;
2634 * skb_prepare_seq_read - Prepare a sequential read of skb data
2635 * @skb: the buffer to read
2636 * @from: lower offset of data to be read
2637 * @to: upper offset of data to be read
2638 * @st: state variable
2640 * Initializes the specified state variable. Must be called before
2641 * invoking skb_seq_read() for the first time.
2643 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2644 unsigned int to
, struct skb_seq_state
*st
)
2646 st
->lower_offset
= from
;
2647 st
->upper_offset
= to
;
2648 st
->root_skb
= st
->cur_skb
= skb
;
2649 st
->frag_idx
= st
->stepped_offset
= 0;
2650 st
->frag_data
= NULL
;
2652 EXPORT_SYMBOL(skb_prepare_seq_read
);
2655 * skb_seq_read - Sequentially read skb data
2656 * @consumed: number of bytes consumed by the caller so far
2657 * @data: destination pointer for data to be returned
2658 * @st: state variable
2660 * Reads a block of skb data at @consumed relative to the
2661 * lower offset specified to skb_prepare_seq_read(). Assigns
2662 * the head of the data block to @data and returns the length
2663 * of the block or 0 if the end of the skb data or the upper
2664 * offset has been reached.
2666 * The caller is not required to consume all of the data
2667 * returned, i.e. @consumed is typically set to the number
2668 * of bytes already consumed and the next call to
2669 * skb_seq_read() will return the remaining part of the block.
2671 * Note 1: The size of each block of data returned can be arbitrary,
2672 * this limitation is the cost for zerocopy seqeuental
2673 * reads of potentially non linear data.
2675 * Note 2: Fragment lists within fragments are not implemented
2676 * at the moment, state->root_skb could be replaced with
2677 * a stack for this purpose.
2679 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2680 struct skb_seq_state
*st
)
2682 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2685 if (unlikely(abs_offset
>= st
->upper_offset
)) {
2686 if (st
->frag_data
) {
2687 kunmap_atomic(st
->frag_data
);
2688 st
->frag_data
= NULL
;
2694 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2696 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2697 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2698 return block_limit
- abs_offset
;
2701 if (st
->frag_idx
== 0 && !st
->frag_data
)
2702 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2704 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2705 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2706 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2708 if (abs_offset
< block_limit
) {
2710 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2712 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2713 (abs_offset
- st
->stepped_offset
);
2715 return block_limit
- abs_offset
;
2718 if (st
->frag_data
) {
2719 kunmap_atomic(st
->frag_data
);
2720 st
->frag_data
= NULL
;
2724 st
->stepped_offset
+= skb_frag_size(frag
);
2727 if (st
->frag_data
) {
2728 kunmap_atomic(st
->frag_data
);
2729 st
->frag_data
= NULL
;
2732 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2733 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2736 } else if (st
->cur_skb
->next
) {
2737 st
->cur_skb
= st
->cur_skb
->next
;
2744 EXPORT_SYMBOL(skb_seq_read
);
2747 * skb_abort_seq_read - Abort a sequential read of skb data
2748 * @st: state variable
2750 * Must be called if skb_seq_read() was not called until it
2753 void skb_abort_seq_read(struct skb_seq_state
*st
)
2756 kunmap_atomic(st
->frag_data
);
2758 EXPORT_SYMBOL(skb_abort_seq_read
);
2760 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2762 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2763 struct ts_config
*conf
,
2764 struct ts_state
*state
)
2766 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2769 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2771 skb_abort_seq_read(TS_SKB_CB(state
));
2775 * skb_find_text - Find a text pattern in skb data
2776 * @skb: the buffer to look in
2777 * @from: search offset
2779 * @config: textsearch configuration
2780 * @state: uninitialized textsearch state variable
2782 * Finds a pattern in the skb data according to the specified
2783 * textsearch configuration. Use textsearch_next() to retrieve
2784 * subsequent occurrences of the pattern. Returns the offset
2785 * to the first occurrence or UINT_MAX if no match was found.
