2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
30 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
32 return entry
->file_offset
+ entry
->len
;
35 /* returns NULL if the insertion worked, or it returns the node it did find
38 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
41 struct rb_node
**p
= &root
->rb_node
;
42 struct rb_node
*parent
= NULL
;
43 struct btrfs_ordered_extent
*entry
;
47 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
49 if (file_offset
< entry
->file_offset
)
51 else if (file_offset
>= entry_end(entry
))
57 rb_link_node(node
, parent
, p
);
58 rb_insert_color(node
, root
);
63 * look for a given offset in the tree, and if it can't be found return the
66 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
67 struct rb_node
**prev_ret
)
69 struct rb_node
*n
= root
->rb_node
;
70 struct rb_node
*prev
= NULL
;
72 struct btrfs_ordered_extent
*entry
;
73 struct btrfs_ordered_extent
*prev_entry
= NULL
;
76 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
80 if (file_offset
< entry
->file_offset
)
82 else if (file_offset
>= entry_end(entry
))
90 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
94 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
96 if (file_offset
< entry_end(prev_entry
))
102 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
104 while (prev
&& file_offset
< entry_end(prev_entry
)) {
105 test
= rb_prev(prev
);
108 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
117 * helper to check if a given offset is inside a given entry
119 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
121 if (file_offset
< entry
->file_offset
||
122 entry
->file_offset
+ entry
->len
<= file_offset
)
128 * look find the first ordered struct that has this offset, otherwise
129 * the first one less than this offset
131 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
134 struct rb_root
*root
= &tree
->tree
;
135 struct rb_node
*prev
;
137 struct btrfs_ordered_extent
*entry
;
140 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
142 if (offset_in_entry(entry
, file_offset
))
145 ret
= __tree_search(root
, file_offset
, &prev
);
153 /* allocate and add a new ordered_extent into the per-inode tree.
154 * file_offset is the logical offset in the file
156 * start is the disk block number of an extent already reserved in the
157 * extent allocation tree
159 * len is the length of the extent
161 * The tree is given a single reference on the ordered extent that was
164 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
165 u64 start
, u64 len
, u64 disk_len
, int type
)
167 struct btrfs_ordered_inode_tree
*tree
;
168 struct rb_node
*node
;
169 struct btrfs_ordered_extent
*entry
;
171 tree
= &BTRFS_I(inode
)->ordered_tree
;
172 entry
= kzalloc(sizeof(*entry
), GFP_NOFS
);
176 entry
->file_offset
= file_offset
;
177 entry
->start
= start
;
179 entry
->disk_len
= disk_len
;
180 entry
->bytes_left
= len
;
181 entry
->inode
= inode
;
182 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
183 set_bit(type
, &entry
->flags
);
185 /* one ref for the tree */
186 atomic_set(&entry
->refs
, 1);
187 init_waitqueue_head(&entry
->wait
);
188 INIT_LIST_HEAD(&entry
->list
);
189 INIT_LIST_HEAD(&entry
->root_extent_list
);
191 spin_lock(&tree
->lock
);
192 node
= tree_insert(&tree
->tree
, file_offset
,
195 spin_unlock(&tree
->lock
);
197 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
198 list_add_tail(&entry
->root_extent_list
,
199 &BTRFS_I(inode
)->root
->fs_info
->ordered_extents
);
200 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
207 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
208 * when an ordered extent is finished. If the list covers more than one
209 * ordered extent, it is split across multiples.
211 int btrfs_add_ordered_sum(struct inode
*inode
,
212 struct btrfs_ordered_extent
*entry
,
213 struct btrfs_ordered_sum
*sum
)
215 struct btrfs_ordered_inode_tree
*tree
;
217 tree
= &BTRFS_I(inode
)->ordered_tree
;
218 spin_lock(&tree
->lock
);
219 list_add_tail(&sum
->list
, &entry
->list
);
220 spin_unlock(&tree
->lock
);
225 * this is used to account for finished IO across a given range
226 * of the file. The IO should not span ordered extents. If
227 * a given ordered_extent is completely done, 1 is returned, otherwise
230 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
231 * to make sure this function only returns 1 once for a given ordered extent.
