2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
27 #include "transaction.h"
31 #define BTRFS_ROOT_TRANS_TAG 0
33 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
35 WARN_ON(transaction
->use_count
== 0);
36 transaction
->use_count
--;
37 if (transaction
->use_count
== 0) {
38 list_del_init(&transaction
->list
);
39 memset(transaction
, 0, sizeof(*transaction
));
40 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
44 static noinline
void switch_commit_root(struct btrfs_root
*root
)
46 free_extent_buffer(root
->commit_root
);
47 root
->commit_root
= btrfs_root_node(root
);
51 * either allocate a new transaction or hop into the existing one
53 static noinline
int join_transaction(struct btrfs_root
*root
)
55 struct btrfs_transaction
*cur_trans
;
56 cur_trans
= root
->fs_info
->running_transaction
;
58 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
,
61 root
->fs_info
->generation
++;
62 cur_trans
->num_writers
= 1;
63 cur_trans
->num_joined
= 0;
64 cur_trans
->transid
= root
->fs_info
->generation
;
65 init_waitqueue_head(&cur_trans
->writer_wait
);
66 init_waitqueue_head(&cur_trans
->commit_wait
);
67 cur_trans
->in_commit
= 0;
68 cur_trans
->blocked
= 0;
69 cur_trans
->use_count
= 1;
70 cur_trans
->commit_done
= 0;
71 cur_trans
->start_time
= get_seconds();
73 cur_trans
->delayed_refs
.root
= RB_ROOT
;
74 cur_trans
->delayed_refs
.num_entries
= 0;
75 cur_trans
->delayed_refs
.num_heads_ready
= 0;
76 cur_trans
->delayed_refs
.num_heads
= 0;
77 cur_trans
->delayed_refs
.flushing
= 0;
78 cur_trans
->delayed_refs
.run_delayed_start
= 0;
79 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
81 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
82 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
83 extent_io_tree_init(&cur_trans
->dirty_pages
,
84 root
->fs_info
->btree_inode
->i_mapping
,
86 spin_lock(&root
->fs_info
->new_trans_lock
);
87 root
->fs_info
->running_transaction
= cur_trans
;
88 spin_unlock(&root
->fs_info
->new_trans_lock
);
90 cur_trans
->num_writers
++;
91 cur_trans
->num_joined
++;
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
103 static noinline
int record_root_in_trans(struct btrfs_trans_handle
*trans
,
104 struct btrfs_root
*root
)
106 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
107 WARN_ON(root
== root
->fs_info
->extent_root
);
108 WARN_ON(root
->commit_root
!= root
->node
);
110 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
111 (unsigned long)root
->root_key
.objectid
,
112 BTRFS_ROOT_TRANS_TAG
);
113 root
->last_trans
= trans
->transid
;
114 btrfs_init_reloc_root(trans
, root
);
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
120 struct btrfs_root
*root
)
125 mutex_lock(&root
->fs_info
->trans_mutex
);
126 if (root
->last_trans
== trans
->transid
) {
127 mutex_unlock(&root
->fs_info
->trans_mutex
);
131 record_root_in_trans(trans
, root
);
132 mutex_unlock(&root
->fs_info
->trans_mutex
);
136 /* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
140 static void wait_current_trans(struct btrfs_root
*root
)
142 struct btrfs_transaction
*cur_trans
;
144 cur_trans
= root
->fs_info
->running_transaction
;
145 if (cur_trans
&& cur_trans
->blocked
) {
147 cur_trans
->use_count
++;
149 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
150 TASK_UNINTERRUPTIBLE
);
151 if (!cur_trans
->blocked
)
153 mutex_unlock(&root
->fs_info
->trans_mutex
);
155 mutex_lock(&root
->fs_info
->trans_mutex
);
157 finish_wait(&root
->fs_info
->transaction_wait
, &wait
);
158 put_transaction(cur_trans
);
162 enum btrfs_trans_type
{
168 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
169 int num_blocks
, int type
)
171 struct btrfs_trans_handle
*h
=
172 kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
175 mutex_lock(&root
->fs_info
->trans_mutex
);
176 if (!root
->fs_info
->log_root_recovering
&&
177 ((type
== TRANS_START
&& !root
->fs_info
->open_ioctl_trans
) ||
178 type
== TRANS_USERSPACE
))
179 wait_current_trans(root
);
180 ret
= join_transaction(root
);
183 h
->transid
= root
->fs_info
->running_transaction
->transid
;
184 h
->transaction
= root
->fs_info
->running_transaction
;
185 h
->blocks_reserved
= num_blocks
;
188 h
->alloc_exclude_nr
= 0;
189 h
->alloc_exclude_start
= 0;
190 h
->delayed_ref_updates
= 0;
192 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
193 current
->journal_info
= h
;
195 root
->fs_info
->running_transaction
->use_count
++;
196 record_root_in_trans(h
, root
);
197 mutex_unlock(&root
->fs_info
->trans_mutex
);
201 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
204 return start_transaction(root