2787 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2788 unsigned int to
, struct ts_config
*config
,
2789 struct ts_state
*state
)
2793 config
->get_next_block
= skb_ts_get_next_block
;
2794 config
->finish
= skb_ts_finish
;
2796 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2798 ret
= textsearch_find(config
, state
);
2799 return (ret
<= to
- from
? ret
: UINT_MAX
);
2801 EXPORT_SYMBOL(skb_find_text
);
2804 * skb_append_datato_frags - append the user data to a skb
2805 * @sk: sock structure
2806 * @skb: skb structure to be appened with user data.
2807 * @getfrag: call back function to be used for getting the user data
2808 * @from: pointer to user message iov
2809 * @length: length of the iov message
2811 * Description: This procedure append the user data in the fragment part
2812 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2814 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2815 int (*getfrag
)(void *from
, char *to
, int offset
,
2816 int len
, int odd
, struct sk_buff
*skb
),
2817 void *from
, int length
)
2819 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2823 struct page_frag
*pfrag
= ¤t
->task_frag
;
2826 /* Return error if we don't have space for new frag */
2827 if (frg_cnt
>= MAX_SKB_FRAGS
)
2830 if (!sk_page_frag_refill(sk
, pfrag
))
2833 /* copy the user data to page */
2834 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
2836 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
2837 offset
, copy
, 0, skb
);
2841 /* copy was successful so update the size parameters */
2842 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
2845 pfrag
->offset
+= copy
;
2846 get_page(pfrag
->page
);
2848 skb
->truesize
+= copy
;
2849 atomic_add(copy
, &sk
->sk_wmem_alloc
);
2851 skb
->data_len
+= copy
;
2855 } while (length
> 0);
2859 EXPORT_SYMBOL(skb_append_datato_frags
);
2862 * skb_pull_rcsum - pull skb and update receive checksum
2863 * @skb: buffer to update
2864 * @len: length of data pulled
2866 * This function performs an skb_pull on the packet and updates
2867 * the CHECKSUM_COMPLETE checksum. It should be used on
2868 * receive path processing instead of skb_pull unless you know
2869 * that the checksum difference is zero (e.g., a valid IP header)
2870 * or you are setting ip_summed to CHECKSUM_NONE.
2872 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2874 unsigned char *data
= skb
->data
;
2876 BUG_ON(len
> skb
->len
);
2877 __skb_pull(skb
, len
);
2878 skb_postpull_rcsum(skb
, data
, len
);
2881 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2884 * skb_segment - Perform protocol segmentation on skb.
2885 * @head_skb: buffer to segment
2886 * @features: features for the output path (see dev->features)
2888 * This function performs segmentation on the given skb. It returns
2889 * a pointer to the first in a list of new skbs for the segments.
2890 * In case of error it returns ERR_PTR(err).
2892 struct sk_buff
*skb_segment(struct sk_buff
*head_skb
,
2893 netdev_features_t features
)
2895 struct sk_buff
*segs
= NULL
;
2896 struct sk_buff
*tail
= NULL
;
2897 struct sk_buff
*list_skb
= skb_shinfo(head_skb
)->frag_list
;
2898 skb_frag_t
*frag
= skb_shinfo(head_skb
)->frags
;
2899 unsigned int mss
= skb_shinfo(head_skb
)->gso_size
;
2900 unsigned int doffset
= head_skb
->data
- skb_mac_header(head_skb
);
2901 struct sk_buff
*frag_skb
= head_skb
;
2902 unsigned int offset
= doffset
;
2903 unsigned int tnl_hlen
= skb_tnl_header_len(head_skb
);
2904 unsigned int headroom
;
2908 int sg
= !!(features
& NETIF_F_SG
);
2909 int nfrags
= skb_shinfo(head_skb
)->nr_frags
;
2915 __skb_push(head_skb
, doffset
);
2916 proto
= skb_network_protocol(head_skb
, &dummy
);
2917 if (unlikely(!proto
))
2918 return ERR_PTR(-EINVAL
);
2920 csum
= !head_skb
->encap_hdr_csum
&&
2921 !!can_checksum_protocol(features