233 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
234 struct btrfs_ordered_extent
**cached
,
235 u64 file_offset
, u64 io_size
)
237 struct btrfs_ordered_inode_tree
*tree
;
238 struct rb_node
*node
;
239 struct btrfs_ordered_extent
*entry
= NULL
;
242 tree
= &BTRFS_I(inode
)->ordered_tree
;
243 spin_lock(&tree
->lock
);
244 node
= tree_search(tree
, file_offset
);
250 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
251 if (!offset_in_entry(entry
, file_offset
)) {
256 if (io_size
> entry
->bytes_left
) {
257 printk(KERN_CRIT
"bad ordered accounting left %llu size %llu\n",
258 (unsigned long long)entry
->bytes_left
,
259 (unsigned long long)io_size
);
261 entry
->bytes_left
-= io_size
;
262 if (entry
->bytes_left
== 0)
263 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
267 if (!ret
&& cached
&& entry
) {
269 atomic_inc(&entry
->refs
);
271 spin_unlock(&tree
->lock
);
276 * used to drop a reference on an ordered extent. This will free
277 * the extent if the last reference is dropped
279 int btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
281 struct list_head
*cur
;
282 struct btrfs_ordered_sum
*sum
;
284 if (atomic_dec_and_test(&entry
->refs
)) {
285 while (!list_empty(&entry
->list
)) {
286 cur
= entry
->list
.next
;
287 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
288 list_del(&sum
->list
);
297 * remove an ordered extent from the tree. No references are dropped
298 * and you must wake_up entry->wait. You must hold the tree lock
299 * while you call this function.
301 static int __btrfs_remove_ordered_extent(struct inode
*inode
,
302 struct btrfs_ordered_extent
*entry
)
304 struct btrfs_ordered_inode_tree
*tree
;
305 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
306 struct rb_node
*node
;
308 tree
= &BTRFS_I(inode
)->ordered_tree
;
309 node
= &entry
->rb_node
;
310 rb_erase(node
, &tree
->tree
);
312 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
314 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
315 WARN_ON(!BTRFS_I(inode
)->outstanding_extents
);
316 BTRFS_I(inode
)->outstanding_extents
--;
317 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
318 btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode
)->root
,
321 spin_lock(&root
->fs_info
->ordered_extent_lock
);
322 list_del_init(&entry
->root_extent_list
);
325 * we have no more ordered extents for this inode and
326 * no dirty pages. We can safely remove it from the
327 * list of ordered extents
329 if (RB_EMPTY_ROOT(&tree
->tree
) &&
330 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
331 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
333 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
339 * remove an ordered extent from the tree. No references are dropped
340 * but any waiters are woken.
342 int btrfs_remove_ordered_extent(struct inode
*inode
,
343 struct btrfs_ordered_extent
*entry
)
345 struct btrfs_ordered_inode_tree
*tree
;
348 tree
= &BTRFS_I(inode
)->ordered_tree
;
349 spin_lock(&tree
->lock
);
350 ret
= __btrfs_remove_ordered_extent(inode
, entry
);
351 spin_unlock(&tree
->lock
);
352 wake_up(&entry
->wait
);
358 * wait for all the ordered extents in a root. This is done when balancing
359 * space between drives.
361 int btrfs_wait_ordered_extents(struct btrfs_root
*root
,
362 int nocow_only
, int delay_iput
)
364 struct list_head splice
;
365 struct list_head
*cur
;
366 struct btrfs_ordered_extent
*ordered
;
369 INIT_LIST_HEAD(&splice
);
371 spin_lock(&root
->fs_info
->ordered_extent_lock
);
372 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
373 while (!list_empty(&splice
)) {
375 ordered
= list_entry(cur
, struct btrfs_ordered_extent
,
378 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
) &&
379 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
380 list_move(&ordered
->root_extent_list
,
381 &root
->fs_info
->ordered_extents
);
382 cond_resched_lock(&root
->fs_info
->ordered_extent_lock
);
386 list_del_init(&ordered
->root_extent_list
);
387 atomic_inc(&ordered
->refs
);
390 * the inode may be getting freed (in sys_unlink path).
392 inode
= igrab(ordered
->inode
);
394 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
397 btrfs_start_ordered_extent(inode
, ordered
, 1);
398 btrfs_put_ordered_extent(ordered
);
400 btrfs_add_delayed_iput(inode
);
404 btrfs_put_ordered_extent(ordered
);
407 spin_lock(&root
->fs_info
->ordered_extent_lock
);
409 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
414 * this is used during transaction commit to write all the inodes
415 * added to the ordered operation list. These files must be fully on
416 * disk before the transaction commits.
418 * we have two modes here, one is to just start the IO via filemap_flush
419 * and the other is to wait for all the io. When we wait, we have an
420 * extra check to make sure the ordered operation list really is empty
423 int btrfs_run_ordered_operations(struct btrfs_root
*root
, int wait
)
425 struct btrfs_inode
*btrfs_inode
;
427 struct list_head splice
;
429 INIT_LIST_HEAD(&splice
);
431 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
432 spin_lock(&root
->fs_info
->ordered_extent_lock
);
434 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
436 while (!list_empty(&splice
)) {
437 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
440 inode
= &btrfs_inode
->vfs_inode
;
442 list_del_init(&btrfs_inode
->ordered_operations
);
445 * the inode may be getting freed (in sys_unlink path).