, num_blocks
, TRANS_START
);
206 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
,
209 return start_transaction(root
, num_blocks
, TRANS_JOIN
);
212 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*r
,
215 return start_transaction(r
, num_blocks
, TRANS_USERSPACE
);
218 /* wait for a transaction commit to be fully complete */
219 static noinline
int wait_for_commit(struct btrfs_root
*root
,
220 struct btrfs_transaction
*commit
)
223 mutex_lock(&root
->fs_info
->trans_mutex
);
224 while (!commit
->commit_done
) {
225 prepare_to_wait(&commit
->commit_wait
, &wait
,
226 TASK_UNINTERRUPTIBLE
);
227 if (commit
->commit_done
)
229 mutex_unlock(&root
->fs_info
->trans_mutex
);
231 mutex_lock(&root
->fs_info
->trans_mutex
);
233 mutex_unlock(&root
->fs_info
->trans_mutex
);
234 finish_wait(&commit
->commit_wait
, &wait
);
240 * rate limit against the drop_snapshot code. This helps to slow down new
241 * operations if the drop_snapshot code isn't able to keep up.
243 static void throttle_on_drops(struct btrfs_root
*root
)
245 struct btrfs_fs_info
*info
= root
->fs_info
;
246 int harder_count
= 0;
249 if (atomic_read(&info
->throttles
)) {
252 thr
= atomic_read(&info
->throttle_gen
);
255 prepare_to_wait(&info
->transaction_throttle
,
256 &wait
, TASK_UNINTERRUPTIBLE
);
257 if (!atomic_read(&info
->throttles
)) {
258 finish_wait(&info
->transaction_throttle
, &wait
);
262 finish_wait(&info
->transaction_throttle
, &wait
);
263 } while (thr
== atomic_read(&info
->throttle_gen
));
266 if (root
->fs_info
->total_ref_cache_size
> 1 * 1024 * 1024 &&
270 if (root
->fs_info
->total_ref_cache_size
> 5 * 1024 * 1024 &&
274 if (root
->fs_info
->total_ref_cache_size
> 10 * 1024 * 1024 &&
281 void btrfs_throttle(struct btrfs_root
*root
)
283 mutex_lock(&root
->fs_info
->trans_mutex
);
284 if (!root
->fs_info
->open_ioctl_trans
)
285 wait_current_trans(root
);
286 mutex_unlock(&root
->fs_info
->trans_mutex
);
289 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
290 struct btrfs_root
*root
, int throttle
)
292 struct btrfs_transaction
*cur_trans
;
293 struct btrfs_fs_info
*info
= root
->fs_info
;
297 unsigned long cur
= trans
->delayed_ref_updates
;
298 trans
->delayed_ref_updates
= 0;
300 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
301 trans
->delayed_ref_updates
= 0;
304 * do a full flush if the transaction is trying
307 if (trans
->transaction
->delayed_refs
.flushing
)
309 btrfs_run_delayed_refs(trans
, root
, cur
);
316 mutex_lock(&info
->trans_mutex
);
317 cur_trans
= info
->running_transaction
;
318 WARN_ON(cur_trans
!= trans
->transaction
);
319 WARN_ON(cur_trans
->num_writers
< 1);
320 cur_trans
->num_writers
--;
322 if (waitqueue_active(&cur_trans
->writer_wait
))
323 wake_up(&cur_trans
->writer_wait
);
324 put_transaction(cur_trans
);
325 mutex_unlock(&info
->trans_mutex
);
327 if (current
->journal_info
== trans
)
328 current
->journal_info
= NULL
;
329 memset(trans
, 0, sizeof(*trans
));
330 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
333 btrfs_run_delayed_iputs(root
);
338 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
339 struct btrfs_root
*root
)
341 return __btrfs_end_transaction(trans
, root
, 0);
344 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
345 struct btrfs_root
*root
)
347 return __btrfs_end_transaction(trans
, root
, 1);
351 * when btree blocks are allocated, they have some corresponding bits set for
352 * them in one of two extent_io trees. This is used to make sure all of
353 * those extents are sent to disk but does not wait on them
355 int btrfs_write_marked_extents(struct btrfs_root
*root
,
356 struct extent_io_tree
*dirty_pages
, int mark
)
362 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
368 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
372 while (start
<= end
) {
375 index
= start
>> PAGE_CACHE_SHIFT
;
376 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
377 page
= find_get_page(btree_inode
->i_mapping
, index
);
381 btree_lock_page_hook(page
);
382 if (!page
->mapping
) {
384 page_cache_release(page
);
388 if (PageWriteback(page
)) {
390 wait_on_page_writeback(page
);
393 page_cache_release(page
);
397 err
= write_one_page(page
, 0);
400 page_cache_release(page
);
409 * when btree blocks are allocated, they have some corresponding bits set for
410 * them in one of two extent_io trees. This is used to make sure all of
411 * those extents are on disk for transaction or log commit. We wait
412 * on all the pages and clear them from the dirty pages state tree
414 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
415 struct extent_io_tree