, proto
);
2923 headroom
= skb_headroom(head_skb
);
2924 pos
= skb_headlen(head_skb
);
2927 struct sk_buff
*nskb
;
2928 skb_frag_t
*nskb_frag
;
2932 len
= head_skb
->len
- offset
;
2936 hsize
= skb_headlen(head_skb
) - offset
;
2939 if (hsize
> len
|| !sg
)
2942 if (!hsize
&& i
>= nfrags
&& skb_headlen(list_skb
) &&
2943 (skb_headlen(list_skb
) == len
|| sg
)) {
2944 BUG_ON(skb_headlen(list_skb
) > len
);
2947 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
2948 frag
= skb_shinfo(list_skb
)->frags
;
2949 frag_skb
= list_skb
;
2950 pos
+= skb_headlen(list_skb
);
2952 while (pos
< offset
+ len
) {
2953 BUG_ON(i
>= nfrags
);
2955 size
= skb_frag_size(frag
);
2956 if (pos
+ size
> offset
+ len
)
2964 nskb
= skb_clone(list_skb
, GFP_ATOMIC
);
2965 list_skb
= list_skb
->next
;
2967 if (unlikely(!nskb
))
2970 if (unlikely(pskb_trim(nskb
, len
))) {
2975 hsize
= skb_end_offset(nskb
);
2976 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2981 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
2982 skb_release_head_state(nskb
);
2983 __skb_push(nskb
, doffset
);
2985 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
2986 GFP_ATOMIC
, skb_alloc_rx_flag(head_skb
),
2989 if (unlikely(!nskb
))
2992 skb_reserve(nskb
, headroom
);
2993 __skb_put(nskb
, doffset
);
3002 __copy_skb_header(nskb
, head_skb
);
3004 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
3005 skb_reset_mac_len(nskb
);
3007 skb_copy_from_linear_data_offset(head_skb
, -tnl_hlen
,
3008 nskb
->data
- tnl_hlen
,
3009 doffset
+ tnl_hlen
);
3011 if (nskb
->len
== len
+ doffset
)
3012 goto perform_csum_check
;
3015 nskb
->ip_summed
= CHECKSUM_NONE
;
3016 nskb
->csum
= skb_copy_and_csum_bits(head_skb
, offset
,
3019 SKB_GSO_CB(nskb
)->csum_start
=
3020 skb_headroom(nskb
) + doffset
;
3024 nskb_frag
= skb_shinfo(nskb
)->frags
;
3026 skb_copy_from_linear_data_offset(head_skb
, offset
,
3027 skb_put(nskb
, hsize
), hsize
);
3029 skb_shinfo(nskb
)->tx_flags
= skb_shinfo(head_skb
)->tx_flags
&
3032 while (pos
< offset
+ len
) {
3034 BUG_ON(skb_headlen(list_skb
));
3037 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3038 frag
= skb_shinfo(list_skb
)->frags
;
3039 frag_skb
= list_skb
;
3043 list_skb
= list_skb
->next
;
3046 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
3048 net_warn_ratelimited(
3049 "skb_segment: too many frags: %u %u\n",
3054 if (unlikely(skb_orphan_frags(frag_skb
, GFP_ATOMIC
)))
3058 __skb_frag_ref(nskb_frag
);
3059 size
= skb_frag_size(nskb_frag
);
3062 nskb_frag
->page_offset
+= offset
- pos
;
3063 skb_frag_size_sub(nskb_frag
, offset
- pos
);
3066 skb_shinfo(nskb
)->nr_frags
++;
3068 if (pos
+ size
<= offset
+ len
) {
3073 skb_frag_size_sub(nskb_frag
, pos
+ size
- (offset
+ len
));
3081 nskb
->data_len
= len
- hsize
;
3082 nskb
->len
+= nskb
->data_len
;
3083 nskb
->truesize
+= nskb
->data_len
;
3087 nskb
->csum
= skb_checksum(nskb
, doffset
,
3088 nskb
->len
- doffset
, 0);
3089 nskb
->ip_summed
= CHECKSUM_NONE
;
3090 SKB_GSO_CB(nskb
)->csum_start
=
3091 skb_headroom(nskb
) + doffset
;
3093 } while ((offset
+= len
) < head_skb
->len
);
3098 kfree_skb_list(segs
);
3099 return ERR_PTR(err
);
3101 EXPORT_SYMBOL_GPL(skb_segment
);
3103 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
3105 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
3106 unsigned int offset
= skb_gro_offset(skb
);
3107 unsigned int headlen
= skb_headlen(skb
);
3108 struct sk_buff
*nskb
, *lp
, *p
= *head
;
3109 unsigned int len
= skb_gro_len(skb
);
3110 unsigned int delta_truesize
;
3111 unsigned int headroom
;
3113 if (unlikely(p
->len
+ len
>= 65536))
3116 lp
= NAPI_GRO_CB(p
)->last
;
3117 pinfo
= skb_shinfo(lp
);
3119 if (headlen
<= offset
) {
3122 int i
= skbinfo
->nr_frags
;
3123 int nr_frags
= pinfo
->nr_frags
+ i
;
3125 if (nr_frags
> MAX_SKB_FRAGS