447 inode
= igrab(inode
);
449 if (!wait
&& inode
) {
450 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
451 &root
->fs_info
->ordered_operations
);
453 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
457 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
459 filemap_flush(inode
->i_mapping
);
460 btrfs_add_delayed_iput(inode
);
464 spin_lock(&root
->fs_info
->ordered_extent_lock
);
466 if (wait
&& !list_empty(&root
->fs_info
->ordered_operations
))
469 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
470 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
476 * Used to start IO or wait for a given ordered extent to finish.
478 * If wait is one, this effectively waits on page writeback for all the pages
479 * in the extent, and it waits on the io completion code to insert
480 * metadata into the btree corresponding to the extent
482 void btrfs_start_ordered_extent(struct inode
*inode
,
483 struct btrfs_ordered_extent
*entry
,
486 u64 start
= entry
->file_offset
;
487 u64 end
= start
+ entry
->len
- 1;
490 * pages in the range can be dirty, clean or writeback. We
491 * start IO on any dirty ones so the wait doesn't stall waiting
492 * for pdflush to find them
494 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
496 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
502 * Used to wait on ordered extents across a large range of bytes.
504 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
509 struct btrfs_ordered_extent
*ordered
;
512 if (start
+ len
< start
) {
513 orig_end
= INT_LIMIT(loff_t
);
515 orig_end
= start
+ len
- 1;
516 if (orig_end
> INT_LIMIT(loff_t
))
517 orig_end
= INT_LIMIT(loff_t
);
521 /* start IO across the range first to instantiate any delalloc
524 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
526 /* The compression code will leave pages locked but return from
527 * writepage without setting the page writeback. Starting again
528 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
530 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
532 filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
537 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
540 if (ordered
->file_offset
> orig_end
) {
541 btrfs_put_ordered_extent(ordered
);
544 if (ordered
->file_offset
+ ordered
->len
< start
) {
545 btrfs_put_ordered_extent(ordered
);
549 btrfs_start_ordered_extent(inode
, ordered
, 1);
550 end
= ordered
->file_offset
;
551 btrfs_put_ordered_extent(ordered
);
552 if (end
== 0 || end
== start
)
556 if (found
|| test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, orig_end
,
557 EXTENT_DELALLOC
, 0, NULL
)) {
565 * find an ordered extent corresponding to file_offset. return NULL if
566 * nothing is found, otherwise take a reference on the extent and return it
568 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
571 struct btrfs_ordered_inode_tree
*tree
;
572 struct rb_node
*node
;
573 struct btrfs_ordered_extent
*entry
= NULL
;
575 tree
= &BTRFS_I(inode
)->ordered_tree
;
576 spin_lock(&tree
->lock
);
577 node
= tree_search(tree
, file_offset
);
581 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
582 if (!offset_in_entry(entry
, file_offset
))
585 atomic_inc(&entry
->refs
);
587 spin_unlock(&tree
->lock
);
592 * lookup and return any extent before 'file_offset'. NULL is returned
595 struct btrfs_ordered_extent
*
596 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
598 struct btrfs_ordered_inode_tree
*tree
;
599 struct rb_node
*node
;
600 struct btrfs_ordered_extent
*entry
= NULL
;
602 tree
= &BTRFS_I(inode
)->ordered_tree
;
603 spin_lock(&tree
->lock
);
604 node
= tree_search(tree
, file_offset
);
608 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
609 atomic_inc(&entry
->refs
);
611 spin_unlock(&tree
->lock
);
616 * After an extent is done, call this to conditionally update the on disk
617 * i_size. i_size is updated to cover any fully written part of the file.
619 int btrfs_ordered_update_i_size(struct inode
*inode
, u64 offset
,
620 struct btrfs_ordered_extent
*ordered
)
622 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
623 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
627 u64 i_size
= i_size_read(inode
);
628 struct rb_node
*node
;
629 struct rb_node
*prev
= NULL
;
630 struct btrfs_ordered_extent
*test
;
634 offset
= entry_end(ordered
);
636 offset
= ALIGN(offset
, BTRFS_I(inode
)->root
->sectorsize
);
638 spin_lock(&tree
->lock
);
639 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
642 if (disk_i_size
> i_size
) {
643 BTRFS_I(inode
)->disk_i_size
= i_size
;
649 * if the disk i_size is already at the inode->i_size, or
650 * this ordered extent is inside the disk i_size, we're done
652 if (disk_i_size
== i_size
|| offset
<= disk_i_size
) {
657 * we can't update the disk_isize if there are delalloc bytes
658 * between disk_i_size and this ordered extent
660 if (test_range_bit(io_tree
, disk_i_size
, offset
- 1,
661 EXTENT_DELALLOC
, 0, NULL
)) {
665 * walk backward from this ordered extent to disk_i_size.