*dirty_pages
, int mark
)
421 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
427 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
432 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
433 while (start
<= end
) {
434 index
= start
>> PAGE_CACHE_SHIFT
;
435 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
436 page
= find_get_page(btree_inode
->i_mapping
, index
);
439 if (PageDirty(page
)) {
440 btree_lock_page_hook(page
);
441 wait_on_page_writeback(page
);
442 err
= write_one_page(page
, 0);
446 wait_on_page_writeback(page
);
447 page_cache_release(page
);
457 * when btree blocks are allocated, they have some corresponding bits set for
458 * them in one of two extent_io trees. This is used to make sure all of
459 * those extents are on disk for transaction or log commit
461 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
462 struct extent_io_tree
*dirty_pages
, int mark
)
467 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
468 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
472 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
473 struct btrfs_root
*root
)
475 if (!trans
|| !trans
->transaction
) {
476 struct inode
*btree_inode
;
477 btree_inode
= root
->fs_info
->btree_inode
;
478 return filemap_write_and_wait(btree_inode
->i_mapping
);
480 return btrfs_write_and_wait_marked_extents(root
,
481 &trans
->transaction
->dirty_pages
,
486 * this is used to update the root pointer in the tree of tree roots.
488 * But, in the case of the extent allocation tree, updating the root
489 * pointer may allocate blocks which may change the root of the extent
492 * So, this loops and repeats and makes sure the cowonly root didn't
493 * change while the root pointer was being updated in the metadata.
495 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
496 struct btrfs_root
*root
)
501 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
503 old_root_used
= btrfs_root_used(&root
->root_item
);
504 btrfs_write_dirty_block_groups(trans
, root
);
507 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
508 if (old_root_bytenr
== root
->node
->start
&&
509 old_root_used
== btrfs_root_used(&root
->root_item
))
512 btrfs_set_root_node(&root
->root_item
, root
->node
);
513 ret
= btrfs_update_root(trans
, tree_root
,
518 old_root_used
= btrfs_root_used(&root
->root_item
);
519 ret
= btrfs_write_dirty_block_groups(trans
, root
);
523 if (root
!= root
->fs_info
->extent_root
)
524 switch_commit_root(root
);
530 * update all the cowonly tree roots on disk
532 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
533 struct btrfs_root
*root
)
535 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
536 struct list_head
*next
;
537 struct extent_buffer
*eb
;
540 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
543 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
544 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
545 btrfs_tree_unlock(eb
);
546 free_extent_buffer(eb
);
548 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
551 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
552 next
= fs_info
->dirty_cowonly_roots
.next
;
554 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
556 update_cowonly_root(trans
, root
);
559 down_write(&fs_info
->extent_commit_sem
);
560 switch_commit_root(fs_info
->extent_root
);
561 up_write(&fs_info
->extent_commit_sem
);
567 * dead roots are old snapshots that need to be deleted. This allocates
568 * a dirty root struct and adds it into the list of dead roots that need to
571 int btrfs_add_dead_root(struct btrfs_root
*root
)
573 mutex_lock(&root
->fs_info
->trans_mutex
);
574 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
575 mutex_unlock(&root
->fs_info
->trans_mutex
);
580 * update all the cowonly tree roots on disk
582 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
583 struct btrfs_root
*root
)
585 struct btrfs_root
*gang
[8];
586 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
592 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
595 BTRFS_ROOT_TRANS_TAG
);
598 for (i
= 0; i
< ret
; i
++) {
600 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
601 (unsigned long)root
->root_key
.objectid
,
602 BTRFS_ROOT_TRANS_TAG
);
604 btrfs_free_log(trans
, root
);
605 btrfs_update_reloc_root(trans
, root
);
607 if (root
->commit_root
!= root
->node
) {
608 switch_commit_root(root
);
609 btrfs_set_root_node(&root
->root_item
,
613 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
624 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
625 * otherwise every leaf in the btree is read and defragged.