)
3129 pinfo
->nr_frags
= nr_frags
;
3130 skbinfo
->nr_frags
= 0;
3132 frag
= pinfo
->frags
+ nr_frags
;
3133 frag2
= skbinfo
->frags
+ i
;
3138 frag
->page_offset
+= offset
;
3139 skb_frag_size_sub(frag
, offset
);
3141 /* all fragments truesize : remove (head size + sk_buff) */
3142 delta_truesize
= skb
->truesize
-
3143 SKB_TRUESIZE(skb_end_offset(skb
));
3145 skb
->truesize
-= skb
->data_len
;
3146 skb
->len
-= skb
->data_len
;
3149 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
3151 } else if (skb
->head_frag
) {
3152 int nr_frags
= pinfo
->nr_frags
;
3153 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
3154 struct page
*page
= virt_to_head_page(skb
->head
);
3155 unsigned int first_size
= headlen
- offset
;
3156 unsigned int first_offset
;
3158 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
3161 first_offset
= skb
->data
-
3162 (unsigned char *)page_address(page
) +
3165 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
3167 frag
->page
.p
= page
;
3168 frag
->page_offset
= first_offset
;
3169 skb_frag_size_set(frag
, first_size
);
3171 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
3172 /* We dont need to clear skbinfo->nr_frags here */
3174 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3175 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
3178 /* switch back to head shinfo */
3179 pinfo
= skb_shinfo(p
);
3181 if (pinfo
->frag_list
)
3183 if (skb_gro_len(p
) != pinfo
->gso_size
)
3186 headroom
= skb_headroom(p
);
3187 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
3188 if (unlikely(!nskb
))
3191 __copy_skb_header(nskb
, p
);
3192 nskb
->mac_len
= p
->mac_len
;
3194 skb_reserve(nskb
, headroom
);
3195 __skb_put(nskb
, skb_gro_offset(p
));
3197 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
3198 skb_set_network_header(nskb
, skb_network_offset(p
));
3199 skb_set_transport_header(nskb
, skb_transport_offset(p
));
3201 __skb_pull(p
, skb_gro_offset(p
));
3202 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
3203 p
->data
- skb_mac_header(p
));
3205 skb_shinfo(nskb
)->frag_list
= p
;
3206 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
3207 pinfo
->gso_size
= 0;
3208 skb_header_release(p
);
3209 NAPI_GRO_CB(nskb
)->last
= p
;
3211 nskb
->data_len
+= p
->len
;
3212 nskb
->truesize
+= p
->truesize
;
3213 nskb
->len
+= p
->len
;
3216 nskb
->next
= p
->next
;
3222 delta_truesize
= skb
->truesize
;
3223 if (offset
> headlen
) {
3224 unsigned int eat
= offset
- headlen
;
3226 skbinfo
->frags
[0].page_offset
+= eat
;
3227 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3228 skb
->data_len
-= eat
;
3233 __skb_pull(skb
, offset
);
3235 if (NAPI_GRO_CB(p
)->last
== p
)
3236 skb_shinfo(p
)->frag_list
= skb
;
3238 NAPI_GRO_CB(p
)->last
->next
= skb
;
3239 NAPI_GRO_CB(p
)->last
= skb
;
3240 skb_header_release(skb
);
3244 NAPI_GRO_CB(p
)->count
++;
3246 p
->truesize
+= delta_truesize
;
3249 lp
->data_len
+= len
;
3250 lp
->truesize
+= delta_truesize
;
3253 NAPI_GRO_CB(skb
)->same_flow
= 1;
3256 EXPORT_SYMBOL_GPL(skb_gro_receive
);
3258 void __init
skb_init(void)
3260 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3261 sizeof(struct sk_buff
),
3263 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3265 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3266 (2*sizeof(struct sk_buff
)) +
3269 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3274 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3275 * @skb: Socket buffer containing the buffers to be mapped
3276 * @sg: The scatter-gather list to map into
3277 * @offset: The offset into the buffer's contents to start mapping
3278 * @len: Length of buffer space to be mapped
3280 * Fill the specified scatter-gather list with mappings/pointers into a
3281 * region of the buffer space attached to a socket buffer.