666 * if we find an ordered extent then we can't update disk i_size
670 node
= rb_prev(&ordered
->rb_node
);
672 prev
= tree_search(tree
, offset
);
674 * we insert file extents without involving ordered struct,
675 * so there should be no ordered struct cover this offset
678 test
= rb_entry(prev
, struct btrfs_ordered_extent
,
680 BUG_ON(offset_in_entry(test
, offset
));
685 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
686 if (test
->file_offset
+ test
->len
<= disk_i_size
)
688 if (test
->file_offset
>= i_size
)
690 if (test
->file_offset
>= disk_i_size
)
692 node
= rb_prev(node
);
694 new_i_size
= min_t(u64
, offset
, i_size
);
697 * at this point, we know we can safely update i_size to at least
698 * the offset from this ordered extent. But, we need to
699 * walk forward and see if ios from higher up in the file have
703 node
= rb_next(&ordered
->rb_node
);
706 node
= rb_next(prev
);
708 node
= rb_first(&tree
->tree
);
713 * do we have an area where IO might have finished
714 * between our ordered extent and the next one.
716 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
717 if (test
->file_offset
> offset
)
718 i_size_test
= test
->file_offset
;
720 i_size_test
= i_size
;
724 * i_size_test is the end of a region after this ordered
725 * extent where there are no ordered extents. As long as there
726 * are no delalloc bytes in this area, it is safe to update
727 * disk_i_size to the end of the region.
729 if (i_size_test
> offset
&&
730 !test_range_bit(io_tree
, offset
, i_size_test
- 1,
731 EXTENT_DELALLOC
, 0, NULL
)) {
732 new_i_size
= min_t(u64
, i_size_test
, i_size
);
734 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
738 * we need to remove the ordered extent with the tree lock held
739 * so that other people calling this function don't find our fully
740 * processed ordered entry and skip updating the i_size
743 __btrfs_remove_ordered_extent(inode
, ordered
);
744 spin_unlock(&tree
->lock
);
746 wake_up(&ordered
->wait
);
751 * search the ordered extents for one corresponding to 'offset' and
752 * try to find a checksum. This is used because we allow pages to
753 * be reclaimed before their checksum is actually put into the btree
755 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
758 struct btrfs_ordered_sum
*ordered_sum
;
759 struct btrfs_sector_sum
*sector_sums
;
760 struct btrfs_ordered_extent
*ordered
;
761 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
762 unsigned long num_sectors
;
764 u32 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
767 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
771 spin_lock(&tree
->lock
);
772 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
773 if (disk_bytenr
>= ordered_sum
->bytenr
) {
774 num_sectors
= ordered_sum
->len
/ sectorsize
;
775 sector_sums
= ordered_sum
->sums
;
776 for (i
= 0; i
< num_sectors
; i
++) {
777 if (sector_sums
[i
].bytenr
== disk_bytenr
) {
778 *sum
= sector_sums
[i
].sum
;
786 spin_unlock(&tree
->lock
);
787 btrfs_put_ordered_extent(ordered
);
793 * add a given inode to the list of inodes that must be fully on
794 * disk before a transaction commit finishes.
796 * This basically gives us the ext3 style data=ordered mode, and it is mostly
797 * used to make sure renamed files are fully on disk.
799 * It is a noop if the inode is already fully on disk.
801 * If trans is not null, we'll do a friendly check for a transaction that
802 * is already flushing things and force the IO down ourselves.
804 int btrfs_add_ordered_operation(struct btrfs_trans_handle
*trans
,
805 struct btrfs_root
*root
,
810 last_mod
= max(BTRFS_I(inode
)->generation
, BTRFS_I(inode
)->last_trans
);
813 * if this file hasn't been changed since the last transaction
814 * commit, we can safely return without doing anything
816 if (last_mod
< root
->fs_info
->last_trans_committed
)
820 * the transaction is already committing. Just start the IO and
821 * don't bother with all of this list nonsense
823 if (trans
&& root
->fs_info
->running_transaction
->blocked
) {
824 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
828 spin_lock(&root
->fs_info
->ordered_extent_lock
);
829 if (list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
830 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
831 &root
->fs_info
->ordered_operations
);
833 spin_unlock(&root
->fs_info
->ordered_extent_lock
);