627 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
629 struct btrfs_fs_info
*info
= root
->fs_info
;
631 struct btrfs_trans_handle
*trans
;
635 if (root
->defrag_running
)
637 trans
= btrfs_start_transaction(root
, 1);
639 root
->defrag_running
= 1;
640 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
641 nr
= trans
->blocks_used
;
642 btrfs_end_transaction(trans
, root
);
643 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
646 trans
= btrfs_start_transaction(root
, 1);
647 if (root
->fs_info
->closing
|| ret
!= -EAGAIN
)
650 root
->defrag_running
= 0;
652 btrfs_end_transaction(trans
, root
);
658 * when dropping snapshots, we generate a ton of delayed refs, and it makes
659 * sense not to join the transaction while it is trying to flush the current
660 * queue of delayed refs out.
662 * This is used by the drop snapshot code only
664 static noinline
int wait_transaction_pre_flush(struct btrfs_fs_info
*info
)
668 mutex_lock(&info
->trans_mutex
);
669 while (info
->running_transaction
&&
670 info
->running_transaction
->delayed_refs
.flushing
) {
671 prepare_to_wait(&info
->transaction_wait
, &wait
,
672 TASK_UNINTERRUPTIBLE
);
673 mutex_unlock(&info
->trans_mutex
);
677 mutex_lock(&info
->trans_mutex
);
678 finish_wait(&info
->transaction_wait
, &wait
);
680 mutex_unlock(&info
->trans_mutex
);
685 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
688 int btrfs_drop_dead_root(struct btrfs_root
*root
)
690 struct btrfs_trans_handle
*trans
;
691 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
697 * we don't want to jump in and create a bunch of
698 * delayed refs if the transaction is starting to close
700 wait_transaction_pre_flush(tree_root
->fs_info
);
701 trans
= btrfs_start_transaction(tree_root
, 1);
704 * we've joined a transaction, make sure it isn't
707 if (trans
->transaction
->delayed_refs
.flushing
) {
708 btrfs_end_transaction(trans
, tree_root
);
712 ret
= btrfs_drop_snapshot(trans
, root
);
716 ret
= btrfs_update_root(trans
, tree_root
,
722 nr
= trans
->blocks_used
;
723 ret
= btrfs_end_transaction(trans
, tree_root
);
726 btrfs_btree_balance_dirty(tree_root
, nr
);
731 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
734 nr
= trans
->blocks_used
;
735 ret
= btrfs_end_transaction(trans
, tree_root
);
738 free_extent_buffer(root
->node
);
739 free_extent_buffer(root
->commit_root
);
742 btrfs_btree_balance_dirty(tree_root
, nr
);
748 * new snapshots need to be created at a very specific time in the
749 * transaction commit. This does the actual creation
751 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
752 struct btrfs_fs_info
*fs_info
,
753 struct btrfs_pending_snapshot
*pending
)
755 struct btrfs_key key
;
756 struct btrfs_root_item
*new_root_item
;
757 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
758 struct btrfs_root
*root
= pending
->root
;
759 struct btrfs_root
*parent_root
;
760 struct inode
*parent_inode
;
761 struct extent_buffer
*tmp
;
762 struct extent_buffer
*old
;
768 parent_inode
= pending
->dentry
->d_parent
->d_inode
;
769 parent_root
= BTRFS_I(parent_inode
)->root
;
771 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
772 if (!new_root_item
) {
776 ret
= btrfs_find_free_objectid(trans
, tree_root
, 0, &objectid
);
780 key
.objectid
= objectid
;
781 /* record when the snapshot was created in key.offset */
782 key
.offset
= trans
->transid
;
783 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
785 memcpy(&pending
->root_key
, &key
, sizeof(key
));
786 pending
->root_key
.offset
= (u64
)-1;
788 record_root_in_trans(trans
, parent_root
);
790 * insert the directory item
792 namelen
= strlen(pending
->name
);
793 ret
= btrfs_set_inode_index(parent_inode
, &index
);
795 ret
= btrfs_insert_dir_item(trans
, parent_root
,
796 pending
->name
, namelen
,
798 &pending
->root_key
, BTRFS_FT_DIR
, index
);
801 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+ namelen
* 2);
802 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
805 record_root_in_trans(trans
, root
);
806 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
807 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