3284 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3286 int start
= skb_headlen(skb
);
3287 int i
, copy
= start
- offset
;
3288 struct sk_buff
*frag_iter
;
3294 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3296 if ((len
-= copy
) == 0)
3301 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3304 WARN_ON(start
> offset
+ len
);
3306 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3307 if ((copy
= end
- offset
) > 0) {
3308 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3312 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3313 frag
->page_offset
+offset
-start
);
3322 skb_walk_frags(skb
, frag_iter
) {
3325 WARN_ON(start
> offset
+ len
);
3327 end
= start
+ frag_iter
->len
;
3328 if ((copy
= end
- offset
) > 0) {
3331 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3333 if ((len
-= copy
) == 0)
3343 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3344 * sglist without mark the sg which contain last skb data as the end.
3345 * So the caller can mannipulate sg list as will when padding new data after
3346 * the first call without calling sg_unmark_end to expend sg list.
3348 * Scenario to use skb_to_sgvec_nomark:
3350 * 2. skb_to_sgvec_nomark(payload1)
3351 * 3. skb_to_sgvec_nomark(payload2)
3353 * This is equivalent to:
3355 * 2. skb_to_sgvec(payload1)
3357 * 4. skb_to_sgvec(payload2)
3359 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3360 * is more preferable.
3362 int skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
3363 int offset
, int len
)
3365 return __skb_to_sgvec(skb
, sg
, offset
, len
);
3367 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark
);
3369 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3371 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
3373 sg_mark_end(&sg
[nsg
- 1]);
3377 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3380 * skb_cow_data - Check that a socket buffer's data buffers are writable
3381 * @skb: The socket buffer to check.
3382 * @tailbits: Amount of trailing space to be added
3383 * @trailer: Returned pointer to the skb where the @tailbits space begins
3385 * Make sure that the data buffers attached to a socket buffer are
3386 * writable. If they are not, private copies are made of the data buffers
3387 * and the socket buffer is set to use these instead.
3389 * If @tailbits is given, make sure that there is space to write @tailbits
3390 * bytes of data beyond current end of socket buffer. @trailer will be
3391 * set to point to the skb in which this space begins.
3393 * The number of scatterlist elements required to completely map the
3394 * COW'd and extended socket buffer will be returned.
3396 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3400 struct sk_buff
*skb1
, **skb_p
;
3402 /* If skb is cloned or its head is paged, reallocate
3403 * head pulling out all the pages (pages are considered not writable
3404 * at the moment even if they are anonymous).
3406 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3407 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3410 /* Easy case. Most of packets will go this way. */
3411 if (!skb_has_frag_list(skb
)) {
3412 /* A little of trouble, not enough of space for trailer.
3413 * This should not happen, when stack is tuned to generate
3414 * good frames. OK, on miss we reallocate and reserve even more
3415 * space, 128 bytes is fair. */
3417 if (skb_tailroom(skb
) < tailbits
&&
3418 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3426 /* Misery. We are in troubles, going to mincer fragments... */
3429 skb_p
= &skb_shinfo(skb
)->frag_list
;
3432 while ((skb1
= *skb_p
) != NULL
) {
3435 /* The fragment is partially pulled by someone,
3436 * this can happen on input. Copy it and everything
3439 if (skb_shared(skb1
))
3442 /* If the skb is the last, worry about trailer. */
3444 if (skb1
->next
== NULL
&& tailbits
) {
3445 if (skb_shinfo(skb1
)->nr_frags
||
3446 skb_has_frag_list(skb1
) ||
3447 skb_tailroom(skb1
) < tailbits
)
3448 ntail
= tailbits
+ 128;
3454 skb_shinfo(skb1
)->nr_frags
||
3455 skb_has_frag_list(skb1
)) {
3456 struct sk_buff
*skb2
;
3458 /* Fuck, we are miserable poor guys... */
3460 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3462 skb2
= skb_copy_expand(skb1
,
3466 if (unlikely(skb2
== NULL
))
3470 skb_set_owner_w(skb2
, skb1
->sk
);
3472 /* Looking around. Are we still alive?
3473 * OK, link new skb, drop old one */
3475 skb2
->next
= skb1
->next
;
3482 skb_p
= &skb1
->next
;
3487 EXPORT_SYMBOL_GPL(skb_cow_data
);
3489 static void sock_rmem_free(struct sk_buff
*skb
)
3491 struct sock
*sk
= skb
->sk
;
3493 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3497 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3499 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3501 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3502 (unsigned int)sk
->sk_rcvbuf
)
3507 skb
->destructor
= sock_rmem_free
;
3508 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3510 /* before exiting rcu section, make sure dst is refcounted */
3513 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3514 if (!sock_flag(sk
, SOCK_DEAD
))
3515 sk
->sk_data_ready(sk
);
3518 EXPORT_SYMBOL(sock_queue_err_skb
);
3520 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3521 struct skb_shared_hwtstamps
*hwtstamps
)
3523 struct sock
*sk
= orig_skb
->sk
;
3524 struct sock_exterr_skb
*serr
;
3525 struct sk_buff
*skb
;
3532 *skb_hwtstamps(orig_skb
) =
3536 * no hardware time stamps available,
3537 * so keep the shared tx_flags and only
3538 * store software time stamp
3540 orig_skb
->tstamp
= ktime_get_real();
3543 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3547 serr
= SKB_EXT_ERR(skb
);
3548 memset(serr
, 0, sizeof(*serr
));
3549 serr
->ee
.ee_errno
= ENOMSG
;
3550 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3552 err
= sock_queue_err_skb(sk
, skb
);
3557 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3559 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3561 struct sock
*sk
= skb
->sk
;
3562 struct sock_exterr_skb
*serr
;
3565 skb
->wifi_acked_valid
= 1;
3566 skb
->wifi_acked
= acked
;
3568 serr
= SKB_EXT_ERR(skb
);
3569 memset(serr
, 0, sizeof(*serr
));
3570 serr
->ee
.ee_errno
= ENOMSG
;
3571 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3573 err
= sock_queue_err_skb(sk
, skb
);
3577 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3581 * skb_partial_csum_set - set up and verify partial csum values for packet
3582 * @skb: the skb to set
3583 * @start: the number of bytes after skb->data to start checksumming.
3584 * @off: the offset from start to place the checksum.
3586 * For untrusted partially-checksummed packets, we need to make sure the values
3587 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3589 * This function checks and sets those values and skb->ip_summed: if this
3590 * returns false you should drop the packet.
3592 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3594 if (unlikely(start
> skb_headlen(skb
)) ||
3595 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3596 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3597 start
, off
, skb_headlen(skb
));
3600 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3601 skb
->csum_start
= skb_headroom(skb
) + start
;
3602 skb
->csum_offset
= off
;
3603 skb_set_transport_header(skb
, start
);
3606 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3608 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
3611 if (skb_headlen(skb
) >= len
)
3614 /* If we need to pullup then pullup to the max, so we
3615 * won't need to do it again.