809 old
= btrfs_lock_root_node(root
);
810 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
811 btrfs_set_lock_blocking(old
);
813 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
814 btrfs_tree_unlock(old
);
815 free_extent_buffer(old
);
817 btrfs_set_root_node(new_root_item
, tmp
);
818 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
821 btrfs_tree_unlock(tmp
);
822 free_extent_buffer(tmp
);
824 ret
= btrfs_add_root_ref(trans
, parent_root
->fs_info
->tree_root
,
825 pending
->root_key
.objectid
,
826 parent_root
->root_key
.objectid
,
827 parent_inode
->i_ino
, index
, pending
->name
,
832 kfree(new_root_item
);
837 * create all the snapshots we've scheduled for creation
839 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
840 struct btrfs_fs_info
*fs_info
)
842 struct btrfs_pending_snapshot
*pending
;
843 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
846 list_for_each_entry(pending
, head
, list
) {
847 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
853 static void update_super_roots(struct btrfs_root
*root
)
855 struct btrfs_root_item
*root_item
;
856 struct btrfs_super_block
*super
;
858 super
= &root
->fs_info
->super_copy
;
860 root_item
= &root
->fs_info
->chunk_root
->root_item
;
861 super
->chunk_root
= root_item
->bytenr
;
862 super
->chunk_root_generation
= root_item
->generation
;
863 super
->chunk_root_level
= root_item
->level
;
865 root_item
= &root
->fs_info
->tree_root
->root_item
;
866 super
->root
= root_item
->bytenr
;
867 super
->generation
= root_item
->generation
;
868 super
->root_level
= root_item
->level
;
871 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
874 spin_lock(&info
->new_trans_lock
);
875 if (info
->running_transaction
)
876 ret
= info
->running_transaction
->in_commit
;
877 spin_unlock(&info
->new_trans_lock
);
881 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
882 struct btrfs_root
*root
)
884 unsigned long joined
= 0;
885 unsigned long timeout
= 1;
886 struct btrfs_transaction
*cur_trans
;
887 struct btrfs_transaction
*prev_trans
= NULL
;
891 unsigned long now
= get_seconds();
892 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
894 btrfs_run_ordered_operations(root
, 0);
896 /* make a pass through all the delayed refs we have so far
897 * any runnings procs may add more while we are here
899 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
902 cur_trans
= trans
->transaction
;
904 * set the flushing flag so procs in this transaction have to
905 * start sending their work down.
907 cur_trans
->delayed_refs
.flushing
= 1;
909 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
912 mutex_lock(&root
->fs_info
->trans_mutex
);
913 if (cur_trans
->in_commit
) {
914 cur_trans
->use_count
++;
915 mutex_unlock(&root
->fs_info
->trans_mutex
);
916 btrfs_end_transaction(trans
, root
);
918 ret
= wait_for_commit(root
, cur_trans
);
921 mutex_lock(&root
->fs_info
->trans_mutex
);
922 put_transaction(cur_trans
);
923 mutex_unlock(&root
->fs_info
->trans_mutex
);
928 trans
->transaction
->in_commit
= 1;
929 trans
->transaction
->blocked
= 1;
930 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
931 prev_trans
= list_entry(cur_trans
->list
.prev
,
932 struct btrfs_transaction
, list
);
933 if (!prev_trans
->commit_done
) {
934 prev_trans
->use_count
++;
935 mutex_unlock(&root
->fs_info
->trans_mutex
);
937 wait_for_commit(root
, prev_trans
);
939 mutex_lock(&root
->fs_info
->trans_mutex
);
940 put_transaction(prev_trans
);
944 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
948 int snap_pending
= 0;
949 joined
= cur_trans
->num_joined
;
950 if (!list_empty(&trans
->transaction
->pending_snapshots
))
953 WARN_ON(cur_trans
!= trans
->transaction
);
954 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
955 TASK_UNINTERRUPTIBLE
);
957 if (cur_trans
->num_writers
> 1)
958 timeout
= MAX_SCHEDULE_TIMEOUT
;
959 else if (should_grow
)
962 mutex_unlock(&root
->fs_info
->trans_mutex
);
964 if (flush_on_commit
|| snap_pending
) {
965 btrfs_start_delalloc_inodes(root
, 1);
966 ret
= btrfs_wait_ordered_extents(root
, 0, 1);
971 * rename don't use btrfs_join_transaction, so, once we