3620 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
3623 if (skb_headlen(skb
) < len
)
3629 #define MAX_TCP_HDR_LEN (15 * 4)
3631 static __sum16
*skb_checksum_setup_ip(struct sk_buff
*skb
,
3632 typeof(IPPROTO_IP
) proto
,
3639 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct tcphdr
),
3640 off
+ MAX_TCP_HDR_LEN
);
3641 if (!err
&& !skb_partial_csum_set(skb
, off
,
3642 offsetof(struct tcphdr
,
3645 return err
? ERR_PTR(err
) : &tcp_hdr(skb
)->check
;
3648 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct udphdr
),
3649 off
+ sizeof(struct udphdr
));
3650 if (!err
&& !skb_partial_csum_set(skb
, off
,
3651 offsetof(struct udphdr
,
3654 return err
? ERR_PTR(err
) : &udp_hdr(skb
)->check
;
3657 return ERR_PTR(-EPROTO
);
3660 /* This value should be large enough to cover a tagged ethernet header plus
3661 * maximally sized IP and TCP or UDP headers.
3663 #define MAX_IP_HDR_LEN 128
3665 static int skb_checksum_setup_ipv4(struct sk_buff
*skb
, bool recalculate
)
3674 err
= skb_maybe_pull_tail(skb
,
3675 sizeof(struct iphdr
),
3680 if (ip_hdr(skb
)->frag_off
& htons(IP_OFFSET
| IP_MF
))
3683 off
= ip_hdrlen(skb
);
3690 csum
= skb_checksum_setup_ip(skb
, ip_hdr(skb
)->protocol
, off
);
3692 return PTR_ERR(csum
);
3695 *csum
= ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3698 ip_hdr(skb
)->protocol
, 0);
3705 /* This value should be large enough to cover a tagged ethernet header plus
3706 * an IPv6 header, all options, and a maximal TCP or UDP header.
3708 #define MAX_IPV6_HDR_LEN 256
3710 #define OPT_HDR(type, skb, off) \
3711 (type *)(skb_network_header(skb) + (off))
3713 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
3726 off
= sizeof(struct ipv6hdr
);
3728 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
3732 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
3734 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
3735 while (off
<= len
&& !done
) {
3737 case IPPROTO_DSTOPTS
:
3738 case IPPROTO_HOPOPTS
:
3739 case IPPROTO_ROUTING
: {
3740 struct ipv6_opt_hdr
*hp
;
3742 err
= skb_maybe_pull_tail(skb
,
3744 sizeof(struct ipv6_opt_hdr
),
3749 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
3750 nexthdr
= hp
->nexthdr
;
3751 off
+= ipv6_optlen(hp
);
3755 struct ip_auth_hdr
*hp
;
3757 err
= skb_maybe_pull_tail(skb
,
3759 sizeof(struct ip_auth_hdr
),
3764 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
3765 nexthdr
= hp
->nexthdr
;
3766 off
+= ipv6_authlen(hp
);
3769 case IPPROTO_FRAGMENT
: {
3770 struct frag_hdr
*hp
;
3772 err
= skb_maybe_pull_tail(skb
,
3774 sizeof(struct frag_hdr
),
3779 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
3781 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
3784 nexthdr
= hp
->nexthdr
;
3785 off
+= sizeof(struct frag_hdr
);
3796 if (!done
|| fragment
)
3799 csum
= skb_checksum_setup_ip(skb
, nexthdr
, off
);
3801 return PTR_ERR(csum
);
3804 *csum
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3805 &ipv6_hdr(skb
)->daddr
,
3806 skb
->len
- off
, nexthdr
, 0);
3814 * skb_checksum_setup - set up partial checksum offset
3815 * @skb: the skb to set up
3816 * @recalculate: if true the pseudo-header checksum will be recalculated
3818 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
3822 switch (skb
->protocol
) {
3823 case htons(ETH_P_IP
):
3824 err
= skb_checksum_setup_ipv4(skb
, recalculate
);
3827 case htons(ETH_P_IPV6
):
3828 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
3838 EXPORT_SYMBOL(skb_checksum_setup
);
3840 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3842 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3845 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
3847 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
3850 skb_release_head_state(skb
);
3851 kmem_cache_free(skbuff_head_cache
, skb
);
3856 EXPORT_SYMBOL(kfree_skb_partial
);
3859 * skb_try_coalesce - try to merge skb to prior one
3861 * @from: buffer to add
3862 * @fragstolen: pointer to boolean
3863 * @delta_truesize: how much more was allocated than was requested
3865 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
3866 bool *fragstolen
, int *delta_truesize
)
3868 int i
, delta
, len
= from
->len
;
3870 *fragstolen
= false;
3875 if (len
<= skb_tailroom(to
)) {
3876 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
3877 *delta_truesize
= 0;
3881 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
3884 if (skb_headlen(from
) != 0) {
3886 unsigned int offset
;
3888 if (skb_shinfo(to
)->nr_frags
+
3889 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
3892 if (skb_head_is_locked(from
))
3895 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3897 page
= virt_to_head_page(from
->head
);
3898 offset
= from
->data
- (unsigned char *)page_address(page
);
3900 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
3901 page
, offset
, skb_headlen(from
));
3904 if (skb_shinfo(to
)->nr_frags
+
3905 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
3908 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
3911 WARN_ON_ONCE(delta
< len
);
3913 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
3914 skb_shinfo(from
)->frags
,
3915 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
3916 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
3918 if (!skb_cloned(from
))
3919 skb_shinfo(from
)->nr_frags
= 0;
3921 /* if the skb is not cloned this does nothing
3922 * since we set nr_frags to 0.
3924 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
3925 skb_frag_ref(from
, i
);
3927 to
->truesize
+= delta
;
3929 to
->data_len
+= len
;
3931 *delta_truesize
= delta
;
3934 EXPORT_SYMBOL(skb_try_coalesce
);
3937 * skb_scrub_packet - scrub an skb
3939 * @skb: buffer to clean
3940 * @xnet: packet is crossing netns
3942 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3943 * into/from a tunnel. Some information have to be cleared during these
3945 * skb_scrub_packet can also be used to clean a skb before injecting it in
3946 * another namespace (@xnet == true). We have to clear all information in the
3947 * skb that could impact namespace isolation.
3949 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
3951 skb
->tstamp
.tv64
= 0;
3952 skb
->pkt_type
= PACKET_HOST
;
3956 skb_init_secmark(skb
);
3959 nf_reset_trace(skb
);
3968 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
3971 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3975 * skb_gso_transport_seglen is used to determine the real size of the
3976 * individual segments, including Layer4 headers (TCP/UDP).
3978 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3980 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
3982 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3984 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
3985 return tcp_hdrlen(skb
) + shinfo
->gso_size
;
3987 /* UFO sets gso_size to the size of the fragmentation
3988 * payload, i.e. the size of the L4 (UDP) header is already
3991 return shinfo
->gso_size
;
3993 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen
);
3995 static struct sk_buff
*skb_reorder_vlan_header(struct sk_buff
*skb
)
3997 if (skb_cow(skb
, skb_headroom(skb
)) < 0) {
4002 memmove(skb
->data
- ETH_HLEN
, skb
->data
- skb
->mac_len
- VLAN_HLEN
,
4004 skb
->mac_header
+= VLAN_HLEN
;
4008 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
)
4010 struct vlan_hdr
*vhdr
;
4013 if (unlikely(vlan_tx_tag_present(skb
))) {
4014 /* vlan_tci is already set-up so leave this for another time */
4018 skb
= skb_share_check(skb
, GFP_ATOMIC
);
4022 if (unlikely(!pskb_may_pull(skb
, VLAN_HLEN
)))
4025 vhdr
= (struct vlan_hdr
*)skb
->data
;
4026 vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4027 __vlan_hwaccel_put_tag(skb
, skb
->protocol
, vlan_tci
);
4029 skb_pull_rcsum(skb
, VLAN_HLEN
);
4030 vlan_set_encap_proto(skb
, vhdr
);
4032 skb
= skb_reorder_vlan_header(skb
);
4036 skb_reset_network_header(skb
);
4037 skb_reset_transport_header(skb
);
4038 skb_reset_mac_len(skb
);
4046 EXPORT_SYMBOL(skb_vlan_untag
);