972 * set the transaction to blocked above, we aren't going
973 * to get any new ordered operations. We can safely run
974 * it here and no for sure that nothing new will be added
977 btrfs_run_ordered_operations(root
, 1);
980 if (cur_trans
->num_writers
> 1 || should_grow
)
981 schedule_timeout(timeout
);
983 mutex_lock(&root
->fs_info
->trans_mutex
);
984 finish_wait(&cur_trans
->writer_wait
, &wait
);
985 } while (cur_trans
->num_writers
> 1 ||
986 (should_grow
&& cur_trans
->num_joined
!= joined
));
988 ret
= create_pending_snapshots(trans
, root
->fs_info
);
991 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
994 WARN_ON(cur_trans
!= trans
->transaction
);
996 /* btrfs_commit_tree_roots is responsible for getting the
997 * various roots consistent with each other. Every pointer
998 * in the tree of tree roots has to point to the most up to date
999 * root for every subvolume and other tree. So, we have to keep
1000 * the tree logging code from jumping in and changing any
1003 * At this point in the commit, there can't be any tree-log
1004 * writers, but a little lower down we drop the trans mutex
1005 * and let new people in. By holding the tree_log_mutex
1006 * from now until after the super is written, we avoid races
1007 * with the tree-log code.
1009 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1011 ret
= commit_fs_roots(trans
, root
);
1014 /* commit_fs_roots gets rid of all the tree log roots, it is now
1015 * safe to free the root of tree log roots
1017 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1019 ret
= commit_cowonly_roots(trans
, root
);
1022 btrfs_prepare_extent_commit(trans
, root
);
1024 cur_trans
= root
->fs_info
->running_transaction
;
1025 spin_lock(&root
->fs_info
->new_trans_lock
);
1026 root
->fs_info
->running_transaction
= NULL
;
1027 spin_unlock(&root
->fs_info
->new_trans_lock
);
1029 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1030 root
->fs_info
->tree_root
->node
);
1031 switch_commit_root(root
->fs_info
->tree_root
);
1033 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1034 root
->fs_info
->chunk_root
->node
);
1035 switch_commit_root(root
->fs_info
->chunk_root
);
1037 update_super_roots(root
);
1039 if (!root
->fs_info
->log_root_recovering
) {
1040 btrfs_set_super_log_root(&root
->fs_info
->super_copy
, 0);
1041 btrfs_set_super_log_root_level(&root
->fs_info
->super_copy
, 0);
1044 memcpy(&root
->fs_info
->super_for_commit
, &root
->fs_info
->super_copy
,
1045 sizeof(root
->fs_info
->super_copy
));
1047 trans
->transaction
->blocked
= 0;
1049 wake_up(&root
->fs_info
->transaction_wait
);
1051 mutex_unlock(&root
->fs_info
->trans_mutex
);
1052 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1054 write_ctree_super(trans
, root
, 0);
1057 * the super is written, we can safely allow the tree-loggers
1058 * to go about their business
1060 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1062 btrfs_finish_extent_commit(trans
, root
);
1064 mutex_lock(&root
->fs_info
->trans_mutex
);
1066 cur_trans
->commit_done
= 1;
1068 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1070 wake_up(&cur_trans
->commit_wait
);
1072 put_transaction(cur_trans
);
1073 put_transaction(cur_trans
);
1075 mutex_unlock(&root
->fs_info
->trans_mutex
);
1077 if (current
->journal_info
== trans
)
1078 current
->journal_info
= NULL
;
1080 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1082 if (current
!= root
->fs_info
->transaction_kthread
)
1083 btrfs_run_delayed_iputs(root
);
1089 * interface function to delete all the snapshots we have scheduled for deletion
1091 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1094 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1096 mutex_lock(&fs_info
->trans_mutex
);
1097 list_splice_init(&fs_info
->dead_roots
, &list
);
1098 mutex_unlock(&fs_info
->trans_mutex
);
1100 while (!list_empty(&list
)) {
1101 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1102 list_del(&root
->root_list
);
1104 if (btrfs_header_backref_rev(root
->node
) <
1105 BTRFS_MIXED_BACKREF_REV
)
1106 btrfs_drop_snapshot(root
, 0);
1108 btrfs_drop_snapshot(root
, 1);